Part II: August 3, 2016

- Convex sets and star bodies
- Minkowski’s convex body Theorem
- Minkowski’s theorems on linear forms
- Gauge functions
- Minkowski’s theorems on successive minima

Convex Bodies

A set $B \subset \mathbb{R}^n$ is convex if, for x and y in B and for $0 \leq \theta \leq 1$, $\theta x + (1 - \theta)y$ is in B.

A star subset of \mathbb{R}^n is a subset B such that, for any $x \in B$ and any θ with $0 \leq \theta \leq 1$, θx is in B. Hence a convex subset of \mathbb{R}^n containing 0 is a star subset.

The characteristic function of a convex bounded subset of \mathbb{R}^n is Riemann integrable.

If a convex subset B of \mathbb{R}^n is not contained in a hyperplane, then its interior is not empty and is a convex open set.

A convex body is a nonempty bounded open convex subset of \mathbb{R}^n.

A subset B of \mathbb{R}^n is symmetric if $x \in B$ implies $-x \in B$.

Blichfeldt’s Theorem

Theorem 1. Let L be a lattice in \mathbb{R}^n of determinant Δ and B a measurable subset of \mathbb{R}^n. Assume $\mu(B) > \Delta$. Then there exist $x \neq y$ in B such that $x - y \in L$.
Minkowski’s convex body Theorem

Theorem 2.
Let L be a lattice in \mathbb{R}^n of determinant Δ and let B be a measurable subset of \mathbb{R}^n, convex and symmetric with respect to the origin, of measure $\mu(B)$, such that $\mu(B) > 2^n \Delta$. Then $B \cap L \neq \{0\}$.

Corollary 3.
With the notations of Corollary 2, if B is also compact in \mathbb{R}^n, then the weaker inequality $\mu(B) \geq 2^n \Delta$ suffices to reach the conclusion.

Remark: The example of $L = \mathbb{Z}^n$ with $\Delta = 1$ and $B = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : |x_i| < 1\}$ with measure $\mu(B) = 2^n$, shows that Corollaries 2 and 3 are sharp.

Minkowski’s Linear Form Theorem

Theorem 4 (Minkowski).
Let L_1, \ldots, L_n be homogeneous linear forms in n variables with real coefficients and determinant Δ. Let c_1, \ldots, c_n be positive numbers with $c_1 \cdots c_n \geq |\Delta|$.

Then there exists $\mathbf{a} = (x_1, \ldots, x_n) \in \mathbb{Z}^n \setminus \{0\}$ such that $|L_i(\mathbf{a})| \leq c_i$ ($i = 1, \ldots, n$).

Corollary 5.
There exists $\mathbf{a} \neq 0$ such that
$$\max_{1 \leq i \leq n} |L_i(\mathbf{a})| \leq \sqrt[2n]{|\Delta|}.$$

Homogeneous simultaneous approximation

Corollary 6.
There exist $\mathbf{x}, \mathbf{x}', \mathbf{x}'' \neq 0$ in \mathbb{Z}^n such that
$$\sum_{i=1}^n |L_i(\mathbf{x})| \leq \sqrt{n!|\Delta|},$$
$$\prod_{i=1}^n |L_i(\mathbf{x}')| \leq n^{-n!}|\Delta|,$$
and
$$\sum_{i=1}^n |L_i(\mathbf{x}'')|^2 \leq c_n |\Delta|^{2/n}$$
with
$$c_n = \frac{4}{\pi} \Gamma\left(\frac{n}{2} + 1\right)^{2/n}.$$

Volume of the octahedron

The volume of the octahedron $|x_1| + \cdots + |x_n| < 1$ in \mathbb{R}^n is
$$2^n \int_0^1 \int_0^{1-x_1} \cdots \int_0^{1-x_1 \cdots x_{n-1}} \ldots dx_1 dx_2 \cdots dx_n = \frac{2^n}{n!}.$$

Hint: for $n \geq 1$,
$$\int_0^{1-t} dx_1 \int_0^{1-x_1} dx_2 \cdots \int_0^{1-x_{n-1}} dx_n = \frac{1}{n!} (1-t)^n.$$
Arithmetico-geometric inequality

\[
\prod_{i=1}^{n} |L_i(x^i)| \leq n^{-n!}|\Delta|.
\]

For \(x_1, \ldots, x_n\) in \(\mathbb{R}\),

\[(x_1 \cdots x_n)^{1/n} \leq \frac{x_1 + \cdots + x_n}{n}.
\]

Proof using the logarithmic function: convexity.

Proof by induction (Cauchy)

\(n = 2, \; n \Rightarrow n - 1, \; n \Rightarrow 2n\).

Volume of the unit sphere

\[
\sum_{i=1}^{n} |L_i(x^i)^n|^2 \leq c_n|\Delta|^{2/n}
\]

The volume \(V_n\) of the unit sphere

\[
\{x \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 < 1\}
\]

in \(\mathbb{R}^n\) is

\[
\frac{\pi^{n/2}}{\Gamma(1 + \frac{n}{2})}
\]

with \(\Gamma(x + 1) = x\Gamma(x)\) and \(\Gamma(1/2) = \sqrt{\pi}\).

Volume of the unit sphere

\(V_1 = 2, \; V_2 = \pi, \; V_3 = \frac{4}{3}\pi, \; V_4 = \frac{\pi^2}{2}, \; V_n = \frac{2\pi}{n}V_{n-2}\).

\[
V_n = \begin{cases}
\frac{\pi^{n/2}}{(n/2)!} & \text{for } n \text{ even.} \\
\frac{\pi^{n+1/2} (n+1)!}{(n+1)!} & \text{for } n \text{ odd.}
\end{cases}
\]

Minkowski’s Linear Forms Theorem for \(\mathbb{Z}^n\).

Here is a consequence of Minkowski’s Linear Forms Theorem for the lattice \(\mathbb{Z}^n\).

Theorem 7.

Suppose that \(\psi_{ij}\) \((1 \leq i, j \leq n)\) are real numbers with determinant \(\pm 1\). Suppose that \(A_1, \ldots, A_n\) are positive numbers with \(A_1 \cdots A_n = 1\). Then there exists an integer point \(x = (x_1, \ldots, x_n) \neq 0\) such that

\[
|\psi_{i1}x_1 + \cdots + \psi_{in}x_n| < A_i \quad (1 \leq i \leq n - 1)
\]

and

\[
|\psi_{n1}x_1 + \cdots + \psi_{nn}x_n| \leq A_n.
\]
Simultaneous approximation

Corollary 8.

Let $\vartheta_{ij} (1 \leq i \leq n, 1 \leq j \leq m)$ be mn real numbers. Let $Q > 1$ be a real number. There exist rational integers $q_1, \ldots, q_m, p_1, \ldots, p_n$ with

$$1 \leq \max\{|q_1|, \ldots, |q_m|\} < Q^{n/m}$$

and

$$\max_{1 \leq i \leq n} |\vartheta_{ij} q_1 + \cdots + \vartheta_{im} q_m - p_i| \leq \frac{1}{Q}.$$

Characterization of gauge functions

A gauge function $f : \mathbb{R}^n \to [0, \infty)$ attached to a convex body satisfies

$$f(x) > 0 \quad \text{for} \quad x \neq 0, \quad f(0) = 0,$$

$$f(\lambda x) = \lambda f(x) \quad \text{for} \quad x \in \mathbb{R}, \lambda \geq 0,$$

$$f(x + y) \leq f(x) + f(y).$$

Conversely, if f satisfies these conditions, then f is continuous and is the Gauge function associated to the convex body $B = \{x \mid f(x) < 1\}$.

A convex body is symmetric if and only if its Gauge function satisfies $f(-x) = f(x)$.

Gauge function associated to a convex body

Let B be a convex body. Let ∂B be the boundary of B and $\overline{B} = B \cup \partial B$ the closure of B.

The gauge function associated to B is the map $f : \mathbb{R}^n \to [0, \infty)$ defined by $f(0) = 0$ and, for $x \neq 0$,

$$f(x) = \inf\{\lambda > 0 \mid x \in \lambda B\}.$$

Hence $x = f(x)x'$ with $x' \in \partial B$ and

$$f(x) < 1 \iff x \in B,$$

$$f(x) = 1 \iff x \in \partial B,$$

$$f(x) \leq 1 \iff x \in \overline{B}.$$

We will write $f(x) = \|x\|_B$.

Minkowski’s first convex body Theorems for \mathbb{Z}^n

Let B be a symmetric convex body in \mathbb{R}^n. Define

$$\lambda_1 = \min_{0 \neq x \in \mathbb{Z}^n} f(x).$$

Hence λ_1 is the least real number such that $(\lambda_1 B) \cap \mathbb{Z}^n \neq \{0\}$.

Theorem 9 (Minkowski).

For a symmetric convex body B of volume $\mu(B)$, we have

$$\lambda_1^n \mu(B) \leq 2^n.$$
Minkowski’s first convex body Theorems for the Euclidean ball

Denote by $\| \cdot \|$ the Euclidean norm and by V_n the volume of the unit Euclidean ball in \mathbb{R}^n. Let L a lattice of determinant Δ. Define

$$\lambda_1 = \min_{0 \neq x \in L} \| x \|.$$

Theorem 10 (Minkowski).

We have

$$\lambda_1 V_n \leq 2^n \Delta.$$

Hermite’s constant

Recall that for $n \geq 2$,

$$\gamma_n = \sup_L \frac{\lambda_1(L)^2}{(v(L))^{2/n}},$$

where L ranges over the set of lattices L in \mathbb{R}^n of covolume $v(L)$ and first minimum $\lambda_1(L)$ with respect to the Euclidean ball in \mathbb{R}^n.

L. Lagrange proved $\gamma_2 = 2/\sqrt{3}$ (hexagonal lattice - Eisenstein integers).

Hermite proved $\gamma_n \leq \gamma_2^{n-1}$ for $n \geq 2$.

Minkowski’s convex body Theorem and Hermite’s constant

Minkowski deduced from his convex body theorem the upper bound

$$\gamma_n \leq \left(\frac{4}{V_n}\right)^{2/n}.$$

Using known estimates for

$$V_n = \frac{\pi^{n/2}}{\Gamma(1 + \frac{n}{2})}$$

one deduces

$$\gamma_n \leq 1 + \frac{n}{4}.$$

Successive minima

Let B be a symmetric convex body in \mathbb{R}^n. The successive minima of B relative to a lattice Λ are the real numbers

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

such that, for $r = 1, \ldots, n$, λ_r is the least real number such that $\lambda_r B$ contains at least r linearly independent elements of Λ.

Examples with $\Lambda = \mathbb{Z}^n$.

The rectangle in \mathbb{R}^2 with center $(0, 0)$, length 4, width 1 has $\lambda_1 = 1/2$ and $\lambda_2 = 2$. Its volume is 4.

The closed disc in \mathbb{R}^2 with center $(0, 0)$ and radius $1/2$ has $\lambda_1 = \lambda_2 = 1$. Its volume is $\pi^2/4$.

An example in dimension 4

Consider the sublattice L of \mathbb{Z}^n which consists of (x_1, x_2, x_3, x_4) with $x_1 + x_2 + x_3 + x_4$ even. A basis is given by the row vectors of the matrix

$$
\begin{pmatrix}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix}.
$$

Hence the determinant of L is 2, the minima are all $\sqrt{2}$.

The row vectors of the matrix

$$
\begin{pmatrix}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{pmatrix}
$$

are also shortest vectors but span a sublattice of index 2.

An example of Korkine and Zolotarev

Example of a lattice for which the successive minima of the Euclidean ball do not give a basis: for $n \geq 5$,

$$
\mathbb{Z}^n + \mathbb{Z} \left(\frac{1}{2}, \ldots, \frac{1}{2} \right) = \mathbb{Z} e_1 + \cdots + \mathbb{Z} e_n + \mathbb{Z} \left(\frac{e_1 + \cdots + e_n}{2} \right) \subset \mathbb{R}^n.
$$

This corresponds to the lattice \mathbb{Z}^n and the convex body

$$\left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid (x_1 + \frac{x_n}{2})^2 + \cdots + (x_{n-1} + \frac{x_n}{2})^2 + \left(\frac{x_n}{2} \right)^2 < 1 \right\}.$$

Bound for the index

Let K be a convex body and L a lattice in \mathbb{R}^n. Let $\omega_1, \ldots, \omega_n$ be linearly independent elements in L such that

$$\|\omega_i\|_K = \lambda_i \quad (i = 1, \ldots, n).$$

Let $\Omega = \mathbb{Z} \omega_1 + \cdots + \mathbb{Z} \omega_n$. Then $(L : \Omega) \leq n!$.
A basis almost given by the successive minima

Given a symmetric convex body K in \mathbb{R}^n with gauge function $\|\cdot\|_K$ and a lattice L with successive minima $\lambda_1, \ldots, \lambda_n$, there exists a basis (v_1, \ldots, v_n) of L with

$$\|v_i\|_K \leq \max \left\{ 1, \frac{i}{2} \right\} \lambda_i \quad (i = 1, \ldots, n).$$

Minkowski’s second convex body Theorem for \mathbb{Z}^n

Theorem 11 (Minkowski).

The successive minima $\lambda_1, \lambda_2, \ldots, \lambda_n$ of a symmetric convex body B relative to \mathbb{Z}^n satisfy

$$\frac{2^n}{n!} \leq \lambda_1 \lambda_2 \cdots \lambda_n \mu(B) \leq 2^n.$$

The cube $|x_i| \leq 1$ in \mathbb{R}^n has $\lambda_1 = \cdots = \lambda_n = 1$, its volume is 2^n.

The octahedron $|x_1| + \cdots + |x_n| \leq 1$ in \mathbb{R}^n has $\lambda_1 = \cdots = \lambda_n = 1$, its volume is $2^n/n!$.

The lower bound for $\lambda_1 \lambda_2 \cdots \lambda_n$ is easy, the proof of the upper bound is deep.

Dual lattice

Denote by $x \cdot y$ the standard inner product in \mathbb{R}^n:

$$x \cdot y = x_1 y_1 + \cdots + x_n y_n.$$

Let L be a lattice in \mathbb{R}^n. The dual lattice of L is

$$L^* = \{ y \in \mathbb{R}^n \mid x \cdot y \in \mathbb{Z} \text{ for all } x \in L \}.$$

If $L_1 \subset L_2$, then $L_1^* \subset L_2^*$.

For $L = AZ^n$, we have $L^* = (A)^{-1} \mathbb{Z}^n$.

Hence the dual lattice is a lattice with covolume satisfying

$$v(L)v(L^*) = 1.$$

Example: the lattice \mathbb{Z}^n is selfdual.

Duality in simultaneous Diophantine approximation

Let $\theta_1, \ldots, \theta_m$ be real numbers.

The dual of the lattice in \mathbb{R}^{m+1}

$$\Lambda = \{0\} \times \mathbb{Z}^m + \mathbb{Z}(1, \theta_1, \ldots, \theta_m) = \{(q, q\theta_1 - p_1, \ldots, q\theta_m - p_m) \mid (q, p_1, \ldots, p_m) \in \mathbb{Z}^{m+1}\}$$

is the lattice

$$\Lambda^* = \mathbb{Z}(1, 0, \ldots, 0) + \mathbb{Z}(\theta_1, 1, 0, \ldots, 0) + \cdots + \mathbb{Z}(\theta_m, 0, \ldots, 0, 1) = \{(a_0 + a_1 \theta_1 + \cdots + a_m \theta_m, a_1, \ldots, a_m) \mid (a_0, a_1, \ldots, a_m) \in \mathbb{Z}^{m+1}\}.$$
Dual convex body

Let \(K \) be a symmetric convex body in \(\mathbb{R}^n \). The dual (or polar) convex body is

\[
K^* = \{ y \in \mathbb{R}^n \mid x \cdot y \leq 1 \text{ for all } x \in K \}.
\]

If \(K_1 \subset K_2 \), then \(K_2^* \subset K_1^* \).

Examples:
- The Euclidean ball \(B : x_1^2 + \cdots + x_n^2 \leq 1 \) is selfdual.
- The dual of \([-1, 1]^2 \) in \(\mathbb{R}^2 \) is the polytope \(|x| + |y| \leq 1 \).
- More generally, the dual of \(Q = \prod_{i=1}^n [-a_i, a_i] \) with \(a_i > 0 \) is
 \[
 \{ x \in \mathbb{R}^n \mid a_1 x_1 + \cdots + a_n x_n \leq 1 \}.
 \]

The Gauge functions associated to a convex body and its dual are related by

\[
\| x \|_{K^*} = \sup_{y \neq 0} \frac{x \cdot y}{\| y \|_K}.
\]

Transference

Let \(K \) be a convex body and \(L \) a lattice in \(\mathbb{R}^n \). Denote by \(\lambda_1, \ldots, \lambda_n \) the successive minima of \(K \) relative to \(L \), and by \(\lambda_1^*, \ldots, \lambda_n^* \) the successive minima of the dual convex body \(K^* \) relative to the dual lattice \(L^* \). Then

\[
1 \leq \lambda_i \lambda_{n-i+1}^* \quad (i = 1, \ldots, n).
\]

Duality in simultaneous Diophantine approximation

Let \(\theta_1, \ldots, \theta_m \) be real numbers. Let \(Q > 1 \) be a real number. The transference Theorem relates the minima \(\lambda_1, \ldots, \lambda_{m+1} \) of the convex body

\[
\left\{ (x_0, x_1, \ldots, x_m) \in \mathbb{R}^m \mid |x_0| \leq Q^m, \max_{1 \leq i \leq m} |x_i| \leq Q^{-1} \right\}
\]

with respect to the lattice

\[
\left\{ (q, q\theta_1 - p_1, \ldots, q\theta_m - p_m) \mid (q, p_1, \ldots, p_m) \in \mathbb{Z}^{m+1} \right\}
\]

and the minima \(\lambda_1^*, \ldots, \lambda_{m+1}^* \) of the convex body

\[
\left\{ (y_0, y_1, \ldots, y_m) \in \mathbb{R}^m \mid |y_0| \leq Q^{-m}, \max_{1 \leq i \leq m} |y_i| \leq Q \right\}
\]

with respect to the lattice

\[
\left\{ (a_0 + a_1 \theta_1 + \cdots + a_m \theta_m, a_1, \ldots, a_m) \mid (a_0, a_1, \ldots, a_m) \in \mathbb{Z}^{m+1} \right\}.
\]
Further topics

The Grassmann algebra (exterior product)

Mahler’s Theory of compound sets

Parametric geometry of numbers
(WM. Schmidt, L. Summerer, D. Roy)