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Étienne Fouvry & Michel Waldschmidt

To János Pintz for his Seventy Fifth Birthday.

Abstract. In a series of papers we investigated the following question: given a family F
of binary forms having nonzero discriminant and integer coefficients, for each d > 3, we
estimate the number of integers m with |m| 6 N which are represented by an element in
F of degree > d. Under suitable assumptions, asymptotically as N →∞, the main term
in the estimate is given by the forms in F having degree d (if any), while the forms of
degree > d contribute only to the error term. The present text is devoted to fewnomials

a0X
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k(r−1)Y k + · · ·+ ar−1X
kY k(r−1) + arY
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with fixed r > 1 and varying k, a0, a1, . . . , ar.
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1 Introduction

This is the fourth text of a series of papers devoted to the study of the set of integers
which are represented by some forms belonging to a family. In the first one [FW2020]
we investigated the case of the family of cyclotomic forms. In the second and third
texts [FW2023, FW2024] we considered in particular families of binomial binary forms
aXd + bY d, with varying a, b, d, such that a and b are of any sign and d > 3. We now are
concerned with fewnomials

a0X
kr + a1X

k(r−1)Y k + · · ·+ ar−1X
kY k(r−1) + arY

kr

with fixed r > 1 and varying k, a0, a1, . . . , ar. Let F be some (suitably defined) family of
such fewnomials. When r = 1 we recognize a family of binomial forms. Like in [FW2020],
[FW2023] and [FW2024], we are interested by the set of integers represented by some
form of the family F . Our method rests on a lower bound for linear forms in logarithms
(see Proposition 2.3 below), on a study of the group of automorphisms of the forms in
F and on the non existence of isomorphism exchanging two distinct forms of F (see
Propositions 4.11 and 6.1).

The results of the present paper apply to families of trinomial binary forms

aXd + cXeY d−e + bY d,

with varying rational integers a, b, c, d, e, 1 6 e < d, abc 6= 0 when the quotients e/d
belongs to a finite set depending on the family. We will pursue the study of more general
families of trinomial binary forms in a forthcoming paper [FW2026+]. We will see that
the famous Conjecture abc has a dramatic impact on the qualities of the results. We will
consider families of definite positive forms in another one [FW2026].

In order to present our results, we give a list of definitions and notations.
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1.1 About general binary forms

Let d > 3 be an integer. For K = Z, Q,R or C, let Bin(d,K) be the set of binary forms
F = F (X,Y ) with degree d, with coefficients in K and with discriminant different from
zero. If F belongs to Bin(d,K) and if

γ =

(
u1 u2

u3 u4

)
(1.1)

belongs to GL(2,K), we denote by F ◦ γ the binary form defined by (F ◦ γ)(X,Y ) =

F (u1X+u2Y, u3X+u4Y ), after the associated linear change of variables. The form F ◦γ
belongs to Bin(d,K). Two forms F and G in Bin(d,K) are called K–isomorphic if there
exists γ in GL(2,K) such that F ◦ γ = G.

If γ is such that F ◦ γ = F , we say that γ is an automorphism of F . The set of these
automorphisms is a group denoted by Aut(F,K). We have −Id ∈ Aut(F,K) if and only
if d is even.

When F belongs to Bin(d,Z) we denote by CF the constant

CF := AFWF , (1.2)

attached to F . It is defined and thoroughly studied in [SX2019, Theorem 1.2]: according
to [SX2019, Theorem 1.1], the number of m ∈ Z in the interval [−N,N ] which are
represented by F is equal to

CFN
2/d +OF (N (2/d)−κd), (1.3)

where κd > 0 is an effective constant only depending on d, uniformly for N > 1. The
constant AF is the area of the fundamental domain attached to F :

AF :=

∫∫
|F (x,y)|61

dx dy, (1.4)

and WF is a positive rational number the delicate definition of which is based on the
denominators of the entries of the matrices in Aut(F,Q) (see [SX2019, Theorem 1.2]).
For the purpose of our present work, we will only retain the following values of WF

WF =


1 if Aut(F,Q) = {Id},
1/2 if Aut(F,Q) = {±Id},
1/4 if Aut(F,Q) = D2,

(1.5)

where D2 ⊂ GL(2,Z) is the group with four elements

D2 =

{
±Id, ±

(
1 0
0 −1

)}
.

Motivated by the example of forms (1.15) with even k (see below), we say that a binary
form F (X,Y ) is a binary form with squared arguments when there exists a binary form
H such that F (X,Y ) = H(X2, Y 2). Necessarily degF is even and Aut(F,Q) contains
D2.

The following definitions concerns family of binary forms containing essentially dis-
tinct forms.

Definition 1.1. Let K as above and let E be a set of binary forms of any degree d > 3

with coefficients in K.
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1. We say that E is K–dilation–free, if for any F , G in E and any u and v in K×, the
condition F (uX, vY ) = G(X,Y ) implies F = G.

2. We say that E is K–homography–free, if the following condition holds: For any
distinct forms F and G in E we have the equality

{γ ∈ GL(2,K) : F = G ◦ γ} = ∅.

3. A form F ∈ E is called K–rigid if we have the equality

Aut(F,K) =



{λ Id : λ ∈ K, λdegF = 1} if F is not a binary form
with squared arguments,

⋃
λ∈K, λdeg F =1

λ ·D2 otherwise.

(1.6)

In section §3.3, we give examples of sets E which are K–homography–free.
A set which is K–homography–free is also K–dilation–free. If E is a set which is

K–homography–free (resp. K–dilation–free), so is any subset of E .
From (1.6) it follows that if F ∈ Bin(d,Q) is a Q–rigid form, we then have

Aut(F,Q) =

{
{Id} if d is odd,
{±Id} if d is even

if F is not a binary form with squared arguments

and Aut(F,Q) = D2 otherwise. Therefore, for a Q–rigid form F , we have

WF =

{
1/(2, d) if F is not a binary form with squared arguments
1/4 otherwise

(1.7)

by (1.5).

1.2 About family of binary forms.

Definition 1.2. Let K = Z, Q,R or C. Let F be a set of binary forms. We say that F
is a K–family of binary forms if the two following conditions hold

• F ⊂
⋃
d>3 Bin(d,K)

• for every d > 3, the set F ∩ Bin(d,K) is finite.

For d > 3, set
Fd := F ∩ Bin(d,K). (1.8)

When the family F is given and when the integer d is > 3, the integer d† is defined by
the formula

d† :=

{
inf{d′ : d′ > d such that Fd′ 6= ∅} if there exists d′ > d such that Fd′ 6= ∅,
∞ if Fd′ = ∅ for all d′ > d.

When K = Z and when F is fixed, we are interested in describing the value set of F
defined as the union of all the images F (Z2) for F ∈ F . So we introduce the two sets

G>d(m) =
{

(x, y, F ) | m = F (x, y) with F ∈ F ,degF > d

(x, y) ∈ Z2 and max{|x|, |y|} > 2
}

(1.9)
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and
R>d = {m ∈ Z | G>d(m) 6= ∅} .

The assumption max{|x|, |y|} > 2 is natural: the coefficient a0 = F (1, 0) of F is likely to
take infinity many values m, some of which may be repeated infinitely often (see Remark
1.2 in [FW2024]), a situation which would yield for the modified G>d(m) an infinite set.

For N a positive integer, we introduce

R>d(N) = R>d ∩ [−N,N ]. (1.10)

1.3 About binary fewnomials

We firstly define a family of binary fewnomials.

Definition 1.3. Let r > 1 be an integer. For every k > 3/r let Ek be a finite subset of
Zr+1 such that, for every a = (a0, . . . , ar) ∈ Ek, one has

1. a0ar 6= 0,

2. the discriminant of the polynomial a0T
r + · · ·+ ar, is different from zero.

For every k > 3/r and for every a ∈ Ek, let F = Fk,a(X,Y ) be the binary form

Fk,a(X,Y ) = a0X
kr + a1X

k(r−1)Y k + · · ·+ ar−1X
kY k(r−1) + arY

kr. (1.11)

Then the set F = FD defined by

FD := {Fk,a : k > 3/r, a ∈ Ek} ,

is called the family of binary fewnomials attached to the data

D = (r, (Ek)).

Let F as in Definition 1.3. Then the degree of every F ∈ F is divisible by r and
greater than 2. The discriminant of F is different from zero. We define the height of F
by the formula.

A(F ) := max{|a0|, |a1|, . . . , |ar|} (1.12)

and the modified height
A?(F ) := max{2,A(F )}

which naturally appears in some formulas (for instance in Corollary 2.5).
By the definition (1.8) we have the decomposition

F =
⋃

k>3/r

Fkr.

The number of elements in Fd is less than

max
F∈Fd

(2A?(F ) + 1)
r+1

. (1.13)

If F is given by (1.11), we have the equality

F (X,Y ) = Y krh
(

(X/Y )
k
)
,

where h(T ) is the polynomial a0T
r+ · · ·+ar−1T+ar. This point of view will be exploited

in the proof of Corollary 2.5.
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1.4 Some examples

Let F = FD be the family of binary fewnomials attached to the data D as in Definition
1.3. The number of monomials appearing in each form F ∈ Fd is at most r + 1. In
particular, when r = 1, the forms F ∈ Fd are binomial binary forms

aXd + bY d, (1.14)

(cf. [SX2019, Corollary 1.3], [FW2024]), while if r > 2 and if there exists s in the interval
1 6 s 6 r − 1 such that each a = (a0, a1, . . . , ar) ∈ Ek satisfies aj = 0 for j 6∈ {0, s, r},
then the forms F ∈ Fd are trinomial binary forms

aXkr + cXksY k(r−s) + bY kr.

For example with r = 2 and s = 1 the family that we are considering is the family of
balanced trinomial binary forms

aX2k + cXkY k + bY 2k. (1.15)

These trinomial forms will be studied in [FW2026+].
As in [FW2023], [FW2024] we are interested in the asymptotic description of the set

of integers which are represented by some form F of the family of binary fewnomials
F = FD, with a fixed r > 2, in particular we study the counting function

]R>d(N),

associated to FD (see the Definition (1.10)), where as usual ]E the number of elements
of a finite set E. Our results will require the constant ϑd (< 2/d) which is defined in
[FW2023, (2.1)] by the formula:

ϑd =



24
√

3 + 73

60
√

3 + 73
=

2628
√

3− 1009

5471
= 0.6475 . . . for d = 3,

2
√
d+ 9

4d
√
d− 6

√
d+ 9

for 4 6 d 6 20,

1

d− 1
for d > 21.

1.5 The main result

Recall the Definitions 1.2 for d† and 1.3 for D and FD, and Notations (1.2) for CF , (1.4)
for A(F ), (1.9) for G>d(m), (1.10) for R>d(N).

If F is a binary form we put A∗F := AF /2 if F is a form with squared arguments, and
A∗F := AF otherwise. The next result will be proved in §2.4.

Theorem 1.4. Let ε > 0 and let r > 2 be an integer. Let F = FD be the family of
binary fewnomials attached to the system of data D = (r, (Ek)). There exists a constant
η > 0 which depends only on ε and r with the following property. Assume that there exists
d0 > 3 such that, for all d > d0,

max
F∈Fd

A?(F ) 6 exp(ηd/ log d). (1.16)

Then
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(a) For all m ∈ Zr {−1, 0, 1} and all d > 3 which is a multiple of r, the set G>d(m)

is finite. Moreover, for all d > d0 which is a multiple of r and all ε > 0, there exists a
constant c depending only on r, d, ε such that, for |m| > 2,

]G>d(m) 6 c|m|(1/d)+ε.

(b) Assume that F is a Q–homography–free set. Then for all d > 3 which is a multiple
of r, we have, for N →∞,

]R>d(N) =

( ∑
F∈Fd

CF

)
N2/d +Oε,r,d

(
Nmax{ϑd+ε,2/d†}

)
. (1.17)

(c) Assume that F is a Q–homography–free set of Q–rigid forms. Then for all d > 3

which is a multiple of r, we have, for N →∞,

]R>d(N) =
1

(d, 2)

( ∑
F∈Fd

A?F

)
N2/d +Oε,r,d

(
Nmax{ϑd+ε,2/d†}

)
.

We will prove this result with η = ε(280315r4r)−1, corresponding to a value for µ
given by (2.3) with λ = 2 + ε.

The proof of Theorem 1.4 is given in §2: we first recall the definition of a regular family
[FW2024, Definition 2.2] (Definition 2.1) and the statements of [FW2024, Theorem 2.6]
and of [W2000, Corollary 9.22] (Theorems 2.2 and Proposition 2.3 respectively). These
tools allow us to prove the asymptotic estimate (Theorem 2.6) which is required for
checking the conditions of a regular family.

The rest of the paper is devoted to giving examples of families satisfying the assump-
tions of Theorem 1.4. These examples are stated in §3, Theorems 3.2 and 3.4. The main
purpose of §4 is to study isomorphisms among two binary fewnomials. The technical
arguments are the proofs of Propositions 4.11 and 6.1. The proofs of the Corollaries 3.6
and 3.9 are given in §5 and §6 respectively.

2 Proof of Theorem 1.4

2.1 Regular families

The next definition is Definition 2.2 of [FW2024].

Definition 2.1. An infinite family F of binary forms as in Definition 1.2 with coefficients
in Z is called regular if the following properties are satisfied:
(i) Two forms in the family F are Q–isomorphic if and only if they are equal.
(ii) There exists an integer A > 0 such that for all ε > 0, there exist two positive
integers N0 = N0(ε) and d0 = d0(ε) such that, for all N > N0, the number of integers
m ∈ [−N,N ] for which there exists d ∈ Z, (x, y) ∈ Z2 and F ∈ Fd with

d > d0, max{|x|, |y|} > A and F (x, y) = m

is at most N ε.

We also borrow the following notation from [FW2024]:

R>d (F , N,A) := ]
{
m : 0 6 |m| 6 N, there is F ∈ F with degF > d

and (x, y) ∈ Z2 with max{|x|, |y|} > A, such that F (x, y) = m
}
.

Here is the statement of [FW2024, Theorem 2.6].
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Theorem 2.2. Let F be a regular family of distinct binary forms in the meaning of
Definition 2.1. Then for every d > 3 and every positive ε, the quantity R>d (F , N,A)

satisfies

R>d(F , N,A) =

( ∑
F∈Fd

AFWF

)
·N2/d +OF,A,d,ε

(
Nmax{ϑd+ε,2/d†}),

uniformly as N →∞.

2.2 Diophantine tool

Our main tool for the proof of Theorem 1.4 is an asymptotic estimate (Theorem 2.6)
which we are going to deduce from a lower bound (Proposition 2.3) arising from the
theory of linear forms in logarithms, namely [W2000, Corollary 9.22].

Using the notations of [FW2024, §5], we denote by H the absolute height, by h the
absolute logarithmic height and by M the Mahler’s measure; for a rational number written
in its irreducible form as p/q, we have

H(p/q) = M(p/q) = max{|p|, q}, h(p/q) = log max{|p|, q}.

Proposition 2.3. Let K be a number field of degree 6 D, α1, α2 nonzero elements of
K, b1, b2 positive integers, A1, A2, B positive real numbers. Assume, for j = 1, 2,

B > max{e, b1, b2}, logAj > max

{
1

D
, h(αj)

}
.

If αb11 α
b2
2 6= 1, then

|αb11 α
b2
2 − 1| > exp

{
−C(logB)(logA1)(logA2)D4 max{1, logD}

}
where C = 279315.

When D = 1, we recognize [FW2024, Proposition 5.1].
Proposition 2.3 follows from [W2000, Corollary 9.22 p. 308] with the constant C(m)

of [W2000, p. 252].

The next lemma gives an upper bound for the absolute logarithmic height h of an
algebraic number in terms of its usual height.

Lemma 2.4. Let θ be an algebraic number which is root of a nonzero polynomial of
degree r having integer coefficients bounded by H. Then

eh(θ) 6
√
r + 1H.

Proof. We use the results of [W2000, Chap. 3] (see the proofs and notations of Lemmas
3.10 and 3.11). For h ∈ C[X] a polynomial of degree r, the coefficients of which have
moduli 6 H, we have

M(h) 6
√
r + 1H.

If h ∈ Z[X] and if f is a factor of h in Z[X], we have M(h/f) > 1, hence M(f) =

M(h)/M(h/f) 6 M(h). Further, is f is irreducible and if θ is a root of f , then

h(θ) =
1

[Q(θ) : Q]
log M(f) 6 log M(f).
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We consider a family F = FD of binary fewnomials attached to the dataD = (r, (Ek))

as in Definition 1.3. Let (a0, a1, . . . , ar) ∈ Ek and let

h(t) = a0t
r + a1t

r−1 + · · ·+ ar ∈ Z[t]

be the polynomial associated with (a0, a1, . . . , ar). We decompose h into irreducible fac-
tors in C[t]:

h(t) = a0

r∏
j=1

(t− θj).

By hypothesis, θ1, . . . , θr are pairwise distinct. The degreeD of the number fieldQ(θ1, . . . , θr)

satisfies 1 6 D 6 r!.
Let k > 1 and r > 1 be two integers such that the product d = kr is > 3. Let

F (X,Y ) = a0X
kr + a1X

k(r−1)Y k + · · ·+ ar−1X
kY k(r−1) + arY

kr (2.1)

be the binary form in Fd given by (1.11).
Recall the Definition (1.12) of A(F ). Thanks to Lemma 2.4, we have

max
16j6r

eh(θj) 6
√
r + 1A(F ).

The next result follows from Proposition 2.3.

Corollary 2.5. Let x and y be in Z. Set X := max{|x|, |y|}. Let F be as (2.1). Assume
X > 2 and F (x, y) 6= 0. Then

|F (x, y)| ≥ max{|a0x
d|, |aryd|} exp

{
− Cr4r(log d)(logX )(logA?(F ))

}
with the constant C of Proposition 2.3.

Proof. The case r = 1, k > 3 is [FW2024, Corollary 5.2].
When k = 1 and d = r > 3, the trivial lower bound |F (x, y)| > 1 gives a stronger

result, since
max{|a0x

d|, |aryd|} 6 A?(F )X d.

We now assume k > 2 and r > 2. We may also assume xy 6= 0 since the result is trivial
when xy = 0.

Let us write

F (x, y) = a0

r∏
j=1

(xk − θjyk).

By symmetry, since a0ar 6= 0 and since h(1/θj) = h(θj), we may assume |a0x
d| > |aryd|.

Let j ∈ {1, 2, . . . , r}. We first use Proposition 2.3 with

D = [Q(θj) : Q] 6 r!, b1 = k, b2 = 1, α1 =
y

x
, α2 = θj ,

logB =
log k

log 2
, logA1 =

logX
log 2

, logA2 = r logA?(F ).

Using Stirling’s formula [Ro1955]

r! 6 rre−r
√

2πr e1/12r



9

together with the upper bound

4π2r5 log r

(log 2)2
e1/3r 6 e4r

for r > 2 we get
1

(log 2)2
r!4r log(r!) 6 r4r−1.

From Proposition 2.3, we deduce∣∣∣∣θj (yx)k − 1

∣∣∣∣ > exp
{
− Cr4r−1(log k)(logX )(logA?(F ))

}
for 1 6 j 6 d. Hence

r∏
j=1

∣∣∣∣θj (yx)k − 1

∣∣∣∣ > exp
{
− Cr4r(log k)(logX )(logA?(F ))

}
and

|F (x, y)| = |a0x
d|

r∏
j=1

∣∣∣∣θj (yx)k − 1

∣∣∣∣
≥ |a0x

d| exp
{
− Cr4r(log k)(logX )(logA?(F ))

}
.

From Corollary 2.5 we deduce the lower bound

|F (x, y)| > X d exp
{
− Cr4r(log d)(logX )(logA?(F ))

}
which we write as

|F (x, y)| > X d−Cr
4r(log d)(logA?(F )). (2.2)

2.3 Asymptotic estimate

The next result gives an asymptotic upper bound for the number of integers which
are represented by binary forms of large degree in the family F of binary fewnomials
introduced in section 1.3. It also gives an upper bound for the number of representations
of such an integer.

Recall the constant C = 279315 from Proposition 2.3.

Theorem 2.6. Under the assumptions of Theorem 1.4, let λ and µ be two real numbers
satisfying λ > 2 and

0 < µ <
λ− 2

Cr4rλ
· (2.3)

Let d0 > 3 be an integer. Assume that the condition

A?(F ) 6 exp(µd/ log d) (2.4)

is satisfied for all d > d0 and all F ∈ Fd. Then

(a) For all m ∈ Z r {−1, 0, 1} and all d > 3 multiple of r, the set G>d(m) is finite.
Furthermore, for all (λ, µ, r, d) as above with d > d0, there exists a constant c1, only
depending on (λ, µ, r, d), such that, for every |m| > 2, one has the inequality

]G>d(m) 6 c1|m|λ/(2d).
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(b) For all (λ, µ, r, d) as above with d > d0, there exists c2 depending only on (λ, µ, r, d),
such that, for all N > 2, one has the inequality

]R>d(N) 6 c2N
λ/d.

Proof. Define λ′ by the equality

µ =
λ′ − 2

Cr4rλ′
·

By (2.3), we have the equalities 2 < λ′ < λ. The number θ := λ′/2 satisfies

θ > 1 and 1− 1

θ
=
λ′ − 2

λ′
= Cr4rµ.

Let d > 3 be a multiple of r, written as d = kr. Let m ∈ Z, |m| > 2 be such that
G>d(m) 6= ∅: there exists (x, y, F ) ∈ G>d(m) such that m = F (x, y), where F ∈ Fk′r
(with k′ > k) is the binary form

a0X
k′r + a1X

k′(r−1)Y k
′
+ · · ·+ ar−1X

k′Y k
′(r−1) + arY

k′r.

Let X = max{|x|, |y|}. By hypothesis, we have X > 2. The lower bound (2.2) yields

|m| > X k
′r−Cr4r(log(k′r))(logA?(F )).

Assume now d > d0. From (2.4) we deduce the upper bound

Cr4r(log(k′r))(logA?(F )) 6 Cr4r+1µk′ = k′r

(
1− 1

θ

)
,

hence
X k
′r 6 |m|θ.

Define
M0 :=

⌊
θ log |m|
r log 2

⌋
.

Thanks to the inequalities X > 2 and k′ > k we deduce M0 > k and

k′ 6M0 and X 6 |m|θ/(k
′r). (2.5)

Given x and m, the number of yk
′
such that F (x, y) = m is at most r, hence the number

of such y is at most 2r. This shows that the set G>d(m) is finite for all m with |m| > 2

and d > d0. Since, for all d > 3 all the sets Fd are finite, we deduce from Thue’s Theorem
on the finiteness of the number of solutions of Thue’s equation that the set G>d(m) is
finite for any d > 3.

We also deduce for d > d0 that the number of elements in G>d(m) is bounded by

]G>d(m) 6 4r|m|θ/d
M0∑
k′=k

]Ek′ . (2.6)

Using the inequality (1.13) under the form

]Ek′ 6 3r+1 max
F∈Fk′r

(A?(F ))r+1,

together with the hypothesis (2.3) we deduce

]Ek′ 6 3r+1 exp (µk′r(r + 1)/(log(k′r))) .
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Combining with (2.6) and the upper bound θ < λ/2, we deduce the inequality

]G>d(m) 6 4r|m|θ/d ·M0 · 3r+1 exp (µM0r(r + 1)/(log(M0r)))

6 c1|m|λ/(2d).

This completes the proof of the item (a).
The proof of the item (b) has similarities and works as follows. Write d = kr and let

m be an element of R>d(N). It satisfies |m| 6 N and it can be written as m = F (x, y)

for some (x, y) such that X > 2, for some k′ > k and some F ∈ Fk′r. However the
inequalities (2.5) imply

k′ 6M1 and max{|x|, |y|} 6 Nθ/(kr) where M1 :=

⌊
θ logN

r log 2

⌋
.

Thus we have

]R>d(N) 6
(

1 + 2Nθ/(kr)
)2

M1∑
k′=k

]Ek′ ,

and the item (b) follows.

2.4 Proof of Theorem 1.4

Let ε > 0 be fixed, and λ = 2 + 2ε. Let

µ0 :=
λ− 2

Cr4rλ
,

and as mentioned above let
η := ε(2Cr4r)−1.

The inequality η < µ0 allows to apply Theorem 2.6 (a). Since we have λ/(2d) < (1/d)+ ε

we obtain the upper bound of G>d(m) for d > d0 as claimed in Theorem 1.4 (a). This
completes the proof of Theorem 1.4 (a).

We now prove the alinea (b) of Theorem 1.4. We separate its proof according to the
size of d, compared with d0 starting from which, the upper bound (1.16) is true.

— Assume d > d0. Let us check condition (ii) in the Definition 2.1. Let ε1 > 0. For
d′ > λ/ε1 Theorem 2.6 (b) yields

]R>d′(N) 6 c2N
λ/d′ < N ε1

for sufficiently large N . Hence, applying Theorem 2.2 above, with A = 2, (or [FW2024,
Theorem 1.11]) we obtain the alinea (b) in that case.

— Assume 3 6 d < d0 we extend the above proof as follows to take into account the
contribution of the forms of F with degree in the interval [d, d0 − 1]. We start from the
equality

]R>d(N) = X +O(Y ), (2.7)

with

X = ]{m : |m| 6 N, m = F (x, y) for some (x, y, F )

with max{|x|, |y|} > 2, F ∈ F with d 6 degF < d0},
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and
Y = ]R>d0(N).

Let d1 = (d0 − 1)† We have d1 > d0 and d1 > d†. We trivially have Y = ]R>d1(N). By
the above discussion, we have

Y = O(N2/d1) = O(N2/d†). (2.8)

To deal with X, we benefit from the fact that there are finitely many forms in the union⋃
d6d′<d0

Fd′ . Let d2 = (d− 1)†. If d2 > d the leading coefficient on the right–hand side
of (1.17) vanishes. We suppose that d2 6 d0 − 1 otherwise there is nothing to prove. Let
F ∈ Fd2 . Then [SX2019, Theorem 1.1] gives an asymptotic formula for

]{m : |m| 6 N, m = F (x, y) for some (x, y) with max{|x|, |y|} > 2}. (2.9)

(also see (1.3) above). If G ∈ Fd2 , with G 6= F (so G is not Q–isomorphic to F by
hypothesis), then [FW2024, Theorem 1.1] gives an upper bound for

]{m : |m| 6 N, m = F (x, y) = G(u, v) for some (x, y, u, v) with max{|x|, |y|} > 2}.
(2.10)

We then apply the inclusion–exclusion principle to give an asymptotic formula for

]{m : |m| 6 N, m = F (x, y) for some (x, y) with max{|x|, |y|} > 2 and some F ∈ Fd2}.

Since each set Fd is finite, we deduce from (1.3) the bound

]{m : |m| 6 N, m = F (x, y) for some (x, y) with max{|x|, |y|} > 2

and some F ∈
⋃

d†26`<d0

F`} = O(N2/d†2). (2.11)

By (2.7), (2.8), (2.9), (2.10) and (2.11) we complete the proof of alinea (b) of Theorem
1.4.

The item (c) of Theorem 1.4 directly follows from the item (b) by a combination of
the definition (1.2), the equality (1.7) and the definition of A?F .

3 Examples of sets of C and Q–homography–free sets

Our next task is to exhibit examples of families of binary fewnomials suited for an
application of Theorem 1.4 (c). Recall that K = Z, Q,R or C.

3.1 Old examples

Such examples were already given in previous papers of the authors through the following
natural approach. Let F and G be two binary forms of Bin(d,K) and suppose that we
are interested in the γ ∈ GL(2,K) such that F ◦γ = G. The study of these γ is essentially
equivalent to the study of the homographies h with coefficients in K which exchange the
complex roots ρ of the polynomials f(t) := F (t, 1) and g(z) := G(z, 1) (see Lemmas 4.1
and 4.5 and Proposition 4.7 below). When K = Q, we studied the following cases

• F and G are cyclotomic forms with the same degree, then the ρ are primitive roots
of unity (see [FW2020, Proposition 4.8 and Corrigendum]),
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• F and G are products of distinct irreducible quadratic forms of the shape X2 +αY 2

with α ∈ Z, then the roots ρ are algebraic irrational numbers with degree two, so
necessarily we have h(Q(

√
−α)) = Q(

√
−α) (see [FW2023, Propositions 4.1 & 5.1]

and [FW2024, Proposition 3.1]),

• F and G are products of distinct linear factors of the shape X − aY , with a ∈ Q,
then we exploit the fact that h preserves the cross ratios of any 4–tuples of distinct
ρ (see [FW2023, Proposition 6.1]).

Apart from products of binomial forms (Xr +αY r) (for suitable rational integers α), the
above examples do not seem to lead to interesting examples of binary fewnomials.

3.2 New examples

The landscape of Theorem 1.4 is different since the information concerning the binary
fewnomials is not of algebraic nature but it concerns the indices where the corresponding
coefficients of the form vanish. Theorems 3.2 and 3.4 below are written in that sense.
The proofs of these results are based on the above homographies h and on the symmetric
functions of the roots of a polynomial. The number and the indices of these zero coef-
ficients are important. However, one can prove variations of our results by shifting the
string of these zeroes. We will not investigate these possible extensions.

To state our result, we introduce the following conventions: Let F (X,Y ) be a binary
form, not necessarily a binary fewnomial, written as

F (X,Y ) = a0X
d + a1X

d−1Y + · · ·+ adY
d. (3.1)

We suppose that a0ad 6= 0. We define the two functions{
Λ+(F ) := max{` : ai = 0, 0 < i < `},
Λ−(F ) := min{` : ai = 0, ` < i < d}.

(3.2)

They satisfy the properties

aΛ±(F ) 6= 0, 1 6 Λ+(F ) 6 Λ−(F ) 6 d

and
Λ∓(F ) = Λ±(F rec),

where F rec(X,Y ) is the reciprocal binary form defined by F rec(X,Y ) := F (Y,X). So we
restrict ourselves to statements (for instance Theorem 3.2 or 3.4) in terms of Λ+(F ) only.

The first result (Theorem 3.2) considers the case of binary forms where, for the very
first positive values of i, the coefficients ai are equal to zero. The following definition is
essential.

Definition 3.1. [Reduced set of binary forms] Let K be as above and let d > 3 be an
integer. A set E of binary forms of degree d with coefficients in K is called K–reduced if
it satisfies the three conditions

1. for any F in E , we have a0ad 6= 0,

2. the set E is K–dilation–free,
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3. there is no pair (F,G) of distinct binary binomial forms (1.14) of E and no pair
(u, v) ∈ (C×)2 such that F (vY, uX) = G(X,Y ).

If the set E is K–reduced so does every subset of E . The item 3 is satisfied when E
contains one binomial form at most. When K = C, the condition 3 is satisfied if and only
if E contains at most one binomial form.

We will prove in §5.1:

Theorem 3.2. Let d > 3 and K as above. Let E be a K–reduced set of binary forms.
Assume that any F ∈ E satisfies

Λ+(F ) >
d+ 3

2
·

Then the set E is K–homography–free.

The assumption Λ+(F ) > (d + 3)/2 implies that when d ∈ {3, 4}, the set E only
contains binomial forms.

Theorem 3.2 is quite general and the discussion in §4.5 will show that the lower bound
Λ+(F ) > (d+ 3)/2 is optimal.

A different way to see the quasi–optimality of Theorem 3.2 is the following Propo-
sition, where we follow the notations (3.1) and where we use basic concepts of linear
algebra. We introduce the subset of 8 matrices in GL(2,K):

G =

{(
±1 0
0 ±1

)
,

(
0 ±1
±1 0

)}
We have

Proposition 3.3. For every d > 3 there exists a binary form F with degree d and with
integer coefficients, such that

• a1 = a2 = · · · abd/2c = 0,

• there exists γ ∈ GL(2,Z) r G, such that F ◦ γ = F .

Proof. Let S be the following matrix

S =

(
0 1
1 0

)
which is attached to the change of variables (X,Y ) 7→ (Y,X). Let E(d,Q) be the Q–
vector space gathering all the binary forms with degree d, rational coefficients together
with the 0–form. It has dimension d + 1. If ξ belongs to GL(2,Z) we denote by ξ† the
automorphism of E(d,Q) defined by

ξ†(F ) = F ◦ ξ−1 (F ∈ E(d,Q)).

In particular we have the equality (ξη)† = ξ†η†, for any ξ and η ∈ GL(2,Z). Of particular
importance is the vector subspace

S(d,Q) := {F ∈ E(d,Q) : ak = ad−k (0 6 2k 6 d)}.

It is the eigenspace (relative to the eigenvalue 1) of the automorphism S† of E(d,Q). A
basis of S(d,Q) is given by

{XkY d−k +Xd−kY k : 0 6 2k 6 d}.
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We have the equality dimS(d,Q) = bd/2c + 1. Let ξ be any element of SL(2,Z) such
that the element

γ := ξSξ−1

does not belong to G. Then ξ† (S(d,Q)) is the eigenspace of γ† relative to the eigenvalue
1. It also has dimension bd/2c+ 1.

For 1 6 κ < d, let V(d, κ,Q) be the vector subspace

V(d, κ,Q) := {F : a1 = · · · = aκ = 0}.

Its codimension is equal to κ. If one has the inequality

(d+ 1− κ) + (bd/2c+ 1) > d+ 1,

which is equivalent to the inequality

κ 6 bd/2c,

then the intersection of vector spaces V(d, κ,Q) ∩ ξ† (S(d,Q)) contains an element F
different from 0. Obviously, for this F , we have a1 = · · · = aκ = 0 and γ†(F ) = F ◦γ−1 =

F .
Note that this construction is too general to ensure that the form F has a discriminant
6= 0 and a first coefficient a0 6= 0

3.2.1 Three illustrations.

• We now consider d = 3 (so bd/2c = 1) with the choices

ξ =

(
2 1
3 1

)
, ξ−1 =

(
−1 1
3 −2

)
and γ = ξSξ−1 = γ−1 =

(
5 −3
8 −5

)
.

Let φ(X,Y ) be the cubic symmetric form

φ(X,Y ) := 13(X3 + Y 3) + 51(X2Y +XY 2).

Then we have

F (X,Y ) =
(
ξ†(φ)

)
(X,Y ) = (φ ◦ ξ−1)(X,Y ) = 32X3 − 30XY 2 + 11Y 3.

We check the equality γ†(F ) = F ◦ γ−1 = F, since we have the equality

F (X,Y ) = F (5X − 3Y, 8X − 5Y ). (3.3)

• The same equality (3.3) holds for

F (X,Y ) = 256X4 − 240XY 3 + 111Y 4

using the quartic symmetric form

φ(X,Y ) = 127(X4 + Y 4) + 740(X3Y +XY 3) + 1338X2Y 2.

• We consider d = 10 (so bd/2c = 5) and we require the help of a computer. Consider
the symmetrical form φ(X,Y ) defined by

φ(X,Y ) = 76 210 176 793
(
X10 + Y 10

)
+ 872 977 899 590

(
X9Y +XY 9

)
+4 381 399 953 765

(
X8Y 2 +X2Y 8

)
+ 12 658 497 992 520

(
X7Y 3 +X3Y 7

)
+23 266 629 555 330

(
X6Y 4 +X4Y 6

)
+ 28 385 698 168 548X5Y 5.
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Let
ξ =

(
1 2
3 5

)
, ξ−1 =

(
−5 2
3 −1

)
and γ = ξSξ−1 = γ−1 =

(
−7 3
−16 7

)
By a GL(2,Z) change of variables, we have

F (X,Y ) =
(
ξ†(φ)

)
(X,Y ) = (φ ◦ ξ−1)(X,Y ) = φ(−5X + 2Y, 3X − Y )

= −34 359 738 368X10 + 49 565 859 840X4Y 6 − 74 095 902 720X3Y 7

+42 402 890 880X2Y 8 − 10 956 131 760XY 9 + 1 074 852 609Y 10.

We check the equality γ†(F ) = F ◦ γ−1 = F, since we have

F (X,Y ) = F (−7X + 3Y,−16X + 7Y ).

With the help of a computer, one checks that the form F has a discriminant different
from 0 and that the coefficients are relatively prime.

3.2.2 A variation of Theorem 3.2

Theorem 3.2 has the defect not to cover the case where Λ+(F ) is very close from d/2 (i.e,
2Λ+(F ) = d, d + 1 or d + 2). For instance it does not apply to the balanced trinomial
forms appearing in (1.15). In order to circumvent this failure, we introduce the following
sets, where we impose to the forms to have a string of (at least) four zero monomials
located just after the monomial aΛ+(F )X

d−Λ+(F )Y Λ+(F ).
We will prove in §6.3 the following analogue of Theorem 3.2.

Theorem 3.4. Let d > 11 and K as above. Let E be a K–reduced subset of Bin(d,K).
Assume that for each F ∈ E we have

d/2 6 Λ+(F ) 6 d− 4, ak = 0 for Λ+(F ) + 1 6 k 6 Λ+(F ) + 4.

and that if d is even, then E contains no trinomial of the form

a0X
d + ad/2X

d/2Y d/2 + adY
d. (3.4)

Then E is K–homography–free.

The assumption Λ+(F ) 6 d− 4 implies that the set E contains no binomial form.
The set E does not contain two forms F and G such that F (vY, uX) = G(X,Y )

with u and v in C×: indeed, if two forms F and G related by such an equation satisfy
Λ+(F ) > d/2 and Λ+(G) > d/2 and are not binomial forms, then d is even and F and
G are trinomials of the form (3.4).

The assumption d > 11 is necessary in view of the other conditions of Theorem 3.4.
For d = 11 the elements of E are of the form

a0X
11 + a6X

5Y 6 + a11Y
11

with a0a6a11 6= 0.

3.3 Examples of homography–free sets of binary forms

We give examples where the assumptions of Theorem 1.4 (b) and (c) are satisfied.
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3.3.1 Corollaries to Theorem 3.2

These corollaries concern two sets of binary forms. The first one is:

U (1)
d (K) :=

{
F ∈ Bin(d,K) : a0 6= 0, Λ+(F ) > (d+ 3)/2, ad−1 = ad = 1

}
. (3.5)

The condition ad−1 6= 0 implies Λ+(F ) 6 d−1, hence if U (1)
d (K) is not empty then d > 5.

Conversely, for d > 5, the set U (1)
d (K) is infinite. This is a consequence of the following

lemma with e = 1.

Lemma 3.5. Let a, d and e be integers such that a 6= 0, 1 6 e 6 d − 1. Then the
discriminant of the binary form

Fa(X,Y ) := aXd +XeY d−e + Y d

is different from zero.

The form Fa has Λ+(Fa) = d− e and d− 1 > (d+ 3)/2 for d > 5.

Proof. We need to prove that the polynomial

fa(t) = atd + te + 1 (3.6)

has no multiple root. Without loss of generality we may assume that e and d are coprime
integers. Suppose that such a multiple root, that we call ρ, exists. It would satisfy fa(ρ) =

aρd + ρe + 1 = 0 and f ′a(ρ) = adρd−1 + eρe−1 = 0, from which we deduce that

ρd−e = − e

ad
and that ρe = − d

d− e
·

However the equation

ae = (−1)d
ee(d− e)d−e

dd

cannot hold with a ∈ Z and e and d coprime integers.

To define the second set we recall a classical definition: let k > 2 be an integer and
let x = a/b be a non zero rational number, written in its minimal form with b > 0. We
say that x is k–free if there is no prime p such that pk divides ab.
We introduce the following subset U (2)

d (Z) of Bin(d,Z) containing all the forms F (written
as in (3.1)) such that

(a) a0 > 0, ad 6= 0, (d+ 3)/2 6 Λ+(F ) 6 d− 1,

(b) a0 and ad are d–free,
(c) if there is an odd index k such that ak 6= 0

then for the smallest such k we have ak > 0.

(3.7)

When a0 is d–free, the form Fa0(X,Y ) defined in Lemma 3.5 also belongs to U (2)
d (Z),

thus this set is infinite.
We state the following corollary to Theorem 3.2. The proof is given in §5.2.

Corollary 3.6. The following properties hold.

1. For every d > 5 the infinite set U (1)
d (K) is a K–homography–free set of binary forms.

2. For d > 5 the infinite set U (2)
d (Z) is a Q–homography–free set of Q–rigid binary

forms.
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3.3.2 Corollaries to Theorem 3.4

We give new examples where the assumptions (b) and (c) of Theorem 1.4 are satisfied.
Our next example is the set

V(1)
d (K) :=

{
F ∈ Bin(d,K) :a0 6= 0, d/2 6 Λ+(F ) 6 d− 6, ad−1 = ad = 1 (3.8)

ak = 0 for Λ+(F ) + 1 6 k 6 Λ+(F ) + 4
}
.

We introduce the following subset V(2)
d (Z) of Bin(d,Z) containing all the forms F

(written as in (3.1)) such that

(a) a0 > 0, ad 6= 0, , d/2 6 Λ+(F ) 6 d− 5,

ak = 0 for Λ+(F ) + 1 6 k 6 Λ+(F ) + 4,

(b) a0 and ad are d–free,
(c) if there is an odd index k such that ak 6= 0,

then for the smallest such k we have ak > 0

(d) if d is even, then F is not a trinomial of the form
a0X

d + ad/2X
d/2Y d/2 + adY

d.

(3.9)

It is plain that the set V(1)
d (K) (resp. V(2)

d (Z)) is empty for d < 12 (resp. for d < 11).
Let us check that for d > 12 (resp. d > 11) this set is infinite.

For d = 11 the set V(2)
11 (Z) contains the forms

aX11 +X6Y 5 + Y 11, a > 0 d–free,

as shown by Lemma 3.5.
For d > 12 and a ∈ Z r {0}, consider the binary forms

Ga(X,Y ) = Xd + aXd−νY ν +XY d−1 + Y d,

where ν = νd = b(d+1)/2c. The next result shows that for |a| sufficiently large Ga(X,Y )

belongs to both V(1)
d (K) and V(2)

d (Z).

Lemma 3.7. For any d > 12, there exists a constant Ad such that

]{a ∈ Z r {0} : Ga /∈ Bin(d,Z)} 6 Ad.

Proof. The discriminant of the polynomial Ga(X, 1) is equal to D(a) where D is a poly-
nomial in Z[T ]. The discriminant of the polynomial f1(x) introduced in (3.6) is D(0)

when e = 1. Since f1 has no multiple roots, we have D(0) 6= 0 and the polynomial D has
only finitely many roots.

Remark 3.8. One can check that A12 = 0, hence the sets V(1)
12 (Z) and V(2)

12 (Z) contain
all the quadrinomials which are of the form

X12 + aX6Y 6 +XY 11 + Y 12 (a ∈ Z).

Indeed, the discriminant of the polynomial T 12 +aT 6 +T +1 is a polynomial of degree 12

in a, with integer coefficients; using a computer, we check that it has no integral solution.

Here is a corollary to Theorem 3.4. The proof is given in §6.3.
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Corollary 3.9. For d > 12, we have

1. The infinite set V(1)
d (K) is a K–homography–free set of binary forms.

2. The infinite set V(2)
d (Z) is a Q–homography–free set of Q–rigid binary forms.

Remark 3.10. The conditions concerning ad−1 and ad (in (3.5) and in (3.8)) and a0,
ak and ad (in (3.7) and in (3.9)), may appear artificial. They are introduced to eliminate
possible homotheties between forms and can be replaced by other types of conditions.

4 Homographies between two binary forms

For the proofs of Theorems 3.2 (in section 5.1) and 3.4 (in section 6), in order to check
the hypotheses arising from Definition 1.1, we need to study the homographies between
two binary forms and the automorphisms of a binary form.

4.1 Zeroes of binary forms
4.1.1 Case of one form.

In this section K is the field Q, R or C. To the element

γ =

(
u1 u2

u3 u4

)
∈ GL(2,K) (4.1)

we associate the homography γ̃ of P1(K) defined by the formula

γ̃(x : t) = (u1x+ u2t : u3x+ u4t),

where we denote by (x : t) the generic element of P1(K). Recall that for γ1 and γ2 in
GL(2,K) we have the equivalence

γ̃1 = γ̃2 ⇐⇒
(
there exists λ ∈ K× such that γ1 = λγ2

)
(4.2)

and the formula
γ̃1 γ2 = γ̃1 ◦ γ̃2 (4.3)

Let F be a form Bin(d,C) and Z(F ) the set of zeroes of F in P1(C). By definition,
it is the set of classes (x : t) of pairs (x, t) ∈ C2 r {(0, 0)} modulo the homotheties such
that F (x, t) = 0. By assumption the cardinality of Z(F ) is d and for γ ∈ GL(2,K) we
have the conjugation equality

Z(F ◦ γ) = γ̃−1
(
Z(F )

)
, (4.4)

which follows from the relations

(x : t) ∈ Z(F◦γ) ⇐⇒ (F ◦ γ) (x : t) = 0 ⇐⇒ γ̃(x : t) ∈ Z(F ) ⇐⇒ (x : t) ∈ γ̃−1 (Z(F )) .

In particular for γ ∈ Aut(F,K), we have

Z(F ) = γ̃
(
Z(F )). (4.5)

Thus for γ ∈ Aut(F,K) the restriction of γ̃ to Z(F ), denoted by γ̃|Z(F ), is a bijection of
Z(F ). If E is a subset of P1(C), let Aut(E,K) be the set of bijections φ : E → E such
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that there exists γ ∈ GL(2,K) with the property γ̃|E = φ. In particular for γ ∈ GL(2,K)

one has the equality

Aut(Z(F ◦ γ),K) = (γ̃|Z(F ))
−1Aut (Z(F ),K) γ̃|Z(F ).

We have

Lemma 4.1. Let F ∈ Bin(d,K) (d > 3). The –̃map which transforms γ ∈ GL(2,K) in
the homography γ̃ on P1(C) induces a homomorphism

Ψ : Aut(F,K) −→ Aut(Z(F ),K)
γ 7→ Ψ(γ) = γ̃|Z(F ).

We have
ker Ψ = {ζ Id : ζ ∈ K, ζd = 1}.

Finally when K = C the map Ψ is surjective.

Proof. The existence and unicitiy of Ψ follows from (4.5). As a consequence of (4.3), for
any γ1 and γ2 ∈ Aut(F,K), we have Ψ(γ1γ2) = Ψ(γ1) ◦ Ψ(γ2). The determination of
ker Ψ comes down to finding the matrices γ ∈ Aut(F,K) such that γ̃ fixes every point of
Z(F ). Since Z(F ) contains d points and since d > 3, we deduce the equality γ̃ = Id. By
(4.2), the automorphism γ is a homothety of the shape ζ Id, with ζ ∈ K×. The equality
F ◦ γ = ζdF restricts the possible values of ζ by the equality ζd = 1.

We now suppose that K = C to prove that Ψ is surjective. So let F ∈ Bin(d,C) and let
ξ ∈ GL(2,C) such that ξ̃|Z(F ) belongs to Aut(Z(F ),C). We want to prove the existence
of some γ ∈ Aut(F,C) such that γ̃ = ξ. By (4.4), we have the equality Z(F ) = Z(F ◦ ξ).
This implies that the forms F and F ◦ ξ are proportional since they have the same zeroes
with the same multiplicities. For some α ∈ C× we have F ◦ ξ = αF . It remains to put
γ := λξ, where λ ∈ C satisfies λ−d = α to obtain the equalities γ̃ = ξ̃ and F ◦ γ = F .

Remark 4.2. When K = Q or R, the morphism Ψ in Lemma 4.1, is not surjective
generally speaking as one sees in the following example. Let a and b be two distinct
positive real numbers. Let F (X,Y ) in Bin(4,R) defined by

F (X,Y ) := (X − aY )(X + Y/a)(X − bY )(X + Y/b).

We then have
Z(F ) =

{
(a : 1), (−1/a : 1), (b : 1), (−1/b : 1)

}
.

Let ξ : P1(C)→ P1(C) be the homography defined by ξ(z) := −1/z. We check that ξ|Z(F )

belongs to Aut(Z(F ),R). Searching for γ ∈ Aut(F,R) such that γ̃ = ξ is equivalent to
searching for λ ∈ R× such that

γ =

(
0 −λ
λ 0

)
,

satisfies (F ◦γ) (X,Y ) = F (X,Y ). Such a λ ∈ R does not exist, since a direct computation
leads to the equality (F ◦ γ)(X,Y ) = −λ4 · F (X,Y ).

Lemma 4.1 has the following consequence.

Lemma 4.3. Let d > 4 and let F ∈ Bin(d,Q). Suppose that Aut(Z(F ),C) = {Id}. Then
we have

Aut(F,Q) =

{
{Id} if 2 - d
{±Id} if 2 | d.
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Proof. Since Aut(Z(F ),C) contains one element only, so does Aut(Z(F ),Q). This ele-
ment is Id, hence one has the equality

Aut(F,Q) = Ψ−1({Id}) = ker Ψ,

and the result follows from Lemma 4.1.

Lemma 4.3 never applies when d = 3, since, in that case, Aut(Z(F ),C) always has
six elements.

We finish this section by some conventions and notations. The results of §3 concern
binary forms F (X,Y ) having a0 6= 0 with the notation (3.1). Thus it is natural to identify
the roots of the form F (X,Y ) in P1(C) with the zeroes (on the complex affine line) of
the associated polynomial

f(t) = F (t, 1)/a0. (4.6)

By construction, this polynomial is monic and we are led to consider, for d > 1, the
following set of polynomials

Pd(K) := {f ∈ K[t] : f monic, deg f = d,discf 6= 0}, (4.7)

with K = C, R, Q or Z. If f and g belong to Pd(K), we systematically write them as

f(t) = td + α1t
d−1 + · · ·+ αd, (4.8)

and
g(z) = zd + β1z

d−1 + · · ·+ βd. (4.9)

By convention, we put α0 = β0 = 1.
By analogy with (3.2), we define

Λ+(f) := max{` : αi = 0, 0 < i < `}. (4.10)

Since discf 6= 0, the polynomial f(t) is not the monomial td, thus we have

1 6 Λ+(f) 6 d. (4.11)

By analogy with Z(F ), we introduce the set Z(f) := {ρ ∈ C : f(ρ) = 0}. This set of
zeroes has cardinality d.

4.1.2 Case of two forms.

This paragraph generalizes the section 4.1.1 by studying the links between the zeroes of
two forms F1 and F2.

Since we do not wish to consider multiplicities for the zeroes, we need to assume that
the discriminants are not zero: the two binary forms (X − Y )(X − 2Y )2(X − 3Y )2 and
(X − Y )(X − 2Y )(X − 3Y )3 have the same degree, the same sets of zeroes (not with the
same multiplicities), and they are not isomorphic.

Definition 4.4. Let K be one of the fields Q, R or C. Let E1 and E2 be two subsets
of P1(K) with equal cardinalities > 3. We call K–isomorphism between E1 and E2 any
bijection φ from E1 on E2 such that there exists h ∈ GL(2,K) with the property of
restriction

h̃|E1 = φ.

The set of these isomorphisms is denoted by Isom
(
E1, E2;K

)
. If this set is not empty, we

say that E1 and E2 are K–isomorphic.
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When ]E1 = ]E2 = 3, then the sets E1 and E2 are K–isomorphic. We will use

Lemma 4.5. Let d > 3. Let F1 and F2 be two forms of Bin(d,C). We suppose that
Z(F1) and Z(F2) are C–isomorphic and let h be an element of Isom(Z(F1),Z(F2);C).
Then there exists at least one element γ0 ∈ GL(2,C) such that

γ̃0|Z(F1) = h and F1 = F2 ◦ γ0. (4.12)

Finally when one such element γ0 is fixed, we have the equality

{γ ∈ GL(2,C) : γ̃|Z(F1) = h and F1 = F2 ◦ γ} = {λ γ0 : λ ∈ C, λd = 1}. (4.13)

It follows that F1 and F2 in Bin(d,C) are C–isomorphic if and only if Z(F1) and
Z(F2) are C–isomorphic.

Remark 4.6. When h belongs to Isom(Z(F1),Z(F2);Q), we cannot ensure the existence
γ0 ∈ GL(2,Q) satisfying (4.12). This is the content of Remark 4.2 above, with the choice
F1 = F2 = F and h = ξ|Z(F ).

Proof. By the definition of h, there exists γ ∈ GL(2,C) such that γ̃|Z(F1) = h. Write γ
as in (4.1) and

F1(X,Y ) =

d∏
i=1

(
αiX − βiY

)
.

So we have Z(F1) =
{

(βi : αi) : 1 6 i 6 d
}
and

h(βi : αi) = (u1βi + u2αi : u3βi + u4αi).

Since Z(F2) = h(Z(F1)) we deduce the equality

Z(F2) =
{

(u1βi + u2αi : u3βi + u4αi) : 1 6 i 6 d
}
,

and the existence of some c ∈ C× such that

F2(X,Y ) = c

d∏
i=1

((u3βi + u4αi)X − (u1βi + u2αi)Y ) .

From this equality and from the equality

(u3βi + u4αi)(u1X + u2Y )− (u1βi + u2αi)(u3X + u4Y ) = (det γ) (αiX − βiY ),

we deduce the equality
F2 ◦ γ = c (det γ)d F1.

Define γ0 := c−1/d(det γ)−1 γ where c1/d is any d–th root of c. Then γ0 satisfies (4.12).
To prove (4.13), we notice that γ̃ and γ̃0 coïncide on a set of d > 3 points of P1(C).

So they are equal. By (4.2), there exists λ ∈ C× such that γ = λ γ0. By hypothesis we
have F1 = F2 ◦ γ0 = F2 ◦ γ. But F2 is homogeneous with degree d which leads to the
condition λd = 1.

In the same order of ideas as Lemma 4.5 we have
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Proposition 4.7. Let d > 3 and let F and G two distinct forms of Bin(d,C) such that

Isom(Z(F ),Z(G);C) = ∅.

Then we have the equality

{γ ∈ GL(2,C) : F = G ◦ γ} = ∅.

Proof. By contraposition, suppose that there exists γ ∈ GL(2,C) such that F = G ◦ γ.
By (4.4), we have γ̃−1(Z(G)) = Z(F ). Thus γ̃ is an isomorphism between Z(F ) and
Z(G).

4.1.3 From binary forms to polynomials

We will define the action of the homographies on the set of polynomials in Pd(K).
Let F and G be two elements in Bin(d,K) written as{

F (X,Y ) = a0X
d + a1X

d−1Y + · · ·+ adY
d

G(X,Y ) = b0X
d + b1X

d−1Y + · · ·+ bdY
d

(4.14)

and let γ be an element in GL(2,K) written as in (1.1). Assume F = G ◦ γ:

F (X,Y ) = G(u1X + u2Y, u3X + u4Y ). (4.15)

Consider the two monic polynomials f and g in Pd(K) associated with the binary forms
F and G respectively (recall the definition (4.6)):

f(t) =
1

a0
F (t, 1) and g(z) =

1

b0
G(z, 1).

The relation (4.15) gives

f(t) =
b0
a0

(u3t+ u4)dg

(
u1t+ u2

u3t+ u4

)
and

a0

b0
= c(γ, g) where c(γ, g) :=

{
ud3g(u1/u3) if u3 6= 0,

ud1 if u3 = 0.
(4.16)

Definition 4.8. When f and g are two monic polynomials in Pd(K) and h an homog-
raphy with matrix γ, we write h(f) = g if f and g are related by the equation

f(t) =
1

c(γ, g)
(u3t+ u4)dg

(
u1t+ u2

u3t+ u4

)
where c(γ, g) is defined in (4.16).

We separate the homographies over P1(K) = K ∪ {∞} into two sorts. Let h = γ̃ be
an homography of P1(K) associated with an element γ as in (4.1).
• If the coefficient u3 of γ is 0, then u4 6= 0 and we set

q =
u1

u4
, r =

u2

u4
·

We say that h is an affine homography. We write it as h = hq,r, and for t ∈ P1(K) we
have

h(t) = hq,r(t) = qt+ r,
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with (q, r) ∈ K× ×K.
• If u3 6= 0, we set

q =
u1

u3
, r =

u2u3 − u1u4

u2
3

, s = −u4

u3
·

We say that h is a non affine homography. We write it as h = hq,r,s, and for t ∈ P1(K)

we have
h(t) = hq,r,s(t) = q +

r

t− s
,

where (q, r, s) ∈ K×K× ×K.
The formulas for the inverses are:

h−1
q,r = hq−1,−rq−1 and h−1

q,r,s = hs,r,q. (4.17)

From Definition 4.8 we deduce:

Lemma 4.9. Let d > 2, let f(t) and g(z) two monic polynomials of Pd(K) written as in
(4.8) and (4.9). Let h be an homography such that g = h(f).

1. If h is an affine homography written as h = hq,r, then we have

z = hq,r(t) = qt+ r, t = h−1
q,r(z) =

1

q
(z − r),

f(t) =
1

qd
g(qt+ r), g(z) = qdf

(
z − r
q

)
.

2. If h is a non–affine homography written as h = hq,r,s, then we have

z = hq,r,s(t) = q +
r

t− s
, t = h−1

q,r,s(z) = s+
r

z − q
,

f(t) =
(t− s)d

g(q)
g

(
q +

r

t− s

)
, g(z) =

(z − q)d

f(s)
f

(
s+

r

z − q

)
, (4.18)

and
f(s)g(q) = rd. (4.19)

When K = C, given a monic polynomial f in Pd(C), we can write

f(z) =
∏

ρ∈Z(f)

(z − ρ).

From Definition 4.8 we deduce

(h(f)) (z) :=
∏

ρ∈Z(f)

(z − h(ρ)) . (4.20)

Since the polynomials of Pd(C) have exactly d roots which are all distinct, we have, for
any homography h and for any f and g in Pd(C) the property

h(Z(f)) = Z(g) ⇐⇒ g = h(f).

Lemma 4.10. Let d > 3 and F and G elements of Bin(d,K), written as in (4.14).
We suppose that a0adb0bd 6= 0. Let f(t) = F (t, 1)/a0 and g(z) = G(z, 1)/b0 be the two
polynomials in Pd(K) associated with F and G. Let γ ∈ GL(2,K) and let γ̃ = h be the
homography associated with γ. Then the two following conditions are equivalent:
(i) There exists ν ∈ K× such that G ◦ γ = νF .
(ii) We have the equality

h(f) = g.
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Proof. (i) implies (ii) has been proved in (4.16).
Conversely, assume h(f) = g. From Definition 4.8 we deduce

F (t, 1) = a0f(t) =
a0

c(γ, g)
(u3t+ u4)dg

(
u1t+ u2

u3t+ u4

)
=

a0

b0c(γ, g)
(u3t+ u4)dG

(
u1t+ u2

u3t+ u4
, 1

)
=

a0

b0c(γ, g)
G(u1t+ u2, u3t+ u4),

hence the result with ν = b0
a0
c(γ, g).

For ν ∈ K× and F ∈ Bin(d,K), the polynomial f associated to F is the same as the
polynomial associated to νF . When K = C, the two forms F and νF are C–isomorphic;
in general, F and νF are K–isomorphic when ν is a d–th power of an element in K.
Consider for instance the two forms

F (X,Y ) = X4 + 4XY 3 − Y 4 and G(X,Y ) = 4F (X,Y ).

There is no γ ∈ GL(2,Q) such that γ̃ = Id and F ◦ γ = G. Nevertheless the forms F and
G are Q–isomorphic, since we have the equality

F (X + Y,X − Y ) = G(X,Y ).

4.2 Preparation of the proof of Theorem 3.2

By Lemma 4.3 and Proposition 4.7, we see that a first step in the proof of Theorem 3.2
will be the following proposition

Proposition 4.11. Let d > 3. Suppose that there exist polynomials f and g in Pd(C)

such that
Λ+(f) + Λ+(g) > d+ 3 (4.21)

and a homography h such that h(f) = g. Then either

1. h is a homothety hq,0 with q ∈ C×, or

2. h is a non affine homography and it is of the form h0,r,0 with r ∈ C×. In that
situation f and g are of the form td + αd and zd + βd, with αdβd = rd.

3. The hypothesis (4.21) is optimal to obtain the conclusions of the case 2: there exist
elements f , g of Pd(C) and a non affine homography of the form h = hq,r,s, with
(q, s) 6= (0, 0) with h(f) = g and Λ+(f) + Λ+(g) = d+ 2.

Remark 4.12. In the particular case where d = 3, the inequality (4.21) implies that f
and g are necessarily of the form f(t) = t3 + α3 and g(z) = z3 + β3 with α3β3 6= 0. An
example of a pair (f(t), g(z)) corresponding to the item 3 is the pair (t3 + 1, z3 + 3z),
since we have Λ+(f) + Λ+(g) = 5 and

f(t) =
(t− 1)3

g(1)
g

(
1 +

2

t− 1

)
,

(see (4.36) below for a more general construction).
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4.3 Proof of Proposition 4.11.1, the case of affine homographies.

We are concerned with the following question: let f and g two polynomials in Pd(C)

satisfying (4.21) and written as (4.8) and (4.9). We want information about the pairs
(q, r) ∈ C× × C, such that

hq,r(f) = g.

The hypothesis (4.21) and the inequalities (4.11) imply the inequalities Λ+(f) > 2 and
Λ+(g) > 2. This means α1 = β1 = 0. So the sum of the roots of f and the sum of the
roots of g are equal to 0. We write

0 =
∑

ρ∈Z(f)

ρ =
∑

ρ′∈Z(g)

ρ′ =
∑

ρ∈Z(f)

(qρ+ r) = dr,

so we necessarily have r = 0. The proof of the item 1 is complete.

4.4 Proof of Proposition 4.11.2, the case of non affine homogra-
phies.

The question now is: let f and g be two polynomials in Pd(C) satisfying (4.21). We want
information about the triples (q, r, s) ∈ C× C× × C, such that

hq,r,s(f) = g.

This question is deeper than the question relative the affine homographies, since the
formulas of transformations of the symmetric functions of the roots are more involved.

The case where f(s) = 0 corresponds to g having a root sent to infinity. We avoid
this fact by considering g to be monic with degree d. Similar consideration applies to
the condition g(q) = 0. Recall that in the definitions of U (1)

d (K), U (2)
d (Z), V(1)

d (K) and
V(2)
d (Z) (see §3.3), we impose a0 6= 0, so the associated polynomials (see (4.6)) are monic

with degree d.

4.4.1 From the f (i)(s) to the βj

We now state

Lemma 4.13. Let d > 1 and let f and g be monic polynomials in Pd(C), written as in
(4.8) and (4.9). Suppose that there exists (q, r, s) ∈ C×C× ×C such that the non affine
homography hq,r,s satisfies g = hq,r,s(f), and f(s) 6= 0.

Then we have the equalities

βjf(s) = (−1)j
j∑
i=0

(−1)iqj−iri
(
d− i
j − i

)
f (i)(s)

i !
(0 6 j 6 d)

Proof. By the last part of formula (4.18) of Lemma 4.9 and by Taylor expansion, one
has the equalities

g(z) =
(z − q)d

f(s)

d∑
k=0

f (k)(s)

k !

(
r

z − q

)k

=
1

f(s)

d∑
k=0

rk
f (k)(s)

k !
(z − q)d−k.

Lemma 4.13 follows by identification via the binomial formula to expand (z− q)d−k.
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4.4.2 From the βi to the f (j)(s)

Lemma 4.14. Let d > 1 and let f and g be polynomials in Pd(C), written as in (4.8) and
(4.9). Suppose that there exists (q, r, s) ∈ C×C××C such that the non affine homography
hq,r,s satisfies the equality g = hq,r,s(f), and f(s) 6= 0.
Then we have the equalities(

r

q

)j
· f

(j)(s)

j ! f(s)
=

j∑
i=0

(
d− i
j − i

)
βi
qi
, (4.22)

for 0 6 j 6 d.
In the case where q = 0, this formula has to be interpreted as

rj · f
(j)(s)

j ! f(s)
= βj . (4.23)

Proof. By the first part of formula (4.18) and by (4.19) we have the equalities

f(t)

f(s)
=

(
t− s
r

)d
g

(
q +

r

t− s

)
=

(
t− s
r

)d d∑
i=0

βi

(
q +

r

t− s

)d−i

=
1

rd

d∑
i=0

βi(q(t− s) + r)d−i(t− s)i

=

d∑
i=0

βi

d−i∑
`=0

(
d− i
`

)
q`

(t− s)`+i

r`+i
·

Hence
f(t)

f(s)
=

d∑
j=0

(t− s)j

rj

j∑
i=0

βi

(
d− i
j − i

)
qj−i. (4.24)

By Taylor’s expansion, we finally get

rjf (j)(s)

j!f(s)
=

j∑
i=0

βi

(
d− i
j − i

)
qj−i.

Remark 4.15. If we write

yi :=

(
r

q

)i
· f

(i)(s)

i ! f(s)
,

and
Bj :=

βj
qj
, (0 6 j 6 d),

then Lemmas 4.13 and 4.14 can be written respectively
B0

B1

...
Bd

 = A


y0

y1

...
yd

 and


y0

y1

...
yd

 = A−1


B0

B1

...
Bd

 (4.25)
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where

A =
(

(−1)i+j
(
d− i
j − i

))
06i,j6d

and A−1 =
((d− i

j − i

))
06i,j6d

(4.26)

and where we extend the definition of the binomial coefficients by setting
(
n
k

)
= 0 for

k < 0.
The fact that these two matrices are inverse of each other is the simplest example of

inverse relations (see for instance [Ri1968, p.43–45], where one sign (−1)k in formula (1)
p. 43 should be removed): the inverse of the (d+ 1)× (d+ 1) matrix

A =



1 0 0 0 · · · 0

−
(
d

1

)
1 0 0 · · · 0(

d

2

)
−
(
d− 1

1

)
1 0 · · · 0

−
(
d

3

) (
d− 1

2

)
−
(
d− 2

1

)
1 · · · 0

...
...

...
...

. . .
...

(−1)d (−1)d−1 (−1)d−2 (−1)d−3 · · · 1


is the lower triangular matrix A−1 where, in the expression of A, we replace each entry
by its absolute value.

The matrices A−1 and A enjoy an obvious interpretation through the automorphisms
P (X) 7→ P (X+1) and P (X) 7→ P (X−1) of the vector space of polynomials with degree
6 d, equipped with the basis {Xd, Xd−1, . . . , X, 1}.

Lemma 4.16. We adopt the notations and hypotheses of Lemma 4.14. Let e′ be an
integer such that 0 6 e′ 6 d− 1. Then we have the equalities

β1 = β2 = · · · = βe′ = 0,

if and only if, we have the equalities

f (k)(s)

f(s)
=

d !

(d− k) !
·
(q
r

)k
, (4.27)

for 1 6 k 6 e′.

Proof. This follows from the equalities (4.25), from the triangular structure of the matrix
A and A−1 (defined in (4.26)) and from the equality β0 = 1.

Let us return to the proof of Proposition 4.11.2. In the next application of Lemma
4.16, we exploit the fact that if the integer k is sufficiently large (in terms of Λ+(f)) the
k–derivative of the polynomial f is a monomial.

Lemma 4.17. Let d > 3 and let f and g be polynomials of Pd(C), written as in (4.8)
and (4.9). Let Λ+(f) and Λ+(g) be the two integers defined by (4.10). Suppose that they
satisfy

Λ+(f) + Λ+(g) > d+ 3, (4.28)

and suppose there exists a non affine homography hq,r,s ((q, r, s) ∈ C×C××C) such that
h(f) = g. Then we have

q = s = 0
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and
Λ+(f) = Λ+(g) = d.

The polynomials f and g have the shapes f(t) = td +αd, g(z) = zd +βd with the relation
αdβd = rd.

Proof. The assumptions imply f(s) 6= 0 (see (4.20)). To shorten notations, write λ :=

Λ+(f) and λ′ := Λ+(g). We know from (4.11) that 1 6 λ, λ′ 6 d and from (4.8) that

f (k)(s) =
d !

(d− k) !
· sd−k,

for all d − λ + 1 6 k 6 d. Combining with Lemma 4.16 (with e′ = λ′ − 1), we deduce
that, for all d− λ+ 1 6 k 6 λ′ − 1, one has the equality

sd =
(qs
r

)k
· f(s). (4.29)

Suppose that the interval [d− λ+ 1, λ′ − 1] contains two positive consecutive integers k
and k + 1 (this assumption is equivalent to the inequality (4.28)). We apply (4.29) for
these values k and k + 1 and notice that the left–hand side is constant.

• Case s 6= 0. So we have q 6= 0 by (4.29). After division, we have the equality

qs

r
= 1.

This equality simplifies (4.27) into

sk
(d− k) !

d !
· f

(k)(s)

f(s)
= 1,

for k 6 λ′ − 1. We apply this formula with the choices k = d− λ and k = d− λ+ 1 and
this is legal, since we have d−λ < d−λ+ 1 6 λ′− 1 as a consequence of the assumption
(4.28). Thus we obtain the equalities

1 =


sd−λ · λ !

d !
· f

(d−λ)(s)

f(s)
=
sd + αλs

d−λ λ !(d− λ) !/(d !)

f(s)
,

sd−λ+1 · (λ− 1) !

d !
· f

(d−λ+1)(s)

f(s)
=

sd

f(s)
·

Equating these two expressions and recalling that αλ 6= 0, we arrive at a contradiction.

• Case q 6= 0. The hypothesis (4.28) concerning f and g is symmetric. So, by exchanging
the rôles, we may study the existence of a non affine homography hs,r,q transforming g
into f (see (4.17)). By the above alinea, such a homography hs,r,q with q 6= 0 does not
exist. So we are led to study the remaining case q = s = 0.

• Case q = s = 0. In that case we are asking if, for some r 6= 0, the homography

h0,r,0(t) =
r

t
,

can satisfy h0,r,0(f) = g, or in an equivalent form h0,r,0(g) = f . By definition of λ we
have αλ 6= 0.
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• Suppose that λ 6 d−1. Then the polynomial g = h0,r,0(f) has its coefficient βd−λ 6= 0.
Since d− λ > 1, we deduce the inequality λ′ 6 d− λ. Such an inequality is incompatible
with the hypothesis λ+ λ′ > d+ 3.
• So we are left with the case λ = d. Equivalently we have f(t) = td + αd, with αd 6= 0.
We check that [h0,r,0(f)](z) = zd+rd/αd by Lemma 4.9 (4.18). This is the last statement
of Lemma 4.17.

The proof of Proposition 4.11.2 is complete now.

4.5 Proof of Proposition 4.11.3
4.5.1 Heuristic considerations.

Before entering the proof of Proposition 4.11.3 itself, we consider a related general ques-
tion involving a system of linear non homogeneous equations.

Let (q, r, s) ∈ C× C× × C, d > 3, a, b with 1 6 a, b 6 d− 1, I and J two subsets of
{1, . . . , d} with respectively a and b elements. Let us consider the following problem.

Does there exist monic polynomials f, g of degree d,

f(t) = α0t
d + · · ·+ αd, g(z) = β0z

d + · · ·+ βd with α0 = β0 = 1

and discriminants different from zero, which satisfy

αi = 0 for i ∈ I and βj = 0 for j ∈ J (4.30)

and hq,r,s(f) = g?

Assuming hq,r,s(f) = g, there exists κ ∈ C× such that

κf(t) = (t− s)dg
(
q +

r

t− s

)
,

(to be compared with (4.18)) that is

κf(t) =

d∑
i=0

βi(t− s)i(qt+ r − qs)d−i.

Notice that κf(s) = rd. We write (4.24) as

f(t)

f(s)
=

1

rd
(q(t− s) + r)d +

d∑
j=0

(t− s)j

rj

j∑
i=1

βi

(
d− i
j − i

)
qj−i.

Hence the coefficient of th in κf(t) is

καd−h =

(
d

h

)
qh(r − qs)d−h +

d∑
i=Λ+(g)

βi

d∑
j=max{i,h}

(
j

h

)(
d− i
j − i

)
(−s)j−hrd−jqj−i.

For h = d, since α0 = 1, this gives κ = g(q).
The conditions (4.30) are equivalent to a system of a + 1 linear non homogeneous

equations
κ = g(q), αi = 0 (i ∈ I)
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with d− b+ 1 unknowns
κ, βj (1 6 j 6 d, j 6∈ J ).

Heuristic. According to the above discussion, subject to the non vanishing of some
determinants, we may expect that there is a Zariski closed set of (q, r, s) such that,
outside this set,
• when a+ b < d, then there are infinitely many solutions (f, g);
• when a+ b = d, there is a unique solution;
• for a+ b > d, there is no solution.

For instance, given integers λ and λ′ in the interval [1, d−1], the conditions Λ+(f) > λ

and Λ+(g) > λ′ are a special case of (4.30) with

I = {1, . . . , λ− 1}, J = {1, . . . , λ′ − 1},

a = λ − 1 and b = λ′ − 1. When λ + λ′ = d + 2 we may expect that, outside a Zariski
closed set of (q, r, s), there is a unique solution. In this case item 2 of Proposition 4.11
shows that λ = Λ+(f) and λ′ = Λ+(g).

4.5.2 The proof itself.

We are now concerned with the proof of the last item of Proposition 4.11. Actually the
proof below gives more information. The first step is

Lemma 4.18. Let d > 3 and let (q, r, s) ∈ (C×)3 such that

r 6= qs and r 6= (d− 1)qs. (4.31)

Then there exists a unique pair (f, g) of monic polynomials with complex coefficients and
with degree d, such that

Λ+(f) = 3, Λ+(g) = d− 1 and hq,r,s(f) = g. (4.32)

Proof. Write f and g as in (4.8) and (4.9). By the second and the third conditions of
(4.32) we can write

g(z) = zd+βd−1z+βd, κf(t) = (qt+r−qs)d+βd−1(qt+r−qs)(t−s)d−1 +βd(t−s)d,
(4.33)

for some complex number κ 6= 0 (see Lemma 4.9.2). Since f and g are monic, we have
α0 = β0 = 1, that is

κ = qd + qβd−1 + βd.

The inequality Λ+(f) > 3 is equivalent to the double equality α1 = α2 = 0. So we are
led to consider the system of three non–homogeneous linear equations in three unknowns
βd−1, βd and κ qβd−1 + βd − κ = −qd

(r − dqs)βd−1 − dsβd = −dqd−1(r − qs)
(dqs− 2r)sβd−1 + ds2βd = −dqd−2(r − qs)2.

(4.34)

The determinant is

det

 q 1 −1
r − dqs −ds 0

(dqs− 2r)s ds2 0

 = drs2.



32

Since qrs 6= 0, there is a unique solution

βd−1 = dqd−2
(r
s
− q
)
, βd = qd−2

(r
s
− q
)(r

s
− (d− 1)q

)
, κ = qd−2

(r
s

)2

.

The assumption (4.31) ensures βd−1 6= 0 and βd 6= 0.
Let us check that α3 6= 0, which means Λ+(f) = 3. By considering the coefficient of

td−3 on both sides of the last equality of (4.33) and by the above values of βd and βd−1

we obtain

κα3 =

(
d

3

)
qd−3(r − qs)3 + βd−1

(
d− 1

2

)
s2

(
r − d

3
qs

)
− βd

(
d

3

)
s3

=

(
d

3

)
qd−3(r − qs)3 +

(
d− 1

2

)
dqd−2s

(
r − d

3
qs

)
(r − qs)

−
(
d

3

)
sqd−2(r − qs)

(
r − (d− 1)qs

)
,

=

(
d

3

)
qd−3r2(r − qs) 6= 0,

by assumption.

Here is how to check that the polynomial g(z) as defined in (4.33) with the above
values of βd and βd−1 has a discriminant different from zero, which is a necessary condition
for g(z) to belong to Pd(C). Assume there exists ρ ∈ C such that g(ρ) = g′(ρ) = 0. The
condition g′(ρ) = 0 is equivalent to

ρd−1 = −βd−1

d
· (4.35)

Combining this value with g(ρ) = 0 yields

0 = g(ρ) = ρ

(
−βd−1

d

)
+ βd−1ρ+ βd.

Hence, if ρ exists, its value can only be

ρ =
d

1− d
· βd
βd−1

=
r/s− (d− 1)q

1− d
,

thanks to the values already computed for βd and βd−1. From (4.35) we get the condition
for the discriminant of g to be nonzero:(

r/s− (d− 1)q

1− d

)d−1

6= −qd−2(r/s− q).

To complete the proof of the item 3 of Proposition 4.11, we produce an instance of two
elements f , g, of Pd(Q) (i.e. with nonzero discriminant) with Λ+(f) = 3 and Λ+(g) = d−1

and hq,r,s(f) = g. Thanks to Remark 4.12 we may assume d > 4. Take q = 1, r = 2,
s = 1, βd−1 = d, βd = 3− d, κ = 4, in other words we have

γ =

(
1 1
1 −1

)
, g(z) = zd + dz − d+ 3,

so that g(q) = 4,

f(t) =
(t− 1)d

g(q)
g

(
t+ 1

t− 1

)
=

1

4

(
(t+ 1)d + d(t+ 1)(t− 1)d−1 + (3− d)(t− 1)d

)
. (4.36)
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One checks α0 = 1, α1 = α2 = 0, α3 =

(
d

3

)
6= 0,

f(t) = td +

(
d

3

)
td−3 + α4t

d−4 + · · ·+ αd,

f(1) = 2d−2, f(s)g(q) = rd, Λ+(f) = 3.
The derivative of g is g′(z) = d(zd−1 + 1). Let ρ be one its roots. It satisfies ρd = −ρ

so we have the equality
g(ρ) = (d− 1)ρ− d+ 3,

and g(ρ) does not vanish, since ρ has modulus one and d > 4. Since g(z) and g′(z) do
not vanish simultaneously, the polynomial belongs to Pd(C). The proof of the item 3 of
Proposition 4.11 is complete.

4.5.3 Comments

In Lemma 4.18 we assume qs 6= 0. There is no example of pair (f, g) of monic polynomials
of degree d satisfying (4.32) with qs = 0, Λ+(f) = 3 and Λ+(g) = d− 1. Indeed for q = 0

the system (4.34) yields {
rβd−1 − dsβd = 0

−2rsβd−1 + ds2βd = 0

which has no solution satisfying r 6= 0 and βd−1 6= 0, while for s = 0 and q 6= 0 this
system (4.34) yields dqd−2r2 = 0, which is not allowed.

We now present some examples of pairs (f, g) of monic polynomials of degree d
satisfying hq,r,s(f) = g and Λ+(f) + Λ+(g) < d+ 2.

1. Here is an example with q = 0, s 6= 0, Λ+(f) = 2, Λ+(g) = d− 1:

g(z) = zd +
ds

r
z + 1, f(t) = (t− s)dg

(
r

t− s

)
= (t− s)d + ds(t− s)d−1 + rd.

2. When λ+λ′ = d, explicit solutions (f, g) with Λ+(f) = λ and Λ+(g) = λ′ are given
with q = s = 0 by trinomial forms

f(t) = td + αλt
d−λ + αd, g(z) = zd + βd−λz

λ + βd

with
αλβd = βd−λr

λ, αdβd = rd.

3. When λ+λ′ < d, explicit solutions are given with q = s = 0 by quadrinomial forms

f(t) = td + αλt
d−λ + αd−λ′t

λ′ + αd, g(z) = zd + βλ′z
d−λ′ + βd−λz

λ + βd

with
αdβλ′ = αd−λr

λ′ , αdβd−λ = αλr
d−λ, αdβd = rd.

5 Proofs of Theorem 3.2 and Corollary 3.6

5.1 Proof of Theorem 3.2

Let F and G be two forms of the reduced set E of Bin(d,K). We suppose that they are
written as in (4.14) with a0adb0bd 6= 0. By assumption we have min{Λ+(F ), Λ+(G)} >
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(d + 3)/2. Let f be the monic polynomial associated to F defined by (4.6) and written
as in (4.8) with αi = ai/a0 for 0 6 i 6 d and similarly let g be the monic polynomial
associated to G written as (4.9) with βi = bi/b0 for 0 6 i 6 d. They satisfy (4.21). Our
aim is to prove that if there exists a matrix γ (written as in (1.1)) such that F ◦ γ = G,
then F = G. Assume such a γ exists and let γ̃ = h, the homography attached to γ.
Replacing γ with γ−1 in Lemma 4.10 we deduce h(g) = f .

Suppose that u3 6= 0, then h is a non affine homography exchanging Z(f) and Z(g). By
Proposition 4.11.2, we deduce that h is of the form h0,r,0 and that both F and G are
binomials. Thus γ satisfies u1 = u4 = 0. The hypothesis F ◦ γ = G leads to the equality
F (u2Y, u3X) = G(X,Y ). This contradicts the item 3 of Definition 3.1.

Hence u3 = 0 and h is an affine homography exchanging Z(f) and Z(g). By Proposition
4.11.1, the homography h has to be a homothety. The matrix γ satisfies u2 = u3 = 0. The
hypothesis F ◦γ = G leads to the equality F (u1X,u4Y ) = G(X,Y ). Item 2 of Definition
3.1 implies F = G.

This completes the proof of Theorem 3.2.

5.2 Proof of Corollary 3.6

The proof will use two auxiliary results.

Lemma 5.1. Let d > 3 and W(1)
d (K) be a subset of Bin(d,Z) such that for any F ∈

W(1)
d (K) we have a0 6= 0, ad−1 = ad = 1. Then the set W(1)

d (K) is K–dilation free.

Proof. Let F and G be two elements in W(1)
d (K) written as in (4.14) and let hq,0 be a

homothety which exchanges the zeroes of the polynomials f and g associated to F and
G written as (4.8) and (4.9). By Lemma 4.5, all the γ ∈ GL(2,K) such that γ̃ = hq,0 and
F ◦ γ = G have the shape

γ =

(
u 0
0 v

)
, (5.1)

where u and v are complex numbers different from zero. Returning to the explicit ex-
pression of F and G = F ◦ γ we have

G(X,Y ) = F (uX, vY ) = a0u
dXd + a1u

d−1vXd−1Y + · · ·+ ad−1uv
d−1XY d−1 + adv

dY d,

hence the equalities 1 = bd = vdad = vd and 1 = bd−1 = uvd−1ad−1 = uvd−1. They
imply that u = v and ud = 1. So G(X,Y ) = F (uX, uY ) = udF (X,Y ) = F (X,Y ). Hence
W(1)
d (K) is K–dilation–free.

Lemma 5.2. Let d > 3 and W(2)
d (Z) be a subset of Bin(d,Z) such that for any F ∈

W(2)
d (Z) written as in (3.1) we have

1. a0 > 0, ad 6= 0, a0 and ad are d–free,

2. if there is an odd index k such that ak 6= 0, then for the smallest such k we have
ak > 0.

Then
(a) The set W(2)

d (Z) is Q–dilation free.
(b) Let F ∈ W(2)

d (Z) and let

γ =

(
u 0
0 v

)
∈ GL(2,Q)
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be such that F ◦ γ = F . Then

γ =


±Id if F is not a binary form with squared arguments,

±Id or ±

(
1 0

0 −1

)
if F is a binary form with squared arguments.

Proof. (a) Let F and G be two elements in W(2)
d (Z) written as in (4.14) and u, v two

nonzero rational numbers such that F (uX, vY ) = G(X,Y ). Since the coefficients a0 and
b0 of Xd in F and G respectively are d–free integers, and since a0 > 0 and b0 > 0, the
equality a0u

d = b0 implies ud = 1, and similarly vd = ±1.
– If u = v (= ±1) then F = G.
– If u = 1 and v = −1, then F (X,Y ) and F (X,−Y ) belong to W(2)

d (Z). If there is some
odd k such that ak 6= 0, then the least such k satisfies ak > 0. Since F (X,−Y ) also
belongs to W(2)

d (Z), we deduce that (−1)kak is also positive. This gives a contradiction.
So both F and G have squared arguments. They are equal.
– If u = −1 and v = 1, then d is even necessarily. Now F (X,Y ) and F (−X,Y ) both
belong toW(2)

d (Z). If there is some odd k such that ak 6= 0, then the least such k satisfies
ak > 0. Since F (−X,Y ) also belongs to W(2)

d (Z), we deduce that (−1)d−kak is also
positive. The end of the proof is as above.

Proof of Corollary 3.6 . To prove the first item we are going to use Theorem 3.2. We
first check item 3 in the Definition 3.1 of reduced sets. Since for d > 3 a binary form F

such that 1 6 Λ+(F ) 6 d− 1 is not a binomial form, it follows that no binomial binary
form belongs to U (1)

d (Z) nor to U (2)
d (Z).

Lemma 5.1 shows that the set U (1)
d (K) is K–dilation free.

From Theorem 3.2 we deduce that the set U (1)
d (K) is K–homography–free.

Consider the second item of Corollary 3.6. We need to check that the set U (2)
d (Z) is

Q–homography–free, and Theorem 3.2 shows that it suffices to check that it is Q–dilation
free. This result follows from the first part (a) of Lemma 5.2.

To complete the proof of the second item of Corollary 3.6 it only remains to be
checked that the elements of U (2)

d (Z) are Q–rigid binary forms, which means that if F
belongs to U (2)

d (Z), then its group of Q–automorphisms satisfies (1.6).
By Proposition 4.11.1, which is also valid for f = g, the only affine homogra-

phies which permute Z(f) are Q–homotheties. By the remark made in §5.1, any Q–
automorphism γ of F is such that γ̃ is a Q–homothety. So γ has the shape (5.1), but
with u and v rational numbers different from zero. It only remains to apply part (b) of
Lemma 5.2.

The proofs of both items of Corollary 3.6 are complete.

5.3 Not homothetic pairs of polynomials

The first alinea of Proposition 4.11 gives no information about the existence or not
of a homothety hq,0 exchanging the distinct polynomials f and g ∈ Pd(K). Here we
give examples (without proofs) of subsets of Pd(K) (defined in (4.7)) for which such
homotheties do not exist.

Example 5.3. For 1 6 k < d, let

Pd,k,k+1(C) := {f ∈ Pd(C) : αk = αk+1 6= 0}.
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Then there is no q ∈ C r {0, 1} and no pair (f, g) of (distinct or not) elements of
Pd,k,k+1(C), such that

hq,0(f) = g.

Example 5.4. The second example is of arithmetical nature. Notice that since the
discriminant of the elements in Pd(Z) is not 0, one at least of the two coefficients ad,
ad−1 is not 0. For 2 6 k 6 d, consider the set

Pd,k,free(Z) := {f ∈ Pd(Z) : ak 6= 0 and ak is k − free} .

Let d > 4. There is no q ∈ Qr {0, 1,−1} and no distinct f and g ∈ Pd,k,free(Z) such that

hq,0(f) = g.

Example 5.5. To eliminate the case of symmetry h−1,0, it is sufficient to consider the
following subset of Pd,k,free(Z) defined by

P+
d,k,free(Z) := {f ∈ Pd,k,free(Z) : αk > 0} .

Here is the variant of Example 5.4:
Let d > 4, k odd satisfying 2 6 k 6 d. There is no q ∈ Q r {0, 1} and no distinct f

and g ∈ P+
d,k,free(Z) such that

hq,0(f) = g.

6 Proof of Theorem 3.4 and Corollary 3.9

We now write F and G as
F (X,Y ) = a0X

d + aλX
d−λY λ + aλ+5X

d−λ−5Y λ+5 + aλ+6X
d−λ−6Y λ+6 + · · ·+ adY

d,

G(X,Y ) = b0X
d + bλ′X

d−λ′Y λ
′
+ bλ′+5X

d−λ′−5Y λ
′+5 + bλ′+6X

d−λ′−6Y λ
′+6 + · · ·+ bdY

d,

where λ = Λ+(F ), λ′ = Λ+(G), a0adb0bdaλbλ′ 6= 0. By analogy with the above section,
we introduce the two associated polynomials (see (4.6))

f(t) = td + αλt
d−λ + αλ+5t

d−λ−5 + αλ+6t
d−λ−6 + · · ·+ αd, (αλαd 6= 0)

g(z) = zd + βλ′z
d−λ′ + βλ′+5z

d−λ′−5 + βλ′+6z
d−λ′−6 + · · ·+ βd, (βλ′βd 6= 0),

(6.1)
with αk = ak/a0 and βk = bk/b0 for k = 1, . . . , d; we also set α0 = β0 = 1. So the
polynomials f and g have (at least) four coefficients equal to zero just after the second
monomial (the second monomial of f is αΛ+(f)t

d−Λ+(f), the first monomial is td) and we
have

max{λ, λ′} 6 d− 5. (6.2)

The analogue of Proposition 4.11 is the following.

Proposition 6.1. Let d > 10. Consider in C[t] and C[z] respectively, two polynomials f
and g (distinct or not) as in (6.1), satisfying (6.2) and the inequality

λ+ λ′ > d. (6.3)

Suppose that the discriminants of f and g do not vanish and suppose the existence of a
homography h such that h(f) = g. Then either
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1. h is a homothety hq,0 with q ∈ C×, or

2. h is a non affine homography of the form h0,r,0 with r ∈ C×. In that situation we
have

λ+ λ′ = d (6.4)

and f and g are of the form td+αλt
d−λ+αd and zd+βλ′z

d−λ′+βd, with αdβd = rd,
and αλrλ

′
= αdβλ′ .

6.1 Heuristics again

Let (q, r, s) ∈ C×C× ×C and d > 3, λ, λ′, µ, µ′ positive integers. We are looking for the
existence of two polynomials f, g in Pd satisfying

κf(t) = (t− s)dg
(
q +

r

t− s

)
for some κ ∈ C× and

α1 = · · · = αλ−1 = αλ+1 = · · · = αλ+µ−1 = 0

β1 = · · · = βλ′−1 = βλ′+1 = · · · = βλ′+µ′−1 = 0,

so that

f(t) = td + αλt
d−λ +

d∑
j=λ+µ

αjt
d−j

and

g(z) = zd + βλ′z
d−λ′ +

d∑
j=λ′+µ′

βjz
d−j ,

(compare with (6.1)). According to the heuristic discussion of §4.5.1 with the two subsets

I = {1, . . . , λ− 1, λ+ 1, . . . , λ+ µ− 1}, J = {1, . . . , λ′ − 1, λ′ + 1, . . . , λ′ + µ′ − 1},

with a = λ + µ − 2 and b = λ′ + µ′ − 2, we may expect that, given d > 3, λ, λ′, µ, µ′

satisfying λ+λ′+µ+µ′ = d+ 4, outside a Zariski closed set of (q, r, s), there is a unique
solution. We work out an example for sufficiently large d with λ = µ = 2, 1 6 λ′ 6 d− 1,
µ′ = d− λ′ below (Example 6.2).

When λ + λ′ + µ + µ′ > d + 4, we may expect that there is no solution. The main
result of Proposition 6.1 is that this conclusion holds under the stronger assumptions
µ > 5, µ′ > 5, λ+ λ′ > d.

Example 6.2. Take q = 1, r = 1, s = 2, 1 6 λ′ 6 d− 1, µ′ = d− λ′,

γ =

(
1 −1
1 −2

)
, g(z) = zd + βλ′z

d−λ′ + βd,

κf(t) = (t− 1)d + βλ′(t− 1)d−λ
′
(t− 2)λ

′
+ βd(t− 2)d.

Since f is monic, we have
κ = 1 + βλ′ + βd.

We are searching for βλ′ , βd and κ such that α1 = α3 = 0, so that

f(t) = td + α2t
d−2 + α4t

d−4 + · · ·+ αd.
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We have
κα1 = −d+Aβλ′ − 2dβd,

κα3 = −
(
d

3

)
+Bβλ′ − 8

(
d

3

)
βd

with
A = −(d+ λ′),

B = −8

(
λ′

3

)
− 4

(
λ′

2

)
(d− λ′)− 2λ′

(
d− λ′

2

)
−
(
d− λ′

3

)
.

The determinant of the system of three equations in thee unknowns βλ′ , βd and κ
βλ′ + βd − κ = −1

Aβλ′ − 2dβd = d

Bβλ′ − 8

(
d

3

)
βd =

(
d

3

)
,

is

∆ :=

∣∣∣∣∣∣
1 1 −1
A −2d 0

B −8
(
d
3

)
0

∣∣∣∣∣∣ = 8A

(
d

3

)
− 2dB;

this is a polynomial in d of degree 4 and which is multiple of d. It vanishes for at most
three values of d 6= 0. In particular for d sufficiently large it is different from zero, thus
this system has unique solution (κ, βλ′ , βd). We want to study the potential vanishing
of the unknowns, as the parameter d tends to infinity, when the other parameter λ′ is a
fixed positive integer. Standard computations lead to the equality

B =
1

6

(
−d3 − 3d2(λ′ − 1) + d(−3λ′2 + 12λ′ − 2)− λ′(λ′2 − 9λ+ 14)

)
,

which is summarized as

B = −d
3

6
− d2

2
(λ′ − 1) +O(d).

We use the formula (
d

3

)
=
d3

6
− d2

2
+O(d).

• To study the value of βλ′ , we consider the determinant

∆ =

∣∣∣∣∣∣
−1 1 −1
d −2d 0(
d
3

)
−8
(
d
3

)
0

∣∣∣∣∣∣ = d

(
d

3

) ∣∣∣∣1 2
1 8

∣∣∣∣ = 6d

(
d

3

)
= d4 +O(d3).

So we obtain that βλ′ −→ −1 as d −→ +∞.
• To study the value of βd, we consider the determinant∣∣∣∣∣∣

1 −1 −1
A d 0

B
(
d
3

)
0

∣∣∣∣∣∣ = −A
(
d

3

)
+Bd =

λ′

3
d3 +O(d2).

Using the above value of ∆, we deduce that, for large d, βd tends to zero, without
vanishing.
• To study the value of κ, we already know that κ tends to zero as d tends to infinity:
this follows from the first equation of the system. To prove that κ does not vanish for
large values of d we compute the determinant∣∣∣∣∣∣

1 1 −1
A −2d d

B −8
(
d
3

) (
d
3

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 0 −1

A+ d −d d

B +
(
d
3

)
−7
(
d
3

) (
d
3

)
∣∣∣∣∣∣ = −7(A+ d)

(
d

3

)
+ d(B +

(
d

3

)
),
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which is finally equal to
2λ′

3
d3 +O(d2).

By dividing by the value of ∆, we find that κ tends to zero, without vanishing.
Using (

d

2

)
− 4

(
λ′

2

)
− 2λ′(d− λ′)−

(
d− λ′

2

)
= −λ

′

2
(2d+ λ′ − 3)

we deduce that when d tends to infinity, we have

α2 → −
λ′

2
(2d+ λ′ − 3) 6= 0.

Also from(
d

4

)
− 16

(
λ′

4

)
− 8

(
λ′

3

)
(d− λ′)− 4

(
b

2

)(
d− λ′

2

)
− 2λ′

(
d− λ′

3

)
−
(
d− λ′

4

)
=

− 1

24
λ′(−90 + 4d3 + 6d2(−5 + λ′) + 83λ′ − 18λ′2 + λ′3 + d(82− 42λ′ + 4λ′2))

we conclude that α4 6= 0 for sufficiently large d.
This completes the claim of Example 6.2 that for λ = µ = 2, 1 6 λ′ 6 d − 1 and

µ = d− λ′, there is an example of a pair of polynomial f, g in Pd and an homography h

satisfying h(f) = g.

6.2 Proof of Proposition 6.1

Assume first that h is an affine homography hq,r with q ∈ C×. We use the same argument
as in the proof given in §4.3. The conditions (6.2) and (6.3) imply that λ > 2 and λ′ > 2,
thus the sums of the roots of f and g are equal to zero. Hence r = 0 and h is a homothety
hq,0.

Now consider the case where h is a non affine homography: h = hq,r,s with r ∈ C×. The
proof below works by contradiction. We will show that each of the three cases hq,r,s with
q and s 6= 0, with q = 0 and s 6= 0 and finally with q 6= 0 and s = 0 are impossible.

To start with, we consider the general case (q, r, s) ∈ C× C× × C.
As a consequence of Lemma 4.17, we suppose that λ and λ′ satisfy the inequalities

d 6 λ+ λ′ 6 d+ 2. (6.5)

Thanks to Lemma 4.14, we again appeal to the equality (4.22). Recall that we have

β0 = 1, βλ′ 6= 0, β` = 0 for 1 6 ` 6 λ′ − 1 and for λ′ + 1 6 ` 6 λ′ + 4.

For
j > d− λ+ 1, (6.6)

the derivative f (j)(t) is a monomial, in particular we have the equality

f (j)(s) =
d !

(d− j) !
· sd−j . (6.7)

We apply (4.22) for four consecutive values of j, chosen in order that exactly two non zero
βi are present on the RHS of these equalities. The corresponding indices are necessarily
i = 0 and i = λ′. In this case (4.22) becomes

f (j)(s)

f(s)
=

d !

(d− j) !
·
(q
r

)j
+

(
d− λ′

j − λ′

)
· j ! ·

(q
r

)j
· βλ

′

qλ′
· (6.8)
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Hence the four values of j are either

λ′, λ′ + 1, λ′ + 2, λ′ + 3 or λ′ + 1, λ′ + 2, λ′ + 3, λ′ + 4.

This has to be compatible with (6.5) and (6.6): so we write j = d− λ+ ` with

` = `0 + i, (i = 0, 1, 2, 3) where

{
`0 = 1 if λ+ λ′ = d and if λ+ λ′ = d+ 1,
`0 = 2 if λ+ λ′ = d+ 2.

(6.9)

We apply the formulas (6.8) with the four values of ` given in (6.9).

f (d−λ+`)(s)

f(s)
=

d !

(λ− `) !
·
(q
r

)d−λ+`

+

(
d− λ′

d− λ− λ′ + `

)
·(d−λ+`) !·

(q
r

)d−λ+`

·βλ
′

qλ′
· (6.10)

By (6.7) the four equations of the system (6.10) become

sd =

((qs
r

)d−λ+`

+
(d− λ′) ! · (d− λ+ `) !

(d− λ− λ′ + `) ! · d !
·
(qs
r

)d−λ+`

· βλ
′

qλ′

)
f(s). (6.11)

•We now prove that the case q 6= 0 and s 6= 0 is impossible.
To shorten notations, set ν = λ + λ′ − d, so that ν ∈ {0, 1, 2}, and write τ = qs/r,

κ = βλ′/q
λ′ (since q 6= 0), and

A` :=
(d− λ+ `) !

(`− ν) !
· (d− λ′) !

d !
,

for the four values of ` given in (6.9). So (6.11) becomes

sd = τd−λ+` (1 + κA`) f(s). (6.12)

We now exploit the fact that s 6= 0. We notice that (6.12) implies τ 6= 0 and f(s) 6= 0,
and also 1 + κA` 6= 0 for the four values of ` given in (6.9). We eliminate the variable sd

among the four equations (6.12) and we obtain the three equalities, which are satisfied
by the two unknowns τ and κ, which both are 6= 0.

τ =
1 + κA`0

1 + κA`0+1
,

τ =
1 + κA`0+1

1 + κA`0+2
,

τ =
1 + κA`0+2

1 + κA`0+3
·

We now write necessary and sufficient conditions to ensure that the two first equations
are compatible and that the two last ones are compatible. We obtain the following system
of two equations {

(1 + κA`0)(1 + κA`0+2) = (1 + κA`0+1)2

(1 + κA`0+1)(1 + κA`0+3) = (1 + κA`0+2)2

which (since κ 6= 0) is equivalent to the system{ (
A2
`0+1 −A`0A`0+2

)
κ = A`0 +A`0+2 − 2A`0+1,(

A2
`0+2 −A`0+1A`0+3

)
κ = A`0+1 +A`0+3 − 2A`0+2.

(6.13)
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If the system (6.13) has a solution then we have

(A2
`0+1−A`0A`0+2)(A`0+1+A`0+3−2A`0+2) = (A2

`0+2−A`0+1A`0+3)(A`0+A`0+2−2A`0+1).

(6.14)
We factorize each A` as

A` = (d− λ+ 1) ! · (d− λ′) !

d !
A∗` ,

with

A∗` :=
∏̀
i=2

λ′ + i− ν
(i− ν)+

, (6.15)

with the convention x+ = max(x, 1).
By homogeneity, the equality (6.14) is equivalent to

(A∗2`0+1−A∗`0A
∗
`0+2)(A∗`0+1+A∗`0+3−2A∗`0+2) = (A∗2`0+2−A∗`0+1A

∗
`0+3)(A∗`0+A∗`0+2−2A∗`0+1).

(6.16)
Actually, the equality (6.16) cannot hold. This is the purpose of the following lemma.

Lemma 6.3. Let d, λ and λ′ be positive integers such that d 6 λ + λ′ 6 d + 2 and
`0 ∈ {1, 2}. Let A∗` (1 6 ` 6 5) be defined by (6.15) with ν = λ+ λ′ − d. Define

Q :=
(A∗`0 +A∗`0+2 − 2A∗`0+1)(A∗2`0+2 −A∗`0+1A

∗
`0+3)

(A∗`0+1 +A∗`0+3 − 2A∗`0+2)(A∗2`0+1 −A∗`0A
∗
`0+2)

· (6.17)

Then have

Q =



λ′ + 3

3(λ′ + 2)
if λ+ λ′ = d,

λ′ + 2

2(λ′ + 1)
if λ+ λ′ = d+ 1,

1

2
(λ′ + 2) if λ+ λ′ = d+ 2.

In these three cases, we have Q 6= 1.

Proof of Lemma 6.3. We first suppose that λ+ λ′ = d+ 2, that is `0 = 2 and ν = 2. We
have the equalities

A∗1 = 1, A∗2 = λ′, A∗3 = λ′(λ′+1), A∗4 =
λ′(λ′ + 1)(λ′ + 2)

2
, A∗5 =

λ′(λ′ + 1)(λ′ + 2)(λ′ + 3)

6
·

With these values, we obtain the equalities

A∗2 +A∗4 − 2A∗3 =
1

2
· λ′2(λ′ − 1),

A∗24 −A∗3A∗5 =
1

12
λ′3(λ′ + 1)2(λ′ + 2),

A∗3 +A∗5 − 2A∗4 =
1

6
λ′2(λ′ − 1)(λ′ + 1)

and
A∗3

2 −A∗2A∗4 =
1

2
λ′3(λ′ + 1).
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By (6.17), we finally obtain

Q =
(A∗2 +A∗4 − 2A∗3)(A∗4

2 −A∗3A∗5)

(A∗3 +A∗5 − 2A∗4)(A∗3
2 −A∗2A∗4)

=
1

2
(λ′ + 2).

This completes the proof of Lemma 6.3 in that case λ+ λ′ = d+ 2.
We now suppose that d 6 λ+ λ′ 6 d+ 1, that is `0 = 1 and ν ∈ {0, 1}. In that case,

we can forget the symbol + in the definition (6.15). We have the equalities

A∗1 = 1, A∗2 =
λ′ + 2− ν

2− ν
, A∗3 =

(λ′ + 2− ν)(λ′ + 3− ν)

(2− ν)(3− ν)
,

A∗4 =
(λ′ + 2− ν)(λ′ + 3− ν)(λ′ + 4− ν)

(2− ν)(3− ν)(4− ν)
·

With these values, we obtain the equalities

A∗1 +A∗3 − 2A∗2 =
λ′(λ′ − 1)

(2− ν)(3− ν)
,

A∗3
2 −A∗2A∗4 =

λ′(λ′ + 2− ν)(λ′ + 3− ν)

(2− ν)2(3− ν)2(4− ν)
,

A∗2 +A∗4 − 2A∗3 =
λ′(λ′ − 1)(λ′ + 2− ν)

(2− ν)(3− ν)(4− ν)

and
A∗22 −A∗1A∗3 =

λ′(λ′ + 2− ν)

(2− ν)2(3− ν)
·

By (6.17), we finally obtain

Q =
(A∗1 +A∗3 − 2A∗2)(A∗3

2 −A∗2A∗4)

(A∗2 +A∗4 − 2A∗3)(A∗2
2 −A∗1A∗3)

=
λ′ + 3− ν

(3− ν)(λ′ + 2− ν)
·

Lemma 6.3 is proved also in that case.

Thanks to Lemma 6.3, this completes the proof that in Proposition 6.1 the case q 6= 0

and s 6= 0 is impossible.
We continue the proof of Proposition 6.1 in the other cases.

•We now prove that the case q = 0 and s 6= 0 is impossible.
Suppose that q = 0. The second equality of (6.1) implies that βλ′+1 = 0. The equality

(4.23) gives the vanishing of the derivative

f (λ′+1)(s) = 0. (6.18)

By (6.5) we know that
d− λ+ 1 6 λ′ + 1 < d,

where the last inequality comes from the assumption (6.2). This means that the derivative
f (λ′+1)(t) is a monomial in t with degree> 1. Combining with (6.18) we obtain that s = 0.
Contradiction.

•We now prove that the case q 6= 0 and s = 0 is impossible.
We benefit from the symmetry of the question to consider the homography hs,r,q

which transforms g to f . We also take into account the symmetry of the assumptions
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(6.2) and (6.5) concerning these two polynomials. By the above alinea, we deduce that
the case q 6= 0 and s = 0 is also impossible.

• The remaining case is q = s = 0.
We have h0,r,0(t) = r/t. By Lemma 4.9 we deduce

[h0,r,0(f)](z) =
1

f(0)
· zdf

(r
z

)
=

1

αd
· zdf

(r
z

)
.

This relation gives the list of equalities

αdβj = αd−jr
j (0 6 j 6 d)

after identification of the coefficients. In this relation, we fix j = d− λ. Since αλ 6= 0, we
deduce that βd−λ 6= 0, which implies d− λ > λ′. This condition is compatible with (6.5)
if and only if (6.4) holds. By the definition of λ and λ′ we deduce that f and g are both
the sum of two or three monomials as indicated.

Recalling that α0 = β0 = 1, we obtain the conditions of the second item of Proposition
6.1. This completes the proof of this proposition.

6.3 Proof of Theorem 3.4 and Corollary 3.9

Proof of Theorem 3.4. Let F and G be two forms in E and γ an homography such that
F ◦ γ = G. Our goal is to prove F = G.

Like in §5.1, we consider the two monic polynomials f and g associated with F and
G and the homography h = γ̃ and we apply Proposition 6.1. The last assumption (3.4)
of Theorem 3.4 imply that h is of the form hq,0 for some q ∈ K×. By assumption E is
K–reduced, hence K–dilation free, and therefore F = G.

Proof of Corollary 3.9. Consider the first item of Corollary 3.9. The assumption ad−1 = 1

implies that the set V(1)
d (K) does not contain binomials nor trinomials of the form (3.4).

According to Lemma 5.1, the set V(1)
d (K) is K–dilation free. The first item now follows

from Theorem 3.4.
For the proof of the second item, we use Lemma 5.2 together with Theorem 3.4 in

the same way as in the proof of the second item of Corollary 3.6 in section 5.2.
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