Lattices and geometry of numbers

Michel Waldschmidt
Université Pierre et Marie Curie (Paris 6) France
http://www.imj-prg.fr/~michel.waldschmidt/

Part I: August 1, 2016

- Subgroups of \mathbb{R}^n: discrete, closed, dense
- Topological groups
- Lattices
- Fundamental parallelepiped, covolume, determinant
- Packing, covering, tiling
- Sublattices
- Subgroup of $\text{Hom}_\mathbb{R}(\mathbb{R}^n, \mathbb{R})$ associated with a subgroup of \mathbb{R}^n

Part II: August 3, 2016

- Convex sets and star bodies
- Minkowski’s convex body Theorem
- Minkowski’s theorems on linear forms
- Gauge functions
- Minkowski’s theorems on successive minima
- Minkowski’s theorems on successive minima

Part III: August 5, 2016

Examples of lattices in number theory

- Minima of quadratic forms
- Sum of two squares
- Sum of four squares
- Primes of the form $x^2 + ny^2$
- Discriminant of a number field
- Units of a number field: Dirichlet’s Theorem
- Geometry of numbers and transcendence
Subgroups of \mathbb{R}

Theorem 1 (Kronecker).
Let θ be an irrational number. Then $\mathbb{Z} + \mathbb{Z}\theta$ is dense in \mathbb{R}.

Lemma 2.
A subgroup of \mathbb{R} is either discrete or dense.

Lemma 3.
The closed subgroups of \mathbb{R} are \mathbb{R} and the discrete subgroups generated by one element (including $\{0\}$).

Subgroups of \mathbb{R}/\mathbb{Z}

From Lemma 2, we deduce:

Corollary 4.
A subgroup of \mathbb{R}/\mathbb{Z} is either finite or dense.

Topological groups

Topological group: group G with a topology for which the maps

$$G \times G \to G \quad \text{and} \quad G \to G$$

$$(x, y) \mapsto xy \quad \text{and} \quad x \mapsto x^{-1}$$

are continuous ($G \times G$ is endowed with the product topology).

Examples:

$$\mathbb{R}, \mathbb{Z}, \mathbb{C}, \mathbb{R}/\mathbb{Z}, \mathbb{R}^\times, \mathbb{R}_+^\times, U = \{z \in \mathbb{C}^\times \mid |z| = 1\}.$$

Isomorphisms:

$$\mathbb{R} \simeq \mathbb{R}^\times, \quad U \simeq \mathbb{R}/\mathbb{Z}, \quad \mathbb{R}_+^\times \simeq \mathbb{R}^\times/\{\pm 1\}, \quad \mathbb{C}^\times \simeq \mathbb{R}_+^\times \times U.$$

Character of a group G: continuous homomorphism $G \to U$.

Billiard problem

The orbit is either periodic or dense in the torus, depending on whether the tangent of the angle is rational or not.
The problem of the reflected ray

Subgroups of \mathbb{R}^\times

From Theorem 1, we deduce:

Corollary 5.

Let Γ be a finitely generated subgroup of \mathbb{R}^\times_+. Then the following conditions are equivalent.

(i) Γ is dense in \mathbb{R}^\times_+.
(ii) Γ has rank ≥ 2 over \mathbb{Z}.

Corollary 6.

Let Γ be a finitely generated subgroup of \mathbb{R}^\times. Then the following conditions are equivalent.

(i) Γ is dense in \mathbb{R}^\times.
(ii) Γ has rank ≥ 2 over \mathbb{Z} and contains a negative real number.

Kronecker’s Theorem

Theorem 7 (Kronecker).

Let θ be an irrational real number. For any $x \in \mathbb{R}$ and any $N > 0$ there exist n and k in \mathbb{Z} with $n > N$ and

$$|x - k - n\theta| < \frac{3}{n}.$$

Dirichlet’s Theorem

In the homogeneous case ($x = 0$), a stronger result is available.

Theorem 8 (Dirichlet).

Let θ be a real number. For any $Q \in \mathbb{R}$ with $Q > 1$ there exist p and q in \mathbb{Z} with $1 \leq q < Q$ and

$$|q\theta - p| \leq \frac{1}{Q}.$$
Discrete subgroups of \(\mathbb{R}^n \)

Lemma 9.
A subgroup \(G \) of \(\mathbb{R}^n \) is discrete in \(\mathbb{R}^n \) if and only if there exists an open subset \(U \) of \(\mathbb{R}^n \) containing 0 such that \(G \cap U \) is discrete.

Theorem 10.
Let \(g_1, \ldots, g_\ell \) be \(\mathbb{R} \)-linearly independent elements in \(\mathbb{R}^n \). Then the subgroup \(\mathbb{Z}g_1 + \cdots + \mathbb{Z}g_\ell \) of \(\mathbb{R}^n \) is discrete. Conversely, if \(G \) is a discrete subgroup of \(\mathbb{R}^n \), then there exist \(\mathbb{R} \)-linearly independent elements \(g_1, \ldots, g_\ell \) in \(G \) such that \(G = \mathbb{Z}g_1 + \cdots + \mathbb{Z}g_\ell \).

Submodules of finitely generated free \(\mathbb{Z} \)-modules

Proposition 12.
If \(G \) is a free finitely generated \(\mathbb{Z} \)-module and \(G' \) a submodule of \(G \), then \(G' \) is free and finitely generated.

Auxiliary result

Lemma 11.
Let \(G \) be a discrete subgroup of \(\mathbb{R}^n \) of real rank \(r \). Let \(e_1, \ldots, e_r \) be \(\mathbb{R} \)-linearly independent elements in \(G \). Then \(G' = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r \) is a subgroup of finite index in \(G \).

Define
\[
P = \{ x_1 e_1 + \cdots + x_r e_r \mid 0 \leq x_i \leq 1 (i = 1, \ldots, r) \}.
\]
Then \(G \cap P \) is a finite set. For each \(x \in G \) there exists \(x' \in G' \) such that \(x - x' \in G \cap P \).

Theorem of the adapted basis

Theorem 13.
Let \(G \) be a discrete subgroup of \(\mathbb{R}^n \) and \(G' \) a subgroup, \(G' \neq 0 \). There exists a basis \(e_1, \ldots, e_r \) of \(G \) over \(\mathbb{Z} \), an integer \(m \geq 1 \) and positive integers \(a_1, \ldots, a_m \) such that
\[(i) \quad (a_1 e_1, \ldots, a_m e_m) \text{ is a basis of } G' \text{ over } \mathbb{Z},
(ii) \quad a_1 \text{ divides } a_2, \ a_2 \text{ divides } a_3, \ldots \text{ and } a_{m-1} \text{ divides } a_m.
\]

Remark: the \(a_i \) are called the invariant factors. This result is a special case of a theorem on the structure of modules over a principal ring (here: \(\mathbb{Z} \)).
Theorem of the adapted basis (matrix form)

Let \(n \) and \(p \) be positive integers, \(A \) a \(n \times p \) matrix with coefficients in \(\mathbb{Z} \) of rank \(m \geq 1 \). Then there exist a unique sequence of positive integers \(\alpha_1, \alpha_2, \ldots, \alpha_m \), such that \(\alpha_1 \) divides \(\alpha_2 \), \(\alpha_2 \) divides \(\alpha_3 \), \ldots and \(\alpha_{m-1} \) divides \(\alpha_m \), and there exist regular matrices \(P \in \text{GL}_n(\mathbb{Z}) \) and \(Q \in \text{GL}_p(\mathbb{Z}) \) such that

\[
A = P \begin{pmatrix} \alpha_1 & & & \\ & \alpha_2 & & \\ & & \ddots & \\ & & & \alpha_m \end{pmatrix} Q.
\]

Definition of a lattice in \(\mathbb{R}^n \)

Given a subgroup \(G \) of \(\mathbb{R}^n \), the following conditions are equivalent.

(i) There exists a basis \((e_1, \ldots, e_n) \) of the \(\mathbb{R} \)-vector space \(\mathbb{R}^n \) such that \(G = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n \).

(ii) \(G \) is a discrete subgroup of \(\mathbb{R}^n \) of rank \(n \).

(iii) \(G \) is a discrete subgroup of \(\mathbb{R}^n \) such that \(\mathbb{R}^n/G \) is compact.

(iv) \(G \) is a discrete subgroup of \(\mathbb{R}^n \) which contains \(n \) elements linearly independent over \(\mathbb{R} \).

Lattice = discrete subgroup of \(\mathbb{R}^n \) of maximal rank.

Lattices in \(\mathbb{R}^n \)

Let \(G \) be a lattice in \(\mathbb{R}^n \) and \(e = (e_1, \ldots, e_n) \) a basis of \(G \). The fundamental parallelepiped associated to \(e \) is

\[
P_e = \{ x_1 e_1 + \cdots + x_n e_n \mid (x_1, \ldots, x_n) \in [0,1)^n \}.
\]

Proposition 14.

\(P_e \) is a fundamental domain for the action of \(G \) on \(\mathbb{R}^n \) by translation.

This means:

(i) \(0 \in P_e \).

(ii) \(P_e \) is measurable (the characteristic function is Riemann integrable)

(iii) \(\mathbb{R}^n \) is the disjoint union of the sets \(P_e + g \) for \(g \in G \).

Determinant, covolume

Let \(G \) be a lattice in \(\mathbb{R}^n \). To a basis \(e = \{e_1, \ldots, e_n\} \) of \(G \) we associate the parallelepiped

\[
P_e = \{ x_1 e_1 + \cdots + x_n e_n \mid 0 \leq x_i < 1 \ (1 \leq i \leq n) \}
\]

A change of bases of \(G \) is obtained with a matrix of determinant \(\pm 1 \) with integer coefficients, hence

- The determinant of \(e \) in the canonical basis of \(\mathbb{R}^n \) depends only on \(G \), not on the choice of the basis \(e \). It is called the determinant of \(G \) and denoted by \(\det(G) \).

- The Lebesgue measure \(\mu(P_e) \) of \(P_e \) does not depend on \(e \): this number is called the covolume of the lattice \(G \) and is denoted by \(v(G) \).

We have \(\det(G) = v(G) \).
Packing, covering, tiling

Let $K_i, i \in I$ be a family of subsets of \mathbb{R}^n, where each K_i is the closure of a non empty open set U_i.

The family $(K_i)_{i \in I}$ is called a packing of \mathbb{R}^n if the U_i are pairwise disjoint.

The family $(K_i)_{i \in I}$ is called a covering of \mathbb{R}^n if the union of the K_i is \mathbb{R}^n.

The family $(K_i)_{i \in I}$ is called a tiling of \mathbb{R}^n if it is both a packing and a covering.

If P is a fundamental parallelootope of a lattice G with closure \overline{P}, then the family $(\overline{P} + g)_{g \in G}$ is a tiling of \mathbb{R}^n.

Lattices and matrices

Let A be a regular $n \times n$ matrix with real coefficients and vector columns a_1, \ldots, a_n. The set

$$AZ^n = \{a_1x_1 + \cdots + a_nx_n \mid x = (x_1, \ldots, x_n) \in \mathbb{Z}^n\}$$

is a lattice in \mathbb{R}^n.

Let A_1 and A_2 be two non singular $n \times n$ matrices. Let $G_1 = A_1\mathbb{Z}^n$ and $G_2 = A_2\mathbb{Z}^n$. Then $G_2 \subseteq G_1$ if and only if there exists a regular $n \times n$ matrix with integer coefficients such that $A_2 = A_1P$.

Necessary conditions for covering and packing

Let G be a lattice in \mathbb{R}^n of determinant $d(G)$ and let K be the closure of a non empty open set in \mathbb{R}^n.

If the G–translates of K are a covering of \mathbb{R}^n, then $\mu(K) \geq d(G)$.

If the G–translates of K are a packing of \mathbb{R}^n, then $\mu(K) \leq d(G)$.

Unimodular matrices

For a $n \times n$ matrix U with coefficients in \mathbb{Z}, the following conditions are equivalent:
(i) There exists a $n \times n$ matrix V with coefficients in \mathbb{Z} such that $UV = VU = I_n$.
(ii) $\det U = \pm 1$.

Such a matrix is called unimodular. The group of unimodular matrices is denoted $GL_n(\mathbb{Z})$.

If e_1, \ldots, e_n is a basis of the lattice G and if f_1, \ldots, f_n are elements in \mathbb{R}^n, then f_1, \ldots, f_n is a basis G if and only if there exists a unimodular matrix $(p_{ij})_{1 \leq i,j \leq n}$ such that $f_i = p_{i1}e_1 + \cdots + p_{in}e_n$ ($i = 1, \ldots, n$).

The two lattices $G_1 = A_1\mathbb{Z}^n$ and $G_2 = A_2\mathbb{Z}^n$ are the same if and only if $A_1^{-1}A_2$ is unimodular.
Sublattices

A sublattice of a lattice G is a subset G' of G which is also a lattice in \mathbb{R}^n. It is a subgroup of finite index in G.

There is a basis e_1, \ldots, e_n of G and positive integers a_1, \ldots, a_n such that a_1e_1, \ldots, a_ne_n is a basis of G'.

$$(G : G') = a_1 \cdots a_n.$$

Further,
$$v(G') = (G : G')v(G).$$

Discrete subgroups of \mathbb{R}^n

Corollary 16.

Let e_1, \ldots, e_r be \mathbb{R}–linearly independent elements in \mathbb{R}^n and t_1, \ldots, t_r be real numbers. Define $\theta = t_1e_1 + \cdots + t_re_r$. Then the subgroup $\mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r + \mathbb{Z}\theta$ is discrete in \mathbb{R}^n if and only if the numbers t_1, \ldots, t_r are all rational.

Corollary 17.

Let t_1, \ldots, t_n be real numbers. The following conditions are equivalent.

(i) For any $\epsilon > 0$, there exist integers p_1, \ldots, p_n, q with $q > 0$ such that
$$0 < \max_{1 \leq i \leq n} |qt_i - p_i| < \epsilon.$$

(ii) One at least of the numbers t_1, \ldots, t_n is irrational.

(iii) 0 is an accumulation point of $\mathbb{Z}^n + \mathbb{Z}(t_1, \ldots, t_n)$.

Closed subgroups of \mathbb{R}^n

Theorem 18.

Let G be a closed subgroup of \mathbb{R}^n of real rank r. There exists a maximal vector subspace V of \mathbb{R}^n contained in G. If W is a vector subspace of \mathbb{R}^n with $V \oplus W = \mathbb{R}^n$, then $\Gamma = W \cap G$ is a discrete subgroup of \mathbb{R}^n and
$$G = V \oplus \Gamma.$$

Hence $G \simeq \mathbb{R}^r \times \mathbb{Z}^{\ell-r}$.

Lemma 19.

A closed subgroup of \mathbb{R}^n which is not discrete contains a real line.

Supplement

Given v_1, \ldots, v_ℓ in \mathbb{Z}^n, does there exist $v_{\ell+1}, \ldots, v_n$ such that v_1, \ldots, v_n is a basis of \mathbb{Z}^n over \mathbb{Z}?

Proposition 15.

Let G be a discrete subgroup of \mathbb{R}^n and G' a subgroup. The following conditions are equivalent.

(i) There exists a subgroup G'' of G such that $G = G' \oplus G''$.

(ii) The quotient group G/G' is torsion–free.

(iii) G' is saturated: $G' = G \cap (G' \otimes \mathbb{R})$.

(iv) The integers a_i in the Theorem of the adapted basis are all equal to 1.
Kronecker’s Theorem

Theorem 20 (Kronecker).

Let \(\theta_1, \ldots, \theta_n \) be real numbers. The subgroup

\[\mathbb{Z}^n + \mathbb{Z}(\theta_1, \ldots, \theta_n) = \{(s_1 + s_0 \theta_1, \ldots, s_n + s_0 \theta_n) \mid (s_0, s_1, \ldots, s_n) \in \mathbb{Z}^{n+1}\} \]

of \(\mathbb{R}^n \) is dense in \(\mathbb{R}^n \) if and only if the \(n + 1 \) numbers \(1, \theta_1, \ldots, \theta_n \) are \(\mathbb{Q} \)-linearly independent.

Dense subgroups of \(\mathbb{R}^n \) (continued)

(vi) Let \(g_1, \ldots, g_k \) be a set of generators of \(G \) as a \(\mathbb{Z} \)-module. Write the coordinates of \(g_j \) in the canonical basis of \(\mathbb{R}^n \):

\[g_j = (g_{1,j}, \ldots, g_{n,j}) \quad (1 \leq j \leq k). \]

For any \((s_1, \ldots, s_k) \in \mathbb{Z}^k \setminus \{0\} \), the matrix

\[\begin{pmatrix} g_{1,1} & \cdots & g_{1,n+1} \\ \vdots & \ddots & \vdots \\ g_{n,1} & \cdots & g_{n,n+1} \\ s_1 & \cdots & s_{n+1} \end{pmatrix} \]

has rank \(n + 1 \).

Dense subgroups of \(\mathbb{R}^n \)

Proposition 21.

Let \(G \) be a finitely generated subgroup of \(\mathbb{R}^n \). The following conditions are equivalent.

(i) \(G \) is dense in \(\mathbb{R}^n \).

(ii) For any vector subspace \(V \) of \(\mathbb{R}^n \) distinct from \(\mathbb{R}^n \), we have

\[\text{rank}_\mathbb{Z}(G/G \cap V) > \dim(\mathbb{R}^n/V). \]

(iii) For any hyperplane \(H \) of \(\mathbb{R}^n \), we have

\[\text{rank}_\mathbb{Z}(G/G \cap H) \geq 2. \]

(iv) For any non–zero linear form \(\varphi : \mathbb{R}^n \to \mathbb{R} \), we have \(\varphi(G) \not\subset \mathbb{Z} \).

(v) For any non–trivial character \(\chi : \mathbb{R}^n \to \mathbb{U} \), we have \(\chi(G) \neq \{1\} \).

Subgroup of \(\text{Hom}_\mathbb{R}(\mathbb{R}^n, \mathbb{R}) \) associated with a subgroup of \(\mathbb{R}^n \)

When \(G \) is a subgroup of \(\mathbb{R}^n \), we set

\[G^* = \{ \varphi \in \text{Hom}_\mathbb{R}(\mathbb{R}^n, \mathbb{R}) \mid \varphi(G) \subset \mathbb{Z} \}. \]

When \(G \) is a subgroup of \(\text{Hom}_\mathbb{R}(\mathbb{R}^n, \mathbb{R}) \), we set

\[G^* = \{ x \in \mathbb{R}^n \mid \varphi(x) \in \mathbb{Z} \text{ for all } \varphi \in G \}. \]

Proposition 22.

Let \(G \) be a subgroup of \(\mathbb{R}^n \). Let \(\overline{G} \) be the topological closure of \(G \) in \(\mathbb{R}^n \). Then

\[\overline{G} = (G^*)^*. \]
Subgroup of $\text{Hom}_\mathbb{R}(\mathbb{R}^n, \mathbb{R})$ associated with a subgroup of \mathbb{R}^n

Lemma 23.
If G is a subgroup of \mathbb{R}^n, then G^* is a closed subgroup of $\text{Hom}_\mathbb{R}(\mathbb{R}^n, \mathbb{R})$ and $(G)^* = G^*$.

Lemma 24.
Let G be a closed subgroup of \mathbb{R}^n. Let e_1, \ldots, e_n be a basis of \mathbb{R}^n such that

$$G = \mathbb{R}e_1 + \cdots + \mathbb{R}e_r + \mathbb{Z}e_{r+1} + \cdots + \mathbb{Z}e_t.$$

Let f_1, \ldots, f_n be the dual basis of e_1, \ldots, e_n. Then

$$G^* = \mathbb{Z}f_{r+1} + \cdots + \mathbb{Z}f_t + \mathbb{R}f_{t+1} + \cdots + \mathbb{R}f_n.$$