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Abstract
We extend our previous results on the number of integers which

are values of some cyclotomic form of degree larger than a given
value (see [FW]), to more general families of binary forms with inte-
ger coefficients. Our main ingredient is an asymptotic upper bound
for the cardinality of the set of values which are common to two
non–isomorphic binary forms of degree greater than 3. We apply our
results to some typical examples of families of binary forms.

1 Introduction

Let d ≥ 3 be an integer. We denote by Bin(d,Z) the set of binary forms
F = F (X, Y ) with integer coefficients, of degree d and with discriminant
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different from zero. For

(1.1) γ =

(
a1 a2
a3 a4

)
∈ GL(2,Q),

and F ∈ Bin(d,Z), F ◦γ is the binary form with rational coefficients, defined
by

(F ◦ γ) (X1, X2) = F (a1X1 + a2X2, a3X1 + a4X2).

Two elements F1 and F2 in Bin(d,Z) are said to be isomorphic is there is a
γ ∈ GL(2,Q) such that

F1 ◦ γ = F2.

To estimate the number of values simultaneously taken by the binary forms
F1 and F2, we introduce the counting function, for N an integer ≥ 1,

(1.2)

N (F1, F2;N) := ]
(
F1(Z2) ∩ F2(Z2) ∩ [−N,+N ]

)
= ]
{
m : |m| ≤ N, there exists (x1, x2, x3, x4) ∈ Z4

such that m = F1(x1, x2) = F2(x3, x4)
}
.

Our first result gives an upper bound for this function when the two forms
are not isomorphic.

Theorem 1.1. For every d ≥ 3, there is a constant ϑd < 2/d such that, for
every ε > 0, for every pair (F1, F2) of no–isomorphic forms of Bin(d,Z),
for N →∞, one has the bound

(1.3) N (F1, F2;N) = OF1,F2,ε

(
Nϑd+ε

)
.

This theorem calls for the following comments:

Remark 1.2. The point in this theorem is that the constant ϑd, defined in
(2.1), satisfies the inequality ϑd < 2/d (see the inequalities (2.3) below). In
fact, it is known that for any F ∈ Bin(d,Z), there exists CF > 0, such that,
for N tending to infinity, one has the equality

N (F, F ;N) = (CF + oF (1))N2/d,

(see Theorem A in §1.1, due to Stewart and Xiao [SX, Theorem 1.1]).

Remark 1.3. The explicit value of ϑd given in (2.1) leads to the inequality
ϑd > 1/d for all d ≥ 3 (see (2.3)). It also shows that ϑd is asymptotic to 1/d

as d→∞. This value is asymptotically optimal as shown by the two forms

F1(X, Y ) = Xd + Y d and F2(X, Y ) = Xd + 2Y d.
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These two forms are not isomorphic. From the equalities F1(n, 0) = F2(n, 0) =

nd, we deduce the lower bound

N (F1, F2;N) ≥ N1/d (N ≥ 1).

Remark 1.4. According to [FW, Corollaire 3.3], if the two forms F1, F2

are positive definite and at least one of them is not divisible by a linear
form with rational coefficients, then the exponent ϑd in the conclusion of
Theorem 1.1 can be replaced by ηd with ηd < ϑd (see the definition of ηd
and ϑd in §2.1).

Remark 1.5. We will show in §2.4 that the exponent ϑd in the conclusion
of Theorem 1.1 can be replaced by the coefficient ηd quoted in the previous
remark when the binary form F1(X, Y )F2(X, Y ) has no real root.

Remark 1.6. Theorem 1.1 is no more valid for d = 2. This is well known:
see for instance [FLW, Prop. 6.1, eq. (6.3)], where, choosing F1(X, Y ) =

X2 +Y 2 and F2(X, Y ) = X2 +XY +Y 2, one has, for B tending to infinity,
the asymptotic formula

N (F1, F2;B) = (β0 + o(1))B
(

logB)−3/4,

for some constant β0 > 0.

Remark 1.7. Theorem 1.1 is immediately generalized to binary forms with
rational coefficients, it suffices to multiply by a common denominator.

Remark 1.8. The following proposition shows that if F1 and F2 are iso-
morphic, the equality (1.3) never holds.

Proposition 1.9. Let d ≥ 3 and let F1 and F2 be two isomorphic binary
forms in Bin(d,Z). Then there is a positive constant CF1,F2, such that, for
N tending to infinity, we have the inequality

N (F1, F2;N) ≥ (CF1,F2 − oF1,F2(1))N2/d.

Proof. Let γ as in (1.1) such that F1 = F2 ◦γ. Let D ≥ 1 be an integer such
that (Da1, Da2, Da3, Da4) belongs to Z4. By homogeneity, we deduce that
the two forms

G1(X1, X2) := F1(DX1, DX2)

and
G2(X1, X2) := F2 (Da1X1 +Da2X2, Da3X1 +Da4X2)
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are equal. So we have the equality of their images

G1(Z2) = G2(Z2).

We also have the obvious inclusions

G1(Z2) ⊂ F1(Z2) and G2(Z2) ⊂ F2(Z2),

which lead to the inclusion

(1.4) G1(Z2) ⊂ F1(Z2) ∩ F2(Z2).

A new application of the result of Stewart and Xiao (see Theorem A below)
gives, for some constant CG1 > 0, the equality

(1.5) N (G1, G1;N) = (CG1 + oG1(1))N2/d,

as N tends to infinity. Gathering (1.4) and (1.5) we obtain the inequality
claimed in Proposition 1.9.

Theorem 1.1 is an important tool for our generalisation of our previous
study in [FW], where we produced an asymptotic formula for the number
of values m, with |m| ≤ B taken by some cyclotomic form Φn of degree
ϕ(n) greater than a fixed d ≥ 3. Recall that ϕ is the Euler function and
that to the n–th cyclotomic polynomial φn(X), of degree ϕ(n), is attached
the cyclotomic form Φn(X, Y ) := Y ϕ(n) · φn(X/Y ).

Our purpose is to study the following general problem:

Let F be an infinite subset of
⋃
d≥3

Bin(d,Z), satisfying natural properties.

Let A be a fixed non negative integer. As B tends to infinity, estimate the
counting function
(1.6)
R≥d (F , B,A) := ]

{
m : 0 ≤ |m| ≤ B, there is F ∈ F with degF ≥ d

and (x, y) ∈ Z2 with max{|x|, |y|} ≥ A, such that F (x, y) = m
}
.

The introduction of the parameter A may be seen as artificial. It is
enacted to prevent from the following phenomenon encountered for instance
in the case of the family of cyclotomic forms Φn, where, for every prime p,
we have

(1.7) Φp(1, 1) = p
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(recall that Φp(X, Y ) = (Xp − Y p)
/

(X − Y )). We wish to avoid counting
these values, since the set of primes, by its cardinality, completely hides the
set of other values Φn(x, y) when max{|x|, |y|} ≥ 2 and ϕ(n) ≥ d.

Let F be a set of binary forms. We denote by Fd the subset of forms of
F of degree d. We will study the set of values taken by forms belonging to
some (A,A1, d0, d1, κ)–regular families F , that we define as follows.

Definition 1.10. Let A, A1, d0, d1 be integers and let κ be a real number
such that

(1.8) A ≥ 1, A1 ≥ 1, d1 ≥ d0 ≥ 0, 0 < κ < A.

Let F be a set of binary forms. We say that F is (A,A1, d0, d1, κ)–regular
if it satisfies the following conditions:

(i) The set F is infinite,

(ii) We have the inclusion

F ⊂
⋃
d≥3

Bin(d,Z),

(iii) For all d ≥ 3, one has the inequality ]Fd ≤ dA1 ,

(iv) Two forms of F are isomorphic if and only if they are equal,

(v) For any d ≥ max{d1, d0 + 1}, the following holds

F ∈ Fd,
(x, y) ∈ Z2 and F (x, y) 6= 0,
max{|x|, |y|} ≥ A,

⇒ max{|x|, |y|} ≤ κ |F (x, y)|
1

d−d0 .

The upper bound in the right hand side of (v) is trivial for max{|x|, |y|} ≤
κ, this is why we request A > κ.

The family of cyclotomic forms

Φ := {Φn : ϕ(n) ≥ 4, n 6≡ 2 (mod 4)}

satisfies the assumptions (i), (ii), (iii), (iv), but is not (1, A1, d0, d1, κ)–
regular for any value of A1, d0, d1 and κ, since (1.7) shows that (v) is not sat-
isfied. However Φ is (2, 2, 0, 4, 2/

√
3)–regular, this is a consequence of [FW,

Théorème 4.10] and of the classical inequality n/(log log n) < ϕ(n) < n.
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1.1 Some facts on a single form

Before stating our main result concerning R≥d(F , B,A) defined in (1.6), we
recall some fundamental objects attached to a binary form F ∈ Bin(d,Z)

when d ≥ 3:

• The fundamental domain of F is

D(F ) :=
{

(x, y) ∈ R2 : |F (x, y)| ≤ 1
}
,

• The area of the fundamental domain of F is the real number

(1.9) AF :=

∫∫
D(F )

dx dy.

We always have 0 < AF <∞.

• The group of automorphisms of F is

Aut(F ;Q) :={(
a1 a2
a3 a4

)
∈ GL(2,Q) : F (X, Y ) = F (a1X + a2Y, a3X + a4Y )

}
.

This is a finite subgroup of GL(2,Q). We now recall the important result
of Stewart and Xiao, that we already mentioned above [SX, Theorems 1.1
and 1.2]:

Theorem A. For every d ≥ 3, there is a constant κd < 2/d such that, for
all F ∈ Bin(d,Z) and for all ε > 0, the following equality

N (F, F ;B) = AF ·WF ·B2/d +OF,ε

(
Bκd+ε

)
,

holds uniformly for B → ∞, where WF = W (Aut(F ;Q)) depends only on
the group Aut(F ;Q).

For G a finite subgroup of GL(2,Q) which is the group of automorphisms
of an element of Bin(d,Z), the constant W (G) is a rational number which
is defined in [SX, Theorem 1.2]. This definition is subtle since it depends
on the denominators of the entries of the matrices belonging to G. However
for the families F that we will meet in this paper, we will only need the
equalities
(1.10)

W ({Id}) = 1, W ({Id, −Id}) = 1/2 and W
({(

±1 0
0 ±1

)})
= 1/4.
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Finally, the exponent κd in Theorem A is defined by

(1.11) κd =



12

19
if d = 3,

3

(d− 2)
√
d+ 3

if 4 ≤ d ≤ 8,

1

d− 1
if d ≥ 9.

Actually the value of this exponent is improved when F (X, Y ) does not
have a linear factor over R[X, Y ], see [SX, formula (1.11)].

1.2 An asymptotic formula for R≥d(F , B,A)

Our central result is the following. The exponent ϑd is defined in (2.1).

Theorem 1.11. Let (A,A1, d0, d1, κ) satisfying the conditions (1.8). Let F
be a (A,A1, d0, d1, κ)–regular family of binary forms. Then for every d ≥
max{3, d1} and every positive ε, one has the equality

R≥d(F , B,A) =

(∑
F∈Fd

AFWF

)
·B2/d +OF ,A,d,ε

(
Bϑd+ε

)
+OF ,A,d

(
B2/d†

)
,

uniformly for B →∞. The integer d† is defined by

d† := inf{d′ : d′ > d such that Fd′ 6= ∅}.

Recall that Fd is not empty for infinitely many values of d since the set
F is infinite.

The assumption (v) in the definition 1.10 of a regular family cannot be
omitted, even in the case of totally imaginary forms (homogeneous versions
of polynomials without real roots), as show by the sequence of positive
definite forms (X −Y )2(X − 2Y )2 · · · (X − dY )2 + dY 2d, the value of which
at the points (x, y) = (n, 1), 1 ≤ n ≤ d, is d.

The following is a direct application of (1.10):

Corollary 1.12. Suppose that F satisfies the hypothesis of Theorem 1.11
and that, for every d ≥ 3, Fd satisfies one of the three following conditions:

C1: for all F ∈ Fd, we have Aut(F,Q) = {Id},

C2: for all F ∈ Fd, we have Aut(F,Q) = {±Id} (cyclic group of order 2),

C3: for all F ∈ Fd, we have Aut(F,Q) =

{(
±1 0
0 ±1

)}
(Klein group of

order 4).
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Then we have the equality
(1.12)

R≥d(F , B,A) = Cd ·

(∑
F∈Fd

AF

)
·B2/d +OF ,A,d,ε

(
Bϑd+ε

)
+OF ,A,d

(
B2/d†

)
,

where the coefficient Cd has respectively the values 1, 1/2 or 1/4 according
to the condition C1, C2, C3 respectively satisfied by Fd.

1.3 Some applications

We now give a list of regular families F in order to illustrate our results.
The first example of course is given by the sequence of cyclotomic binary

forms [FLW]. We do not repeat it.
Our second example is given by a family of binomials axd + byd where

d is even while a, b have the same sign: these restrictions allow us to check
easily the assumption (v) in the definition 1.10 of a regular family. Since
the proof is easy, we give it right away.

The three other examples below will require more work; for them we
restrict ourselves to families F satisfying the conditions of Corollary 1.12 in
order to apply (1.12).

There are a lot of variations on these constructions.

1.3.1 Binomial forms

For each even integer d ≥ 4, let Ed be a finite subset of Z>0 × Z>0. Assume
Ed is not empty for infinitely many d and has at most dA1 elements for some
A1 > 0 and all d. Let Bd denote the family of binary forms aXd + bY d with
(a, b) ∈ Ed and let B = ∪d≥4Bd. We assume that for (a, b) 6= (a′, b′) in Ed,
one at least of a/a′, b/b′ is not a d-th power of a rational number, and also
one at least of a/b′, b/a′ is not a d-th power of a rational number.

Theorem 1.13. The family B is (2, A1, 0, 4, 1)–regular.
Further, for every d ≥ 4 and for every ε > 0 we have the equality

(1.13) R≥d(B, B, 2) =

(∑
F∈Bd

AFWF

)
B1/d +OB,d,ε

(
Bmax{ϑd+ε,2/d†}

)
,

uniformly for B →∞. The integer d† is defined by

d† := inf{d′ : d′ > d such that Bd′ 6= ∅}.

We will check the hypothesis (iv) of the definition 1.10 of a regular family
by means of the following auxiliary result.
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Lemma 1.14. Let d ≥ 4 be even and let a, b, a′, b′ be positive integers. Then
the two binary forms aXd+ bY d and a′Xd+ b′Y d are isomorphic if and only
if either a/a′, b/b′ are both d-th power of rational numbers, or a/b′, b/a′ are
both d-th power of rational numbers.

Proof. If a/a′ = ud and b/b′ = vd, then the two forms aXd+bY d = a′(uX)d+

b′(vY )d and a′Xd + b′Y d are isomorphic. Also if a/b′ = ud and b/a′ = vd,
then the two forms aXd + bY d = a′(vX)d + b′(uY )d and a′Xd + b′Y d are
isomorphic. It remains to prove the converse.

Assume that the two binary forms aXd + bY d and a′Xd + b′Y d are iso-

morphic. Let γ =

(
a1 a2
a3 a4

)
∈ GL(2,Q) satisfy

a(a1X + a2Y )d + b(a3X + a4Y )d = a′Xd + b′Y d.

We have
aad1 + bad3 = a′, aad2 + bad4 = b′

and, for i = 1, . . . , d− 1,

aai1a
d−i
2 + bai3a

d−i
4 = 0.

• Assume a2 = 0. From

a(a1X)d + b(a3X + a4Y )d = a′Xd + b′Y d

we deduce bad4 = b′, a4 6= 0, hence a3 = 0, and therefore aad1 = a′.
• Assume a1 = 0. From

a(a2Y )d + b(a3X + a4Y )d = a′Xd + b′Y d

we deduce bad3 = a′, a3 6= 0, hence a4 = 0, and therefore aad2 = b′.
• Finally let us check that the case a1a2 6= 0 is not possible. Write

aa1a
d−1
2 + ba3a

d−1
4 = 0, aa21a

d−2
2 + ba23a

d−2
4 = 0.

We deduce a3a4 6= 0,

a1
a3

= − b
a

(
a4
a2

)d−1
,

(
a1
a3

)2

= − b
a

(
a4
a2

)d−2
,

hence (
a4
a2

)d
= −a

b

which is impossible for a, b positive and d even.



10 É. Fouvry and M. Waldschmidt

Proof of Theorem 1.13. The conditions (i), (ii) and (iii) in the definition
1.10 of a regular family are satisfied by hypothesis.

For (a, b) 6= (a′, b′) in Ed, the two binary forms aXd+bY d and a′Xd+b′Y d

are not isomorphic, as shown by Lemma 1.14. Finally, for (a, b) ∈ Ed and
(x, y) ∈ Z2, we have

axd + byd ≥ max{|x|, |y|}d.

This completes the proof of condition (v) in the definition 1.10 of a regular
family.

The second assertion of Theorem 1.13 then follows from Theorem 1.11.

Our assumptions do not allow any upper bound for R≥d(B, B, 1) better
than B: the set of all a, b and a + b for (a, b) in ∪d′≥dEd′ may contain all
positive integers.

Explicit values for WF and AF for F ∈ Fd are given in Corollary 1.3 of
[SX]. The values of WF and AF are computed without the two assumptions
a, b of the same sign and d even, but none of these two hypotheses can be
omitted for our theorem, as shown by the two sequences Xd − (dd − d)Y d

(d even) and Xd + (dd − d)Y d (d odd).

1.3.2 Products of positive quadratic forms

Let (µn)n≥1 be an increasing sequence of positive squarefree integers; assume
that there exists λ > 0 such that

(1.14) µn ≤ λn for all n ≥ 1.

If we choose µn = qn where (qn)n≥1 is the full sequence

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, ...

of positive squarefree integers, written in ascending order, then, as it is well
known (see [HW, Theorem 333] and https://oeis.org/A005117), we have

]{qn ≤ x} =
∑
n≤x

µ(n)2 =
6

π2
x+O(

√
x),

which implies that

qn ∼
π2

6
n (n→∞).

https://oeis.org/A005117
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Since µ230 ≥ q230 = 381, we have λ ≥ 381
230
· As a matter of fact we have

(1.15) sup
n≥1

qn
n

=
381

230
·

Hence, in the special case µn = qn (n ≥ 1), λ = 381/230 is an admissible
value.

For d ≥ 2 and 1 ≤ ν ≤ d + 1, we denote by Q+
d,ν the binary form of

degree 2d defined by the formula

(1.16) Q+
d,ν(X, Y ) :=

∏
1≤n≤d+1
n 6=ν

(
X2 + µnY

2
)
.

The associated family is

Q+ :=
{
Q+
d,ν : d ≥ 2, 1 ≤ ν ≤ d+ 1

}
with Q+

d = ∅ for d odd and Q+
2d =

{
Q+
d,ν : 1 ≤ ν ≤ d+ 1

}
for d ≥ 2. With

λ defined in (1.14), we have

Theorem 1.15. The family Q+ is (2, 1, 0, 4, 1)–regular.
Furthermore, for every d ≥ 2, Q+

2d satisfies the condition C3 of Corol-
lary 1.12.

Finally, for every d ≥ 2 and for every ε > 0 we have the equality

(1.17) R≥2d(Q+, B, 0) =
1

4

 ∑
F∈Q+

2d

AF

B1/d+Oλ,d,ε

(
Bmax{ϑ2d+ε,1/(d+1)}) ,

uniformly for B →∞, and the inequalities

(1.18)
π√
λ
·
√
d <

 ∑
F∈Q+

2d

AF

 < π
√

e(
√
d+ 1).

See (2.5) for a simplification of the exponent in the error term of (1.17).

Remark 1.16. (Thanks to Jean-Baptiste Fouvry). Consider the two quartic
forms

Q+
2,3(X, Y ) = (X2+Y 2)(X2+2Y 2) and Q+

2,1(U, V ) = (U2+2V 2)(U2+3V 2).

One checks

Q+
2,3(X, Y )−Q+

2,1(U, Y ) = (−U2 +X2 − Y 2)(U2 +X2 + 4Y 2).

The Pythagorean triples (y, u, x), namely the solutions of the equation y2 +

u2 = x2, produce solutions (m,x, y, u) to the equations

m = Q+
2,3(x, y) = Q+

2,1(u, y).

It follows that the exponent ϑ4 = 0.448 in Theorem 1.1 cannot be replaced
with an exponent < 0.25.
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1.3.3 Products of indefinite quadratic forms

With the above notations, including the definition of λ in (1.14), we assume
µ1 ≥ 2 and we consider, for d ≥ 2 and 1 ≤ ν ≤ d + 1, the binary form of
degree 2d

Q−d,ν(X, Y ) :=
∏

1≤n≤d+1
n 6=ν

(
X2 − µnY 2

)
.

The associated family is

Q− :=
{
Q−d,ν : d ≥ 2, 1 ≤ ν ≤ d+ 1

}
with Q−d = ∅ for d odd and Q−2d =

{
Q−d,ν : 1 ≤ ν ≤ d+ 1

}
for d ≥ 2.

From (1.15) one deduces

sup
n≥1

qn+1

n
= 2,

hence λ ≥ 2. In the special case µn = qn+1 (n ≥ 1), an admissible value for
λ is λ = 2.

Theorem 1.17. For A > 2eλ, the family Q− is (A, 1, 2, 2, 2eλ)–regular and
satisfies the condition C3 of Corollary 1.12. Furthermore, for d ≥ 2, we
have

R≥2d(Q−, B, 0) =
1

4

 ∑
F∈Q−2d

AF

B1/d +Oλ,A,d,ε

(
Bmax{ϑ2d+ε,1/(d+1)}) ,

uniformly for B →∞. Further, we have

(1.19)
π√
λ
·
√
d ≤

∑
F∈Q−2d

AF ≤ 22λ
√
d

where the lower bound is valid for all d ≥ 2 and the upper bound for d
sufficiently large.

1.3.4 Products of linear factors

We reserve the letter p to prime numbers and we consider for 5 ≤ d ≤ p,
the binary form Ld,p ∈ Bin(d,Z) defined by

Ld,p(X, Y ) := (X − pY ) ·
∏

0≤n≤d−2

(X − nY ) .

The associated family is

L := {Ld,p : d ≥ 5, d ≤ p < 2d} .

We have
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Theorem 1.18. The family L is (10, 1, 1, 5, 9)–regular.
Furthermore, for d ≥ 5, Ld respectively satisfies the condition C1 of

Corollary 1.12 for d odd or the condition C2 for d even.
Finally, for every d ≥ 5 and for every ε > 0, one has the equality

(1.20) R≥d(L, B, 0) =
1

(2, d)

( ∑
d≤p<2d

ALd,p

)
B2/d +Od,ε

(
Bmax{ϑd,2/(d+1)}) ,

uniformly for B →∞, and the inequalities

e2 − o(1)

log d
≤

∑
d≤p<2d

ALd,p ≤
5 e2 + 2 e + o(1)

log d

uniformly for d→∞.

The numerical values are e2 = 7.389 . . . and 5e2 + 2e = 42.381 . . .

See (2.6) for a simplification of the exponent in the error term of (1.20).

Remark 1.19. We now give some hints on the construction of the family
L. More generally consider the binary form of degree d

Ln,d(X, Y ) :=
∏

1≤i≤d

(X − niY ) ,

where n := {n1 < n2 < · · · < nd} is a set of d integers. Fix d ≥ 5,
then for almost all n (in the meaning of Zariski topology), the group of
automorphisms of Ln,d is trivial, which means equal to {Id} or to {±Id},
according to the parity of d. Similarly, for fixed d ≥ 5, for almost all (m,n)

the binary forms Lm,d and Ln,d are not isomorphic. For statements of that
type, see [FK], for instance. The strategy of choosing n1 = 0 and nd =

p, where p is a large prime ensures that the group of automorphisms is
trivial and that the binary forms that we meet are not isomorphic. These
statements are proved by appealing to the classical properties of the cross
ratio (see §6.1 and §6.2).

Finally, we choose for n1,...,nd−1 the d− 1 first integers. This enables us
to estimate the area ALd,p (see §6.6) via Stirling’s formula:

(1.21) NNe−N
√

2πN < N ! < NNe−N
√

2πNe1/(12N),

which is valid for all N ≥ 1. In particular, as N →∞, we have

logN − 1 <
1

N
log(N !) < logN − 1 + o(1).

It would be interesting to further investigate the explicit construction of
other regular families of forms, which are products of Z–linear forms.
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Remark 1.20. A natural way to generalize the construction of the families
B, Q− and Q+ is to consider sets of forms which are products of binomials
of the shape

Ba,n(X, Y ) = Xa + nY a.

The key point is to choose the integers n and the exponents a ≥ 2 in such
a way that we are able to control the homographies in PGL(2,Q) which
exchange the set of zeroes of the products of Ba,n.

2 Proof of Theorem 1.1

2.1 Beginning of the proof

The starting point is [FW, Théorème 3.1]. To state this result we use the
following notations:
• If F1 and F2 belong to Bin(d,Z) and if B ≥ 1, we put

M(F1,F2;B) =

]
{

(x1, x2, x3, x4) ∈ Z4 : max |xi| ≤ B,F1(x1, x2) = F2(x3, x4)
}
,

and
M∗(F1,F2;B) =

]
{

(x1, x2, x3, x4) ∈ Z4 : max |xi| ≤ B,F1(x1, x2) = F2(x3, x4) 6= 0
}
,

• for d ≥ 3, we introduce

ηd =


2
9

+ 73
108
√
3

for d = 3,
1
2d

+ 9
4d
√
d

for 4 ≤ d ≤ 20,
1
d

for d ≥ 21,

(2.1) ϑd =
dηd

dηd + d− 2

and

(2.2) η′d,F1,F2
=


ηd if the binary form F1(X, Y )F2(X, Y )

has no zero in P1(R),
ϑd otherwise.

Here are the first approximate values for ηd, ϑd and κd (recall (1.11)):

d ηd ϑd κd
3 0.612 0.647 0.631
4 0.406 0.448 0.428
5 0.301 0.334 0.309
6 0.236 0.261 0.234
7 0.192 0.211 0.184
8 0.161 0.177 0.150
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For d ≥ 3 and for F1 and F2 belonging to Bin(d,Z), one has the inequalities

(2.3) 1/d ≤ ηd ≤ η′d,F1,F2
≤ ϑd < 2/d

and, in particular, for d ≥ 21, we have : ηd = 1/d and ϑd = 1/(d− 1).
Furthermore, by comparison with κd defined in (1.11), we check that

(2.4)

{
κd < ϑd if 3 ≤ d ≤ 20,

κd = ϑd if d ≥ 21.

Finally, by a direct computation we have the inequalities

(2.5)

{
ϑ2d > 1/(d+ 1) if d = 2, 3,

ϑ2d < 1/(d+ 1) if d ≥ 4,

and

(2.6)

{
ϑd > 2/(d+ 1) if d = 4, 5,

ϑd < 2/(d+ 1) if d ≥ 6.

We now recall (see [FW, Théorème 3.1])

Proposition 2.1. Let d ≥ 3 and let F1 and F2 be two non–isomorphic
forms of Bin(d,Z), such that at least one of them is not divisible by a linear
form with rational coefficients. Then for all ε > 0 and all B ≥ 1 one has

M(F1, F2;B) = OF1,F2,ε

(
Bdηd+ε

)
.

As it is shown by [FW, Remarque 3.2], the above bound may not hold if
one of the binary forms is divisible by a linear form over Q. One eliminates
this hypothesis by studying the counting function M∗ rather than M. In
other words one has the following variant for Proposition 2.1

Proposition 2.2. Let d ≥ 3 and let F1 and F2 be two non–isomorphic
forms of Bin(d,Z). Then for every ε > 0 and for all B ≥ 1 one has the
bound

M∗(F1, F2;B) = OF1,F2,ε

(
Bdηd+ε

)
.

Proof. We refer to the original proof of [FW, Théorème 3.1]. The hypothesis
that at least one of the two forms F1 and F2 has no Q–linear factor is only
used in [FW, eq. (22)] (which is equation (3.8) in the Arxiv version). This
case has no longer to be considered when one studiesM∗ instead ofM.
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2.2 Lemmas in diophantine approximation

Firstly we prove the following

Lemma 2.3. Let f ∈ Z[t] be a polynomial of degree d ≥ 1 and with dis-
criminant different from zero. Let ξ1, . . . , ξd be the complex roots of f . Then
there are real constants c1 > 0 and c2 such that

(i) For every t ∈ C, one has the inequality min1≤j≤d |t− ξj| ≤ c2|f(t)|,

(ii) For every t ∈ R, the condition |f(t)| < c1 implies the existence of a
real root ξi such that |t− ξi| ≤ c2|f(t)|.

Proof. This statement is trivial when d = 1. We now suppose d ≥ 2.
We suppose that a0 (the leading coefficient of f) is ≥ 1 and we factor f

into

f(t) = a0

d∏
j=1

(t− ξj).

Let δ := min1≤i<j≤d |ξi − ξj|. Since the discriminant of f is different from
zero, we have δ > 0. Let i be an index such that |t− ξi| = min1≤j≤d |t− ξj|.
The triangular inequality gives, for j 6= i, the lower bound

|t− ξj| ≥
|t− ξj|+ |t− ξi|

2
≥ 1

2
|ξj − ξi| ≥

δ

2
·

We write the sequence of inequalities

|f(t)| ≥
∏

1≤j≤d

|t− ξj| ≥ |t− ξi|
(
δ

2

)d−1
,

which leads to the point (i) with c2 = (2/δ)d−1.

For the item (ii), we now suppose that t is real. We decompose the proof
into three cases.

• If all the ξj are real, there is nothing to prove as a consequence of (i). We
choose c1 = 1 for instance.

• If no ξj is real, we set
c1 := inf

x∈R
|f(x)|

which is > 0.

• If f has at least one real root and at least one non real root, we put

c1 =
1

c2
min

{
|Im(ξi)| : 1 ≤ i ≤ d, ξi 6∈ R

}
.
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Applying the item (i) of Lemma 2.3, we notice that for t ∈ R the inequality
|f(t)| < c1 implies the existence of a root ξj such that

|t− ξj| < c1c2 = min
{
|Im(ξi − t)| : 1 ≤ i ≤ d, ξi 6∈ R

}
.

If ξj were not real, we would deduce the inequality |t − ξj| < |Im(t − ξj)|,
which is impossible. Hence ξj is real.

The following lemma provides an upper bound for the tail of the series
defining the Riemann ζ–function.

Lemma 2.4. For all real δ > 1 and all positive integer B, one has the
inequality ∑

n≥B

1

nδ
≤ ζ(δ)B1−δ.

Proof. By dividing the interval of summation in intervals with length B and
by using the inequality Bq + r ≥ Bq, we write

∑
n≥B

1

nδ
=
∑
q≥1

B−1∑
r=0

1

(Bq + r)δ
≤ B1−δ

∑
q≥1

1

qδ
= ζ(δ)B1−δ.

The next lemma was inspired by [Ho, p. 34–36].

Lemma 2.5. Let ξ, κ, s, Q1 and Q2 be real numbers such that s > 2, κ > 0,
Q2 > Q1 ≥ 1. Then the number of rational numbers p

q
such that∣∣∣ξ − p

q

∣∣∣ ≤ κ

qs
and Q1 ≤ q ≤ Q2,

is bounded by
2s+1κ

(2s−2 − 1)Qs−2
1

+

⌈
log Q2

Q1

log 2

⌉
.

Proof. Firstly we consider the case when Q2 ≤ 2Q1 and we prove the result
with the coefficient 2s+1

2s−2−1 replaced by 8. Two distinct rational numbers p
q
,

p′

q′
such that Q1 ≤ q, q′ ≤ Q2 satisfy the inequalities∣∣∣∣pq − p′

q′

∣∣∣∣ ≥ 1

qq′
≥ 1

Q2
2

≥ 1

4Q2
1

·

If they also satisfy ∣∣∣ξ − p

q

∣∣∣ ≤ κ

qs
and

∣∣∣ξ − p′

q′

∣∣∣ ≤ κ

q′s
,
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then they belong to the interval[
ξ − κ

Qs
1

, ξ +
κ

Qs
1

]
,

the length of which is 2κ/Qs
1. So the number of such p

q
is less than

4Q2
1

2κ

Qs
1

+ 1 =
8κ

Qs−2
1

+ 1.

In the case where Q2 > 2Q1, we cover the interval [Q1, Q2] by ` intervals
[2hQ1, 2

h+1Q1], 0 ≤ h ≤ `− 1 with 2`−1Q1 < Q2 ≤ 2`Q1; thus ` satisfies the
inequalities

log Q2

Q1

log 2
≤ ` < 1 +

log Q2

Q1

log 2
·

As we have seen, in the interval [2hQ1, 2
h+1Q1], the number of rational

numbers p
q
satisfying our assumption is bounded by

8κ

2h(s−2)Qs−2
1

+ 1.

The total number of fractions p
q
satisfying our assumption is less than

`−1∑
h=0

(
8κ

2h(s−2)Qs−2
1

+ 1

)
=

8κ

Qs−2
1

`−1∑
h=0

1

2h(s−2)
+` <

8κ

Qs−2
1

· 2s−2

2s−2 − 1
+

⌈
log Q2

Q1

log 2

⌉
.

2.3 On the set of the values taken by a binary form
when one of the variables is large

As a consequence of the three lemmas proved in §2.2 we will deduce

Proposition 2.6. Let d ≥ 3 and let F ∈ Bin(d,Z). Then there are two
constants c3 and c4, effectively computable and depending on F only, such
that, for all ∆ > c3 and all A > 0 one has the following inequality

]
{

(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ A, |y| ≥ A1/d∆
}
≤ c4

(
A2/d∆2−d + A1/(d−1)) .

The proof of this proposition will use the following effective refinement
of Liouville’s inequality, due to N. I. Fel’dman [F]:

Lemma 2.7. Let ξ be an algebraic number of degree d ≥ 3. There are two
effectively computable positive constants c5 = c5(ξ) and c6 = c6(ξ) such that,
for every fraction p/q ∈ Q with q ≥ 1, one has the inequality∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c5
qd−c6

·
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A completely explicit version of this inequality can be found in [GP, (13)
p. 248].

We deduce from this lemma the following one.

Lemma 2.8. Let P (X) ∈ Z[X] be a polynomial, of degree d ≥ 3. There
are two effectively computable positive constants c′5 = c′5(P ) and c′6 = c′6(P )

such that, for every root ξ of P , for every rational number p/q such that
q ≥ 1 and p/q 6= ξ, the following inequality holds

(2.7)
∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c′5
qd−c

′
6
·

We stress that there is no assumption on whether the polynomial P is
irreducible or not, nor on whether the root ξ is real or not.

Proof. Let δ be the degree of ξ. We split the argument according to the
value of δ and to the nature of ξ.

• If ξ is not real, the inequality (2.7) is trivial since we have |ξ− p/q| ≥
|Im ξ|, for every rational number p/q.

We now suppose that ξ is a real number.

• If δ = 1. We put ξ = a/b with a and b integers and b ≥ 1. We have
|a/b − p/q| = |aq − bp|/bq ≥ 1/bq, since ξ is different from p/q. We
obtain (2.7), with the choices c′5 = 1/b and c′6 = 1 since d ≥ 3.

• If δ = 2. The real number ξ is quadratic. Liouville’s inequality for
quadratic real numbers is optimal: there exists α = α(ξ) > 0 such
that ∣∣∣∣ξ − p

q

∣∣∣∣ ≥ α

q2
·

By the hypothesis d ≥ 3, we deduce (2.7) with the choice c′5 = α and
c′6 = 1/2.

• If δ ≥ 3. We apply Lemma 2.7 in the form∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c5
qδ−c6

·

Since δ ≤ d, we obtain (2.7) with the choice c′5 = c5 and c′6 = c6.

We choose for c′5 = c′5(P ) and for c′6 = c′6(P ) the least values c′5 and c′6
corresponding to the various ξ that we met above to complete the proof of
Lemma 2.8.
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Proof of Proposition 2.6. Let f(t) = F (t, 1), thus we have F (x, y) = ydf(x/y).
Let d′ be the degree of f . Since the discriminant of F is different from zero,
we have

d′ = d or d− 1.

If f has no real root, then, for sufficiently large ∆ (more precisely, for
∆ > (inft∈R |f(t)|)−1/d), the set{

(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ A, |y| ≥ A1/d∆
}

is empty.
Let r ≥ 1 be the number of real roots of f , that we denote by ξ1,...,

ξr. By hypothesis these roots are simple. Let (x, y) ∈ Z2 with y 6= 0. The
condition 0 < |F (x, y)| ≤ A implies

0 <

∣∣∣∣f (xy
)∣∣∣∣ ≤ A

|y|d
·

We suppose |y| ≥ A1/d∆ and ∆ > c
−1/d
1 , and we apply Lemma 2.3 (ii). We

deduce the existence of some i ∈ {1, . . . , r} such that

(2.8) 0 <

∣∣∣∣xy − ξi
∣∣∣∣ ≤ c2A

|y|d
,

which is equivalent to

(2.9) 0 < |x− yξi| ≤
c2A

|y|d−1
·

When the integer y is fixed, the number of integers x satisfying the inequality
(2.9) is equal to

2c2A

|y|d−1
+O(1).

We fix Y0 = A1/(d−1) and we sum over i = 1, . . . , r. We apply Lemma 2.4
with B = A1/d∆ and δ = d − 1, to deduce that the number of (x, y) with
0 < |F (x, y)| ≤ A and A1/d∆ ≤ |y| ≤ Y0 is bounded by

(2.10) O
(
A2/d∆2−d)+O(Y0).

To complete the proof, we use Lemma 2.8 which implies the lower bound

(2.11)
∣∣∣∣ξi − p

q

∣∣∣∣ ≥ c′5
qd
′−c′6
≥ c′5
qd−c

′
6
·

Combining (2.8) with (2.11), we deduce the upper bound |y| ≤ Y1 with
Y1 = ( c2

c′5
A)1/c

′
6 . It remains to compute the number of solutions of (2.8)
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satisfying Y0 < |y| ≤ Y1. We use Lemma 2.5, with s = d, κ = c2A, Q1 = Y0,
Q2 = Y1: this number is bounded by

O
(
A/Y d−2

0

)
+O (log Y1) = O

(
A1/(d−1)) .

By adding (2.10) we obtain the upper bound announced in Proposition 2.6.
�

2.4 End of the proof of Theorem 1.1

We split the end of the proof into two different cases:

• Assume the binary form F1(X, Y )F2(X, Y ) has no zero in P1(R). This hy-
pothesis holds true if and only if the polynomial F1(t, 1)F1(1, t)F2(t, 1)F2(1, t)

has no real root. By homogeneity, there is a constant c7 > 0 such that for
all (x1, x2, x3, x4) ∈ R4, one has the inequalities

|F1(x1, x2)| ≥ c7 max{|x1|d, |x2|d} and |F2(x3, x4)| ≥ c7 max{|x3|d, |x4|d}.

This leads to the existence of a constant c8 such that the inequalities

|F1(x1, x2)| ≤ N and |F2(x3, x4)| ≤ N

imply max(|x1|, |x2|, |x3|, |x4|) ≤ B with B := (c8N)1/d. We apply Proposi-
tion 2.2 under the form

N (F1, F2;N) ≤ 1 +M∗(F1, F2;B) = OF1,F2

(
Bdηd+ε

)
= OF1,F2

(
Nηd+ε

)
.

By the inequality (2.3), the proof of Theorem 1.1 is complete in that case,
including the refinement quoted in Remark 1.5.

• Assume the binary form F1(X, Y )F2(X, Y ) has at least one zero in P1(R).
This is equivalent to the assumption that the polynomial

F1(t, 1)F1(1, t)F2(t, 1)F2(1, t)

has at least one real root. The constant η′d,F1,F2
is now defined by the second

formula of (2.2), that is η′d,F1,F2
= ϑd. Let

τ :=
2
d
− ηd

dηd + d− 2
,

so we have the equalities

2

d
− (d− 2)τ = ηd(1 + dτ) = η′d,F1,F2

.
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Let ∆ := N τ . To bound from above N (F1, F2;N), which is the number
of m ∈ Z, |m| ≤ N, such that there is at least one (x1, x2, x3, x4) ∈ Z4

satisfying the equality

(2.12) F1(x1, x2) = F2(x3, x4) = m,

we first consider those m such that at least one of (x1, x2, x3, x4) associated
to m by (2.12) satisfies the inequality

max{|x1|, |x2|, |x3|, |x4|} < N1/d∆.

Proposition 2.2 with B = N
1
d
+τ shows that the number of these m is

bounded by

(2.13) OF1,F2,ε

(
Bdηd+ε

)
= OF1,F2,ε

(
Nηd(1+dτ)+ε

)
= OF1,F2,ε

(
Nη′d,F1,F2

+ε
)
.

Next, we estimate the number of thosem such that all the 4–tuples (x1, x2, x3, x4)

associated to m by (2.12) satisfy the inequality

max{|x1|, |x2|, |x3|, |x4|} ≥ N1/d∆.

For simplicity, we study the case where |x1| ≥ N1/d∆, since the other cases
are similar. We only consider the values taken by the binary form F1 and
we apply Proposition 2.6. With the choices F = F1 and A = N , using
ϑd ≥ 1/(d− 1), we deduce that the number of corresponding m is bounded
by

OF1,F2

(
N2/d∆2−d +N1/(d−1)) = OF1,F2

(
Nη′d,F1,F2

)
.

By (2.13), this completes the proof of Theorem 1.1.

3 Proof of Theorem 1.11

By similarity with (1.6), we put

R=d(F , B,A) := ]{m : 0 ≤ |m| ≤ B, there is F ∈ Fd, (x, y) ∈ Z2,

such that max(|x|, |y|) ≥ A and m = F (x, y)}.

The lower bound for R≥d(F , B,A) is obtained as follows

R≥d(F , B,A) ≥ R=d(F , B,A)

≥
∑
F∈Fd

N (F, F ;B)−
∑ ∑
F, F ′∈Fd
F 6=F ′

N (F, F ′;B)− (2A+ 1)2dA1 ,
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where the counting function N is defined by (1.2). Condition (iii) in Def-
inition 1.10 of a regular family implies ]Fd = Od(1); thanks to condition
(iv) and to the inequality κd ≤ ϑd (see (2.4)), Theorems 1.1 and A give the
inequality

(3.1) R≥d(F , B,A) ≥

(∑
F∈Fd

AFWF

)
·B2/d −OF ,A,ε

(
Bϑd+ε

)
.

For the upper bound, we recall that the parameters d0, κ and A1 appear
in Definition 1.10. We start from the inequality

(3.2) R≥d(F , B,A) ≤
∑
F∈Fd

N (F, F ;B) +

d†+d0∑
n=d†

∑
F∈Fn

N (F, F ;B)

+ ]

 ⋃
n>d†+d0

⋃
F∈Fn

(F (ZA) ∩ [−B,B])

 ,

with
ZA = Z2 \

(
[−A,A]× [−A,A]

)
.

Applying one more time Theorem A, we have the equality

(3.3)
∑
F∈Fd

N (F, F ;B) =

(∑
F∈Fd

AFWF

)
·B2/d +OF ,d,ε

(
Bκd+ε

)
,

and the upper bound

(3.4) N (F, F ;B) = OF

(
B2/d†

)
if degF ≥ d†.

Hence the second term on the right–hand side of (3.2) is bounded as follows

d†+d0∑
n=d†

∑
F∈Fn

N (F, F ;B) = OF ,d

(
B2/d†

)
.

To deal with the third term on the right–hand side of (3.2), we interchange
the summations to write

(3.5) ]

 ⋃
n>d†+d0

⋃
F∈Fn

(F (ZA) ∩ [−B,B])


≤ ]

{
(n, F, x, y) : n > d† + d0, F ∈ Fn, (x, y) ∈ ZA, |F (x, y)| ≤ B

}
.

The condition (v) in Definition 1.10 of the (A,A1, d0, d1, κ)–regularity of F
produces a bound for n, by the sequence of inequalities

(3.6) κ < A ≤ max{|x|, |y|} ≤ κ|F (x, y)|
1

n−d0 ≤ κB
1

n−d0 ≤ κB
1

d†+1 ,
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which implies the inequality

n ≤ d0 +
logB

log(A/κ)
·

Furthermore the inequalities (3.6) implies

max{|x|, |y|} ≤ κB1/(d†+1).

Combining the above inequalities, we deduce that the cardinality of the
quadruples (n, F, x, y) in the right–hand side of (3.5) is bounded from above
by

(3.7)
(
d0 +

logB

log(A/κ)

)A1 (
1 + 2κB1/(d†+1)

)2
= oF

(
B2/d†

)
.

Gathering (3.2), (3.3), (3.4) and (3.7), we finally obtain the upper bound
(3.8)

R≥d(F , B,A) ≤

(∑
F∈Fd

AFWF

)
·B2/d +OF ,A,d,ε

(
Bκd+ε

)
+OF ,d

(
B2/d†

)
.

Comparing (3.1) and (3.8) and recalling the inequality (2.4), we complete
the proof of Theorem 1.11.

4 Proof of Theorem 1.15

4.1 The family Q+ is (2, 1, 0, 4, 1)–regular

Our first purpose is to prove the following

Proposition 4.1. The family Q+ is (2, 1, 0, 4, 1)–regular.

Proof. Several times, we will use the following property satisfied by two
positive distinct squarefree numbers

(4.1) n 6= n′ ⇒ Q (i
√
µn) 6= Q (i

√
µn′) .

We now check each of the items of Definition 1.10 of a regular family.
• The items (i) and (ii) are trivial.
• The family Q+ contains no element with odd degree d. By contrast if

this degree d ≥ 4 is even, the family contains d/2+1 binary forms of degree
d.

Thus the item (iii) is verified with A1 = 1.
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• For the item (iv) we proceed as follows. Suppose that there are two
isomorphic forms F and F ′ in Q+. Necessarily they have the same degree
2d. So there exist 1 ≤ ν < ν ′ ≤ d + 1 and a matrix γ ∈ GL(2,Q), written
as in (1.1), such that

Q+
d,ν = Q+

d,ν′ ◦ γ.

Let γ̃ be the homography attached to γ. This homography

(4.2) γ̃ : z ∈ P1(C) 7→ a1z + a2
a3z + a4

induces a bijection between the set of zeroes Z(Q+
d,ν) (in P1(C)) of Q+

d,ν and
the set of zeroes Z(Q+

d,ν′). So, γ̃(i
√
µν′) is a zero of Q+

d,ν′ , hence is one of
±i√µn with n 6= ν ′, which contradicts (4.1).
• The definition (1.16) implies that Q+

d,ν(x, y) = 0 if and only if (x, y) =

(0, 0). Furthermore, by positivity, we have the lower bound∣∣Q+
d,ν(x, y)

∣∣ ≥ (max{|x|2, |y|2}
)d

= (max{|x|, |y|})degQ
+
d,ν .

The above inequality implies

max{|x|, |y|} ≤
∣∣Q+

d,ν(x, y)
∣∣1/degQ+

d,ν ,

which means the item (v) is satisfied for A = 2, d0 = 0, d1 = 4 and
κ = 1.

4.2 Triviality of the group Aut(Q+
d,ν,Q)

We now prove

Proposition 4.2. For every d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has

Aut(Q+
d,ν ,Q) =

{(
±1 0
0 ±1

)}
(Klein group of order 4).

Proof. The four elements(
1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)

in GL(2,Q) clearly belong to Aut(Q+
d,ν ,Q). Conversely, let γ =

(
a1 a2
a3 a4

)
∈

GL(2,Q) and let Q+
d,ν be such that

(4.3) Q+
d,ν ◦ γ = Q+

d,ν .
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The set of zeroes Z(Q+
d,ν) is stable by the homography γ̃ attached to γ.

Appealing to (4.1), we deduce

γ̃ (i
√
µn) = εni

√
µn, (1 ≤ n ≤ d+ 1, n 6= ν),

where εn = ±1. We now prove that the value of εn is independent from n.
Indeed, suppose that there exist m and n such that εm = 1 and εn = −1.
Returning to the explicit expression of γ̃ (see (4.2)), we obtain{

a1i
√
µm + a2 = i

√
µm
(
a3i
√
µm + a4

)
a1i
√
µn + a2 = −i√µn

(
a3i
√
µn + a4

)
.

Since a1, a2, a3 and a4 are rational numbers, we deduce the four equalities
a2 = −a3 µm
a2 = a3 µn

a1 = a4

a1 = −a4.

These equalities imply (a1, a2, a3, a4) = (0, 0, 0, 0) which is forbidden. So we
have γ̃(z) = εz, for some fixed ε ∈ {±1}. This means that for some τ ∈ Q,
we have

γ =

(
ετ 0
0 τ

)
.

By identification in (4.3), we find that τ = ±1.

4.3 Estimating the number of images by Q+ of (x, y)
with max{|x|, |y|} ≥ 2

For the family Q+, one has (2d)† = 2d + 2. Combining Corollary 1.12,
Propositions 4.1 and 4.2 and the equality (1.10), we proved the following

Proposition 4.3. For every d ≥ 2, one has the equality

R≥2d(Q+, B, 2) =
1

4

 ∑
F∈Q+

2d

AF

 ·B1/d +Oλ,d,ε

(
Bϑ2d+ε

)
+Oλ,d

(
B1/(d+1)

)
.

4.4 Estimating the number of images by Q+ of (x, y)
with max{|x|, |y|} < 2

The difference

(4.4) R≥2d(Q+, B, 0)−R≥2d(Q+, B, 2)
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is bounded from above by the cardinality of the set

(4.5) {m : 0 ≤ m ≤ B, m = Q+
d′,ν(±1,±1), d′ ≥ d, 1 ≤ ν ≤ d′ + 1}

∪ {m : 0 ≤ m ≤ B, m = Q+
d′,ν(0,±1), d′ ≥ d, 1 ≤ ν ≤ d′ + 1} ∪ {0, 1}.

For every d′ and 1 ≤ ν ≤ d′ + 1, one has the equality

Q+
d′,ν(±1,±1) ≥

∏
1≤n≤d′

(
1 + n2

)
≥ (d′ !)2.

This implies that the inequality Q+
d′,ν(±1,±1) ≤ B can only hold if d′ =

O (logB). So the cardinality of the first set in (4.5) is bounded by O(log2B).
The same bound also applies to the second set. Combining Proposition 4.3
with (4.4) we obtain

Proposition 4.4. For every d ≥ 2 and for every ε > 0, one has the equality

R≥2d(Q+, B, 0) =
1

4

 ∑
F∈Q+

2d

AF

 ·B1/d +Oλ,d,ε

(
Bϑ2d+ε

)
+Oλ,d

(
B1/(d+1)

)
.

4.5 Some results on AF for F ∈ Q+

By the definition (1.9), the fundamental domain attached to Q+
d,ν is

(4.6) D(Q+
d,ν) :=

{
(x, y) ∈ R2 :

∏
1≤n≤d+1
n 6=ν

(
x2 + µny

2
)
≤ 1
}
.

Our purpose is to estimate the sum

Coef(Q+, 2d) :=
∑
F∈Q+

2d

AF

as d→∞. We use integration techniques to express this sum of fundamental
areas as follows.

Lemma 4.5. For any d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has the equality

AQ+
d,ν

=

∫ ∞
−∞

(u2 + µν)
1/d

Gd(u)1/d
du,

where

Gd(u) :=
d+1∏
n=1

(
u2 + µn

)
.

Hence

Coef(Q+, 2d) =

∫ ∞
−∞

∑
1≤n≤d+1 (u2 + µn)

1/d

Gd(u)1/d
du.
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Proof. By (4.6) and by the change of variables x = uv, y = v we have the
equalities

AQ+
d,ν

=

∫∫
D(Q+

d,ν)

dx dy

=

∫∫
v2d

∏
1≤n≤d+1
n 6=ν

(u2+µn)≤1
|v| du dv

=

∫ ∞
−∞

du∏
1≤n≤d+1
n 6=ν

(u2 + µn)1/d
·

Compare with [B] p. 122. Summing over all the Q+
d,ν ∈ Q

+
2d, we obtain the

second formula of Lemma 4.5.

We first give a lower bound of Coef(Q+, 2d). We have

Coef(Q+, 2d) ≥ (d+ 1)

∫ ∞
−∞

(u2 + µ1)
1/d

Gd(u)1/d
du

≥ (d+ 1)

∫ ∞
−∞

du∏
2≤n≤d+1(u

2 + µn)1/d

≥ (d+ 1)

∫ ∞
−∞

du

u2 + µd+1

≥ π · d+ 1
√
µd+1

·(4.7)

From our assumption µd+1 ≤ λ(d+1) we deduce from (4.7) the lower bound

(4.8) Coef(Q+, 2d) >
π√
λ

√
d.

For the upper bound, we write

Coef(Q+, 2d) ≤ (d+ 1)

∫ ∞
−∞

(u2 + µd+1)
1/d

Gd(u)1/d
du

≤ (d+ 1)

∫ ∞
−∞

du∏
1≤n≤d(u

2 + µn)1/d
·

Using Hölder’s inequality we deduce

Coef(Q+, 2d) ≤ (d+ 1)
d∏

n=1

(∫ ∞
−∞

du

u2 + µn

)1/d

≤ π(d+ 1)
d∏

n=1

µ−1/(2d)n ≤ π
d+ 1

D
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with D := (d !)1/(2d). Using Stirling formula (1.21), we deduce

Coef(Q+, 2d) ≤ π
√

e(
√
d+ 1).

Combining with (4.8) we complete the proof of (1.18). Recalling Propo-
sitions 4.2 and 4.4, we conclude that the proof of Theorem 1.15 is now
complete.

5 Proof of Theorem 1.17

Recall that for d ≥ 2 and 1 ≤ ν ≤ d + 1, Q−d,ν denotes the following binary
form of degree 2d

Q−d,ν(X, Y ) =
∏

1≤n≤d+1
n6=ν

(
X2 − µnY 2

)
and Q− denotes the family

Q− =
{
Q−d,ν : d ≥ 2, 1 ≤ ν ≤ d+ 1

}
.

5.1 The family Q− is (A, 1, 2, 2, 2eλ)–regular

Our goal in this subsection is to prove the following

Proposition 5.1. For A > 2eλ, the family Q− is (A, 1, 2, 2, 2eλ)–regular.

The proofs of items (i), (ii), (iii) and (iv) are the same as for Proposition
4.1: one only replaces (4.1) with the remark that for two positive distinct
squarefree numbers

n 6= n′ ⇒ Q (
√
µn) 6= Q (

√
µn′) .

It remains to check the condition (v) in Definition 1.10 of a regular family.
We start with an auxiliary lemma.

Lemma 5.2. For m and d integers satisfying 1 ≤ m < d, we have(
d

m
− 1

)d−m
≥ e−e

−1m;

further, for n an integer in the range 1 ≤ n ≤ d, we have

n!(d− n)!

nd
≥ e−(1+e−1)d.
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The numerical value for e1+e−1 is 3.927 · · · < 79
20
·

Proof of Lemma 5.2. Set t = d − m, fm(t) =
(
t
m

)t, gm(t) = log fm(t) =

t log t − t logm. The derivative g′m(t) = 1 + log t − logm of gm vanishes at
t = m/e, the minimum of fm(t) on the interval 0 < t ≤ d− 1 is reached at
t = m/e, giving the value (t/m)t = e−t = e−m/e.

The last part of Lemma 5.2 follows from the first one thanks to Stirling’s
formula (1.21):

n!(d− n)!

nd
≥ nn

en
· (d− n)d−n

ed−n
· 1

nd
=

(d− n)d−n

nd−ned
≥ e−de−e

−1n ≥ e−(1+e−1)d.

The last inequality of Lemma 5.2 implies

(5.1)
(
n!(d− n)!

)1/d ≥ e−1−e
−1

max{n, d− n} ≥ d

2e1+e−1 ≥
d

2e2
·

End of the proof of Proposition 5.1. Let d ≥ 2, 1 ≤ ν ≤ d + 1, (x, y) ∈
Z2 \ {(0, 0)}. Set Q = Q−d,ν(x, y). Our goal it to prove

(5.2) |Q| > (2eλ)−2d+2 max{|x|, |y|}2d−2.

We consider three cases depending on the sign of the factors x2 − µny2.
• If x2 < µ1y

2, all factors are negative. For 2 ≤ n ≤ d+ 1 we have

|x2 − µny2| = µny
2 − x2 > (µn − µ1)y

2.

When ν ≥ 2, we use the lower bound µ1y
2 − x2 ≥ 1 and obtain

|Q| > (µ2 − µ1) · · · (µd+1 − µ1)(µν − µ1)
−1y2d−2 ≥ (d− 1)!y2d−2.

For ν = 1 the stronger lower bound |Q| > (d − 1)!y2d holds. Hence for
1 ≤ ν ≤ d+ 1 we have

|Q| > (d− 1)!

µd−11

x2d−2 ≥ (d− 1)!

λd−1
x2d−2.

The desired estimate (5.2) follows.
• If x2 > µd+1y

2, all factors are positive and max{|x|, |y|} = |x|. For m =

1, . . . , d we have

x2 − µmy2 > (µd+1 − µm)
x2

µd+1

,

while for m = d+ 1 we have x2 − µd+1y
2 ≥ 1. Hence for 1 ≤ ν ≤ d we have

|Q| = Q > (µd+1−µ1)(µd+1−µ2) · · · (µd+1−µd)(µd+1−µν)−1
x2d−2

µd−1d+1

≥ d!x2d−2

µd−1d+1

·
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The lower bound |Q| > d!x2d−2

µd−1
d+1

is also true when ν = d+ 1 since in this case
we have

|Q| = Q > (µd+1 − µ1)(µd+1 − µ2) · · · (µd+1 − µd)
x2d

µdd+1

≥ d!x2d

µdd+1

and x2 > µd+1y
2 ≥ µd+1. Since d! > dde−d (see (1.21)) and µd+1 ≤ λ(d+ 1),

we have
d!

µd−1d+1

>
d

e
(
1 + 1

d

)d−1
(λe)d−1

>
1

(2eλ)2d−2
·

This implies (5.2).
• Finally, assume that there is an n in the interval 1 ≤ n ≤ d such that

x2 − µn+1y
2 < 0 < x2 − µny2.

Hence y 6= 0 and max{|x|, |y|} = |x|. We have

|Q| =
(5.3)

(x2 − µ1y
2)(x2 − µ2y

2) · · · (x2 − µny2)(µn+1y
2 − x2) · · · (µd+1y

2 − x2)|x2 − µνy2|−1

with

(x2 − µ1y
2)(x2 − µ2y

2) · · · (x2 − µn−1y2) > (µn − µ1)(µn − µ2) · · · (µn − µn−1)y2n−2
(5.4)

≥ (n− 1)!y2n−2

and

(µn+2y
2 − x2) · · · (µd+1y

2 − x2) > (µn+2 − µn+1) · · · (µd+1 − µn+1)y
2d−2n

(5.5)

≥ (d− n)!y2d−2n.

For 1 ≤ ν ≤ n− 1, we use the lower bound

(5.6) (x2−µ1y
2)(x2−µ2y

2) · · · (x2−µn−1y2)(x2−µνy2)−1 > (n−2)!y2n−4,

while for n+ 2 ≤ ν ≤ d+ 1, we use the lower bound

(5.7) (µn+2y
2 − x2) · · · (µd+1y

2 − x2)(µνy2 − x2)−1 > (d− n− 1)!y2d−2n−2.

It remains to estimate the product (x2−µny2)(µn+1y
2−x2) of the two terms

of the middle in (5.3). We consider two cases.
� Assume |y| ≥ 2. If ν ∈ {n, n+ 1}, we use the trivial lower bound

(5.8) (x2 − µny2)(µn+1y
2 − x2)|x2 − µνy2|−1 ≥ 1,
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while if ν ≤ n− 1 or ν ≥ n+ 2 we use the lower bound

(x2 − µny2)(µn+1y
2 − x2) ≥ (x2 − µny2) + (µn+1y

2 − x2)− 1(5.9)

= (µn+1 − µn)y2 − 1 ≥ y2 − 1 ≥ 3

4
y2.

◦ For ν ∈ {n, n+ 1}, we deduce from (5.3), (5.4), (5.5), (5.8),

|Q| ≥ (n− 1)!(d− n)!y2d−2.

◦ For 1 ≤ ν ≤ n− 1, we deduce from (5.3), (5.5), (5.6), (5.9),

|Q| ≥ 3

4
(n− 2)!(d− n)!y2d−2.

◦ For n+ 2 ≤ ν ≤ d+ 1 we deduce from (5.3), (5.4), (5.7), (5.9),

|Q| ≥ 3

4
(n− 1)!(d− n− 1)!y2d−2.

In the three cases, namely for 1 ≤ ν ≤ d + 1, we have, thanks to Lemma
5.2,

|Q| ≥ 3n!(d− n)!

4n(d− 1)
y2d−2 ≥ 3nd−1

4(d− 1)e(1+e−1)d
y2d−2.

From x2 < µn+1y
2 ≤ λ(n+ 1)y2 ≤ 2λny2 we deduce

|Q| > 3

4(d− 1)e(1+e−1)d(2λ)d−1
x2d−2.

Finally, since λ ≥ 2, we have

(5.10)
3

4(d− 1)e(1+e−1)d
>

1

(2e2λ)d−1

for d ≥ 2, and (5.2) follows,
� If y2 = 1, hence µn < x2 < µn+1, using the trivial lower bound

(x2 − µn)(µn+1 − x2) ≥ 1,

and a combination of the above lower bounds (5.3), (5.4), (5.5), (5.6), (5.7)
yields

|Q| ≥


(n− 1)!(d− n)! if ν ∈ {n, n+ 1},
(n− 2)!(d− n)! if 1 ≤ ν ≤ n− 1,

(n− 1)!(d− n− 1)! if n+ 2 ≤ ν ≤ d+ 1.

For 1 ≤ ν ≤ d+ 1, we obtain, thanks to Lemma 5.2,

|Q| ≥ n!(d− n)!

n(d− 1)
≥ nd−1

(d− 1)e(1+e−1)d
·
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If x2 ≤ 2λ, using n ≥ 1, we deduce

|Q| ≥ nd−1

(d− 1)e(1+e−1)d

(
x2

2λ

)d−1
,

while if x2 ≥ 2λ we have, by (1.14), the inequalities n > x2

λ
− 1 ≥ x2

2λ
, hence

again

|Q| ≥ x2d−2

(d− 1)e(1+e−1)d(2λ)d−1
·

From (5.10) we deduce the estimate (5.2) also when |y| = 1.
This completes the proof of Proposition 5.1.

5.2 Triviality of the group Aut(Q−d,ν,Q)

The following result is the analog of Proposition 4.2. The proof is the same,
since µ1 ≥ 2 and the roots of Q−d,ν are all irrational numbers.

Proposition 5.3. For every d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has

Aut(Q−d,ν ,Q) =

{(
±1 0
0 ±1

)}
(Klein group of order 4).

5.3 Estimating the number of images by Q− of (x, y)
with max{|x|, |y|} ≥ A

From Corollary 1.12, the equality (1.10) and Propositions 5.1 and 5.3, we
deduce:

Proposition 5.4. For every A > 2eλ, for every d ≥ 2 and for every ε > 0,
one has the equality

R≥2d(Q−, B,A) =
1

4

 ∑
F∈Q−2d

AF

·B1/d+Oλ,A,d,ε

(
Bϑ2d+ε

)
+Oλ,A,d

(
B1/(d+1)

)
.

5.4 Estimating the number of images by Q− of (x, y)
with max{|x|, |y|} < A

The difference
R≥2d(Q−, B, 0)−R≥2d(Q−, B,A)

is at most the cardinality of the set{
m : 0 6= |m| ≤ B, m = Q−d′,ν(x, y), d′ ≥ d, 1 ≤ ν ≤ d′ + 1, max{|x|, |y|} ≤ A

}
.
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Given d′, the number of such m in this set is bounded by (d′+ 1)(2A+ 1)2.
Hence we only need to bound from above the value of d′ when |m| ≥ 2.

We first consider the integers of the form Q−d′,ν(x, 0). Since Q−d′,ν(±1, 0) =

1, we may assume |x| ≥ 2. From

Q−d′,ν(x, 0) = x2d
′ ≤ B

we deduce that d′ is bounded by O(logB).
Next let m = Q−d′,ν(x, y) with d′ ≥ d, 1 ≤ ν ≤ d′ + 1, max{|x|, |y|} ≤ A,

|y| ≥ 1 and 0 < |m| ≤ B. Without loss of generality we may assume
d′ > 2A2. We split the product∏

1≤n≤d′+2
n 6=ν

∣∣x2 − µny2∣∣
the value of which is |m|, as P1P2 where

P1 =
∏

1≤n≤2A2

n 6=ν

∣∣x2 − µny2∣∣ , P2 =
∏

2A2<n≤d′+2
n 6=ν

∣∣x2 − µny2∣∣ .
The product P1 is ≥ 1. For 2A2 < n ≤ d′ + 2, since µn > n, |x| ≤ A and
|y| ≥ 1, we have µny2 − x2 ≥ A2, hence

(A2)d
′−2A2 ≤ P2 ≤ P1P2 = |m| ≤ B,

which yields

d′ ≤ 2A2 +
logB

2 logA
= OA(logB).

Hence
R≥2d(Q−, B, 0)−R≥2d(Q−, B,A) = OA((logB)2).

Thanks to Proposition 5.4, this completes the proof of the estimate for
R≥2d(Q−, B, 0) in Theorem 1.17.

5.5 Some results on AF for F ∈ Q−

By the definition (1.9), the fundamental domain attached to Q−d,ν is

(5.11) D(Q−d,ν) :=
{

(x, y) ∈ R2 :
∏

1≤n≤d+1
n 6=ν

∣∣x2 − µny2∣∣ ≤ 1
}
.

Our purpose is to estimate the sum

Coef(Q−, 2d) :=
∑
F∈Q−2d

AF

as d→∞ by proving (1.19).
Repeating the proof of Lemma 4.5, we obtain:
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Lemma 5.5. For any d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has the equality

AQ−d,ν
=

∫ ∞
−∞

|u2 − µν |1/d∏
1≤n≤d+1 |u2 − µn|1/d

du.

Hence

Coef(Q−, 2d) =

∫ ∞
−∞

∑
1≤n≤d+1 |u2 − µn|1/d∏d+1
n=1 |u2 − µn|1/d

du.

Since |u2 − µn| ≤ u2 + µn, the lower bound of Coef(Q−, 2d) is a con-
sequence of the lower bound of Coef(Q+, 2d). More precisely, we have, by
Lemma 5.5,

AQ−d,ν
=

∫ ∞
−∞

du∏
1≤n≤d+1
n 6=ν

|u2 − µn|1/d
≥
∫ ∞
−∞

du∏
1≤n≤d+1
n 6=ν

(u2 + µn)1/d
,

hence

Coef(Q−, 2d) ≥ (d+ 1)

∫ ∞
−∞

du∏
2≤n≤d+1(u

2 + µn)1/d

≥ (d+ 1)

∫ ∞
−∞

du

u2 + µd+1

= π · d+ 1
√
µd+1

·

This proves the lower bound

(5.12) Coef(Q−, 2d) >
π√
λ

√
d.

For the upper bound, we use once more Lemma 5.5. By the change of
variable u2 = v we have

AQ−d,ν
= 2

∫ ∞
0

du∏
1≤n≤d+1
n 6=ν

|u2 − µn|1/d
=

∫ ∞
0

dv√
v
∏

1≤n≤d+1
n 6=ν

|v − µn|1/d
·

We split the integral as the sum of d+ 3 terms

AQ−d,ν
=

d+2∑
j=0

Aj

with
A0 =

∫ µ1

0

dv√
v
∏

1≤n≤d+1
n 6=ν

(µn − v)1/d
,

Aj =

∫ µj+1

µj

dv√
v
∏

1≤n≤j
n 6=ν

(v − µn)1/d
∏

j+1≤n≤d+1
n 6=ν

(µn − v)1/d
(1 ≤ j ≤ d+1)

and
Ad+2 =

∫ ∞
µd+2

dv√
v
∏

1≤n≤d+1
n 6=ν

(v − µn)1/d
·



36 É. Fouvry and M. Waldschmidt

• Upper bound for A0.
For ν = 1, we use the lower bound∏

2≤n≤d+1

(µn − µ1) ≥ d! ≥ dd

ed

which follows from Stirling’s estimate (1.21) and one deduces

A0 ≤
1∏

2≤n≤d+1(µn − µ1)1/d

∫ µ1

0

dv√
v
≤

2e
√
µ1

d
≤ 2e

√
λ

d
·

Similarly, for 2 ≤ ν ≤ d+ 1 we have

A0 ≤
1∏

2≤n≤d+1
n 6=ν

(µn − µ1)1/d

∫ µ1

0

dv√
v(µ1 − v)1/d

and ∏
2≤n≤d+1
n 6=ν

(µn − µ1) ≥ (d− 1)! =
d!

d
,

hence ∏
2≤n≤d+1
n 6=ν

(µn − µ1)
1/d ≥ d

e
√

2
.

From the upper bounds (recall λ ≥ 2 and 2 ≤ µ1 ≤ λ)∫ µ1

0

dv√
v(µ1 − v)1/d

≤
∫ µ1

0

dv√
v

+

∫ µ1

0

dv

(µ1 − v)1/d

= 2
√
µ1 +

d

d− 1
µ
1−(1/d)
1 < (2 +

√
2)λ,

we deduce
A0 <

5eλ

d
·

• Upper bound for Aj, 1 ≤ j ≤ d+ 1.
� If ν 6∈ {j, j + 1}, we have

Aj ≤
1

√
µ
j

∏
1≤n≤j−1
n 6=ν

(µj − µn)1/d
∏

j+2≤n≤d+1
n 6=ν

(µn − µj+1)1/d∫ µj+1

µj

dv

(v − µj)1/d(µj+1 − v)1/d
·

We use (5.1): for 1 ≤ j ≤ d we have∏
1≤n≤j−1
n6=ν

(µj − µn)
∏

j+2≤n≤d+1
n 6=ν

(µn − µj+1) ≥

{
(j−1)!(d−j)!

j−ν for 1 ≤ ν ≤ j − 1
(j−1)!(d−j)!
ν−j−1 for j + 1 ≤ ν ≤ d+ 1

≥ j!(d− j)!
d2

≥ 1

d2

(
d

2e1+e−1

)d
,
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while for j = d+ 1 this lower bound becomes∏
1≤n≤d
n 6=ν

(µd+1 − µn) ≥ d!

d+ 1− ν
≥ 1

d2

(
d

2e1+e−1

)d
.

Next we use the following estimate:∫ µj+1

µj

dv

(v − µj)1/d(µj+1 − v)1/d
≤

21/d

(µj+1 − µj)1/d

(∫ (µj+µj+1)/2

µj

dv

(v − µj)1/d
+

∫ µj+1

(µj+µj+1)/2

dv

(µj+1 − v)1/d

)
.

We have∫ (µj+µj+1)/2

µj

dv

(v − µj)1/d
=

∫ µj+1

(µj+µj+1)/2

dv

(µj+1 − v)1/d
=

d

d− 1

(
µj+1 − µj

2

)1−(1/d)

.

Hence ∫ µj+1

µj

dv

(v − µj)1/d(µj+1 − v)1/d
≤ d

d− 1
22/d(µj+1 − µj)1−(2/d).

We deduce that for ν 6∈ {j, j + 1}, we have

Aj ≤ (4d2)1/d2e1+e−1 (µj+1 − µj)1−(2/d)

(d− 1)
√
µj

·

� If ν = j, we have

Aj ≤
1

√
µ
j

∏
1≤n≤j−1(µj − µn)1/d

∏
j+2≤n≤d+1(µn − µj+1)1/d

∫ µj+1

µj

dv

(µj+1 − v)1/d

and we use the formula∫ µj+1

µj

dv

(µj+1 − v)1/d
=

d

d− 1
(µj+1 − µj)1−(1/d).

� If ν = j + 1, we have

Aj ≤
1

√
µ
j

∏
1≤n≤j−1(µj − µn)1/d

∏
j+2≤n≤d+1(µn − µj+1)1/d

∫ µj+1

µj

dv

(v − µj)1/d

and we use the formula∫ µj+1

µj

dv

(v − µj)1/d
=

d

d− 1
(µj+1 − µj)1−(1/d).

We deduce that for 1 ≤ j ≤ d+ 1 and 1 ≤ ν ≤ d+ 1, we have

(5.13) Aj ≤
(
2e1+e−1

+ o(1)
)µj+1 − µj

d
√
µj
·
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For j ≥ 1, we have

µj ≥ j + 1 ≥ 1

λ
µj+1,

and we deduce the inequality

d+1∑
j=1

µj+1 − µj√
µj

≤
√
λ

d+1∑
j=1

µj+1 − µj√
µj+1

·

Using the inequality

d+1∑
j=1

µj+1 − µj√
µj+1

≤
d+1∑
j=1

∫ µj+1

µj

dt√
t

=

∫ µd+2

µ1

dt√
t
≤ 2
√
µd+2 ≤ 2

√
λ(d+ 2),

we deduce from (5.13), that

d+1∑
j=1

Aj ≤
((

2e1+e−1

+ oλ(1)
)
/d
)
·
√
λ ·
(
2
√
λ(d+ 2)

)
≤
(
4e1+e−1

+ oλ(1)
) λ√

d
·

• Upper bound for Ad+2.
For v ≥ µd+2 and 1 ≤ n ≤ d+ 1, we have

v − µn ≥ v

(
1− µn

µd+2

)
,

hence
Ad+2 ≤

1∏
1≤n≤d+1
n 6=ν

(
1− µn

µd+2

)1/d ∫ ∞
µd+2

dv

v3/2

with ∫ ∞
µd+2

dv

v3/2
=

2
√
µd+2

≤ 2√
d+ 2

and (using Stirling’s estimate (1.21) once more)

∏
1≤n≤d+1
n6=ν

(
1− µn

µd+2

)1/d

≥ d!1/d

µd+2

≥ d!1/d

λ(d+ 2)
≥ 1

λe

(
1 +

2

d

)−1
.

We deduce
Ad+2 ≤ (2e + o(1))

λ√
d
·

Putting these estimates together, we obtain

AQ−d,ν
=

d+2∑
j=0

Aj ≤
(

4e1+e−1

+ 2e + oλ(1)
) λ√

d
·
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Summing over all the Q−d,ν ∈ Q
−
2d we conclude

Coef(Q−, 2d) ≤
(

4e1+e−1

+ 2e + oλ(1)
)
λ
√
d.

Combining with (5.12) and with the upper bound 4e1+e−1
+ 2e < 22, we

complete the proof of (1.19). The proof of Theorem 1.17 is now complete.

6 Proof of Theorem 1.18

We now use the notations of § 1.3.4. Our first purpose is to check that the
family L satisfies the assertions of Definition 1.10 of a regular family. The
items (i), (ii) are obvious. The item (iii) is trivially satisfied with A1 = 1.
The items (iv) and (v) are more subtle.

6.1 Isomorphisms between two elements in L

We will prove the following more general statement which implies that the
item (iv) is fulfilled by the family L.

Proposition 6.1. Let d ≥ 4 be an integer, {ai : 1 ≤ i ≤ d − 1} and
{bj : 1 ≤ j ≤ d− 2} two sets of integers and p a prime number such that

(6.1) 0 < a1 < · · · < ad−1 < p,

and

(6.2) 0 < b1 < · · · < bd−2 < p.

Then the binary forms

(6.3) X

d−1∏
i=1

(X − aiY ) and (X − pY )X
d−2∏
j=1

(X − bjY )

are not isomorphic.

Proof. The proof is based on classical properties of the cross–ratio of four
points on P1(C) = C ∪ {∞}. Recall that if (x1, x2, x3, x4) is a quadruple of
four distinct complex numbers, the associated cross–ratio is the complex
number [x1, x2, x3, x4] defined by

[x1, x2, x3, x4] :=
x3 − x1
x3 − x2

/
x4 − x1
x4 − x2

·
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This definition is naturally extended to P1(C) when exactly one of the el-
ements x1, x2, x3 and x4 is equal to ∞. The cross–ratio is invariant by
any homography of P1(C). In other words, for any homography h, for any
quadruple (x1, x2, x3, x4) of distinct points of P1(C), one has the equality

(6.4) [x1, x2, x3, x4] = [h(x1), h(x2), h(x3), h(x4)].

Let a be a nonzero integer. The canonical decomposition of |a| into prime
factors

|a| =
∏
p

pvp(a)

defines, for each prime number p, the p–adic valuation vp(a) ∈ Z of a.
Let t = a/b 6= 0 be a rational number, written in its irreducible form. The
p–adic valuation of t, is the non negative integer

vp(t) :=

{
vp(a) if p - b,
−vp(b) if p - a.

We now begin the proof of Proposition 6.1. This proof is by contradiction.
Let F1(X, Y ) and F2(X, Y ) respectively be the two binary forms introduced
in (6.3). Suppose that there is γ ∈ GL(2,Q), written as in (1.1), such that

F1 = F2 ◦ γ.

Then the homography h associated with γ has the shape

z 7→ h(z) =
az + b

cz + d
·

This homography induces a bijective map between the sets of zeroes of the
polynomials f1(X) := F1(X, 1) and f2(X) := F2(X, 1). These sets of zeroes
are Z(f1) := {0, a1, . . . , ad−1} and Z(f2) = {0, b1, . . . , bd−2, p} considered
as subsets of P1(C). Consider, for j = 1, 2, the subsets of Q \ {0} defined
by

(6.5) Bir(fj) := {[x1, x2, x3, x4] : xi ∈ Z(fj), xi distinct} .

The equality (6.4) implies the equality of the two sets

Bir(f1) = Bir(f2),

and also of the two sets

{vp(y) : y ∈ Bir(f1)} = {vp(z) : z ∈ Bir(f2)}.
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As a consequence of the inequalities (6.1), we have {vp(y) : y ∈ Bir(f1)} =

{0}. However we also have 1 ∈ {vp(z) : z ∈ Bir(f2)} by considering the cross
ratio [0, b1, p, b2] and the inequalities (6.2). So we reach a contradiction: the
element γ does not exist and the binary forms F1 and F2 are not isomorphic.

6.2 Triviality of the group Aut(Ld,p,Q)

In order to determine the value of the coefficientW appearing in Proposition
A, we prove the following.

Proposition 6.2. Let d ≥ 5 be an integer. For every prime p ≥ d, the
automorphism group of the binary form Ld,p is {Id} if d is odd, and {±Id}
if d is even. In particular, the set Ld fulfils the conditions C1 or C2 of
Corollary 1.12, according to the parity of d.

6.2.1 Two preliminary results

The proof of the following lemma is based on the analytic properties of the
homography on each of its intervals of definition.

Lemma 6.3. Let h be a homography belonging to PGL(2,R), M > 0 be
a real number, t ≥ 1 be an integer, x1, . . . , xt be t real numbers satisfying
0 < x1 < · · · < xt < M , y1, . . . , yt be t real numbers satisfying 0 < y1 <

· · · < yt < M . Assume{
h ({xi : 1 ≤ i ≤ t}) = {yj : 1 ≤ j ≤ t} ,
h(0) = 0 and h(M) = M.

Then, for every 1 ≤ i ≤ t, one has the equality h(xi) = yi.

Proof. We split the proof in several cases depending on the nature of the
homography h.

• If h(∞) =∞, the restriction of h to the real affine line has the shape
h(x) = ax + b, where a 6= 0 and b are real numbers. The conditions
h(0) = 0 and h(M) = M imply a = 1 and b = 0. Hence the result
since h is the identity.

• If h(∞) 6=∞, h has a unique expansion as

(6.6) h(x) = a+
b

x− c
,

where a, b and c are real numbers such that c 6∈ {0, x1, · · · , xt,M}
and b 6= 0. We now consider the respective values of b and c.
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– If b > 0 the function x 7→ h(x) is decreasing on the two intervals
(−∞, c) and (c,+∞). We consider the value of c.

∗ If c < xt (< M), we have the inequality h(xt) > h(M) = M,

since h is decreasing. This contradicts the hypothesis h(xt) <

M .
∗ If c > xt (> 0), we have 0 = h(0) > h(xt). This contradicts

the hypothesis h(xt) > 0. We conclude that h is not of the
form (6.6) with b > 0.

– If b < 0, the function x 7→ h(x) is increasing on both intervals
(∞, c) and (c,+∞). We now consider the value of c.

∗ If c 6∈ [0,M ], the function x 7→ h(x) is increasing on (0,M),
so we have h(xi) = yi for 1 ≤ i ≤ t.
∗ If 0 < c < M , the hyperbola {(x, h(x)) ∈ R2 : x ∈ R, x 6= c}

has two asymptotes: one with abscissa c and the other one
with ordinate a. Elementary considerations on this hyperbola
lead to the inequalities

h(0) > a > h(M).

This contradicts the hypothesis h(0) = 0 and h(M) = M .
In conclusion h is not of the form (6.6) with b < 0 and
0 < c < M .

We will require the following variant of Lemma 6.3.

Lemma 6.4. Let h be a homography belonging to PGL(2,R), M > 0 be
a real number, t ≥ 1 be an integer, x1, . . . , xt be t real numbers satisfying
0 < x1 < · · · < xt < M , y1, . . . , yt be t real numbers satisfying 0 < y1 <

· · · < yt < M . Assume{
h ({xi : 1 ≤ i ≤ t}) = {yj : 1 ≤ j ≤ t} ,
h(0) = M and h(M) = 0.

Then for every 1 ≤ i ≤ t, one has the equality h(xi) = yt+1−i.

Proof. Introduce the homography g = s◦h, where s is the symmetry s(x) =

M−x. The homography g fulfils the hypotheses of Lemma 6.3 provided that
we replace the points yi (1 ≤ i ≤ t) by the points y′i := M − yt+1−i. We
deduce that for all i one has the equality g(xi) = y′i, which gives h(xi) =

yt+1−i.
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6.2.2 Proof of Proposition 6.2

Proof. Consider the polynomial

f(X) = Ld,p(X, 1)

and its set of zeroes Z(f) = {0, 1, 2, · · · , d− 2, p}. In order to prove that
the group of automorphisms of Ld,p is trivial it suffices to prove that the
unique homography h ∈ PGL(2,Q), such that

(6.7) h (Z(f)) = Z(f),

is the identity as soon as the prime p satisfies p ≥ d.
As in the proof of Proposition 6.1, we will play with the p–adic valuation

of the elements in Bir(f), defined in (6.5). We first notice that for x and y
two distinct integers in {1, 2, . . . , d− 2}, the elements

α := [0, x, p, y], [p, x, 0, y], [x, 0, y, p] and [x, p, y, 0],

belong to Bir(f) and satisfy vp(α) = 1. These are the only elements in Bir(f)

which satisfy vp(α) = 1. In particular, if four distinct elements x, y, z, t in
Z(f) satisfy vp([x, y, z, t]) = 1, then {0, p} ⊂ {x, y, z, t}.

By (6.4), we have the following equality

vp ([h(x), h(0), h(y), h(p)]) = 1,

where x and y are integers as above. Since d ≥ 5, there exists an integer x
in {1, 2, . . . , d− 2} such that h(x) 6∈ {0, p}. We claim that there is another
integer y 6= x in {1, 2, . . . , d− 2} with the same property, namely such that
h(y) 6∈ {0, p}. This is plain for d ≥ 6; for d = 5, the only case where this
would not be true is when {1, 2, 3} = {x, y, z} with {h(y), h(z)} = {0, p},
but this case is not possible since it would not be compatible with our
requirement that

{0, p} ⊂ {h(x), h(0), h(y), h(p)} .

This proves our claim that there are two distinct integers x and y in the set
{1, 2, . . . , d− 2} such that {h(x), h(y)} ∩ {0, p} = ∅. Therefore

{h(0), h(p)} = {0, p}.

We consider two cases.
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(i) Assume
h(0) = 0 and h(p) = p.

Since h induces by restriction a bijective map of Z(f) onto itself, we
may apply Lemma 6.3. We deduce that h(t) = t for 0 ≤ t ≤ d− 2 and
h(p) = p. Since a homography is determined by its restriction to a set
with three elements, we deduce that h = Id.

(ii) If

(6.8) h(0) = p and h(p) = 0,

we apply Lemma 6.4 to deduce that h(i) = d− 1− i, for 1 ≤ i ≤ d− 2.
The unique homography h satisfying this property is the symmetry
defined by h : z 7→ d−1−z. But such a formula is not compatible with
the fact that h(0) = p. So there is no homography h satisfying (6.7)
and (6.8).

We conclude that the set of h satisfying (6.7) is reduced to the identity.
The proof of Proposition 6.2 is complete.

6.3 The family L is regular (continued)

We now investigate the condition (v) of Definition 1.10. We will prove

Proposition 6.5. For every d ≥ 5, for every p with p ≥ d− 1, and for all
(x, y) ∈ Z2 such that Ld,p(x, y) 6= 0. the following inequality holds

(6.9) max{|x|, |y|} ≤ 9 · |Ld,p(x, y) |
1
d−1 .

The inequality (6.9) is equivalent to the lower bound

(6.10) |Ld,p(x, y)| ≥
(

1

9
·max{|x|, |y|}

)d−1
,

under the hypotheses of Proposition 6.5. We will rather work with (6.10).
The proof of (6.10) depends on the relative sizes of |x| and |y|. However,

if we suppose that xy ≤ 0 and Ld,p(x, y) 6= 0, it is straightforward to obtain
the lower bound

|Ld,p(x, y)| ≥ (max{|x|, |y|})d−1 .

Hence we may assume that x and y are not zero and have the same sign.
Besides, since |Ld,p(−x,−y)| = |Ld,p(x, y)|, we will assume that both x and
y are positive.
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The basic equality is the following one

(6.11) |Ld,p(x, y)| = x · |x− y| · |x− 2y| · · · |x− (d− 2)y| · |x− py|.

We split the argument according to the relative sizes of x and y.

6.3.1 Assume 1 ≤ x ≤ y

Let x and y be positive integers such that Ld,p(x, y) 6= 0 with y ≥ x. Hence
y ≥ x+ 1. We deduce from (6.11)

|Ld,p(x, y)| = x · (y − x) · (2y − x) · · · ((d− 2)y − x) · (py − x)

> x · (y − x) · y · (2y) · · · ((d− 3)y) · ((p− 1)y)

= x · (y − x) · (d− 3) ! · (p− 1) yd−2.

If y ≥ 2x we have x(y − x) ≥ y − x ≥ y/2, while for x < y ≤ 2x we have
x(y − x) ≥ x ≥ y/2. Hence

|Ld,p(x, y)| > 1

2
(d− 3) !(p− 1) (max{|x|, |y|})d−1 .

So we proved

Proposition 6.6. For every d ≥ 3, for every p ≥ d− 1, for every integers
x and y such that Ld,p(x, y) 6= 0 and |x| ≤ |y|, one has the inequality

|Ld,p(x, y)| ≥ max{|x|, |y|}d−1.

6.3.2 Assume (d− 2)y ≤ x

Let x and y be positive integers such that Ld,p(x, y) 6= 0 with x ≥ (d− 2)y,
hence x ≥ (d− 2)y + 1. We deduce from (6.11)

|Ld,p(x, y)| = x · (x− y) · (x− 2y) · · · (x− (d− 2)y) · |x− py|.

• If y = 1, since x ≥ d− 1, we have

x− n = x
(

1− n

x

)
≥ x

(
1− n

d− 1

)
= x

(
d− n− 1

d− 1

)
for 0 ≤ n ≤ d − 2; using the trivial lower bound |x − p| ≥ 1 together with
Stirling’s formula (1.21), we deduce

|Ld,p(x, 1)| ≥ x · (x− 1) · (x− 2) · · · (x− (d− 2)) ≥ (d− 1)!

(d− 1)d−1
xd−1 ≥ xd−1

ed−1
·
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•We assume now y ≥ 2. As a consequence of the hypothesis y ≤ x/(d− 2),
we have the inequality

x · (x− y) · (x− 2y) · · · (x− (d− 3)y) ≥ (d− 2)!

(d− 2)d−2
xd−2.

� If x > py, then

x− (d− 2)y ≥ x

(
1− d− 2

p

)
≥ x

(
1− d− 2

d− 1

)
=

x

d− 1

and the trivial lower bound x− py ≥ 1 suffices to deduce

Ld,p(x, y) ≥ (d− 2)!

(d− 1)(d− 2)d−2
xd−1.

� If py > x, then from x− (d− 2)y ≥ 1 and py − x ≥ 1 we deduce

(x− (d− 2)y) · (py− x) ≥ (x− (d− 2)y) + (py− x)− 1 ≥ y(p− d+ 2)− 1.

If p = d− 1 we use the assumption y ≥ 2 which yields

y(p− d+ 2)− 1 = y − 1 ≥ y

2
>

x

2p
=

x

2(d− 1)
,

while for p ≥ d we use the lower bounds

y(p− d+ 2)− 1 ≥ y(p− d+ 1) ≥ py

(
1− d− 1

p

)
> x

(
1− d− 1

d

)
=
x

d
·

Therefore, for (d− 2)y ≤ x and y ≥ 2, we have

|Ld,p(x, y)| ≥ (d− 2)!

2(d− 1)(d− 2)d−2
xd−1 ≥ xd−1

2ded−2
·

We deduce

Proposition 6.7. For d ≥ 3, p prime ≥ d − 1 and (x, y) ∈ Z2 such that
|x| ≥ (d− 2)|y| and Ld,p(x, y) 6= 0 we have

|Ld,p(x, y)| ≥ 1

ded
max{|x|, |y|}d−1.

6.3.3 Assume (n− 1)y ≤ x ≤ ny for some n with 2 ≤ n ≤ d− 2

We deduce from (6.11)

|Ld,p(x, y)| = x · (x−y) · · · (x− (n−1)y) · (ny−x) · · · ((d−2)y−x) · (py−x).
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We have
x · (x− y) · · · (x− (n− 2)y) ≥ (n− 1)!yn−1

and

((n+ 1)y − x) · · · ((d− 2)y − x) · (py − x) ≥ (d− n− 2)!(p− n)yd−n−1

≥ (d− n− 1)!yd−n−1.

For the product of the two terms in the middle, if y = 1 we use the trivial
lower bound (x− (n− 1)y)(ny − x) ≥ 1 which yields

|Ld,p(x, y)| ≥ (n− 1)!(d− n− 1)!yd−2 ≥ (n− 1)!(d− n− 1)!

nd−2
xd−2,

while for y ≥ 2 we use

(x− (n− 1)y)(ny − x) ≥ (x− (n− 1)y) + (ny − x)− 1 = y − 1 ≥ y

2
,

which yields

|Ld,p(x, y)| ≥ 1

2
(n− 1)!(d− n− 1)!yd−1 ≥ (n− 1)!(d− n− 1)!

2nd−1
xd−1.

We now use Lemma 5.2:

(n− 1)!(d− n− 1)!

nd−1
=
n!(d− n)!

nd(d− n)
≥ e−(1+e−1)d 1

d− n
,

from which we deduce

|Ld,p(x, y)| ≥ e−(1+e−1)d 1

2(d− n)
xd−1.

This proves the following result:

Proposition 6.8. For d ≥ 3, 2 ≤ n ≤ d− 2, p prime ≥ d− 1 and x and y
such that (n− 1)|y| ≤ |x| ≤ n|y| and Ld,p(x, y) 6= 0, we have

|Ld,p(x, y)| ≥ 1

2(d− 2)
· max{|x|, |y|}d−1

e(1+e−1)d
·

For d ≥ 5, we have

2(d− 2) · e(1+e−1)d < 9d−1.

We may now gather Propositions 6.6, 6.7 and 6.8 to deduce (6.10), which
completes the proof of Proposition 6.5.
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6.4 Estimating the number of images by L of (x, y) with
max{|x|, |y|} ≥ 10

Gathering Propositions 6.1 and 6.5, we proved that the family L is (10, 1, 1, 5, 9)–
regular. Furthermore, according to the parity of d, the set Ld satisfies the
conditions C1 or C2 of Corollary 1.12, by Proposition 6.2. As a consequence
of Corollary 1.12 we have the following

Proposition 6.9. For any d ≥ 5, for every ε > 0, one has the equality

R≥d (L, B, 10) =
1

(2, d)

( ∑
d≤p<2d

ALd,p

)
B2/d +Od,ε

(
Bϑd+ε

)
+Od

(
B2/(d+1)

)
.

6.5 Estimating the number of images by L of (x, y) with
max{|x|, |y|} < 10

The difference

(6.12) R≥d(L, B, 0)−R≥d(L, B, 10)

is bounded from above by two times the cardinality of the set

Er≥d(B)

:= {m : 0 < m = |Ld′,p(x, y)| ≤ B, d ≤ d′ ≤ p < 2d′, max{|x|, |y|} ≤ 9}.

There are 192 pairs (x, y) with max{|x|, |y|} ≤ 9. We first count the number
of m in Er≥d(B) of the form |Ld′,p(x, 0)|, namely with y = 0. For x = ±1

and y = 0 we have m = 1; for 2 ≤ |x| ≤ 9 and y = 0, we have 2d
′ ≤ B,

hence there are at most Od(logB) such values of m.
We count now the number of m in Er≥d(B) of the form |Ld′,p(x, y)| with

|y| ≥ 1. We have |x− ny| ≥ n− |x| ≥ n− 9 ≥ 2 for n ≥ 11, hence

B ≥ m ≥
∏

11≤n≤d′−2

(n− 9) ≥ 2d
′−12,

and therefore d′ ≤ O(logB). It follows that the number of pairs (d′, p) as
above is bounded by Od(log2B). So we proved

]Er≥d(B) = Od(log2B).

Combining this bound with (6.12) and with Proposition 6.9, we obtain the
equality (1.20) of Theorem 1.18.
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6.6 Some results on AF for F ∈ L

The area of the fundamental domain associated to Ld,p is, by the definition
(1.9), equal to

ALd,p =

∫∫
D(Ld,p)

dx dy,

with

D(Ld,p) :=
{

(x, y) ∈ R2 : |x(x− y)(x− 2y) · · · (x− (d− 2)y)(x− py)| ≤ 1
}
.

By the change of variables u = x and v = y/x, we obtain

ALd,p =

∫∫
D∗(Ld,p)

|u| du dv,

with

D∗(Ld,p) :=
{

(u, v) ∈ R2 : |u|d·|(1− v)(1− 2v) · · · (1− (d− 2)v)(1− pv)| ≤ 1
}
.

Some elementary calculations transform ALd,p into a single integral.

Lemma 6.10. For d ≥ 5 and p ≥ d− 1 the following equalities hold

ALd,p =

∫ ∞
−∞

dv

( |1− v| · |1− 2v| · · · |1− (d− 2)v| · |1− pv| )2/d

and

ALd,p =

∫ ∞
−∞

dt

( |t| · |t− 1| · |t− 2| · · · |t− (d− 2)| · |t− p| )2/d
·

We will only work with the second expression of ALd,p . So we introduce
the function

λd,p(t) := t(t− 1) · · · (t− (d− 2))(t− p),

which is the product of d linear factors in t. We split the interval of inte-
gration into d intervals of length 1 around the singularities 0,..., d − 2 and
p and three remaining intervals to write the equality:

(6.13) ALd,p :=(∫ −1/2
−∞

+

∫ 1/2

−1/2
+ · · ·+

∫ d−(3/2)

d−(5/2)
+

∫ p−(1/2)

d−(3/2)
+

∫ p+(1/2)

p−(1/2)
+

∫ ∞
p+(1/2)

)
dt

|λd,p(t)|2/d
·

We will give an upper bound and a lower bound for each of these positive
integrals in order to prove
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Proposition 6.11. Uniformly for d→∞ and d ≤ p < 2d one has

e2 − o(1)

d
≤ ALd,p ≤

5 e2 + 2e + o(1)

d
·

The last part of Theorem 1.18 is obtained from this proposition after
a summation over d ≤ p < 2d and an application of the Prime Number
Theorem.

6.6.1 An auxiliary lemma

Lemma 6.12. For d→∞, we have

(1 · 3 · 5 · · · (2d− 3))1/d = (2e−1 + o(1))d.

Proof. We write

1 · 3 · 5 · · · (2d− 3) =
(2d− 3)!

2d−2(d− 2)!
=

(2d)!

(2d− 1)2dd!

and we use Stirling’s formula (1.21) which gives(2d

e

)d √
2

(2d− 1) · e1/12d
≤ 1 · 3 · 5 · · · (2d− 3) ≤

(2d

e

)d√2 · e1/24d

2d− 1
·

6.6.2 Study of
∫ −1/2
−∞ and of

∫∞
p+1/2

Lemma 6.13. For d→∞ and p ≥ d, one has

0 ≤
∫ −1/2
−∞

dt

|λd,p(t)|2/d
≤ e + o(1)

d
·

Proof. Using Hölder inequality and Lemma 6.12, we obtain∫ −1/2
−∞

dt

|λd,p(t)|2/d
≤(∫ −1/2

−∞

dt

|t|2

)1/d(∫ −1/2
−∞

dt

|t− 1|2

)1/d

· · ·

(∫ −1/2
−∞

dt

|t− (d− 2)|2

)1/d(∫ −1/2
−∞

dt

|t− p|2

)1/d

≤
(

2

1
· 2

3
· 2

5
· · · 2

2d− 3
· 2

2p+ 1

)1/d

≤
(

2d

1 · 3 · 5 · · · (2d− 3) · (2p+ 1)

)1/d

≤ e + o(1)

d
·
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Similarly, one proves

Lemma 6.14. For d→∞ and p ≥ d, one has

0 ≤
∫ ∞
p+(1/2)

dt

|λd,p(t)|2/d
≤ e + o(1)

d
·

Proof. For t > p+ 1
2
, we have

|λd,p(t)| = λd,p(t) = t(t− 1) · · · (t− (d− 2))(t− p).

Using Hölder inequality and Lemma 6.12, we obtain∫ ∞
p+(1/2)

dt

|λd,p(t)|2/d
≤(∫ ∞

p+(1/2)

dt

t2

)1/d(∫ ∞
p+(1/2)

dt

(t− 1)2

)1/d

· · ·
(∫ ∞

p+(1/2)

dt

(t− (d− 2))2

)1/d(∫ ∞
p+(1/2)

dt

(t− p)2

)1/d

≤
(

2

2p+ 1
· 2

2p− 1
· 2

2p− 3
· · · 2

2p− 2d+ 5
· 2

1

)1/d

≤
(

2d

1 · 3 · 5 · · · (2d− 3)

)1/d

≤ e + o(1)

d
·

6.6.3 Study of
∫ p−1/2
d−3/2

Lemma 6.15. For d→∞ and d ≤ p < 2d, one has

0 ≤
∫ p−1/2

d−3/2

dt

|λd,p(t)|2/d
≤ e2 + o(1)

d
·

Proof. For t in the interval (d− (3/2), p− (1/2)), we have p− t > 1/2,

|λd,p(t)| = t(t− 1) · · · (t− (d− 2))(p− t)

and, for 0 ≤ n ≤ d− 2,

t− n > 2d− 2n− 3

2
,

hence
|λd,p(t)| ≥

(2d− 3) · (2d− 5) · · · 3 · 1
2d

and therefore
|λd,p(t)|2/d ≥ (e−2 + o(1))d2
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by Lemma 6.12. Since d ≤ p < 2d, the interval of integration has length at
most d+ 1, and so we deduce∫ p−1/2

d−3/2

dt

|λd,p(t)|2/d
≤ e2 + o(1)

d
·

6.6.4 Study of
∫ p+1/2

p−1/2

Lemma 6.16. For d ≥ 5 and d ≤ p < 2d, one has

0 ≤
∫ p+1/2

p−1/2

dt

|λd,p(t)|2/d
= O

(
1

d2

)
.

We introduce the polynomial

M(t) := t(t− 1) · · · (t− (d− 2))

of degree d− 1. It is easy to see that

min
|t−p|≤1/2

|M(t)| = |M(p−(1/2))| ≥ M(d−(3/2)) =
1

2
·3
2
·5
2
· · · 2d− 5

2
·2d− 3

2
,

hence by Lemma 6.12, we have

min
|t−p|≤1/2

|M(t)|2/d ≥ (e−2 + o(1))d2.

Since ∫ p+1/2

p−1/2

dt

|t− p|2/d
= O(1)

we conclude∫ p+1/2

p−1/2

dt

|λd,p(t)|2/d
≤

(∫ p+1/2

p−1/2

dt

|t− p|2/d

)
·
(

1

min|t−p|≤1/2 |M(t)|

)2/d

= O

(
1

d2

)
.

6.6.5 Study of the remaining integrals

We are now concerned, for ν = 0, 1 . . . , d− 2, with the integrals

Iν = Id,p,ν =

∫ ν+1/2

ν−1/2

dt

|λd,p(t)|2/d
,
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for which we want to find an upper and a lower bound. We split the product
defining λd,p(t) into four pieces

(6.14) λd,p(t) = (t− ν) · (t− p) · λ−ν (t) · λ+d,ν(t),

with
λ−ν (t) :=

∏
0≤k<ν

(t− k) and λ+d,ν(t) :=
∏

ν<k≤d−2

(t− k) .

We have
(6.15)

Iν ≤

(∫ ν+1/2

ν−1/2

dt

|t− ν|2/d

)
·
(
min |λ−ν (t)|

)−2/d·(min |λ+d,ν(t)|
)−2/d·(min |t− p|)−2/d ,

and
(6.16)

Iν ≥

(∫ ν+1/2

ν−1/2

dt

|t− ν|2/d

)
·
(
max |λ−ν (t)|

)−2/d·(max |λ+d,ν(t)|
)−2/d·(max |t− p|)−2/d

where all the maximum and minimum are taken for ν − 1/2 ≤ t ≤ ν + 1/2.
Direct computations transform (6.15) and (6.16) into

(1− o(1))
(
max |λ−ν (t)|

)−2/d · (max |λ+d,ν(t)|
)−2/d ≤ Iν ≤

(1 + o(1))
(
min |λ−ν (t)|

)−2/d · (min |λ+d,ν(t)|
)−2/d

which is also

(1− o(1))|λ−ν (ν + 1/2)|−2/d·|λ+d,ν(ν − 1/2)|−2/d ≤ Iν ≤
(6.17)

(1 + o(1))|λ−ν (ν − 1/2)|−2/d · |λ+d,ν(ν + 1/2)|−2/d,

uniformly for d→∞ and d ≤ p < 2d.
For 1 ≤ ν ≤ d− 2, we have the equalities

λ−ν (ν + 1/2) =
(2ν + 1)(2ν − 1) · · · 3

2ν
=

(2ν + 1) !

22ν · ν !
=

(2ν) !

22ν · ν !
· 1

2ν + 1
,

λ−ν (ν − 1/2) =
(2ν − 1)(2ν − 3) · · · 1

2ν
=

(2ν − 1) !

22ν−1 · (ν − 1) !
=

(2ν) !

22ν · ν !
,

and for 0 ≤ ν ≤ d− 3, we have

|λ+d,ν(ν+1/2) | = (2d∗ − 1)(2d∗ − 3) · · · 3 · 1
2d∗

=
(2d∗ − 1) !

22d∗−1 · (d∗ − 1) !
=

(2d∗) !

22d∗ · d∗ !
,

|λ+d,ν(ν−1/2) | = (2d∗ + 1)(2d∗ − 1) · · · 5 · 3
2d∗

=
(2d∗ + 1) !

22d∗ · d∗ !
=

(2d∗) !

22d∗ · d∗ !
·(2d∗+1),
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with the notation d∗ = d−2−ν. Furthermore, since we have empty products
in the decomposition (6.14) , we have

(6.18) λ−0 (1/2) = λ−0 (−1/2) = λ+d,d−2(d− 3/2) = λ+d,d−2(d− 5/2) = 1.

The following lemma shows that the inequalities (6.17) are sharp.

Lemma 6.17. Uniformly for 0 ≤ ν ≤ d− 2 and d→∞ one has

1− o(1) ≤

(
|λ−ν (ν − 1/2)| · |λ+d,ν(ν + 1/2)|
|λ−ν (ν + 1/2)| · |λ+d,ν(ν − 1/2)|

)−2/d
≤ 1 + o(1)

Proof. Obvious consequence of the explicit formulas given above.

For 0 ≤ ν ≤ d− 2, let

Λ = Λ(d, ν) := |λ−ν (ν − 1/2)|−2/d · |λ+d,ν(ν + 1/2)|−2/d

As a consequence of the explicit formulas of λ−ν and λ+d,ν , we have the equality

log Λ = −2

d

{
log((2ν) !) + log((2d∗) !)− log(ν !)− log(d∗ !)− 2d log 2 + o(d)

}
,

uniformly for 1 ≤ ν ≤ d− 3 and d→∞. Using Stirling formula (1.21), we
deduce

−d
2
· log Λ = ν log ν + d∗ log d∗ − d+ o(d)

= ν log ν + (d− ν) log(d− ν)− d+ o(d),

hence

(6.19) log Λ = −2

d

(
ν log ν + (d− ν) log(d− ν)

)
+2 + o(1),

uniformly for 1 ≤ ν ≤ d− 3 and d→∞. By a direct study of the function
fd defined by

fd : t ∈ [1, d− 1] 7→ fd(t) = t log t+ (d− t) log(d− t),

we deduce that, for all 1 ≤ t ≤ d− 1, the function fd satisfies the inequality

fd(d/2) = d log(d/2) ≤ fd(t) ≤ fd(1) = fd(d− 1) = (d− 1) log(d− 1).

Inserting this bound into (6.19), we obtain that

(6.20) − 2 log d+ 2− o(1) ≤ log Λ(d, ν) ≤ −2 log d+ 2 log 2 + 2 + o(1),

uniformly for 1 ≤ ν ≤ d − 3. Actually this formula also holds for Λ(d, 0)

and Λ(d, d− 2) thanks to the formulas (6.18).
Combining (6.17), (6.20) and Lemma 6.17, we proved

Lemma 6.18. Uniformly for d → ∞, 0 ≤ ν ≤ d− 2 and d ≤ p < 2d, one
has

e2 − o(1)

d2
≤ Id,p,ν ≤

4 e2 + o(1)

d2
·
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6.6.6 End of the proof of Proposition 6.11

We split the end of the proof in two parts.

• For the lower bound, we use positivity to write the inequality

ALd,p ≥
d−2∑
ν=0

Iν ≥ (d− 1) · e2 − o(1)

d2
≥ e2 − o(1)

d
,

as a consequence of (6.13) and Lemma 6.18.

• For the upper bound, we respectively apply Lemmas 6.13, 6.14, 6.15, 6.16
and 6.18 to bound each of these terms in (6.13), and we obtain

ALd,p ≤
5 e2 + 2 e + o(1)

d
·

The proof of Proposition 6.11 is now complete. This concludes the proof of
Theorem 1.18.
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