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Abstract

Given a polynomial in several variables with rational integer
coefficients, we investigate the set of integer tuples where this
polynomial vanishes. The best know example is Fermat’s
equation xn + yn = zn. Another family is given by the
so–called Pell–Fermat equations x2 − dy2 = ±1 already
considered by Brahmagupta (598 - 670) and Bhaskaracharya
(1114 - 1185). After a short historical survey on this subject
starting with Hilbert’s 10th Problem, we describe the state of
the art concerning integer points on curves f(x, y) = k,
including work of Thue, Siegel, Gel’fond, Baker, Schmidt. We
conclude with new results on families of such Diophantine
equations.
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Diophantus of Alexandria (250 ±50)

Pythagoras equation x2 + y2 = z2 (ref. : Hardy and Wright)

Diophantine quadruples : (1, 3, 8, 120) xy + 1 is a square :
4 = 22, 9 = 32, 121 = 112, 25 = 52, 361 = 192, 961 = 312.

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
Oxford University Press, Oxford, sixth ed., 2008.
Revised by D. R. Heath-Brown and J. H. Silverman.
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Brahmagupta (598 – 670)
Brahmasphutasiddhanta : Solve in integers the equation

x2 − 92y2 = 1

The smallest solution is

x = 1151, y = 120.

Composition method : samasa – Brahmagupta identity

(a2 − db2)(x2 − dy2) = (ax+ dby)2 − d(ay + bx)2.

http://mathworld.wolfram.com/BrahmaguptasProblem.html

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Bhaskara II or Bhaskaracharya (1114 - 1185)

Lilavati Ujjain (India)

Bijaganita, (1150)

x2 − 61y2 = 1

x = 1766 319 049, y = 226 153 980.

Cyclic method Chakravala : produces a solution to Pell’s
equation x2 − dy2 = 1 starting from a solution to
a2 − db2 = k with a small k.
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Reference to Indian mathematics

André Weil
Number theory :
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c:01004
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Pierre de Fermat

Pierre de Fermat
1601–1665

Andrew Wiles

Proof of Fermat’s last Theorem by Andrew Wiles (1993) : for
n ≥ 3, there is no positive integer solution (a, b, c) to

an + bn = cn.
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Ramanujan – Nagell Equation

Srinivasa Ramanujan
1887 – 1920

Trygve Nagell
1895 – 1988
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Ramanujan – Nagell Equation

x2 + 7 = 2n

12 + 7 = 23 = 8
32 + 7 = 24 = 16
52 + 7 = 25 = 32
112 + 7 = 27 = 128
1812 + 7 = 215 = 32 768
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x2 +D = 2n

Nagell (1948) : for D = 7, no further solution

Apéry (1960) : for D > 0,
D 6= 7, the equation
x2 +D = 2n has at most 2
solutions.

Roger Apéry
1916 – 1994

Examples with 2 solutions :

D = 23 : 32 + 23 = 32, 452 + 23 = 211 = 2048

D = 2`+1 − 1, ` ≥ 3 : (2` − 1)2 + 2`+1 − 1 = 22`
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x2 +D = 2n

Beukers (1980) : at most one solution otherwise.

Frits Beukers Mike Bennett

M. Bennett (1995) : considers the case D < 0.
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Diophantine equations : early historical survey

Pierre Fermat (1601 ? – 1665)

Leonhard Euler (1707 – 1783)

Joseph Louis Lagrange (1736 – 1813)

XIXth Century : Adolf Hurwitz, Henri Poincaré
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Hilbert’s 8th Problem

David Hilbert
1862 – 1943

Second International Congress
of Mathematicians in Paris.
August 8, 1900

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis

http://www.maa.org/sites/default/files/pdf/upload$_-$library/22/Ford/Thiele1-24.pdf
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Hilbert’s tenth problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.
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Negative solution to Hilbert’s 10th problem

Julia Robinson (1952)

Julia Robinson, Martin Davis, Hilary Putnam (1961)

Yuri Matijasevic (1970)

Remark : the analog for rational points of Hilbert’s 10th
problem is not yet solved :
Does there exist an algorithm in order to decide whether a
Diophantine equation has a rational solution or not ?
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Diophantine equations : historical survey
Thue (1908) : there are only finitely many integer solutions of

F (x, y) = m,

when F is homogeneous irreducible form over Q of degree ≥ 3.
Mordell’s Conjecture (1922) : rational points on algebraic
curves
Siegel’s Theorem (1929) : integral points on algebraic curves

Axel Thue
1863 - 1922

Louis Mordell
1888 – 1972

Carl Ludwig Siegel
1896 - 1981
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Mordell’s Conjecture, Faltings’s Theorem

Mordell’s Conjecture : 1922. Faltings’s Theorem (1983).
The set of rational points on a number field of a curve of
genus ≥ 2 is finite.

Louis Mordell
1888 – 1972

Gerd Faltings
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The group of rational points on an elliptic curve
Conjecture (Henri Poincaré, 1901) : finitely many points are
sufficient to deduce all rational points by the chord and
tangent method.

Henri Poincaré
1854 – 1912

Louis Mordell
1888 – 1972

Theorem (Mordell, 1922). If E is an elliptic curve over Q,
then the abelian group E(Q) is finitely generated : there exists
a nonnegative integer r (the Mordell-Weil rank of the curve
over Q) such that

E(Q) = E(Q)tors × Zr

and E(Q)tors is a finite group.
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Mordell–Weil Theorem
André Weil (1928) : generalization to number fields and
abelian varieties :
If A is an Abelian variety over a number field K, then the
abelian group A(K) is finitely generated :

A(K) = A(K)tors × Zr

with r ≥ 0 while A(K)tors is a finite group.

Jacques Hadamard
1865 - 1963

André Weil
1906 – 1998

Weil’s thesis : 1928. Hadamard’s comment.
Reference : Antoine Chambert-Loir. La conjecture de Mordell : origines, approches, généralisations. Séminaire
Betty B., Septembre 2021 5e année, 2021–2022
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Axel Thue

Axel Thue
1863 - 1922

Thue (1908) : there are only
finitely many integer solutions
of

F (x, y) = m,

when F is homogeneous
irreducible form over Q of
degree ≥ 3.
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Liouville’s inequality (1844)

Liouville’s inequality . Let α
be an algebraic number of
degree d ≥ 2. There exists
c(α) > 0 such that, for any
p/q ∈ Q with q > 0,∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd
· Joseph Liouville

1809–1882
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Liouville’s estimate for 3
√
2 :

For any p/q ∈ Q, ∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

6q3
·

Proof.
Since 3

√
2 is irrational, for p and q rational integers with q > 0,

we have p3 − 2q3 6= 0, hence

|p3 − 2q3| ≥ 1.

Write

p3 − 2q3 = (p− 3
√
2q)(p2 +

3
√
2pq +

3
√
4q2).

If p ≤ (3/2)q, then

p2 +
3
√
2pq +

3
√
4q2 < 6q2.

Hence
1 ≤ 6q2|p− 3

√
2q|.
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Liouville’s estimate for 3
√
2 :

For any p/q ∈ Q, ∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

6q3
·

Proof.
We completed the proof in the case p ≤ (3/2)q.
If p > (3/2)q, then∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 3

2
− 3
√
2 >

1

6
·
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Improving Liouville’s inequality
If we can improve the lower bound

|p3 − 2q3| ≥ 1,

then we can improve Liouville’s estimate∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

6q3
·

What turns out to be much more interesting is the converse :
If we can improve Liouville’s estimate∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

6q3
,

then we can improve the lower bound

|p3 − 2q3| ≥ 1.
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Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d of
q in the denominator of the right hand side was replaced by κ
with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√
d by C.L. Siegel in 1921,

•
√
2d by F.J. Dyson and A.O. Gel’fond in 1947,

• any κ > 2 by K.F. Roth in 1955.
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Thue– Siegel– Roth Theorem

Axel Thue
1863 - 1922

Carl Ludwig Siegel
1896 - 1981

Klaus Friedrich Roth
1925 – 2015

For any real algebraic number α, for any ε > 0, the set of
p/q ∈ Q with |α− p/q| < q−2−ε is finite.
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Thue– Siegel– Roth Theorem

An equivalent statement is that, for any real algebraic
irrational number α and for any ε > 0, there exists q0 > 0
such that, for p/q ∈ Q with q ≥ q0, we have

|α− p/q| > q−2−ε.
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Thue equation and Diophantine approximation

Liouville’s estimate for the rational Diophantine approximation
of 3
√
2 : ∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q.

Mike Bennett (1997) : for any p/q ∈ Q,∣∣∣∣ 3
√
2− p

q

∣∣∣∣ ≥ 1

4 q2.5
·
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Mike Bennett http://www.math.ubc.ca/~bennett/

For any p/q ∈ Q,∣∣∣∣ 3
√
2− p

q

∣∣∣∣ ≥ 1

4 q2.5
·

For any (x, y) ∈ Z2 with
x > 0,

|x3 − 2y3| ≥
√
x.
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Connection between Diophantine approximation

and Diophantine equations

Let κ satisfy 0 < κ ≤ 3.
The following conditions are equivalent :
(i) There exists c1 > 0 such that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ c1
qκ

for any p/q ∈ Q.
(ii) There exists c2 > 0 such that

|x3 − 2y3| ≥ c2 x
3−κ

for any (x, y) ∈ Z2 having x > 0.
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Thue’s equation and approximation

Let f ∈ Z[X] be an irreducible polynomial of degree d and let
F (X,Y ) = Y df(X/Y ) be the associated homogeneous binary
form of degree d. Then the following two assertions are
equivalent :
(i) For any integer k 6= 0, the set of (x, y) ∈ Z2 verifying

F (x, y) = k

is finite.
(ii) For any real number κ > 0 and for any root α ∈ C of f ,
the set of rational numbers p/q verifying∣∣∣∣α− p

q

∣∣∣∣ ≤ κ

qd

is finite.
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Thue equation

Condition (i) above :

For any integer k 6= 0, the set of (x, y) ∈ Z2 verifying

F (x, y) = k

is finite.

can also be phrased by stating that for any positive integer k,
the set of (x, y) ∈ Z2 verifying

0 < |F (x, y)| ≤ k

is finite.
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Schmidt’s Subspace Theorem (1970)

For m ≥ 2 let L0, . . . , Lm−1
be m independent linear
forms in m variables with
algebraic coefficients. Let
ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ;

|L0(x) · · ·Lm−1(x)| ≤ |x|−ε}
is contained in the union of
finitely many proper
subspaces of Qm.

Wolfgang M. Schmidt
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Effectivity

The Theorem of Thue–Siegel–Roth–Schmidt is not effective :
upper bounds for the number of solutions can be derived, but
no upper bound for the solutions themselves.

Faltings’s Theorem is not effective : so far, there is no known
effective bound for the solutions (x, y) ∈ Q2 of a Diophantine
equation f(x, y) = 0, where f ∈ Z[X,Y ] is a polynomial such
that the curve f(x, y) = 0 has genus ≥ 2.

Even for integral points, there is no effective version of Siegel’s
Theorem on integral points on a curve of genus ≥ 2.
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Number of solutions

G. Rémond (2000) : explicit
upper bound for the number
of solutions in Faltings’s
Theorem.

Gaël Rémond
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Effective version of Siegel’s Theorem (genus 1)

A. Baker and J. Coates. Integer points on curves of genus 1.
Proc. Camb. Philos. Soc. 67, 595–602 (1970).

Alan Baker
1939 – 2018

John Coates
(1945 – 2022)
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Gel’fond–Baker method

While Thue’s method was based on the non effective
Thue–Siegel–Roth Theorem, Baker and Fel’dman followed an
effective method introduced by A.O. Gel’fond, involving lower
bounds for linear combinations of logarithms of algebraic
numbers with algebraic coefficients.

Alexandre Ossipovitch Gel’fond
1906–1968

Alan Baker
1939 – 2018
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Lower bound for linear combinations of logarithms

A lower bound for a nonvanishing difference

α1
b1 · · ·αnbn − 1

is essentially the same as a lower bound for a nonvanishing
number of the form

b1 logα1 + · · ·+ bn logαn,

since ez − 1 ∼ z for z → 0.
The first nontrivial lower bounds were obtained by
A.O. Gel’fond. His estimates were effective only for n = 2 : for
n ≥ 3, he needed to use estimates related to the
Thue–Siegel–Roth Theorem.
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Explicit version of Gel’fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel’fond.
in his lower bound for∣∣α1

b1α2
b2 − 1

∣∣ .
Andrzej Schinzel

1937–1921

He deduced explicit Diophantine results using the approach
introduced by A.O. Gel’fond.
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Alan Baker (1939 – 2018)

Alan Baker
1939 – 2018

In 1968, A. Baker succeeded
to extend to any n ≥ 2 the
transcendence method used
by A.O. Gel’fond for n = 2.
As a consequence, effective
upper bounds for the solutions
of Thue’s equations have
been derived.
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Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a+ 1)Xn − aY n = 1.

He proved that the only solution in positive integers x, y is
x = y = 1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a ≥ 386.

M. Bennett (2001) proved that this is true for all a and n with
n ≥ 3 and a ≥ 1.
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Families of Thue equations xn − dyn = 1

B. Delaunay (Delone), 1930 : for d a cubefree integer, the
equation x3 − dy3 = 1 has at most 2 solutions in Z.

W. Ljunggren, 1937 : for d an integer, the equation x4 − dy4 = 1
has at most one solution in positive integers x, y.

M. A. Bennett, B.M.M. de Weger, 1998, 2001 : for a, b with
ab 6= 0 and n ≥ 3, the equation |axn − byn| = 1 has at most one
solution in positive integers x, y.

Boris Delaunay

1890 – 1980

Wilhelm Ljunggren

1905 – 1973
Mike Bennett Benne de Weger

Davide Lombardo. A family of quintic Thue equations via Skolem’s p-adic method.
Riv. Mat. Univ. Parma, Vol. 13, No. 1, 2022, 161–173.
http://www.rivmat.unipr.it/vols/2022-13-1/09-lombardo.html
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The simplest cubic fields of D. Shanks

The simplest cubic fields are
the cyclic fields, those having
square discriminants :

D = N2.

Daniel Shanks
1917 – 1996

Like the quadratic fields, but unlike other cubic fields, all roots
of the generating polynomial are in the field, all primes q either
split completely in the field or do not split at all, and the
residue class of q (mod N) determines whether q splits or does
not.
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The simplest cubic fields

The cubic equation

x3 = ax2 + (a+ 3)x+ 1

has the discriminant

D = (a2 + 3a+ 9)2.

Daniel Shanks
The Simplest Cubic Fields.
Math. of Computation, 28 128 (1974) 1137 – 1152.
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Marie-Nicole Gras

Marie-Nicole Gras

Marie–Nicole Montouchet.
Sur le Nombre de Classes du
Sous-Corps Cubique de Q(p),
(p ≡ 1 mod 3).
Thesis, Grenoble, 1971. Sém.
Théorie Nombres 1971-1972,
Univ. Bordeaux, No. 2bis, 9 p.
(1972).

Marie–Nicole Gras,
Méthodes et algorithmes pour le calcul numérique du nombre
de classes et des unités des extensions cubiques cycliques de Q.
J. Reine Angew. Math. 277, 89 – 116 (1975).
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Families of Thue equations (continued)

Emery Thomas
1927 – 2005

E. Thomas in 1990 studied the families of equations
F n(X,Y ) = 1 associated with D. Shanks’ simplest cubic
fields, viz.

F n(X,Y ) = X3 − (n− 1)X2Y − (n+ 2)XY 2 − Y 3.
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Thomas’s family
According to E. Thomas (1990) and M. Mignotte (1993), for
n ≥ 4 the only solutions are (0,−1), (1, 0) and (−1,+1),
while for the cases n = 0, 1, 3, there exist some nontrivial
solutions, too, which are given explicitly by Thomas.
For the same form

F n(X,Y ) = X3 − (n− 1)X2Y − (n+ 2)XY 2 − Y 3,

all solutions of the Thue inequality |F n(X,Y )| ≤ 2n+ 1 have
been found by M. Mignotte A. Pethő and F. Lemmermeyer
(1996).

Maurice Mignotte Attila Pethő Franz Lemmermeyer
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Twisting Thomas’s family
Write

F n(X,Y ) = X3 − (n− 1)X2Y − (n+ 2)XY 2 − Y 3

= (X − λ0)(X − λ1)(X − λ2)

with

λ0, λ1 = −
1

λ0 + 1
and λ2 = −

λ0 + 1

λ0

λ0 > 0 > λ1 > −1 > λ2.

For a ∈ Z \ {0}, the binary cubic form

F n,a(X,Y ) = (X − λa0Y )(X − λa1Y )(X − λa2Y )

is irreducible in Z[X,Y ], the minimal (irreducible) polynomial
of λa0 being F n,a(X, 1).
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Twisting Thomas’s family

Joint work with Claude
Levesque
A family of Thue equations
involving powers of units of
the simplest cubic fields.
J. Théor. Nombres Bordeaux,
27 (2015), pp. 537–563. Claude Levesque

Theorem. If |F n,a(x, y)| = ±1 with max{|x|, |y|} ≥ 2, we
have

max{|n|, |a|, |x|, |y|} ≤ c

where c is a positive effectively computable positive constant.
Question : Is-it true that

n ≤ 4, |a| ≤ 5, |x| ≤ 19, |y| ≤ 7 ?
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Open problem
Let c ∈ {+1,−1} and let n, a ∈ N with a ≥ 1. We wonder whether all the solutions
(x, y) ∈ Z2 of Fn,a(x, y) = c are given by



• (c, 0), (0, c) for any n ≥ 0 and a ≥ 1,

• (−c, c) for any n ≥ 0 and a = 1,

• (c, c) for n = 0 and a = 2,

• (−c,−c) for n = 0 and a = 1,

• the exotic solutions

(n, a) (cx, cy)

(0, 1) (−9, 5) (−1, 2) (2,−1) (4,−9) (5, 4)

(0, 2) (−14,−9) (−3,−1) (−2,−1) (1, 5) (3, 2) (13, 4)

(0, 3) (2, 1)

(0, 5) (−3,−1) (19,−1)
(1, 1) (−3, 2) (1,−3) (2, 1)

(1, 2) (−7,−2) (−3,−1) (2, 1) (7, 3)

(2, 2) (−7,−1) (−2,−1)
(3, 1) (−7,−2) (−2, 9) (9,−7)
(4, 2) (3, 2)
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Families of Thue equations (continued)
Family of quartic equations :

X4 − aX3Y −X2Y 2 + aXY 3 + Y 4 = ±1
(A. Pethő 1991 , M. Mignotte, A. Pethő and R. Roth, 1996).
The left hand side is X(X − Y )(X + Y )(X − aY ) + Y 4.
Further work on equations of degrees up to 8 by J.H. Chen,
I. Gaál, C. Heuberger, B. Jadrijević, G. Lettl, C. Levesque,
M. Mignotte, A. Pethő, R. Roth, R. Tichy, E. Thomas,
A. Togbé, P. Voutier, I. Wakabayashi, P. Yuan, V. Ziegler. . .
Surveys by I. Wakabayashi (2002) and C. Heuberger (2005).

Isao Wakabayashi Clemens Heuberger
51 / 64



New families of Diophantine equations

So far, a rather small number of families of Thue curves having
only trivial integral points have been exhibited. In joint works
with Claude Levesque, for each number field K of degree at
least three we produce families of curves related to the units of
the number field, having only trivial integral points.
(Also for S–integral points).
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Using Schmidt’s Subspace Theorem
Let K be a number field, n ≥ 3 an integer, α1, . . . , αn
elements of K× and f ∈ K[X,Y ] the binary form

f(X,Y ) =
(
X − α1Y

)(
X − α2Y

)
· · ·

(
X − αnY

)
.

Denote by ZK the ring of integers of K and by Z×K the group
of units. For ε = (ε1, . . . , εn) ∈ (Z×K)n, let f ε ∈ K[X,Y ]
denote the binary form

f ε(X,Y ) = (X − α1ε1Y )(X − α2ε2Y ) · · · (X − αnεnY ).

Let E denote the set of elements ε in (Z×K)n such that ε1 = 1
and Card{α1ε1, α2ε2, . . . , αnεn} ≥ 3. Then there exists a
finite subset E? de E such that, for all ε ∈ E \ E? and for all
(x, y) ∈ ZK × ZK , the condition

f ε(x, y) ∈ Z×K
implies xy = 0.
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Example

Let K be a number field and d = [K : Q] its degree. For each
ε ∈ Z×K for which Q(ε) = K, let f ε(X) ∈ Z[X] be the
irreducible polynomial of ε over Q.

Set F ε(X,Y ) = Y df ε(X/Y ). Hence F ε(X,Y ) ∈ Z[X,Y ] is
an irreducible binary form of degree d with integer coefficients.

Corollary. Let K be a number field and let m ∈ Z, m 6= 0.
Then the set{

(x, y, ε) ∈ Z2 × Z×K | xy 6= 0, Q(ε) = K, F ε(x, y) = m
}

is finite.
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A conjecture
The previous result rests on Schmidt’s Subspace Theorem and
is not effective. Using Baker’s method, we proved several cases
of the following conjecture.
Recall that ε ∈ Z×K , f ε(X) is the irreducible polynomial of ε
and

F ε(X,Y ) = Y df ε(X/Y ).

Conjecture. There exists an effectively computable constant
κ > 0, depending only on K, such that, for any m ≥ 2, any
(x, y, ε) in the set{
(x, y, ε) ∈ Z2 × Z×K | xy 6= 0, Q(ε) = K, |F ε(x, y)| ≤ m

}
satisfies

max
{
(|x|, |y|, eh(ε))

}
≤ mκ.
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A few special cases

• True for a sufficiently large set of units ε.

• Almost totally imaginary number fields (at most one real
embedding)

• Cubic fields.

• Rank one subgroup of units.
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Sketch of proof

Let σ1, . . . , σd be the complex embeddings from the number
field K into C, where d = [K : Q]. Any ε ∈ Z×K with
Q(ε) = K is root of the irreducible polynomial

f ε(X) =
(
X − σ1(ε)

)
· · ·

(
X − σd(ε)

)
∈ Z[X].

Let m ≥ 1. The goal is tho prove that there are only finitely
many (x, y, ε) ∈ Z× Z× Z×K with xy > 1 and Q(ε) = K
satisfying (

x− σ1(ε)y
)
· · ·

(
x− σd(ε)y

)
= m.
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Sketch of proof (continued)

For j = 1, . . . , d, define βj = x− εjy, so that

β1 · · · βd = m.

Hence βj is product of an element, which belongs to a finite
set depending on K and m only, with a unit. Eliminate x and
y among the three equations

β1 = x− ε1y, β2 = x− ε2y, β3 = x− ε3y.

We get

ε1β2 − ε1β3 + ε2β3 − ε2β1 + ε3β1 − ε3β2 = 0.
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Effectivity

The equation

ε1β2 − ε1β3 + ε2β3 − ε2β1 + ε3β1 − ε3β2 = 0

is a unit equation. Schmidt’s subspace Theorem states that
there are only finitely many solutions with non–vanishing
subsums of the left hand side.
One needs to check what happens when a subsum in the left
hand side vanishes.
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Baker’s method involving linear forms in

logarithms

One main concern is that Schmidt’s subspace Theorem (as
well as the Theorem of Thue– Siegel– Roth) is non–effective :
upper bounds for the number of solutions can be derived, but
no upper bound for the solutions themselves.
Only the case of a three terms Siegel unit equation

ε1 + ε2 + ε3 = 0

can be solved effectively by means of Baker’s method.

Work of A.O. Gel’fond, A. Baker, K. Győry, M. Mignotte,
R. Tijdeman, M. Bennett, P. Voutier, Y. Bugeaud,
T.N. Shorey, S. Laishram.
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Simplest cubic, quartic and sextic fields

Let t be an integer parameter. The infinite parametric families
of number fields generated by the roots of the polynomials

f
(3)
t (x) = x3 − (t− 1)x2 − (t+ 2)x− 1, (t ∈ Z),

f
(4)
t (x) = x4 − tx3 − 6x2 + tx+ 1, (t ∈ Z \ {−3, 0, 3}),

f
(6)
t (x) = x6 − 2tx5 − (5t+ 15)x4 − 20x3 + 5tx2 + (2t+ 6)x+ 1,

(t ∈ Z \ {−8,−3, 0, 5}),
are called simplest cubic, simplest quartic and simplest sextic
fields, respectively.
They are extensively studied in algebraic number theory,
starting with D.Shanks in the cubic case.
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Simplest quartic and simplest sextic fields

It was shown by G. Lettl, A. Pethő and P. Voutier that these
are all parametric families of number fields which are totally
real cyclic with Galois group generated by a mapping of type

x 7→ ax+ b

cx+ d

with a, b, c, d ∈ Z.

István Gaál, Borka Jadrijević, László Remete.
Simplest quartic and simplest sextic Thue equations over
imaginary quadratic fields.
Int. J. Number Theory 15, No. 1, 11 – 27 (2019).

62 / 64



The hypergeometric method

The hypergeometric method has been used for solving the
family of Diophantine equations arising from the simplest
quartic and sextic fields.

Isao Wakabayashi Paul Voutier

The associated families of twisted equations have not yet been
investigated.
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