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Abstract
A question, studied by the Greek mathematician Diophantus of
Alexandria, is related with the so-called ”house number problem”, which
was proposed to Srinivasa Ramanujan by Prasanta Chandra Mahalanobis
in 1914.
The puzzle involves a street in the town of Louvain, Belgium, where the
houses are supposedly numbered consecutively. Among these house
numbers, one had the remarkable property that the sum of all the house
numbers below it was exactly equal to the sum of all the house numbers
above it.
Additionally, the mysterious house number was known to be greater than
50 but less than 500.

Ramanujan provided an immediate solution. His answer used early works
of Indian mathematicians including Brahmagupta and Bhaskara II. The
names of Pell and Fermat were later given by Euler to the relevant
equations.

These questions also connect to the ISO 216 international standard for
paper sizes, such as the A4 format. We will further quote open problems
related to this topic.
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Diophantus of Alexandria (∼ 250 ±50)

Diophantine equations
Diophantine approximation
Diophantine problems
Diophantine tuples

Main Theorem of Diophantine approximation : if a is a
nonzero integer, then |a| > 1.

https://mathshistory.st-andrews.ac.uk/Biographies/Diophantus/
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Rational Diophantine tuples

If x and y are two distinct elements among

1
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,

33

16
,

17

4
,

105

16
,

then xy + 1 is a square.

1

16
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(
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16

)2

,
1
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· 17
4
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)2
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1
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19

16

)2
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16
· 17
4

+ 1 =

(
25

8

)2

,
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16
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+ 1 =
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61

16

)2

,
17

4
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+ 1 =
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43

8

)2

.
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Method of Diophantus of Alexandria
Four unknowns, six equations. The equation

y2 = 9x2 + 24x+ 13

has the solution

x =
1

16
, y =

61

16
·

.
612 = 3721 = 9 + 24 · 16 + 13 · 162.

Andrej Dujella

Developments in Mathematics (DEVM, volume 79) Springer, June 2024
DOI : https://doi.org/10.1007/978-3-031-56724-7 5 / 60
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A Diophantine quadruple

Pierre de Fermat

1601–1665

Diophantine quadruple :
(1, 3, 8, 120)
xy + 1 is a square

1 · 3 + 1 = 4 = 22, 1 · 8 + 1 = 9 = 32, 1 · 120 + 1 = 121 = 112,

3 · 8 + 1 = 25 = 52, 3 · 120 + 1 = 361 = 192,

8 · 120 + 1 = 961 = 312.
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Rational Diophantine quintuple

Leonard Euler

1707–1783

(
1, 3, 8, 120,

777480

8288641

)

777480

8288641
+ 1 =

(
3011

2879

)2

, 3 · 777480
8288641

+ 1 =

(
3259

2879

)2

,

8 · 777480
8288641

+ 1 =

(
3809

2879

)2

,

120 · 777480
8288641

+ 1 =

(
10 079

2879

)2

.
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Rational Diophantine sextuples

Philip Gibbs

Seven examples in

P.E. Gibbs,
Some Rational Diophantine
Sextuples, (1999).
arxiv: math.NT/9902081

including

11

192
,

35

192
,

155

27
,

512

27
,

1235

48
,

180 873

16
·

Five more examples in
P.E. Gibbs,
A generalised Stern-Brocot tree from regular Diophantine quadruples,
(1999). arXiv: math.NT/9903035.
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Diophantine quintuples

Bo He Alain Togbé Volker Ziegler

Bo He, Alain Togbé and Volker Ziegler. There is no
Diophantine quintuple. Trans. Amer. Math. Soc. 371,
6665–6709 (2019).
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Diophantus of Alexandria : another problem

Find an integer n such that 10n+ 9 and 5n+ 4 are squares.

Solutions
n = 0, 10n+ 9 = 9 = 32, 5n+ 4 = 4 = 22.

n = 28, 10n+ 9 = 289 = 172, 5n+ 4 = 144 = 122.

n = 33 292,
10n+ 9 = 332 929 = 5772, 5n+ 4 = 166 464 = 4082.

Next ones : n = 1130 976, n = 13 051 463 040.
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Problem by Diophantus of Alexandria

10n+ 9 and 5n+ 4 are squares :

x2 = 10n+ 9, y2 = 5n+ 4

x2 − 2y2 = 1.

n = 0, (x, y) = (3, 2), x2 = 9, y2 = 4.

n = 28, (x, y) = (17, 12), x2 = 289, y2 = 144, 2y2 = 288.

n = 33 292, (x, y) = (577, 408),
x2 = 332 929, y2 = 166 464, 2y2 = 332 928.

For x = 99, y = 70 we have x2 − 2y2 = 9801− 9800 = 1 but this is not a solution to
Diophantus problem : x2 = 980 · 10 + 1, y2 = 980 · 5.

11 / 60



Rational solutions to x2 − 2y2 = 1

y = t(x+ 1), t ∈ Q

2t2(x+ 1)2 = x2 − 1,

2t2(x+ 1) = x− 1,

x =
1 + 2t2

1− 2t2
, y =

2t

1− 2t2
·

t =
1

2
, (x, y) = (3, 2).

t =
2

3
, 1− 2t2 =

1

9
, 1 + 2t2 =

17

9
, (x, y) = (17, 12).
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Pythagorean triples

Euclid
∼325 BC – ∼ 265 BC

Parametrisation of the circle :
x2 + y2 = 1
rational points on the circle
y = t(x+ 1) :

x =
t2 − 1

t2 + 1
, y =

2t

t2 + 1
·

Pythagoras equation a2 + b2 = c2 (ref. : Hardy and Wright)
m > n > 0,

a = m2 − n2, b = 2mn, c = m2 + n2.

Credit photo
https://mathshistory.st-andrews.ac.uk/Biographies/Euclid/
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Integer solutions to x2 − 2y2 = 1

x2 − 2y2 = 1.

Pell–Fermat equation

(x, y) = (3, 2)

(3 + 2
√
2)2 = 17 + 12

√
2, 172 − 2 · 122 = 289− 288 = 1.

(3+2
√
2)3 = 99+70

√
2, 992−2 ·702 = 9801−2 ·4000 = 1.

(3+2
√
2)4 = 577+408

√
2, 5772−2·4082 = 232 929−2·166 464 = 1.
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An interesting street number
The puzzle itself was about a street in the town of Louvain in

Belgium, where houses are numbered consecutively. One of the

house numbers had the peculiar property that the total of the

numbers lower than it was exactly equal to the total of the

numbers above it. Furthermore, the mysterious house number was

greater than 50 but less than 500.

Prasanta Chandra Mahalanobis

1893 – 1972

Srinivasa Ramanujan

1887 – 1920

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html

https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf
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Street number : examples
Examples :
• House number 6 in a street with 8 houses :

1 + 2 + 3 + 4 + 5 = 15, 7 + 8 = 15.

• House number 35 in a street with 49 houses. To compute

S := 1 + 2 + 3 + · · ·+ 32 + 33 + 34

write
S = 34 + 33 + 32 + · · ·+ 3 + 2 + 1

so that 2S = 34× 35 :

1 + 2 + 3 + · · ·+ 34 =
34× 35

2
= 595.

On the other side of the house,

36+ 37+ · · ·+49 =
49× 50

2
− 35× 36

2
= 1225− 630 = 595.
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Other solutions to the puzzle

• House number 1 in a street with 1 house.

• House number 0 in a street with 0 house.

Ramanujan : if no banana is distributed to no student, will
each student get a banana ?

The puzzle requests the house number between 50 and 500.
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Street number

Let m be the house number and n the number of houses :

1 + 2 + 3 + · · ·+ (m− 1) = (m+ 1) + (m+ 2) + · · ·+ n.

m(m− 1)

2
=
n(n+ 1)

2
− m(m+ 1)

2
·

This is 2m2 = n(n+ 1). Complete the square on the right :

8m2 = (2n+ 1)2 − 1.

Set x = 2n+ 1, y = 2m. Then

x2 − 2y2 = 1.
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Infinitely many solutions to the puzzle

Ramanujan said he has infinitely many solutions (but a single
one between 50 and 500).
Sequence of balancing numbers (number of the house)
https://oeis.org/A001109

0, 1, 6, 35,204, 1189, 6930, 40391, 235416, 1372105, 7997214 . . .

This is a linear recurrence sequence un+1 = 6un − un−1 with
the initial conditions u0 = 0, u1 = 1.

The number of houses is https://oeis.org/A001108

0, 1, 8, 49,288, 1681, 9800, 57121, 332928, 1940449, . . .
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OEIS

Neil J. A. Sloane’s encyclopaedia
http://oeis.org/A001597
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Brahmagupta (598 – 670)

Brāhmasphut.asiddhānta
(628) :

x2 − 92y2 = 1

The smallest solution is

x = 1151, y = 120.

Composition method : samasa – Brahmagupta identity

(a2 − db2)(x2 − dy2) = (ax+ dby)2 − d(ay + bx)2.

http://mathworld.wolfram.com/BrahmaguptasProblem.html

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
21 / 60
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Bhāskara II or Bhāskarāchārya (1114 - 1185)

Lilavati Ujjain (India)

(Bijagan. ita, 1150)

x2 − 61y2 = 1

x = 1766 319 049, y = 226 153 980.

Cyclic method (Chakravala) : produce a solution to Pell’s
equation x2 − dy2 = 1 starting from a solution to
a2 − db2 = k with a small k.
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Narayan. a Pand. it ∼ 1340 – ∼ 1400

Author of Gan. ita Kaumudi on arithmetic in 1356.
Narayan.a cows (Tom Johnson)

x2 − 103y2 = 1

x = 227 528, y = 22 419.
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Reference to Indian mathematics

André Weil
Number theory :
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c:01004
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Pell’s equation x2 − dy2 = ±1

John Pell

1610 – 1685

It is often said that Euler mistakenly attributed Brouncker’s
work on this equation to Pell. However the equation appears in
a book by Rahn which was certainly written with Pell’s help :
some say entirely written by Pell. Perhaps Euler knew what he
was doing in naming the equation.

Johann Rahn (1622 - 1676) was a Swiss mathematician who
was the first to use the symbol ÷ for division.

https://mathshistory.st-andrews.ac.uk/Biographies/Pell/

https://fr.wikipedia.org/wiki/John_Pell
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On the equation x2 − dy2 = ±1 : history

Lord William Brouncker

1620–1684

Pierre de Fermat

1601–1665

Correspondence from Pierre de Fermat to Brouncker.

1657 : letter of Fermat to Frenicle de Bessy (1604–1674).

https://mathshistory.st-andrews.ac.uk/Biographies/
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Correspondence from Fermat to Lord Brouncker

“pour ne vous donner pas trop de peine” (Fermat)
“ to make it not too difficult”

x2 − dy2 = 1, with d = 61 and d = 109.

Solutions respectively :

(1 766 319 049 , 226 153 980)
(158 070 671 986 249, 15 140 424 455 100)

158 070 671 986 249 + 15 140 424 455 100
√
109 =(

261 + 25
√
109

2

)6

.
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History (continued)

Leonard Euler

1707–1783

Joseph–Louis Lagrange

1736–1813

L. Euler : Book of algebra in 1770 + continued fractions

The complete theory of the equation x2 − dy2 = ±1 was
worked out by Lagrange.

https://mathshistory.st-andrews.ac.uk/Biographies/
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Solution of the equation x2 − dy2 = ±1
Let d be a positive integer, not a square. Then the equation
x2 − dy2 = ±1 has infinitely many non negative solutions in
integers (x, y).

There is a smallest positive fundamental solution (x1, y1) such
that all non negative solutions are obtained by writing

xν + yν
√
d = (x1 + y1

√
d)ν

with ν > 0.

The trivial solution (x, y) = (1, 0) is obtained with ν = 0.

The set of solutions (x, y) in Z× Z is given by

xν + yν
√
d = ±(x1 + y1

√
d)ν

with ν ∈ Z. They form a group ' {±1} × Z.
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Group law on a conic

The curve x2 − dy2 = 1 is a conic, and on a conic there is a
group law which can be described geometrically. The fact that
it is associative is proved by using Pascal’s Theorem.

Franz Lemmermeyer. Conics – a poor man’s elliptic curves.
https://arxiv.org/pdf/math/0311306.pdf

30 / 60

https://arxiv.org/pdf/math/0311306.pdf


Mahalanobis puzzle x2 − 2y2 = 1, x = 2n+ 1, y = 2m

Fundamental solution : (x1, y1) = (3, 2).
Other solutions (xν , yν) with

xν + yν
√
2 = (3 + 2

√
2)ν .

• ν = 0, trivial solution : x = 1, y = 0, m = n = 0.

• ν = 1, x1 = 3, y1 = 2, m = n = 1.

• ν = 2, x2 = 17, y2 = 12, n = 8, m = 6,

x2 + y2
√
2 = (3 + 2

√
2)2 = 17 + 12

√
2.

• ν = 3, x3 = 99, y3 = 70, n = 49, m = 35,

x3 + y3
√
2 = (3 + 2

√
2)3 = 99 + 70

√
2.
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Diophantus problem

Find an integer n such that 10n+ 9 and 5n+ 4 are squares :

x2 = 10n+ 9, y2 = 5n+ 4

x2 − 2y2 = 1 http://oeis.org/A001333

1, 3, 17, 99, 577, 3 363, 19 601, 114 243, 665 857, 3 880 899, . . .

x = 3, 17, 577, 3 363, 114 243, . . .

n =
x2 − 9

10
= 0, 28, 33 292, 1 130, 976, 1 305 146 304 . . .
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Diophantine approximation

3 3632 − 2 · 2 3782 = 1

3 363

2 378
=

√
2 +

1

2 3782
.

3 363

2 378
= 1.414213 62 . . . ,

√
2 = 1.414213 56 . . .

33 / 60



Diophantine approximation
For each ε > 0, there exists q0 > 0 such that, for q > q0,

(*)

∣∣∣∣√2− p

q

∣∣∣∣ > 1− ε
2
√
2q2

and there exists infinitely many p/q ∈ Q such that

(**)

∣∣∣∣√2− p

q

∣∣∣∣ < 1 + ε

2
√
2q2
·

Sketch of proof. For q sufficiently large, let p be the nearest integer to
q
√
2, so that

q
√
2− 1

2
< p < q

√
2 +

1

2
·

Hence p ' q
√
2. From |p2 − 2q2| > 1 we deduce

|p−
√
2q| ≥ 1

|p+
√
2q|

,

which gives (*), while (**) follows when p2 − 2q2 = ±1
34 / 60



Tablet YBC 7289 : 1800 – 1600 BC

Babylonian clay tablet,
accurate sexagesimal
approximation to

√
2 to the

equivalent of six decimal
digits.

1 +
24

60
+

51

602
+

10

603
= 1.414212 962 962 962 . . .

√
2 = 1.414213 562 373 095 048 . . .

https://en.wikipedia.org/wiki/YBC_7289
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A4 format 21× 29.7
ISO 216 International standard https://en.wikipedia.org/wiki/ISO_216

297

210
=

99

70
= 1.414285 714 285 714 285 . . .

√
2 = 1.414213 562 373 095 048 . . .

210

297

36 / 60
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A, B, C formats

Large rectangle : sides x, 1 ; proportion x
1
= x

Small rectangles : sides 1, x
2

; proportion 1
x/2

= 2
x

x

2

x

2

1

x =
2

x
, x2 = 2.

https://en.wikipedia.org/wiki/Paper_size
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Rectangle format
√
2

The large rectangle and half
of it are proportional.

Reference : Paul Gérardin
http://www.lpsm.paris/pageperso/SemaineCollege-Avril08/web/doc/Coll08A4.pdf

38 / 60

http://www.lpsm.paris/pageperso/SemaineCollege-Avril08/web/doc/Coll08A4.pdf


A format
The number

√
2 is twice its inverse :

√
2 = 2/

√
2.

Folding a rectangular piece of paper with sides in proportion√
2 yields a new rectangular piece of paper with sides in

proportion
√
2 again.

A0 is 118.8cm ×84cm - area 1 m2.
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B and C formats https://papersizes.io/

B0 is 1m ×1.414m.
B7 (passeport) is 88mm ×125mm.

C0 is 917mm ×1297mm, approximately
1
8
√
2
× 8
√
8.

C6 : 114mm ×162mm
enveloppe for a A6 paper 105mm ×148mm

Xerox machine : enlarging and reducing

141% 119% 84% 71%
1.41 1.19 0.84 0.71
1.4142 1.1892 0.8409 0.7071√

2 4
√
2 1/ 4

√
2 1/

√
2
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Paper format A0, A1, A2,. . . in cm

x1 = 100
4
√
2 = 118.8, x2 =

100
4
√
2
= 84.

A0 : x1 = 118.8 x2 = 84

A1 : x2 = 84
x1
2

= 59.4

A2 :
x1
2

= 59.4
x2
2

= 42

A3 :
x2
2

= 42
x1
4

= 29.7

A4 :
x1
4

= 29.7
x2
4

= 21

A5 :
x2
4

= 21
x1
8

= 14.85
41 / 60



Rectangle with proportion
√
2

One square plus 2 rectangles with proportion 1 +
√
2 :

√
2 = 1 +

1

1 +
√
2
, 1 +

√
2 = 2 +

1

1 +
√
2
·
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Irrationality of
√
2 : geometric proof

99

70
= 1 +

29

70
,

70

29
= 2 +

12

29
,

29

12
= 2 +

5

12
,

12

5
= 2 +

2

5
,

5

2
= 2 +

1

2
·

297

210
=

99

70
·
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Continued fraction of
√
2

The number
√
2 = 1.414 213 562 373 095 048 801 688 724 20 . . .

satisfies √
2 = 1 +

1

1 +
√
2
·

Hence
√
2 = 1 +

1

2 +
1

1 +
√
2

= 1 +
1

2 +
1

2 +
1

. . .

We write the continued fraction expansion of
√
2 using the

shorter notation
√
2 = [1, 2, 2, 2, 2, 2, . . . ] = [1, 2].
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A4 format

297

210
= 1 +

29

70
,

70

29
= 2 +

12

29
,

29

12
= 2 +

5

12
,

12

5
= 2 +

2

5
,

5

2
= 2 +

1

2
·

Hence
297

210
= [1, 2, 2, 2, 2, 2].
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Pierre de Fermat

Pierre de Fermat
1601–1665

Andrew Wiles

Proof of Fermat’s last Theorem by Andrew Wiles (1993) : for
n > 3, there is no positive integer solution (a, b, c) to

an + bn = cn.

46 / 60



Ramanujan – Nagell Equation

Srinivasa Ramanujan
1887 – 1920

Trygve Nagell
1895 – 1988

47 / 60



Ramanujan – Nagell Equation

x2 + 7 = 2n

12 + 7 = 23 = 8
32 + 7 = 24 = 16
52 + 7 = 25 = 32
112 + 7 = 27 = 128
1812 + 7 = 215 = 32 768

48 / 60



x2 +D = 2n

Nagell (1948) : for D = 7, no further solution

Apéry (1960) : for D > 0,
D 6= 7, the equation
x2 +D = 2n has at most 2
solutions.

Roger Apéry
1916 – 1994

Examples with 2 solutions :

D = 23 : 32 + 23 = 32, 452 + 23 = 211 = 2048

D = 2`+1 − 1, ` > 3 : (2` − 1)2 + 2`+1 − 1 = 22`
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x2 +D = 2n

Beukers (1980) : at most one solution otherwise.

Frits Beukers Mike Bennett

M. Bennett (1995) : considers the case D < 0.
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Diophantine equations : early historical survey

Pierre Fermat (1601 ? – 1665)

Leonhard Euler (1707 – 1783)

Joseph Louis Lagrange (1736 – 1813)

XIXth Century : Adolf Hurwitz, Henri Poincaré

51 / 60



Hilbert’s 8th Problem

David Hilbert
1862 – 1943

Second International Congress
of Mathematicians in Paris.
August 8, 1900

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis

http://www.maa.org/sites/default/files/pdf/upload$_-$library/22/Ford/Thiele1-24.pdf
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Hilbert’s tenth problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.
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Negative solution to Hilbert’s 10th problem

Julia Robinson (1952)

Julia Robinson, Martin Davis, Hilary Putnam (1961)

Yuri Matijasevic (1970)

Remark : the analog for rational points of Hilbert’s 10th
problem is not yet solved :
Does there exist an algorithm in order to decide whether a
Diophantine equation has a rational solution or not ?
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Diophantine equations : historical survey
Thue (1908) : there are only finitely many integer solutions of

F (x, y) = m,

when F is homogeneous irreducible form over Q of degree
> 3.
Mordell’s Conjecture (1922) : rational points on algebraic
curves
Siegel’s Theorem (1929) : integral points on algebraic curves

Axel Thue
1863 - 1922

Louis Mordell
1888 – 1972

Carl Ludwig Siegel
1896 - 1981
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Mordell’s Conjecture, Faltings’s Theorem

Mordell’s Conjecture : 1922. Faltings’s Theorem (1983).
The set of rational points on a number field of a curve of
genus > 2 is finite.

Louis Mordell
1888 – 1972

Gerd Faltings
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The group of rational points on an elliptic curve
Conjecture (Henri Poincaré, 1901) : finitely many points are
sufficient to deduce all rational points by the chord and
tangent method.

Henri Poincaré
1854 – 1912

Louis Mordell
1888 – 1972

Theorem (Mordell, 1922). If E is an elliptic curve over Q,
then the abelian group E(Q) is finitely generated : there exists
a nonnegative integer r (the Mordell-Weil rank of the curve
over Q) such that

E(Q) = E(Q)tors × Zr

and E(Q)tors is a finite group.
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Mordell–Weil Theorem
André Weil (1928) : generalization to number fields and
abelian varieties :
If A is an Abelian variety over a number field K, then the
abelian group A(K) is finitely generated :

A(K) = A(K)tors × Zr

with r > 0 while A(K)tors is a finite group.

Jacques Hadamard
1865 - 1963

André Weil
1906 – 1998

Weil’s thesis : 1928. Hadamard’s comment.
Reference : Antoine Chambert-Loir. La conjecture de Mordell : origines, approches, généralisations. Séminaire
Betty B., Septembre 2021 5e année, 2021–2022
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A one million US$ open problem

Conjecture of Birch and Swinnerton-Dyer

Henry Peter Francis Swinnerton-Dyer (1927-2018)
and Bryan John Birch

B. Birch and H.P.F. Swinnerton-Dyer. Notes on Elliptic Curves. II.
J. reine angew. Math. 218, 79–108 (1965).

Clay Mathematics Institute. The Birch and Swinnerton-Dyer Conjecture.
http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/
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December 12, 2024

SRM University AP University Distinguished Lecture (UDL)

Diophantine equations
from Brahmagupta to Ramanujan and later

Michel Waldschmidt

Professeur Émérite, Sorbonne Université,
Institut de Mathématiques de Jussieu, Paris

http://www.imj-prg.fr/~michel.waldschmidt/
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