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Abstract

Given a subset S = {s0, s1} of the complex plane with two points and an infinite subset
S of S ×N, where N = {0, 1, 2, . . . } is the set of nonnegative integers, we ask for a lower
bound for the order of growth of a transcendental entire function f such that f (n)(s) ∈ Z
for all (s, n) ∈ S .

We first take S = {s0, s1}×2N, where 2N = {0, 2, 4, . . . } is the set of nonnegative even
integers. We prove that an entire function f of sufficiently small exponential type such
that f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n must be a polynomial. The
estimate we reach is optimal, as we show by constructing a uncountable set of examples.
The main tool, both for the proof of the estimate and for the construction of examples, is
Lidstone polynomials.

The same proof works for S = {s0, s1} × (2N + 1) and yields a lower bound for the
order of a transcendental entire function satisfying f (2n+1)(s0) ∈ Z and f (2n+1)(s1) ∈ Z
for all sufficiently large n.

Our next example is ({s0} × (2N + 1)) ∪ ({s1} × 2N) (odd derivatives at s0 and even
derivatives at s1). We use analogs of Lidstone polynomials which have been introduced
by J.M. Whittaker and studied by I.J. Schoenberg.

Finally, using results of W. Gontcharoff, A. J. Macintyre and J.M. Whittaker, we prove
lower bounds for the exponential type of a transcendental entire function f such that, for
each sufficiently large n, one at least of the two numbers f (n)(s0), f

(n)(s1) is in Z.
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1 Introduction

The order of an entire function f is

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|.

The exponential type of an entire function is

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type is finite, then f has order ≤ 1. If f has order < 1, then the
exponential type is 0.

An alternative definition is the following: f is of exponential type τ(f) if and only if,
for all z0 ∈ C,

lim sup
n→∞

|f (n)(z0)|1/n = τ(f), (1)

where f (n) denotes the n–th derivative (dn/dzn)f of f . The equivalence between the two
definitions follows from Cauchy’s inequalities (10) and Stirling’s Formula (11). If (1) is
true for one z0 ∈ C, then it is true for all z0 ∈ C.

Given a finite set of points S in the complex plane and an infinite subset S of S ×N,
where N = {0, 1, 2, . . . } is the set of nonnegative integers, we ask for a lower bound for the
order of growth of a transcendental entire function f such that f (n)(s) ∈ Z for all (s, n) ∈
S . This question has been studied by a number of authors in the special case where
S = S×N. When S = {0}, a function satisfying these conditions, namely f (n)(0) ∈ Z for
all n ≥ 0, is called a Hurwitz function. The order of a transcendental Hurwitz function
is ≥ 1 [Pólya 1921] – see Proposition 2.1 below. Assume now S = {0, 1, . . . , k − 1} with
k ≥ 2. According to [Straus 1950, Th. 1], the order of a transcendental function satisfying
f (n)(`) ∈ Z for all ` = 0, 1, . . . , k − 1 and n ≥ 0 is at least k. The example of the function
exp
(
z(z−1) · · · (z−k+1)

)
shows that the bound for the order is sharp. For k = 2, refined

estimates are obtained in [Sato and Straus 1964, §3] and [Sato and Straus 1965, §4]. See
also [Sato 1971, §7 and §8] and the survey [Sato 1985] with 59 references.

If we replace the assumption f (n)(s) ∈ Z with f (n)(s) = 0 for all (s, n) ∈ S , we
come across a question which has been the object of extensive works. It is the main
topic of [Whittaker 1935, Chap. III] and [Gel’fond 1952, Chap. 3]. It is related with the
interpolation problem of the existence and unicity of an entire function f for which the
values f (n)(s) for (s, n) ∈ S are given. For S = {0}, the Taylor expansion solves the
interpolation problem. The next most often studied case is S = {0, 1} and S = S × 2N,
where 2N = {0, 2, 4, . . . } is the set of nonnegative even integers; the basic tool is given by
Lidstone polynomials.

In the present paper, we consider a set S = {s0, s1} of only two complex numbers (with
only a short excursion to the case where S may have more than two points in Theorem 1.9.
We investigate more general sets in [Waldschmidt 2020]). Using an argument going back to
Pólya, we reduce the study of entire functions, the derivatives of even order of which take
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integer values at two points, to the study of those functions where the same derivatives
vanish at these two points. Our main assumption on the growth of our functions f is

lim sup
r→∞

e−r
√
r|f |r <

1√
2π

e−max{|s0|,|s1|}. (2)

If a function f satisfies
lim sup
r→∞

e−r
√
r|f |r < γ

for some constant γ > 0, then for z0 ∈ C the function f̃(z) = f(z + z0) satisfies

lim sup
r→∞

e−r
√
r|f̃ |r < γe|z0|,

while the derivative f ′ of f satisfies

lim sup
r→∞

e−r
√
r|f ′|r < γe.

The exponential type of such a function is ≤ 1; in the other direction, a function of
exponential type < 1 satisfies

lim sup
r→∞

e−r
√
r|f |r = 0.

We will prove in Section 2, Proposition 2.2, that, for an entire function f satisfying the
growth condition (2) and for |z0| ≤ max{|s0|, |s1|}, the set of n ≥ 0 for which f (n)(z0) ∈
Z \ {0} is finite.

In Section 3, we introduce the so–called Lidstone polynomials and we prove several
estimates for their growth.

In Section 4, we give a lower bound for the growth of transcendental entire functions
satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n. On the other hand,
we will also show that there are transcendental entire functions f of order 0 for which
f (2n)(s0) = 0 for all n ≥ 0 and f (2n)(s1) = 0 for infinitely many n.

In Section 5 (resp. Section 7), we consider a variant by studying the set of en-
tire functions which satisfy the conditions f (2n+1)(s0) ∈ Z and f (2n+1)(s1) ∈ Z (resp.
f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z) for all sufficiently large n. The proof in Section
5 involves Lidstone polynomials, while the proofs of the results from Section 7 rest on
analogs of Lidstone polynomials which have been introduced by J.M. Whittaker in 1933
and studied by I.J. Schoenberg in 1936 (Section 6).

In Section 8, we give a lower bound for the growth of transcendental entire functions
satisfying the property that for each sufficiently large n, one at least of the two numbers
f (n)(s0), f

(n)(s1) is in Z. In the periodic case we use results of W. Gontcharoff (1930) and
A.J. Macintyre (1954), in the general case we use results of W. Gontcharoff (1930) and
J.M. Whittaker (1933).
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1.1 Derivatives of even order at two points

Our first result is a lower bound for the growth of a transcendental entire function whose
derivatives of even order at two points s0 and s1 belong to Z.

Theorem 1.1. Let s0, s1 be two distinct complex numbers and f an entire function of
exponential type τ(f) satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large
n. Assume f satisfies the growth condition (2). Then there exist a polynomial P ∈ C[z]
and complex numbers c1, c2, . . . , cL with

Lπ ≤ |s1 − s0|τ(f)

such that

f(z) = P (z) +
L∑
`=1

c` sin

(
`π

z − s0
s1 − s0

)
.

Recall that assumption (2) implies τ(f) ≤ 1. It follows from Theorem 1.1 that, if
|s1 − s0| ≤ π, then any transcendental entire function f satisfying f (2n)(s0) ∈ Z and
f (2n)(s1) ∈ Z for all sufficiently large n has exponential type ≥ 1. Here are examples of
such functions of exponential type 1. Let a0 ∈ Z and a1 ∈ Z with (a0, a1) 6= (0, 0). Define

fa0,a1(z) = a0
sinh(z − s1)
sinh(s0 − s1)

+ a1
sinh(z − s0)
sinh(s1 − s0)

·

Then fa0,a1(s0) = a0, fa0,a1(s1) = a1 and f ′′a0,a1 = fa0,a1 , hence f
(2n)
a0,a1(s0) = a0 and

f
(2n)
a0,a1(s1) = a1 for all n ≥ 0. This function does not satisfy (2).

In the case |s1 − s0| ≥ π, we deduce from Theorem 1.1 that any transcendental en-
tire function f satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n has
exponential type ≥ π/|s1 − s0|. For ` ≥ 1, the function

f`(z) = sin

(
`π

z − s0
s1 − s0

)
has exponential type `π/|s1 − s0| and satisfies f

(2n)
` (s0) = f (2n)(s1) = 0 for all n ≥ 0.

Corollary 1.2. Let f be an entire function satisfying (2) for which f (2n)(s0) ∈ Z and
f (2n)(s1) ∈ Z for all sufficiently large n. Then the set of n ≥ 0 such that f (2n)(s0) 6= 0 is
finite, and also the set of n ≥ 0 such that f (2n)(s1) 6= 0 is finite. If the exponential type of
f satisfies τ(f) < π

|s1−s0| , then f is a polynomial.

We now show that the assumption (2) on the growth of f in Corollary 1.2 is essentially
best possible.

Notation 1.3. We denote by ν the unique positive real number satisfying

eν − e−ν = 4ν.

The numerical value is ν = 2.177 3 . . . Both ν and eν are transcendental.
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Theorem 1.4. Let s0, s1 be two distinct complex numbers such that

|s1 − s0| < ν. (3)

Then there exist a constant γ and an uncountable set of transcendental entire functions
f satisfying f (2n)(s0) = 0 and f (2n)(s1) ∈ {−1, 0, 1} for all n ≥ 0, for which the set
{n ≥ 0 | f (2n)(s1) 6= 0} is infinite, and such that

lim sup
r→∞

e−r
√
r|f |r ≤ γ. (4)

1.2 Derivatives of odd order at two points

The following variant of Theorem 1.1 deals with the set S × (2N + 1) (odd order of the
derivatives). We cannot simply use Theorem 1.1 for the first derivative f ′ of the given
function f , since (2) may not be satisfied for f ′.

Theorem 1.5. Let s0, s1 be two distinct complex numbers and f an entire function of
exponential type τ(f) satisfying f (2n+1)(s0) ∈ Z and f (2n+1)(s1) ∈ Z for all sufficiently
large n. Assume f satisfies the growth condition (2). Then there exist a polynomial
P ∈ C[z] and complex numbers c1, c2, . . . , cL with

Lπ ≤ |s1 − s0|τ(f)

such that

f(z) = P (z) +
L∑
`=1

c` cos

(
`π

z − s0
s1 − s0

)
.

Under the assumptions of Theorem 1.5, the set of n ≥ 0 such that f (2n+1)(s0) 6= 0
is finite, and also the set of n ≥ 0 such that f (2n+1)(s1) 6= 0 is finite. Further, if the
exponential type of f satisfies τ(f) < π

|s1−s0| , then f is a polynomial.
A polynomial is determined only up to an additive constant by its derivatives of odd

order at two points. An expansion of a polynomial in terms of these derivatives, analogous
to (12) below, is obtained by taking primitives of the Lidstone polynomials (defined up to
an additive constant – notice that Λ′n+1 is a primitive of Λn). Such expansions have been
studied in [Costabile et al., 2018, §3] under the name Even Lidstone–type sequences.

1.3 Derivatives of odd order at one point and even order at the other

The next result deals with S = ({s0} × (2N + 1)) ∪ ({s1} × 2N).

Theorem 1.6. Let s0, s1 be two distinct complex numbers. Let f be an entire function of
exponential type τ(f) satisfying f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large
n. Assume f satisfies (2). Then there exist a polynomial P ∈ C[z] and complex numbers
c0, c1, . . . , cL with

(2L+ 1)
π

2
≤ |s1 − s0|τ(f)
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such that

f(z) = P (z) +
L∑
`=0

c` cos

(
(2`+ 1)π

2
· z − s0
s1 − s0

)
.

In the case |s1−s0| ≤ π/2, any transcendental entire function f satisfying f (2n+1)(s0) ∈
Z and f (2n)(s1) ∈ Z for all sufficiently large n has exponential type ≥ 1. Here are examples
of such functions of exponential type 1. Let a0 ∈ Z and a1 ∈ Z with (a0, a1) 6= (0, 0).
Define

fa0,a1(z) = a0
sinh(z − s1)
cosh(s0 − s1)

+ a1
cosh(z − s0)
cosh(s1 − s0)

·

Then f ′a0,a1(s0) = a0, fa0,a1(s1) = a1 and f ′′a0,a1 = fa0,a1 , hence f
(2n+1)
a0,a1 (s0) = a0 and

f
(2n)
a0,a1(s1) = a1 for all n ≥ 0.

In the case |s1−s0| ≥ π/2, any transcendental entire function f satisfying f (2n+1)(s0) ∈
Z and f (2n)(s1) ∈ Z for all sufficiently large n has exponential type ≥ π/(2|s1 − s0|). For
` ≥ 0, the function

f`(z) = cos

(
(2`+ 1)π

2
· z − s0
s1 − s0

)
has exponential type (2`+1)π

2|s1−s0| and satisfies f
(2n+1)
` (s0) = f

(2n)
` (s1) = 0 for all n ≥ 0.

Corollary 1.7. Let f be an entire function satisfying (2) for which f (2n+1)(s0) ∈ Z and
f (2n)(s1) ∈ Z for all sufficiently large n. Then the two sets

{n ≥ 0 | f (2n+1)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. If the exponential type of f satisfies τ(f) < π
2|s1−s0| , then f is a polynomial.

The assumption (2) in Corollary 1.7 is essentially optimal:

Theorem 1.8. Let s0, s1 be two distinct complex numbers satisfying

|s1 − s0| < log(2 +
√

3) = 1.316 957 8 · · · . (5)

There exist a constant γ′ and an uncountable set of transcendental entire functions f
satisfying f (2n+1)(s0) = 0 and f (2n)(s1) ∈ {−1, 0, 1} for all n ≥ 0, such that the set of
n ≥ 0 with f (2n)(s1) 6= 0 is infinite and such that

lim sup
r→∞

e−r
√
r|f |r ≤ γ′. (6)

1.4 Sequence of derivatives

We propose some generalisations of Corollary 1.7, where we assume that for each suffi-
ciently large integer n, one at least of the two numbers f (n)(s0), f

(n)(s1) is in Z.
We start with the case of a periodic sequence. Let m ≥ 2 be a positive integer. Let

σ0, σ1, . . . , σm−1 be complex numbers, not necessarily distinct: we will be interested in the
case where they all belong to a set with two elements, but the next result is not restricted
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to two points. Set ζ = e2iπ/m and denote by τ the smallest modulus of a zero of the
function ∆(t), where ∆(t) is the determinant of the m×m matrix

(
ζk`eζ

ktσ`
)
0≤k,`≤m−1

=


etσ0 etσ1 etσ2 · · · etσm−1

eζtσ0 ζeζtσ1 ζ2eζtσ2 · · · ζm−1eζtσm−1

eζ
2tσ0 ζ2eζ

2tσ1 ζ4eζ
2tσ2 · · · ζ2(m−1)eζ

2tσm−1

...
...

...
. . .

...

eζ
m−1tσ0 ζm−1eζ

m−1tσ1 ζ2(m−1)eζ
m−1tσ2 · · · ζ(m−1)

2
eζ
m−1tσm−1

 .

Theorem 1.9. Let m and τ as before. Let f be a transcendental entire function of
exponential type < τ satisfying

lim sup
r→∞

e−r
√
r|f |r <

1√
2π

e−max{|σ0|,|σ1|,...,|σm−1|}. (7)

Assume that for each sufficiently large n, we have

f (mn+j)(σj) ∈ Z for j = 0, 1, . . . ,m− 1.

Then f is a polynomial.

This result is optimal:

Proposition 1.10. (a) Let α be a zero of ∆(t). There exist c0, c1, . . . , cm−1 in C, not all
zero, such that the function

f(z) = c0e
αz + c1e

ζαz + · · ·+ cm−1e
ζm−1αz

satisfies
f (mn+j)(σj) = 0 for j = 0, 1, . . . ,m− 1 and n ≥ 0.

(b) Assume τ > 1. Given a0, a1, . . . , am−1 in C, there exists a unique entire function of
exponential type ≤ 1 satisfying

f (mn+j)(σj) = aj for j = 0, 1, . . . ,m− 1 and n ≥ 0.

The function given by (a) is a transcendental entire function of exponential type |α|.
If (a0, a1, . . . , am−1) 6= (0, 0, . . . , 0), we will prove that the function f given by (b) is a
transcendental entire function of exponential type 1. Notice that f does not satisfy the
assumption (7) of Theorem 1.9.

Here is a corollary of Theorem 1.9. We fix again an integer m ≥ 2 and we denote by
τm the smallest modulus of a zero of the function

1 +
tm

m!
+

t2m

(2m)!
+ · · ·+ tnm

(nm)!
+ · · ·

When σ0 = s1 and σi = s0 for i = 1, ...,m − 1, the smallest modulus of a zero of the
determinant ∆(t) is τm/|s1 − s0| (see §8.1).

Since τ2 = π/2, Corollary 1.7 is the case m = 2 of the next result.
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Corollary 1.11. Let s0 and s1 be two distinct complex numbers. Let f be a transcendental
entire functions satisfying (2). Assume that the exponential type τ(f) of f satisfies

τ(f) <
τm

|s1 − s0|
·

Assume further that for each sufficiently large n, we have

f (n)(s0) ∈ Z for n 6≡ 0 mod m and f (n)(s1) ∈ Z for n ≡ 0 mod m.

Then f is a polynomial.

We can extend this result to the case s0 = s1 = 0 in view of Proposition 2.1 below due
to [Pólya 1921].

Corollary 1.11 is sharp: from part (a) of Proposition 1.10 it follows that there exists a
transcendental entire function f of type τm/|s1 − s0| satisfying

f (n)(s0) = 0 for n ≡ 0 mod m and f (n)(s1) = 0 for n 6≡ 0 mod m.

Also, from part (b) of Proposition 1.10 it follows that if τm > |s1−s0|, given a0, a1, . . . , am−1
in C, not all of which are zero, there exists a unique entire function f of exponential type
≤ 1 satisfying, for all n ≥ 0,

f (n)(s0) = aj for n ≡ j mod m and 1 ≤ j ≤ m− 1 and f (n)(s1) = a0 for n ≡ 0 mod m.

This function is transcendental of exponential type 1. When a0 = a1 = · · · = am−1 = 0,
it is 0.

The next and last result deals with a situation more general than the case of two points
in Theorem 1.9, since no periodicity is assumed, and we assume only that one at least of
the three numbers f (n)(s0), f

(n)(s1), f
(n)(s0)f

(n)(s1) is in Z. The assumption on the type
in Theorem 1.12 may not be optimal.

Theorem 1.12. Let s0, s1 be two distinct complex numbers. Let f is an entire function
of exponential type τ(f) satisfying (2). Assume

τ(f) <
1

|s1 − s0|
·

Assume that, for all sufficiently large n, one at least of the three numbers

f (n)(s0), f
(n)(s1), f

(n)(s0)f
(n)(s1)

is in Z. Then f is a polynomial.

2 On a result of Pólya

Recall that a Hurwitz function is an entire function satisfying f (n)(0) ∈ Z for all n ≥ 0.
Here is one of the earliest results on Hurwitz functions [Pólya 1921].
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Proposition 2.1. A transcendental Hurwitz function f satisfies

lim sup
r→∞

e−r
√
r|f |r ≥

1√
2π
·

The uncountable set of entire functions

f(z) =
∞∑
n=0

en
z2
n

2n!
for which lim sup

r→∞
e−r
√
r|f |r =

1√
2π
, (8)

where en ∈ {−1, 1}, shows that Proposition 2.1 is optimal. This does not mean that it is
the final word. On the one hand, [Sato and Straus 1964, §2 Corollary 1] and [Sato and Straus 1965,
§3 Corollary] have proved more precise results, including the following :

For every ε > 0, there exists a transcendental Hurwitz function with

lim sup
r→∞

√
2πr e−r

(
1 +

1 + ε

24r

)−1
|f |r < 1,

while every Hurwitz function for which

lim sup
r→∞

√
2πr e−r

(
1 +

1− ε
24r

)−1
|f |r ≤ 1

is a polynomial.

On the other hand, our Corollary 2.4 below extends the range of validity of Proposition
2.1.

Proposition 2.2. Let f be an entire function and let A ≥ 0. Assume

lim sup
r→∞

e−r
√
r|f |r <

e−A√
2π
· (9)

Then there exists n0 > 0 such that, for n ≥ n0 and for all z ∈ C in the disc |z| ≤ A, we
have

|f (n)(z)| < 1.

Remark 2.3. When A = 0, Pólya’s example (8) shows that the upper bound in the as-
sumption (9) of Proposition 2.2 is optimal.

For the proof of Proposition 2.2, we will use Cauchy’s inequalities for an entire function
f :

|f (n)(z0)|
n!

rn ≤ |f |r+|z0|, (10)

which are valid for all z0 ∈ C, n ≥ 0 and r > 0. We will also use Stirling’s Formula:

NNe−N
√

2πN < N ! < NNe−N
√

2πNe1/(12N), (11)

which is valid for all N ≥ 1.
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Proof of Proposition 2.2. By assumption, there exists η > 0 such that, for n sufficiently
large, we have

|f |n < (1− η)
en−A√

2πn
·

We use Cauchy’s inequalities (10) with r = n−A: for |z| ≤ A, we have

|f (n)(z)| ≤ n!

(n−A)n
|f |n.

Hence (11) yields

|f (n)(z)| ≤ (1− η)e−A+1/(12n)

(
1− A

n

)−n
.

For n sufficiently large the right hand side is < 1.

We deduce the following refinement of Proposition 2.1:

Corollary 2.4. Let f be a transcendental entire function. Let A ≥ 0. Assume (9). Then
the set {

(n, z0) ∈ N× C | |z0| ≤ A, f (n)(z0) ∈ Z \ {0}
}

is finite.

3 Lidstone polynomials

The theory of Lidstone polynomials and series has a long and rich history. We recall the
definition and the basic results which we will need.

3.1 Definition and properties

We denote by δij the Kronecker symbol:

δij =

{
1 if i = j,

0 if i 6= j.

By induction on n, one defines a sequence of polynomials (Λn)n≥0 in Q[z] by the conditions
Λ0(z) = z and

Λ′′n = Λn−1, Λn(0) = Λn(1) = 0 for all n ≥ 1.

For n ≥ 0, the polynomial Λn, has degree 2n+ 1 and leading term 1
(2n+1)!z

2n+1. From the
definition one deduces

Λ(2k)
n (0) = 0 and Λ(2k)

n (1) = δk,n for all n ≥ 0 and k ≥ 0.

This definition goes back to [Lidstone 1930]. See also [Poritsky 1932], [Whittaker 1934],
[Whittaker 1935, §9], [Schoenberg 1936], [Buck 1948, §9], [Buck 1955], [Boas and Buck 1964,
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Chap. I §4], [Costabile and Serpe, 2007], [Costabile et al., 2018, §1]. A consequence of the
definition is that any polynomial f ∈ C[z] has a finite expansion

f(z) =
∞∑
n=0

(
f (2n)(0)Λn(1− z) + f (2n)(1)Λn(z)

)
(12)

with only finitely many nonzero terms in the series.
Applying (12) to the polynomial z2n+1 yields the following recurrence formula [Costabile and Serpe, 2007,

Th. 2]: for n ≥ 0,

Λn(z) =
1

(2n+ 1)!
z2n+1 −

n−1∑
h=0

1

(2n− 2h+ 1)!
Λh(z). (13)

For instance,

Λ0(z) = z, Λ1(z) =
1

6
(z3 − z)

and [Lidstone 1930, §6 p. 18]

Λ2(z) =
1

120
z5 − 1

36
z3 +

7

360
z =

1

360
z(z2 − 1)(3z2 − 7).

It follows from (12) that for n ≥ 0, a basis of the Q–space of polynomials in Q[z] of degree
≤ 2n+ 1 is given by the 2n+ 2 polynomials

Λ0(z),Λ1(z), . . . ,Λn(z), Λ0(1− z),Λ1(1− z), . . . ,Λn(1− z).

Another consequence of (12) is

z2n

(2n)!
= Λn(1− z) +

n∑
h=0

1

(2n− 2h)!
Λh(z)

for n ≥ 0.
Lidstone expansion formula (12) for polynomials extends to entire functions of finite

exponential type — see [Poritsky 1932, Th. 1], [Whittaker 1934, Th. 2], [Schoenberg 1936,
Th. 1], [Buck 1955, p. 795], [Boas and Buck 1964, § 4]. If f has exponential type < π, then
(12) holds for f , the series being uniformly convergent on any compact of C. Therefore,
if an entire function f has exponential type < π and satisfies f (2n)(0) = f (2n)(1) = 0
for all sufficiently large n, then f is a polynomial. The following result ([Buck 1955,
Theorem p. 795], [Boas and Buck 1964, Th. 4.6]) deals with entire functions f of any
finite exponential type.

Proposition 3.1. Let f be an entire function of finite exponential type τ(f) satisfying
f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0. Then there exist complex numbers c1, . . . , cL with
L ≤ τ(f)/π such that

f(z) =
L∑
`=1

c` sin(`πz).

11



Let t ∈ C, t 6∈ iπZ. The entire function

f(z) =
sinh(zt)

sinh(t)
=

ezt − e−zt

et − e−t

satisfies
f ′′ = t2f, f(0) = 0, f(1) = 1,

hence f (2n)(0) = 0 and f (2n)(1) = t2n for all n ≥ 0. Applying the remark before Proposi-
tion 3.1 yields the following expansion, valid for 0 < |t| < π and z ∈ C:

sinh(zt)

sinh(t)
=
∞∑
n=0

t2nΛn(z). (14)

Using Cauchy’s residue Theorem with (14), we deduce the integral formula [Whittaker 1934,
p. 454–455]:

Λn(z) = (−1)n
2

π2n+1

S∑
s=1

(−1)s+1

s2n+1
sin
(
sπz

)
+

1

2πi

∫
|t|=(2S+1)π/2

t−2n−1
sinh(zt)

sinh(t)
dt

for S = 1, 2, . . . and z ∈ C. In particular, with S = 1 we have

Λn(z) = (−1)n
2

π2n+1
sin(πz) +

1

2πi

∫
|t|=3π/2

t−2n−1
sinh(zt)

sinh(t)
dt. (15)

3.2 Replacing 0 and 1 with s0 and s1

Let s0 and s1 be two distinct complex numbers. Define, for n ≥ 0,

Λ̃n(z) = (s1 − s0)2nΛn

(
z

s1 − s0

)
.

This sequence of polynomials is also defined by induction by

Λ̃0(z) =
z

s1 − s0
and, for n ≥ 1,

Λ̃′′n = Λ̃n−1, Λ̃n(0) = Λ̃n(s1 − s0) = 0.

Hence
Λ̃(2k)
n (0) = 0 and Λ̃(2k)

n (s1 − s0) = δk,n for all n ≥ 0 and k ≥ 0.

It follows that any polynomial f ∈ C[z] has an expansion

f(z) =

∞∑
n=0

(
f (2n)(s1)Λ̃n(z − s0)− f (2n)(s0)Λ̃n(z − s1)

)
,

12



with only finitely many nonzero terms in the series.
From (13) we deduce

Λ̃n(z) =
z2n+1

(s1 − s0)(2n+ 1)!
−
n−1∑
h=0

(s1 − s0)2n−2h

(2n− 2h+ 1)!
Λ̃h(z). (16)

We will use the following elementary auxiliary lemma.

Lemma 3.2. There exists an absolute constant r0 > 0 such that, for any r ≥ r0 and any
t in the interval 0 < t ≤ r, we have

r

t
(1 + log t) +

1

2
log t < r +

1

4r
·

Proof. Notice first that the result is true for 0 < t ≤ 1 and
√
r ≤ t ≤ r.

Let r be an arbitrarily large positive real number. Define, for t > 0

f(t) =
r

t
(1 + log t) +

1

2
log t.

The derivative f ′ of f is

f ′(t) =
1

2t2
(t− 2r log t)

and f ′(t) has two positive zeroes 1 < t1 < t2, where t1 is close to 1 while t2 is close to
2r log r when r is large. Since f(er) < r = f(1) < f(t1), in the interval 0 < t ≤ er, the
function f has its maximum at t1 with t1 = 2r log t1,

t1 = 1 +
1

2r
+

3

8r2
+

1

3r3
+O(1/r4)

and

log t1 =
1

2r
+

1

4r2
+

3

16r3
+O(1/r4)

for r →∞. The maximum is

f(t1) =
r

t1
+

1

2
+
t1
4r

and we have
r

t1
=

1

2 log t1
= r − 1

2
− 1

8r
+O(1/r2),

so that

f(t1) = r +
1

8r
+O(1/r2) < r +

1

4r

for sufficiently large r.

Setting t = r/N and using the left hand side of Stirling’s Formula (11), we deduce
from Lemma 3.2:

13



Corollary 3.3. For sufficiently large r and for all N ≥ 1, we have

rN

N !
≤ er+(1/4r)

√
2πr

·

Corollary 3.3 will be used in the proof of part (ii) of the following result.

Lemma 3.4. Let s0 and s1 be two distinct complex numbers. There exist positive numbers
γ1, γ2 and γ3, depending only on s0 and s1, such that the following holds.
(i) For r ≥ 0 and n ≥ 0, we have

|Λ̃n|r ≤ γ1
|s1 − s0|2n

(2n+ 1)!
max

{
r

|s1 − s0|
, 2n+ 1

}2n+1

.

(ii) Assume (3). Then, for sufficiently large r, we have, for all n ≥ 0,

|Λ̃n|r ≤ γ2
er+1/(4r)

√
2πr

·

(iii) For r ≥ 0 and n ≥ 0,

|Λ̃n|r ≤ γ3
(
|s1 − s0|

π

)2n

e
3πr

2|s1−s0| .

Proof.
(i) Let (κ0, κ1, κ2, . . . ) be a sequence of positive numbers satisfying κ0 ≥ 1 and, for n ≥ 1,

κn ≥ 1 +
n−1∑
h=0

κh
(2n− 2h+ 1)!

·

By induction we prove the estimate, for z ∈ C,

|Λ̃n(z)| ≤ κn
|s1 − s0|2n

(2n+ 1)!
max

{
|z|

|s1 − s0|
, 2n+ 1

}2n+1

. (17)

Formula (17) is true for n = 0. Assume that, for some n ≥ 1, (17) is true for n replaced
with h = 0, 1, . . . , n− 1. Then for 0 ≤ h ≤ n− 1 we have

|Λ̃h(z)| ≤ κh
|s1 − s0|2h

(2h+ 1)!
max

{
|z|

|s1 − s0|
, 2n+ 1

}2h+1

.

We use the upper bound
(2n+ 1)!

(2h+ 1)!
≤ (2n+ 1)2n−2h.

We deduce, for 0 ≤ h ≤ n− 1,

|s1 − s0|2n−2h|Λ̃h(z)| ≤ κh
|s1 − s0|2n

(2n+ 1)!
max

{
|z|

|s1 − s0|
, 2n+ 1

}2n+1

.

14



Now (16) implies

|Λ̃n(z)| ≤

(
1 +

n−1∑
h=0

κh
(2n− 2h+ 1)!

)
|s1 − s0|2n

(2n+ 1)!
max

{
|z|

|s1 − s0|
, 2n+ 1

}2n+1

,

which proves (17).
We deduce part (i) of Lemma 3.4 by taking for the sequence (κh)h≥0 a constant se-

quence κh = γ1 with

γ1 = 1 + γ1
∑
`≥1

1

(2`+ 1)!
·

This proves (i) with the explicit value

γ1 =
2

4− e + e−1
= 1.212 416 8 . . .

(ii) Let r be an arbitrarily large positive real number. Let (κ̃n)n≥0 be another sequence
of positive real numbers satisfying κ̃0 ≥ 1/|s1 − s0| and, for n ≥ 1,

κ̃n ≥
1

|s1 − s0|
+

n−1∑
h=0

κ̃h
|s1 − s0|2n−2h

(2n− 2h+ 1)!
· (18)

We prove the estimate

|Λ̃n|r ≤ κ̃n
er+(1/4r)

√
2πr

· (19)

This is true for n = 0, since r is sufficiently large. Assume that it is true for all h with
0 ≤ h < n for some n ≥ 1. Using the induction hypothesis with (16), we obtain

|Λ̃n|r ≤
r2n+1

|s1 − s0|(2n+ 1)!
+

er+(1/4r)

√
2πr

n−1∑
h=0

κ̃h
|s1 − s0|2n−2h

(2n− 2h+ 1)!
·

Now (19) follows from (18) and Corollary 3.3. We take for the sequence (κ̃h)h≥0 a constant
sequence κ̃h = γ2 with

γ2 =
1

|s1 − s0|
+ γ2

∑
`≥1

|s1 − s0|2`

(2`+ 1)!
·

Since (3) can be written

4|s1 − s0| − e|s1−s0| + e−|s1−s0| > 0,

we deduce part (ii) of Lemma 3.4 with

γ2 =
2

4|s1 − s0| − e|s1−s0| + e−|s1−s0|
·

15



(iii) From (15) we deduce

|Λn|r ≤ e(3π/2)rπ−2n

(
2

π
e−πr/2 +

22n+1

32n
sup
|t|=3π/2

1

|et − e−t|

)
.

The proof of Lemma 3.4 is complete.

From part (iii) of Lemma 3.4 we deduce the following corollary.

Corollary 3.5. Assume |s1 − s0| < π. There exists a constant γ4 > 0 such that, for r
sufficiently large, ∑

n≥γ4r
|Λ̃n|r < 1.

The assumption |s1 − s0| < π cannot be relaxed: indeed, for z 6∈ Z, the function

t 7→ sinh(zt)
sinh(t) has a pole at t = iπ, hence its Taylor series at the origin (14) has radius of

convergence π and is not bounded on the closed disc |t| ≤ π.

Proof of Corollary 3.5. Let N be a positive integer. From part (iii) of Lemma 3.4 we
deduce ∑

n≥N
|Λ̃n|r ≤ γ3e

3πr
2|s1−s0|

∑
n≥N

(
|s1 − s0|

π

)2n

=
γ3π

2

π2 − |s1 − s0|2
e

3πr
2|s1−s0|

(
|s1 − s0|

π

)2N

·

The right hand side is < 1 as soon as

3πr

2|s1 − s0|
+ log

γ3π
2

π2 − |s1 − s0|2
< 2N log

π

|s1 − s0|
,

and this is true for r sufficiently large and N ≥ γ4r, provided that

γ4 >
3π

4|s1 − s0|(log π − log |s1 − s0|)
·

4 Derivatives of even order at two points

Proof of Theorem 1.1. Let f satisfy the assumptions of Theorem 1.1. Using Corollary 2.4,
we deduce from the assumption (2) that the sets

{n ≥ 0 | f (2n)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. Hence

P (z) =

∞∑
n=0

(
f (2n)(s1)Λ̃n(z − s0)− f (2n)(s0)Λ̃n(z − s1)

)
16



is a polynomial satisfying

P (2n)(s0) = f (2n)(s0) and P (2n)(s1) = f (2n)(s1) for all n ≥ 0.

The function f̃(z) = f(z)− P (z) has the same exponential type as f and satisfies

f̃ (2n)(s0) = f̃ (2n)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,

so that
f̂ (2n)(0) = f̂ (2n)(1) = 0 for all n ≥ 0.

The exponential types of f and f̂ are related by

τ(f̂) = |s1 − s0|τ(f).

From Proposition 3.1 we deduce that there exist complex numbers c1, c2, . . . , cL such that

f̂(z) =
L∑
`=1

c` sin(`πz),

and therefore

f̃(z) =

L∑
`=1

c` sin

(
`π

z − s0
s1 − s0

)
.

Theorem 1.1 follows.

Proof of Theorem 1.4. Assume |s1 − s0| < π. From Proposition 3.1, it follows that an
entire function f of exponential type ≤ 1 for which f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all
sufficiently large n is of the form

f(z) =

∞∑
n=0

(
f (2n)(s1)Λ̃n(z − s0)− f (2n)(s0)Λ̃n(z − s1)

)
,

and also that f is not a polynomial if and only if one at least of the two sets {n ≥ 0 |
f (2n)(s0) 6= 0}, {n ≥ 0 | f (2n)(s1) 6= 0} is infinite. We construct such functions by
requiring f (2n)(s0) = 0 for all n ≥ 0 and f (2n)(s1) = 0 for all n ≥ 0 outside a lacunary
sequence.

Define, for k ≥ 0, Nk = γ2
k−1

4 , where γ4 is the constant in Corollary 3.5, so that
N0 = 1 and Nk+1 = γ4N

2
k . For n ≥ 1, let en = 0 if Nk < n < Nk+1, and eNk ∈ {+1,−1}

for k ≥ 0, so that there is an uncountable set of such lacunary sequences (en)n≥0. Using
Lemma 3.4 we will prove that

f(z) :=
∑
n≥1

enΛ̃n(z − s0)

17



defines an entire function which satisfies (4), hence has order ≤ 1. It will follow that we
have f (2n)(s0) = 0, f (2n)(s1) = en for all n ≥ 0. Since infinitely many en are not 0, this
function f is transcendental.

It remains to check the upper bound for |f |r. Let r ≥ |s0| be an arbitrary large positive
number. Let k be the least positive integer such that Nk >

√
r + |s0|. From part (i) of

Lemma 3.4, using the bounds

Nk−1 ≤
√
r + |s0| ≤

√
2r,

we deduce, for sufficiently large r,∑
n<Nk

|en| |Λ̃n|r+|s0| ≤
∑

1≤n≤Nk−1

|Λ̃n|r+|s0|

< γ1
Nk−1
|s1 − s0|

(2r)2Nk−1+1

≤ γ1r3
√
r

<
er

r
·

Assuming (3), we can use part (ii) of Lemma 3.4 and get

|Λ̃Nk |r+|s0| ≤ γ2
er+|s0|+1/(4r)

√
2πr

·

Since γ4(r + |s0|) ≤ γ4N2
k = Nk+1, Corollary 3.5 yields∑

n>Nk

|en| |Λ̃n|r+|s0| ≤
∑

n≥Nk+1

|Λ̃n|r+|s0| < 1.

Combining these three estimates, we conclude

lim sup
r→∞

e−r
√
r|f |r ≤ γ with γ = γ2

e|s0|√
2π
,

which is an explicit version of (4):

γ =
e|s0|√

2π
· 2

4|s1 − s0| − e|s1−s0| + e−|s1−s0|
·

5 Derivatives of odd order at two points

Proof of Theorem 1.5. Let f satisfy the assumptions of Theorem 1.5. Using Corollary 2.4,
we deduce from the assumption (2) that the sets

{n ≥ 0 | f (2n+1)(s0) 6= 0} and {n ≥ 0 | f (2n+1)(s1) 6= 0}
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are finite.
Let Q be a primitive of the polynomial

∞∑
n=0

(
f (2n+1)(s1)Λ̃n(z − s0)− f (2n+1)(s0)Λ̃n(z − s1)

)
.

We have

Q(2n+1)(s0) = f (2n+1)(s0) and Q(2n+1)(s1) = f (2n+1)(s1) for all n ≥ 0,

hence the function f̃(z) = f(z)−Q(z) satisfies

f̃ (2n+1)(s0) = f̃ (2n+1)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,

so that
f̂ (2n+1)(0) = f̂ (2n+1)(1) = 0 for all n ≥ 0.

From Proposition 3.1 we deduce that there exist complex numbers c′1, c
′
2, . . . , c

′
L with

Lπ ≤ τ(f̂ ′) such that

f̂ ′(z) =

L∑
`=1

c′` sin(`πz).

The exponential types of f , f̃ , f̂ and f̂ ′ are related by

τ(f) = τ(f̃) and τ(f̂ ′) = τ(f̂) = |s1 − s0|τ(f̃).

Theorem 1.5 follows.

6 Whittaker polynomials

6.1 Definition and properties

We now consider the set S = ({0} × (2N + 1)) ∪ ({1} × 2N) ⊂ {0, 1} × N: we take odd
derivatives at 0 and even derivatives at 1. The analogs of Lidstone polynomials have been
introduced by [Whittaker 1934, §6 p. 457–458], and studied by [Schoenberg 1936]. See
also [Gel’fond 1952, Chap. III §4].

Following [Whittaker 1934], one defines a sequence (Mn)n≥0 of even polynomials by
induction on n with M0 = 1,

M ′′n = Mn−1, Mn(1) = M ′n(0) = 0 for all n ≥ 1.

For all n ≥ 0, the polynomial Mn is even of degree 2n and leading term 1
(2n)!z

2n. From
the definition one deduces

M (2k+1)
n (0) = 0 and M (2k)

n (1) = δk,n for all n ≥ 0 and k ≥ 0.
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As a consequence, any polynomial f ∈ C[z] has an expansion

f(z) =
∞∑
n=0

(
f (2n)(1)Mn(z)− f (2n+1)(0)M ′n+1(1− z)

)
, (20)

with only finitely many nonzero terms in the series.
Applying (20) to the polynomial z2n yields the following recurrence formula:

Mn(z) =
1

(2n)!
z2n −

n−1∑
h=0

1

(2n− 2h)!
Mh(z). (21)

For instance

M1(z) =
1

2
(z2 − 1), M2(z) =

1

24
(z4 − 6z2 + 5) =

1

24
(z2 − 1)(z2 − 5),

M3(z) =
1

720
(z6 − 15z4 + 75z2 − 61) =

1

720
(z2 − 1)(z4 − 14z2 + 61).

Whittaker [Whittaker 1934, § 6], proved that the expansion (20) holds for entire func-
tions of exponential type < π/2. Here is the analog of Proposition 3.1 for Whittaker
polynomials [Schoenberg 1936, Th. 2]:

Proposition 6.1. Let f be an entire function of finite exponential type τ(f) satisfying
f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0. Then there exist complex numbers c0, . . . , cL with
(2L+ 1)π/2 ≤ τ(f) such that

f(z) =
L∑
`=0

c` cos

(
(2`+ 1)π

2
z

)
.

Therefore, if an entire function f has exponential type < π/2 and satisfies f (2n+1)(0) =
f (2n)(1) = 0 for all n ≥ 0, then f = 0.

In (14), we considered, for t ∈ C, t 6∈ iπZ, the entire function z 7→ sinh(zt)
sinh(t) ; now we

consider, for t ∈ C, t 6∈ iπ2 + iπZ, the entire function

f(z) =
cosh(zt)

cosh(t)
=

ezt + e−zt

et + e−t
,

which satisfies
f ′′ = t2f, f(1) = 1, f ′(0) = 0,

hence f (2n)(1) = t2n and f (2n+1)(0) = 0 for all n ≥ 0. From Proposition 6.1 and the result
of Whittaker quoted just before that proposition, it follows that the sequence (Mn)n≥0 is
also defined by the expansion

cosh(zt)

cosh(t)
=

∞∑
n=0

t2nMn(z) (22)
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for |t| < π/2 and z ∈ C.
Using Cauchy’s residue Theorem, we deduce from (22) the integral formula

Mn(z) = (−1)n
22n+2

π2n+1

S−1∑
s=0

(−1)s

(2s+ 1)2n+1
cos

(
(2s+ 1)π

2
z

)
+

1

2πi

∫
|t|=Sπ

t−2n−1
cosh(zt)

cosh(t)
dt

for S = 1, 2, . . . and z ∈ C. In particular, with S = 1 we obtain

Mn(z) = (−1)n
22n+2

π2n+1
cos(πz/2) +

1

2πi

∫
|t|=π

t−2n−1
cosh(zt)

cosh(t)
dt. (23)

6.2 Replacing 0 and 1 with s0 and s1

Let s0 and s1 be two distinct complex numbers. Define, for n ≥ 0,

M̃n(z) = (s1 − s0)2nMn

(
z

s1 − s0

)
.

This sequence of polynomials is also defined by induction by M̃0(z) = 1 and, for n ≥ 1,

M̃ ′′n = M̃n−1, M̃ ′n(0) = M̃n(s1 − s0) = 0.

Hence
M̃ (2k+1)
n (0) = 0 and M̃ (2k)

n (s1 − s0) = δk,n for all n ≥ 0 and k ≥ 0.

It follows that any polynomial f ∈ C[z] has an expansion

f(z) =

∞∑
n=0

(
f (2n)(s1)M̃n(z − s0) + f (2n+1)(s0)M̃

′
n+1(z − s1)

)
,

with only finitely many nonzero terms in the series.
From (20) we deduce

M̃n(z) =
z2n

(2n)!
−
n−1∑
h=0

(s1 − s0)2n−2h

(2n− 2h)!
M̃h(z). (24)

Here is the analog of Lemma 3.4 for the sequence of polynomials M̃n:

Lemma 6.2. Let s0, s1 be two distinct complex numbers. There exist positive contants
γ′1, γ′2 and γ′3 such that the following holds.
(i) For r ≥ 0 and n ≥ 0, we have

|M̃n|r ≤ γ′1
|s1 − s0|2n

(2n)!
max

{
r

|s1 − s0|
, 2n

}2n

.

21



(ii) Assume (5). Then, for sufficiently large r and for all n ≥ 0,

|M̃n|r ≤ γ′2
er+1/(4r)

√
2πr

·

(iii) For r ≥ 0 and n ≥ 0,

|M̃n|r ≤ γ′3
(

2|s1 − s0|
π

)2n

e
πr

|s1−s0| .

Proof.
(i) Let (κ′0, κ

′
1, κ
′
2, . . . ) be a sequence of positive numbers satisfying κ′0 ≥ 1 and, for n ≥ 1,

κ′n ≥ 1 +
n−1∑
h=0

κ′h
(2n− 2h)!

·

By induction we prove the estimate, for z ∈ C,

|M̃n(z)| ≤ κ′n
|s1 − s0|2n

(2n)!
max

{
|z|

|s1 − s0|
, 2n

}2n

. (25)

This is true for n = 0 (and z 6= 0). Assume that, for some n ≥ 1, (25) is true for n replaced
with h = 0, 1, . . . , n− 1. Then for 0 ≤ h ≤ n− 1 we have

|M̃h(z)| ≤ κ′h
|s1 − s0|2h

(2h)!
max

{
|z|

|s1 − s0|
, 2n

}2h

.

We use the upper bound
(2n)!

(2h)!
≤ (2n)2n−2h.

We deduce, for 0 ≤ h ≤ n− 1,

|s1 − s0|2n−2h|M̃h(z)| ≤ κ′h
|s1 − s0|2n

(2n)!
max

{
|z|

|s1 − s0|
, 2n

}2n

.

Now (24) implies

|M̃n(z)| ≤

(
1 +

n−1∑
h=0

κ′h
(2n− 2h)!

)
|s1 − s0|2n

(2n)!
max

{
|z|

|s1 − s0|
, 2n

}2n

,

which proves (25).
We deduce part (i) of Lemma 6.2 by taking for the sequence (κ′h)h≥0 a constant se-

quence κ′h = γ′1 with

γ′1 = 1 + γ′1
∑
`≥1

1

(2`)!
·
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This proves (i) with the explicit value

γ′1 =
2

4− e− e−1
= 2.188 569 9 . . .

(ii) Fix r sufficiently large. Let (κ̃′n)n≥0 be another sequence satisfying κ̃′0 > 0 and, for
n ≥ 1,

κ̃′n ≥ 1 +
n−1∑
h=0

κ̃′h
|s1 − s0|2n−2h

(2n− 2h)!
· (26)

We prove the estimate

|M̃n|r ≤ κ̃′n
er+(1/4r)

√
2πr

· (27)

This is true for n = 0, since r is sufficiently large and κ̃′0 > 0. Assume that, for some
n ≥ 1, (27) is true for all h with 0 ≤ h < n. Using the induction hypothesis with (24), we
obtain

|M̃n|r ≤
r2n

(2n)!
+

er+(1/4r)

√
2πr

n−1∑
h=0

κ̃′h
|s1 − s0|2n−2h

(2n− 2h)!
·

Now (27) follows from (26) and Corollary 3.3. We take for the sequence (κ̃′h)h≥0 a constant
sequence κ̃′h = γ′2 with

γ′2 = 1 + γ′2
∑
`≥1

|s1 − s0|2`

(2`)!
·

Since (5) can be written
e|s1−s0| + e−|s1−s0| < 4,

this implies part (ii) of Lemma 6.2 with

γ′2 =
2

4− e|s1−s0| − e−|s1−s0|
,

provided that r is sufficiently large.

(iii) From the integral formula (23) one deduces the upper bound:

|Mn|r ≤
(

2

π

)2n

eπr

(
4

π
e−πr/2 + 2−2n+1 sup

|t|=π

1

|et + e−t|

)
.

The proof of Lemma 6.2 is complete.

From part (iii) of Lemma 6.2 we deduce the following corollary.

Corollary 6.3. Assume |s1 − s0| < π/2. There exists a constant γ′4 > 0 such that, for r
sufficiently large, ∑

n≥γ′4r

|M̃n|r < 1.
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From (22) it follows that the assumption |s1 − s0| < π/2 cannot be relaxed.

Proof of Corollary 6.3. Let N be a positive integer. From part (iii) of Lemma 6.2 we
deduce ∑

n≥N
|M̃n|r ≤ γ′3e

πr
|s1−s0|

∑
n≥N

(
2|s1 − s0|

π

)2n

=
γ′3π

2

π2 − 4|s1 − s0|2
e

πr
|s1−s0|

(
2|s1 − s0|

π

)2N

·

The right hand side is < 1 as soon as

πr

|s1 − s0|
+ log

γ′3π
2

π2 − 4|s1 − s0|2
< 2N log

π

2|s1 − s0|
,

and this is true for r sufficiently large and N ≥ γ′4r, provided that

γ′4 >
π

2|s1 − s0|(log π − log(2|s1 − s0|))
·

7 Derivatives of odd order at one point and even at the
other

7.1 Proof of Theorem 1.6

Proof of Theorem 1.6. Let f satisfy the assumptions of Theorem 1.6. Using the assump-
tion (2), we deduce from Corollary 2.4 that the sets

{n ≥ 0 | f (2n+1)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. Hence

P (z) =
∞∑
n=0

(
f (2n)(s1)M̃n(z − s0) + f (2n+1)(s0)M̃

′
n+1(z − s1)

)
is a polynomial satisfying

P (2n+1)(s0) = f (2n+1)(s0) and P (2n)(s1) = f (2n)(s1) for all n ≥ 0.

The function f̃(z) = f(z)− P (z) has the same exponential type as f and satisfies

f̃ (2n+1)(s0) = f̃ (2n)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,
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so that
f̂ (2n+1)(0) = f̂ (2n)(1) = 0 for all n ≥ 0.

The exponential types of f and f̂ are related by

τ(f̂) = |s1 − s0|τ(f).

From Proposition 6.1 we deduce that there exists complex numbers c0, c1, . . . , cL with
(2L+ 1)π/2 ≤ τ(f̂) such that

f̂(z) =

L∑
`=0

c` cos

(
(2`+ 1)π

2
z

)
,

and therefore

f̃(z) =
L∑
`=0

c` cos

(
(2`+ 1)π

2
· z − s0
s1 − s0

)
.

Theorem 1.6 follows.

7.2 Proof of Theorem 1.8

Proof of Theorem 1.8. Assume (5). Define, for k ≥ 0, Nk = (γ′4)
2k−1, where γ′4 is the

constant in Corollary 6.3, so that N0 = 1 and Nk+1 = γ′4N
2
k . For n ≥ 1, let en = 0 if

Nk < n < Nk+1, and eNk ∈ {+1,−1} for k ≥ 0, so that there is an uncountable set of
such lacunary sequences (en)n≥0. Define

f(z) :=
∑
n≥1

enM̃n(z − s0).

Let us check the upper bound for |f |r.
Let r be a sufficiently large positive number. Let k be the least positive integer such

that Nk >
√
r + |s0|. From part (i) of Lemma 6.2, using the bound Nk−1 ≤

√
r + |s0| ≤√

2r, we deduce, for sufficiently large r,∑
n<Nk

|en| |M̃n|r+|s0| ≤
∑

1≤n≤Nk−1

|M̃n|r+|s0|

< γ′1Nk−1(2r)
2Nk−1

≤ γ′1r3
√
r

<
er

r
·

Assuming (5), we can use part (ii) of Lemma 6.2 and get

|M̃Nk |r+|s0| ≤ γ
′
2

er+|s0|+1/(4r)

√
2πr

·
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Since γ′4(r + |s0|) < γ′4N
2
k = Nk+1, Corollary 6.3 yields∑

n>Nk

|en| |M̃n|r+|s0| ≤
∑

n≥Nk+1

|M̃n|r+|s0| < 1.

Combining these three estimates, we conclude

lim sup
r→∞

e−r
√
r|f |r ≤ γ′ with γ′ = γ′2

e|s0|√
2π
,

which is an explicit version of (6):

γ′ =
e|s0|√

2π
· 2

4− e|s1−s0| − e−|s1−s0|
·

We deduce that f has order ≤ 1 and that f (2n+1)(s0) = 0, f (2n)(s1) = en for all n ≥ 0.

8 Sequence of derivatives

8.1 Proofs of Theorem 1.9, Proposition 1.10 and Corollary 1.11

The proof of Theorem 1.9 relies on the following result of [Gontcharoff 1930, Chapter IV,
§9] and [Macintyre 1954, §4]. See also [Whittaker 1935, Chap. III] and [Gel’fond 1952,
Chap. 3].

Proposition 8.1. Let σ0, σ1, . . . , σm−1 be complex numbers and let τ be defined accordingly
as in § 1.4. If f is an entire function of exponential type < τ satisfying

f (mn+j)(σj) = 0 for j = 0, . . . ,m− 1 and all sufficiently large n,

then f is a polynomial

Proof of Theorem 1.9. Using (7) and Corollary 2.4, we deduce from the assumptions of
Theorem 1.9 that

f (mn+j)(σj) = 0

for all sufficiently large n. It follows from Proposition 8.1 and the assumption τ(f) < τ
that f(z) is a polynomial.

Proof of Proposition 1.10. (a) Assume ∆(α) = 0: the m×m matrix(
ζk`eζ

kασ`
)
0≤k,`≤m−1

has rank < m. There exists c0, c1, . . . , cm−1 in C, not all zero, such that the function

f(z) = c0e
αz + c1e

ζαz + · · ·+ cm−1e
ζm−1αz

satisfies
f (j)(σj) = 0 for j = 0, 1, . . . ,m− 1.
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Since f (m)(z) = αmf(z), one deduces

f (mn+j)(σj) = 0 for j = 0, 1, . . . ,m− 1 and n ≥ 0.

(b) Assume ∆(1) 6= 0. For j = 0, 1, . . . ,m − 1, there exists a unique m–tuple of complex
numbers (cj0, cj1, . . . , cj,m−1) such that the function

ϕj(z) =
m−1∑
k=0

cjke
ζkz

satisfies
ϕ
(`)
j (σ`) = δj` for 0 ≤ ` ≤ m− 1.

For j = 0, 1, . . . ,m− 1, the function ϕj(z) has exponential type 1 and is a solution of the

differential equation ϕ
(m)
j = ϕj . Let a0, a1, . . . , am−1 in C. Define

f(z) = a0ϕ0(z) + a1ϕ1(z) + · · ·+ am−1ϕm−1(z).

We have
f (mn+j)(σj) = aj for j = 0, 1, . . . ,m− 1 and n ≥ 0.

Assume now τ > 1: according to Proposition 8.1, for a0 = a1 = · · · = am−1 = 0, the
unique solution of exponential type < τ is f = 0. The unicity follows.

Proof of Corollary 1.11. In case σ0 = 1, σ1 = σ2 = · · · = σm−1 = 0, the determinant ∆(t)
is

det


et 1 1 · · · 1
eζt ζ ζ2 · · · ζm−1

...
...

. . .
...

...

eζ
m−1t ζm−1 ζ2(m−1) · · · ζ(m−1)

2

 .

This determinant is invariant under the transformation t 7→ ζt; hence ∆(t) is a nonzero
constant times

et + eζt + · · ·+ eζ
m−1t = m

∑
n≥0

tnm

(nm)!
·

Now Corollary 1.11 follows from Theorem 1.9 with τ = τm/|s1 − s0|.

As pointed out by [Macintyre 1954, p. 12], a special case of the results of [Gontcharoff 1930]
is that an entire function of exponential type < τm satisfying

f (n)(0) = 0 for n ≡ 0 mod m and f (n)(1) = 0 for n 6≡ 0 mod m

is a polynomial. A.J. Macintyre remarks that τm is approximately m/e when m is large; he
suggests an analogy with Taylor’s series which may be considered as the limiting case with
m =∞. For Corollary 1.11, when m is large, the assumption (2) implies the assumption
on τ(f). Hence Proposition 2.1 can be viewed as the limiting case of Corollary 1.11.
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8.2 Proof of Theorem 1.12

The proof of Theorem 1.12 relies on the following result [Whittaker 1934, Corollary of
Theorem 7, p. 468]:

Proposition 8.2. If an entire function f of exponential type τ(f) < 1 satisfies

f (n)(0)f (n)(1) = 0

for all sufficiently large n, then f is a polynomial.

As pointed out in a note added in proof of [Whittaker 1934, p. 469], [Gontcharoff 1930]
proved this result earlier under the stronger assumption τ(f) < 1/e.

Proof of Theorem 1.12. Since f satisfies (2), the assumption of Corollary 2.4 is satisfied,
hence |f (n)(sj)| < 1 for n sufficiently large and j = 0, 1. Let n be sufficiently large. One
at least of the three numbers f (n)(s0), f

(n)(s1), f
(n)(s0)f

(n)(s1) is an integer of absolute
value less than 1, hence it vanishes and therefore the product f (n)(s0)f

(n)(s1) vanishes.
We apply Proposition 8.2 to the function

f̂(z) = f
(
s0 + z(s1 − s0)

)
,

the exponential type of which is |s1 − s0|τ(f) < 1.
This completes the proof of Theorem 1.12.
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