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2.2.9 Diophantine Approximation: historical survey

References for this section are [3, 4, 2, 1].

Definition. Given a real irrational number ϑ, a function ϕ = N → R>0 is an
irrationality measure for ϑ if there exists an integer q0 > 0 such that, for any
p/q ∈ Q with q ≥ q0, ∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ ϕ(q).

Further, a real number κ is an irrationality exponent for ϑ if there exists a
positive constant c such that the function c/qκ is an irrationality measure for ϑ.

From Dirichlet’s box principle (see (i)⇒(iv) in Lemma 1.6) it follows that
any irrationality exponent κ satisfies κ ≥ 2. Irrational quadratic numbers have
irrationality exponent 2. It is known (see for instance [4] Th. 5F p. 22) that 2
is an irrationality exponent for an irrational real number ϑ if and only if the
sequence of partial quotients (a0, a1, . . .) in the continued fraction expansion of
ϑ is bounded: these are called the badly approximable numbers.

From Liouville’s inequality in Lemma 2.13 it follows that any irrational alge-
braic real number α has a finite irrationality exponent ≤ d. Liouville numbers
are by definition exactly the irrational real numbers which have no finite irra-
tionality exponent.

For any κ ≥ 2, there are irrational real numbers ϑ for which κ is an irrational-
ity exponent and is the best: no positive number less than κ is an irrationality
exponent for ϑ. Examples due to Y. Bugeaud in connexion with the triadic
Cantor set (see [6]) are

∞∑
n=0

3−dλκe
n

where λ is any positive real number.
The first significant improvement to Liouville’s inequality is due to the Nor-

wegian mathematician Axel Thue who proved in 1909:

Theorem 2.40 (A. Thue, 1909). Let α be a real algebraic number of degree
d ≥ 3. Then any κ > (d/2) + 1 is an irrationality exponent for α.

The fact that the irrationality exponent is < d has very important conse-
quences in the theory of Diophantine equations. We gave an example in § 2.2.3,
here is the more general result of Thue on Diophantine equations.

14Updated: October 12, 2007
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Theorem 2.41 (Thue). Let f ∈ Z[X] be an irreducible polynomial of degree
d ≥ 3 and m a non-zero rational integer. Define F (X,Y ) = Y df(X/Y ). Then
the Diophantine equation F (x, y) = m has only finitely many solutions (x, y) ∈
Z× Z.

The equation F (x, y) = m in Proposition 2.41 is called Thue equation. The
connexion between Thue equation and Liouville’s inequality has been explained
in Lemma 2.20 in the special case 3

√
2; the general case is similar.

Lemma 2.42. Let α be an algebraic number of degree d ≥ 3 and minimal
polynomial f ∈ Z[X], let F (X,Y ) = Y df(X/Y ) ∈ Z[X,Y ] be the associated ho-
mogeneous polynomial. Let 0 < κ ≤ d. The following conditions are equivalent:
(i) There exists c1 > 0 such that, for any p/q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ c1
qκ
·

(ii) There exists c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|F (x, y)| ≥ c2 xd−κ.

In 1921 C.L. Siegel sharpened Thue’s result 2.40 by showing that any real
number

κ > min
1≤j≤d

(
d

j + 1
+ j

)
is an irrationality exponent for α. With j = [

√
d] it follows that 2

√
d is an

irrationality exponent for α. Dyson and Gel’fond in 1947 independently refined
Siegel’s estimate and replaced the hypothesis in Thue’s Theorem 2.40 by κ >√

2d. The essentially best possible estimate has been achieved by K.F. Roth
in 1955: any κ > 2 is an irrationality exponent for a real irrational algebraic
number α.

Theorem 2.43 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any real
algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is
finite.

It is expected that the result is not true with ε = 0 as soon as the degree of
α is ≥ 3, which means that it is expected no real algebraic number of degree at
least 3 is badly approximable, but essentially nothing is known on the continued
fraction of such numbers: we do not know whether there exists an irrational
algebraic number which is not quadratic and has bounded partial quotient in
its continued fraction expansion, but we do not know either whether there exists
a real algebraic number of degree at least 3 whose sequence of partial quotients
is not bounded!

A guide to state conjectures is to consider which properties are valid for
almost all numbers, which means outside a set of Lebesgue measure 0, and to
expect that algebraic numbers will share these properties. This guideline should
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not be followed carelessly: an intersection of subsets of full measure (that means
that the complementary has measure 0) may be empty. For instance⋂

x∈R
R \ {x} = ∅.

Nevertheless, this point of view may yields valid guesses.
The so–called metrical theory of Diophantine approximation goes back to

Cantor’s proof of the existence of transcendental numbers. If you list the al-
gebraic numbers in the interval [0, 1], if, for each of them, you write its binary
expansion (writing the two expansions if this algebraic number is a rational num-
ber with denominator a power of two), then taking the digits on the diagonal
yields a number θ such that 1− θ is not in the list, hence θ is transcendental.

It is known from a result by Khinchin (1924) that for almost all real numbers,
any κ > 2 is an irrationality exponent. Hence from this point of view algebraic
numbers behave like almost all numbers.

Khinchin’s Theorem is much more precise: Denote by K (like Khinchin) the
set of non-increasing functions ψ from R≥1 to R>0. Set

Kc =

Ψ ∈ K ;
∑
n≥1

Ψ(n) converges

 , Kd =

Ψ ∈ K ;
∑
n≥1

Ψ(n) diverges


Hence K = Kc ∪ Kd.

Theorem 2.44 (Khinchin). Let Ψ ∈ K. Then for almost all real numbers ξ,
the inequality

|qξ − p| < Ψ(q) (2.45)

has

• only finitely many solutions in integers p and q if Ψ ∈ Kc
• infinitely many solutions in integers p and q if Ψ ∈ Kd.

For instance, for any ε > 0, the set of irrational real numbers for which the
function

q 7→ 1
q2(log q)1+ε

(2.46)

is not an irrationality measure has Lebesgue measure 0. One expects that for
any irrational algebraic number α, the function 2.46 is an irrationality measure.

However B. Adamczewski and Y. Bugeaud noticed recently (see [6]) that for
any ξ ∈ R\Q, there exists ψ ∈ Kd for which the inequality (2.45) has no solution.
Hence no real number behaves generically with respect to Khinchin’s Theorem
in the divergent case. Also S. Schanuel proved that the set of real numbers which
behave like almost all numbers from the point of view of Khinchin’s Theorem in
the convergent case is the set of real numbers with bounded partial quotients,
and this set has measure 0.
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Here is an example of application of Diophantine approximation to transcen-
dental number theory. Let (un)n≥0 be an increasing sequence of integers and
let b be a rational integer, b ≥ 2. We wish to prove that the number

ϑ =
∑
n≥0

b−un (2.47)

is transcendental. A conjecture of Borel (1950 – see [5]) states that the digits in
the binary expansion of a real algebraic irrational number should be uniformly
equidistributed; in particular the sequence of 1’s should not be lacunary.

For sufficiently large n, define

qn = bun , pn =
n∑
k=0

bun−uk and rn = ϑ− pn
qn
·

Since the sequence (un)n≥0 is increasing, we have un+h − un+1 ≥ h− 1 for any
h ≥ 1, hence

0 < rn ≤
1

bun+1

∑
h≥1

1
bh−1

=
b

2un+1(b− 1)
≤ 2

q
un+1/un
n

·

Therefore if the sequence (un)n≥0 satisfies

lim sup
n→∞

un+1

un
= +∞

then ϑ is a Liouville number, and therefore is transcendental. For instance
un = n! satisfies this condition: hence the number

∑
n≥0 b

−n! is transcendental.
Roth’s Theorem 2.43 yields the transcendence of the number ϑ in (2.47)

under the weaker hypothesis

lim sup
n→∞

un+1

un
> 2.

The sequence un = [2θn] satisfies this condition as soon as θ > 1. For example
the transcendence of the number ∑

n≥0

b−3n

follows from Theorem 2.43.
A stronger result follows from Ridout’s Theorem 2.48 below, using the fact

that the denominators bun are powers of b.
Let S be a set of prime. A rational number is called a S–integer if it can

be written u/v where all prime factors of the denominator v belong to S. For
instance when a, b and m are rational integers with b 6= 0, the number a/bm is
a S–integer for S the set of prime divisors of b.
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Theorem 2.48 (D. Ridout, 1957). Let S be a finite set of prime numbers. For
any real algebraic number α, for any ε > 0, the set of p/q ∈ Q with q a S–integer
and |α− p/q| < q−1−ε is finite.

Therefore the condition

lim sup
n→∞

un+1

un
> 1

suffices to imply the transcendence of the sum of the series (2.47). An example
is the transcendence of the number∑

n≥0

b−2n .

This result goes back to A. J. Kempner in 1916.

The theorems of Thue–Siegel–Roth and Ridout are very special cases of
Schmidt’s subspace Theorem (1972) together with its p-adic extension by H.P. Schlick-
ewei (1976). We state do not state it in full generality but we give only two
special cases.

For x = (x1, . . . , xm) ∈ Zm, define |x| = max{|x1|, . . . , |xm|}.

Theorem 2.49 (W.M. Schmidt (1970): simplified form). For m ≥ 2 let L1, . . . , Lm
be independent linear forms in m variables with algebraic coefficients. Let ε > 0.
Then the set

{x = (x1, . . . , xm) ∈ Zm ; |L1(x) · · ·Lm(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of Qm.

Thue–Siegel–Roth’s Theorem 2.43 follows from Theorem 2.49 by taking

m = 2, L1(x1, x2) = x1, L2(x1, x2) = αx1 − x2.

A Q-vector subspace of Q2 which is not {0} not Q2 (that is a proper subspace
is of the generated by an element (p0, q0) ∈ Q2. There is one such subspace
with q0 = 0, namely Q × {0} generated by (1, 0), the other ones have q0 6= 0.
Mapping such a rational subspace to the rational number p0/q0 yields a 1 to
1 correspondence. Hence Theorem 2.49 says that there is only a finite set of
exceptions p/q in Roth’s Theorem.

For x a non–zero rational number, write the decomposition of x into prime
factors

x =
∏
p

pvp(x),

where p runs over the set of prime numbers and vp(x) ∈ Z (with only finitely
many vp(x) distinct from 0), and set

|x|p = p−vp(x).

For x = (x1, . . . , xm) ∈ Zm and p a prime number, define |x| = max{|x1|p, . . . , |xm|p}.
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Theorem 2.50 (Schmidt’s Subspace Theorem). Let m ≥ 2 be a positive integer,
S a finite set of prime numbers. Let L1, . . . , Lm be independent linear forms in
m variables with algebraic coefficients. Further, for each p ∈ S let L1,p, . . . , Lm,p
be m independent linear forms in m variables with rational coefficients. Let
ε > 0. Then the set of x = (x1, . . . , xm) ∈ Zm such that

|L1(x) · · ·Lm(x)
∏
p∈S
|L1,p(x) · · ·Lm,p(x)|p ≤ |x|

−ε

is contained in the union of finitely many proper subspaces of Qm.

Ridout’s Theorem 2.48 is a consequence of Schmidt’s subspace Theorem: in
Theorem 2.50 take m = 2,

L1(x1, x2) = L1,p(x1, x2) = x1,

L2(x1, x2) = αx1 − x2, L2,p(x1, x2) = x2.

For (x1, x2) = (b, a) with b a S–integer and p ∈ S, we have

|L1(x1, x2)| = b, |L2(x1, x2)| = |bα− a|,
|L1p(x1, x2)|p = |b|p, |L2,p(x1, x2)|p = |a|p ≤ 1.

and ∏
p∈S
|b|p = b−1

since b is a S–integer.

Problem of effectivity.
Content of the lecture: Sketch of proof of Thue’s inequality, of Roth’s re-
finement. Upper bound for the number of exceptions in Roth’s Theorem, for the
number of exceptional subspaces in Schmidt’s Theorem. Effective refinement of
Liouville’s inequality, consequences to Diophantine equations: Baker’s method.

2.2.10 Hilbert’s seventh problem and its development.

Euler question, Hilbert’s 7th problem: transcendence of αβ , of quotients of
logartithms. Examples: 2

√
2, eπ.

Weierstraß: example of transcendental entire functions with many algebraic
values. Interpolation series (see Exercise 2.51).
Polya (1914): integer valued entire functions — 2z is the “smallest” entire
transcendental function mapping the positive integers to rational integers. More
precisely, if f(n) ∈ Z for all n ∈ Z≥0, then

lim sup
R→∞

2−R|f |R ≥ 1.

Interpolation series: write

f(z) = f(α1) + (z − α1)f1(z), f1(z) = f(α2) + (z − α2)f2(z), . . .
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We deduce an expansion

f(z) = a0 + a1(z − α1) + a2(z − α1)(z − α2) + · · ·

with
a0 = f(α1), a1 = f1(α2), . . . , an = fn(αn+1).

Exercise 2.51. Let x, z, α1, . . . , αn be complex numbers with x 6∈ {z, α1, . . . , αn}.
a) Check

1
x− z

=
1

x− α1
+
z − α1

x− α1
· 1
x− z

·

b) Deduce the next formula due to Hermite:

1
x− z

=
n−1∑
j=0

(z − α1)(z − α2) · · · (z − αj)
(x− α1)(x− α2) · · · (x− αj+1)

+
(z − α1)(z − α2) · · · (z − αn)
(x− α1)(x− α2) · · · (x− αn)

· 1
x− z

·

c) Let D be an open disc containing α1, . . . , αn, let C denote the circumference
of D, let D′ be an open disc containing the closure of D and let f be an analytic
function in D′. Define

Aj(z) =
1

2iπ

∫
C

F (x)dx
(x− α1)(x− α2) · · · (x− αj+1)

(0 ≤ j ≤ n− 1)

and

Rn(z) = (z−α1)(z−α2) · · · (z−αn)· 1
2iπ

∫
C

F (x)dx
(x− α1)(x− α2) · · · (x− αn)(x− z)

·

Check the following formula, known as Newton interpolation expansion: for any
z ∈ D′,

f(z) =
n−1∑
j=0

Aj(z − α1) · · · (z − αj) +Rn(z).

G.H. Hardy, G. Pólya, D. Sato, E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson,
F. Gross,. . . .
Gel’fond (1929): same problem for Z[i]: A transcendental entire function f such
that f(a+ ib) ∈ Z[i] for all a+ ib ∈ Z[i] satisfies

lim sup
R→∞

1
R2

log |f |R ≥ γ.

Weierstraß sigma function (Hadamard canonical product for Z[i]): γ ≤ π/2.
A.O. Gel’fond: γ = 10−45.
Fukasawa, D.W. Masser, F. Gramain (1981): γ = π/(2e).
Connection with eπ = 23, 140 692 632 779 269 005 729 086 367 . . .
Siegel (1929): Dirichlet’s box principle, lemma of Thue–Siegel, application to
transcendence (elliptic curves).
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Gel’fond–Schneider’s Theorem in 1934.
“Criteria” for analytic functions satisfying differential equations: Schneider,
Lang. Statement of the Schneider–Lang Theorem. Corollaries: Hermite–Lindemann,
Gel’fond–Schneider.
Mahler’s method:

f(z) =
∑
n≥0

2−n(n−1)zn, f(z) = 1 + zf(z/4), f(1/2) =
∑
n≥0

2−n
2
.

Also f(z) =
∑
n≥0

zd
n

, for d ≥ 2, satisfies the functional equation f(zd)+z = f(z)

for |z| < 1.
Baker’s Theorem.
Algebraic independence: Gel’fond’s criterion, algebraic independence of 2

3√2 and
2

3√4. Gel’fond–Schneider problem on the transcendence degree of Q(αβ1 , . . . , αβm)
(see Exercise 2.52).
Algebraic independence of π and Γ(1/4): Chudnovskii (1978). Algebraic inde-
pendence of π, eπ and Γ(1/4): Nesterenko (1996).
Schanuel’s conjecture. Consequences.
Auxiliary functions, zero estimates, Laurent’s interpolation determinants. Arakelov
Theory (J-B. Bost): slope inequalities.

Exercise 2.52. Let α be a non-zero algebraic number and let ` be any non–zero
number such that e` = α. For z ∈ C define αz as exp{z`} (which is the same
as ez`). Show that the following statements are equivalent.
(i) For any irrational algebraic complex number β, the transcendence degree over
Q of the field

Q
{
αβ

i

; i ≥ 1
}

is d− 1 where d is the degree of β.
(ii) For any algebraic numbers β1, . . . , βm such that the numbers 1, β1, . . . , βm
are Q-linearly independent, the numbers αβ1 , . . . , αβm are algebraically indepen-
dent.
Remark: that both statements are true is a conjecture of Gel’fond and Schneider.
It is not yet proved.

Exercise 2.53. Deduce from Schanuel’s Conjecture the following statement:
the numbers

e, π, eπ, πe, ee, ππ, (log 2)log 3, (log 3)log 2, πlog 2, πlog 3,

log π, log log π, log log 2, log log 3 (2.54)

are algebraically independent.
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[3] N.I. Fel’dman & A.B. Šidlovskĭı – The development and present state
of the theory of transcendental numbers, (Russian) Uspehi Mat. Nauk 22
(1967) no. 3 (135) 3–81; Engl. transl. in Russian Math. Surveys, 22 (1967),
no. 3, 1–79.

[4] W. M. Schmidt – Diophantine approximation, Lecture Notes in Mathe-
matics, vol. 785, Springer-Verlag, Berlin, 1980.

[5] M. Waldschmidt – Words and Transcendence. To appear
http://www.math.jussieu.fr/∼miw/articles/pdf/WordsTranscendence.pdf

[6] M. Waldschmidt – Report on some recent progress in Diophantine
approximation. To appear
http://www.math.jussieu.fr/∼miw/articles/pdf/miwLangMemorialVolume.pdf

82

http://www.math.jussieu.fr/~miw/articles/pdf/WordsTranscendence.pdf
http://www.math.jussieu.fr/~miw/articles/pdf/miwLangMemorialVolume.pdf



