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Lattices already occurred in the course by Francesco Campagna when he spoke on elliptic curves over C
(the complex representation of elliptic curves involves lattices in C ' R2, as periods of elliptic functions) and
in the course by Fabien Pazuki on algebraic number theory (when he discussed ideals of the ring of integers of
a number field and the canonical embedding of a number field, of the ring of integers of a number field, of the
units inside the hyperplane of elements of norm 1).

We will give three definitions of lattices. The fact that the same object can be defined in several ways is
something very useful. Lattices involve both algebra and topology: they are finitely generated free Z–modules,
and they are discrete subspaces of an Euclidean vector space.

We recall the topology of Rn; we use the Euclidean norm for x = (x1, . . . , xn) ∈ Rn:

‖x‖ =

√√√√ n∑
i=1

x2
i .

The sphere of center x0 and radius r is

B(x0, r) := {x ∈ Rn | ‖x− x0‖ 6 r}.
It is a closed and bounded subset of Rn, which means a compact. For n = 1 this is a closed segment of length
2r, for n = 2 it is a disc of radius r and area πr2, for n = 3 is it a sphere in the usual space of dimension 3,
the volume of which is 4πr3/3. A sphere of radius r in Rn has volume cnr

n, where cn is the volume of the unit
sphere (radius 1) in Rn: c1 = 2, c2 = π, c3 = 4π/3,

cn =
πn/2

(n/2)!

where

(n/2)! = Γ((n/2) + 1) =

∫ ∞
0

un/2e−udu,

where Γ is Euler Gamma function

Γ(x) =

∫ ∞
0

tx−1e−tdt.

For instance
Γ(1/2) =

√
π, Γ(1) = 1, Γ(x+ 1) = xΓ(x)

and (1/2)! = Γ(3/2) = 1
2Γ( 1

2 ) =
√
π/2, ((n/2) + 1)! = (n/2)!(n/2).
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Recall that a Z–module is nothing else than an abelian group. Here are some examples of subgroups of R:

{0}, R, Z, Zα, Q, Z + Z
√

2, Z + Zα, . . .

for α ∈ R, and also the additive groups of subfields of R (including real number fields).

Questions:
• Which ones are finitely generated (as Z–modules)?
• Which ones are open, closed, discrete?
(recall the definition of discrete; as an example the set {1/n | n > 1} is a discrete subgroup of R).

In the above list there is no example of a subgroup of R which is at the same time dense and discrete.
Recall the notations for the integral part bxc and the fractional part {x} of a real number x:

x = bxc+ {x}, bxc ∈ Z, 0 6 {x} < 1

which is the Euclidean division of x by 1. For x and y in R we have {x} = {y} if and only if x− y ∈ Z. Hence
the map x 7→ {x} induces a bijective map R/Z→ [0, 1).

The map x→ e2iπx is a surjective homomorphism from the additive group of R to the multiplicative group
C×. The image is the subgroup U := {z ∈ C | |z| = 1} of C× and the kernel is Z, hence we obtain an
isomorphism between the additive group R/Z and the multiplicative group U.

Fact 1. A subgroup of R is discrete if and only if it is of the form Zα, α ∈ R.

Proof. Clearly for any α ∈ R the subgroup Zα is discrete in R. Conversely, let G be a discrete subgroup of R.
If G = {0} then G = Zα with α = 0. If G 6= {0}, there exists β ∈ G, β 6= 0. Let γ = |β|; hence γ > 0 and
γ = ±β ∈ G. Since 0 is not an accumulation point of G, there exists η > 0 such that G ∩ [−η, η] = {0}. Hence
the number

α = inf{x ∈ G | x > 0}

is well defined and belongs to G. Let x ∈ G. Use the Euclidean division:

x = mα+ r

with m ∈ Z and 0 6 r 6 α, namely m = bx/αc and r = {x/α}. From r ∈ G, 0 6 r < α, we deduce r = 0,
hence G = Zα.

Fact 2. A subgroup of R is dense if and only if it is not discrete.

Proof. Clearly a dense subgroup of R is not discrete. Conversely, if G is a subgroup of R with is not discrete,
then there exists x0 ∈ G which is an accumulation point : x = limn→∞ xn where xn are pairwise distinct
elements in G. Therefore 0 = limn→∞(x − xn) is an accumulation point. Let y ∈ R and let ε > 0. Let z ∈ G
satisfy 0 < |z| 6 ε and let m = by/|z|c. Then g := m|z| ∈ G and |y − g| < ε.

Exercice. A closed subgroup of R is either R or discrete.

Example. From these two facts one deduces a theorem of Tchebychef: let α be a real number; then the subgroup
Z+Zα is discrete in R if and only if α ∈ Q. This subgroup is dense in R if and only if α 6∈ Q. As a consequence,
if α is irrational, then for any x ∈ R and any ε > 0 there exists (a, b) ∈ Z2 such that |a + bα − x| < ε. This is
an example of a statement of non homogeneous Diophantine approximation.

Lattices 2 Update: 05/08/2025



The situation that we described in dimension 1 does not extend to higher dimension. If G1 and G2 are
subgroups of R, then G1 × G2 is a subgroup of R2 which may be neither discrete nor dense; an example is
R× {0}.
We mention without proof that there is a theorem on the structure of closed subgroups of Rn: after a change of
variables, such a subgroup becomes Rm × {0}k × Zn−m−k. For a proof, see for instance [W1995].

There are several notions of rank. We introduce two of them: the rational rank (which we just call the rank)
and the local rank.

Definition: The rank of a subgroup G of Rn is the dimension of the Q–subspace of Rn spanned by G. Hence
this is the maximal number of Z–linearly independent elements in G.
Examples: the subgroups Z and Q of R have rank 1, Z + Z

√
2 has rank 2. The additive group of the real

algebraic numbers and also R itself have infinite rank.

There are main differences between Z–modules and Q–vector spaces: a set of independent elements of a
Z–module is not always a subset of a basis, and a generating set of a Z–module does not always contain a basis.

A finitely generated Z–module has a finite rank; but Q has rank 1 and is not finitely generated.

Exercise. Let α1 and α2 be real numbers and G the subgroup

Z2 + Z(α1, α2) = {(a1 + a0α1, a2 + a0α2) | (a0, a1, a2) ∈ Z3}

of R2.
(a) Check that the following properties are equivalent:

(i) G has rank 2.
(ii) (α1, α2) ∈ Q2.
(iii) G is discrete in R2.

(b) Check that G is dense in R2 if and only if 1, α1, α2 are Q–linearly independent

Exercise. A discrete finitely subgroup of Rn has rank 6 n.

Let G be a subgroup of Rn. The map

r 7→ dimR < G ∩B(0, r) >

from R>0 to R>0 is an increasing function or r.

Definition: The local rank of a subgroup G of Rn is the limit for r → 0 of the dimension of the R–subspace
spanned by G ∩B(0, r).

Exercise. Check that a subgroup of Rn is discrete if and only if its local rank is 0.

Definition: An Euclidean vector space is a finite dimensional vector space E with a positive definite symmetric
bilinear form

< ·, · >: E × E >→ R :

• bilinear: x 7→< x,y > and y 7→< x,y > are linear forms E → R.
• symmetric,: < x,y >=< y,x >.
• positive definite: < x,x >> 0 for x 6= 0.

Euclidean norm: ‖x‖ =
√
< x,x >.

The main example is Rn with the standard inner product

< x,y >=

n∑
i=1

xiyi,
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so that ‖x‖2 =< x,x >. Some authors write x · y for < x,y >.
When e1, . . . , en is the canonical basis of Rn, with (e1 . . . en) ∈ Zn×n being the identity n×n matrix In, we

have < ei, ej >= δij (Kronecker symbol).

Theorem (Gram–Schmidt). Every Euclidean space has an orthonormal basis: E ' RdimE .

Sketch of proof. The result is true for E = 0. Otherwise, take b1 ∈ Er{0}, normalise by setting e1 = b1/‖b1‖.
This completes the proof if dimE = 1. Otherwise, take b2 linearly independent of e1. If < e1,b2 >= 0 take

e2 = b2/‖b2‖. If < e1,b2 > 6= 0, project on the orthogonal space to e1:

b′2 = b2− < e1,b2 > e1

and take e2 = b′2/‖b′2‖.
Continue by induction. See [La2002, Chap. XV].

Example of an Euclidean vector space. Eor x and y in C, define

< x, y >= Re(xy) =
1

2
(xy + xy)

where Rez is the real part of z and z is the complex conjugate of z. The map

R2 → C
(a, b) → a+ bi

is an isomorphism of Euclidean spaces:

< a+ bi, c+ di >= Re
(
(a+ bi)(c− di)

)
= Re

(
ac+ bd+ i(bc− ad)

)
= ac+ bd.

First definition of a lattice: A lattice is a discrete subgroup of maximal rank in an Euclidean vector space.
Hence the rank of a lattice in an Euclidean vector space E is the dimension of E over R. The main example

is Zn in Rn. More generally, if (b1, . . . ,bn) is a basis of an Euclidean vector space E, it follows from the above
isomorphism that Zb1 + · · ·+ Zbn is a lattice in E. This will give us the second definition of a lattice.

Beware that in some references, a lattice is only a discrete subgroup of E - here we assume that the rank is
maximal.
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Second course: 18/07/2025 14 : 00 – 14 : 50

Second definition of a lattice: A subgroup Λ in an Euclidean vector space E is a lattice if there exists a
basis (b1, . . . ,bn) of E such that Λ = Zb1 + · · ·+ Zbn.

We will sketch the proof of the equivalence with the first definition in the third course.

Write the components of b1, . . . ,bn as column vectors

bi =


bi1
bi2
...
bin

 i = 1, . . . , n.

To Λ we associate the n× n matrices

B =


b11 . . . bn1

b12 . . . bn2

...
. . .

...
bnn . . . bnn


and the Gram matrix:

A =
(
< bi,bj >

)
16i,j6n

which is a symmetric matrix. Since

< bi,bj >= bi1bj1 + bi2bj2 + · · ·+ binbjn =
(
bi1, bi2, . . . , bin

)

bj1
bj2
...
bjn


these two matrices are related by

A = BtB.

Hence detA = (detB)2. One defines the discriminant of the lattice Λ as disc(Λ) := detA. It does not depend
on the choice of the basis (b1, . . . ,bn) of Λ (exercise).

The fundamental domain of Rn modulo Λ is the compact in E defined as

F = [0, 1]b1 + · · ·+ [0, 1]bn = {t1b1 + · · ·+ tnbn | 0 6 ti 6 1, i = 1, . . . , n} .

For n = 2 this is a parallelogram (draw a picture). This set depends on the choice of the basis (b1, . . . ,bn) of
Λ, but its volume does not. One defines the covolume of Λ as the volume of F for the Euclidean metric of E –
this is the volume of the torus Rn/Λ. Hence

covol(Λ) = |detB|.

This number is also called the determinant of the lattice Λ. The fact that is does not depend on the basis can
also be seen from the formula

covol(Λ) = lim
r→∞

vol(B(0, r))

#{y ∈ L | ‖y‖ 6 r}
(see [L2008, §5]).
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The shortest vectors of Λ are the elements λ in Λ such that

‖λ‖ = min {‖x‖ | x ∈ Λ r {0}} .

We will denote by `(Λ) the length of the shortest vectors: `(Λ) = ‖λ‖. For the lattice Zn in Rn we have
`(Zn) = 1.

The shortest vector problem [L2008, §8] is to find shortest vectors in a given lattice Λ.
The nearest vector problem [L2008, §6]. is the following: given a lattice Λ in an Euclidean vector space E

and an element t in E, find x in Λ such that

‖x− t‖ = min {‖y − t‖ | y ∈ Λ r {0}} .

A trivial example is the lattice Zn in Rn: given t = (t1, . . . , tn) ∈ Rn, take x = (x1, . . . , xn) ∈ Zn where xi is a
nearest integer to ti (sometimes written as xi = btie).

In general, these two problems are hard (see the courses on cryptography).

Sphere packing. [L2001, §3].
Let ` = `(Λ). The spheres centered at the points of Λ with radius `/2 produce a sphere packing of E. From

lim
r→∞

# {x ∈ Λ | x+B(0, `/2) ⊂ B(0, r)}
vol(B(0, r))

=
1

covol(Λ)
·

we deduce that the limit

lim
r→∞

vol

(⋃
x∈Λ

(x +B(0, `/2)) ∩B(0, r)

)
vol(B(0, r))

is

d(Λ) :=
cn(`/2)n

covol(Λ)

which is the density of this sphere packing.
For instance the density of the sphere packing associated to the lattice Zn in Rn is 1 for n = 1, π/4 for

n = 2, π/6 for n = 3, and generally cn/2
n.

Recall that the dual vector space E∗ = Hom(E,R) of a vector space E is a R–vector space of the same dimension
[DF2004, §11.3]. For E an Euclidean vector space, the map

E → E∗ = Hom(E,R)
y 7→ y∗ : (x 7→< x,y >)

is an isomorphism. When (b1, . . . ,bn) is a basis of E, then a basis of E∗ is (b∗1, . . . ,b
∗
n), where < bi,b

∗
j >= δij .

Hence the n × n matrices B and B∗ with columns (b1, . . . ,bn) and (b∗1, . . . ,b
∗
n) respectively are related by

BtB∗ = In:
B∗ = (Bt)−1.

Let E be an Euclidean vector space and D a vector subspace of E. The restriction of < ·, · > to D endows
D with a structure of Euclidean space. The dual of D is D∗ = Hom(D,R). Let D⊥ be the kernel of the map

E → D∗

x 7→ (y 7→< x,y >),
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namely
D⊥ = {x ∈ E | < x,y >= 0 for all y ∈ D}.

From D ∩ D⊥ = {0} we deduce that the composite map D → E → E/D⊥ is injective. Composing with the
injective map E/D⊥ → D∗ gives an isomorphism between D and D∗.

Each w ∈ E has a unique decomposition w = x + y with x ∈ D and y ∈ D⊥: indeed given w ∈ E there
is a unique x ∈ D such that < w, z >=< x, z > for all z ∈ D. Then y = w − x satisfies < y, z >= 0 for all
z ∈ D, hence y ∈ D⊥. This is the orthogonal decomposition with respect to D which occured in the proof of
the Gram–Schmidt Theorem.

The quotient E/D ' D⊥ is canonically an Euclidean vector space. And E∗ is canonically isomorphic to E.
When Λ is a lattice in E, its dual lattice is

Λ∗ = {y ∈ E | < x,y >∈ Z for all x ∈ Λ}.

This gives a map
Λ× Λ∗ → Z
(x,y) 7→ < x,y > .

The Gram matrices A and A∗, and the matrices B and B∗, associated with Λ and Λ∗ respectively, are related
by

A∗ = (B∗)tB∗ = B−1(Bt)−1 = (BtB)−1 = A−1.

Hence
disc(Λ∗)disc(Λ) = 1, covol(B∗)covol(B) = 1.

Remark. For a lattice Λ in R2, d(Λ) = d(Λ∗).
Exercise 6 shows that this property is not true for latices of rank 3.

Proof. Let

B =

(
u1 u2

v1 v2

)
be a matrix with vector columns a basis of Λ. The dual lattice Λ∗ has for basis the vectors of the matrix

B∗ =
1

u1v2 − u2v1

(
v2 −v1

u2 −u1

)
.

It follows that the lengths `∗ := `(Λ∗) and ` := `(Λ) of the shortest vectors of Λ∗ and Λ respectively are related
by

`∗ =
`

covol(Λ)
·

Since

covol(Λ∗) =
1

covol(Λ)
,

one deduces that the densities d(Λ∗) and d(Λ) of the packings associated to Λ and Λ∗ are the same:

d(Λ∗) =
c2(`∗/2)2

covol(Λ∗)
=
c2(`/2)2

covol(Λ)
= d(Λ).

For more information on lattices of rank 2, see [L2008, §9].
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Sublattices.
If Λ and Λ′ are two lattices with Λ′ ⊂ Λ, then Λ/Λ′ is a finite group, which means that Λ′ has finite index

[Λ : Λ′] in Λ. A fundamental domain for Λ′ is the union of [Λ : Λ′] fundamental domains of Λ (example: a
fundamental domain for mZ in R is the interval [0,m]). Hence

covol(Λ′) = [Λ : Λ′]covol(Λ).

Let Λ′ ⊂ Λ be two lattices. Let (b1, . . . ,bn) be a basis of Λ over Z, (b′1, . . . ,b
′
n) a basis of Λ′ over Z and

B,B′ ∈ Zn×n the n × n matrices with column vectors b1, . . . ,bn and b′1, . . . ,b
′
n respectively. From Λ′ ⊂ Λ it

follows that there is a n× n matrix M = (mij)16i,j6n ∈ Zn×n such that

b′i = mi1b1 + · · ·+minbn (1 6 i 6 n).

Hence Λ′ = MΛ, B′ = MB, detB′ = (detM)(detB), |detM | = [Λ : Λ′],

discΛ′ = detA′ = (detM)2 detA = [Λ : Λ′]2discΛ.

Example. Let Λ be a lattice of rank n. Let m > 1. The quotient Λ/mΛ is isomorphic to (Z/mZ)n, hence
[Λ : mΛ] = mn:

0 mΛ Λ Λ/mΛ 0

0 (mZ)n Zn (Z/mZ)n 0.

∼ ∼ ∼
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Third course: 22/07/2025 11 : 10 – 12 : 00

Recall the two definitions of lattices (courses 1 and 2).
We already saw that if Λ satisfies the second definition, Λ = Zb1 + · · · + bn ⊂ E, then Λ is a discrete

subgroup of maximal rank of E.
Here is a sketch of proof of the converse. A full proof is given in [L2001, Proposition 3.3].
We will use the theorem on elementary divisors which describes the structure of submodules of a free module

over a principal ring [La2002, Chap.III §7], [Sa2013, Chap. 1 §5 Theorem 1]. We need only the special case of
the ring Z and a subgroup of Zn [DF2004, §5.2 Theorem 5].

Let Λ be a subgroup of Zn. There exists a non-negative integer s 6 n,
a basis y1, · · · ,yn of Zn and positive integers a1, . . . , as such that
a1y1, . . . , asys is a basis of Λ and ai divides ai+1 for i = 1, . . . , s−1.
If s = n, then Λ is a subgroup of Zn of finite index a1 · · · an.

Sketch of proof: a discrete subgroup has a basis. Let Λ be a discrete subgroup of maximal rank of an Euclidean
vector space E of dimension n. Let r be the dimension of the R-subspace of E spanned by Λ. Let x1, . . . ,xr
be elements R–linearly independent in Λ and let

P = {t1x1 + · · ·+ trxr ∈ E | 0 6 ti 6 1}.

Since the set P ∩ Λ is compact (closed and bounded) and discrete, it is finite.
One checks that P ∩ Λ spans G over Q as follows. For y = t1x1 + · · ·+ trxr ∈ Λ and m ∈ Z, define

ym := my − bmt1cx1 − · · · − bmtrcxr = {mt1}x1 + · · ·+ {mtr}xr ∈ P ∩ Λ.

Since P ∩ Λ is finite, there are two integers m and m′ such that 1 6 m −m′ 6 #P ∩ Λ and ym = ym′ , hence
such that (m′ −m)y ∈ Zx1 + ·+ Zxr. As a consequence Λ is a subgroup of finite index of Zx1 + ·+ Zxr.

We now use the above result on subgroups of a free Z–module, with n replaced by r: there exists an integer
s 6 r, a basis b1, · · · ,br of Zx1 + ·+Zxr and positive integers a1, . . . , as such that a1b1, . . . , asbs is a basis of
Λ. Since Λ has maximal rank n, we have s = r = n.

We now come to the third definition of a lattice. If Λ is a discrete subgroup of E of maximal rank, define
q(x) = ‖x‖2. Then we have

q(x + y) + q(x− y) = 2q(x) + 2q(y)

and q(x) 6= 0 if x 6= 0. Further, for all r > 0, the set of x ∈ Λ with q(x) 6 r is finite. Furthermore,

< x,y >=
1

4
(q(x + y)− q(x− y)).

Third definition of a lattice: A lattice is a pair (Λ, q) where Λ is finitely generated group and q a quadratic
form, namely a map q : Λ→ R satisfying, for x and y in Λ,
(1) q(x + y) + q(x− y) = 2q(x) + 2q(y),
(2) q(x) 6= 0 if x 6= 0,
(3) for all r > 0, the set of x ∈ Λ with q(x) 6 r is finite.

An isomorphism between two lattices (Λ1, q1) and (Λ2, q2) is an isomorphism f : Λ1 → Λ2 of the two
Z–modules (abelian groups) which is compatible with the quadratic forms q1 and q2:

f(q1(x)) = q2(f(x)), x ∈ Λ1.
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We just pointed out that a lattice according to the first definition satisfies the third one. We give a sketch of
proof of the converse (see [L2001, Prop. 4.1], [L2008, p. 130]).

Sketch of proof. Let Λ satisfy the third definition. From (1) we deduce q(0) = 0. Next, by induction, we check,
for m ∈ Z,

q(mx) = m2q(x).

As a consequence of (3), we have q(x) > 0 for all x 6= 0. We deduce that Λ is torsion free: if mx = 0 with
m 6= 0, then q(mx) = 0, hence q(x) = 0 and x = 0. We deduce that Λ is a free Z–module, it has a basis over Z.

For x and y in Λ define

< x,y >=
1

4
(q(x + y)− q(x− y)).

Let E be the R–space spanned by Λ, namely Λ ⊗Z R. One checks that Λ is dense in E. We extend < ·, · >
to E. Let E0 be the set of x ∈ E with q(x) = 0. Then E/E0 is an Euclidean space. Finally one checks that
E0 = 0. Hence Λ is a discrete Z–module in E of maximal rank.

Packing
In a lattice of covolume 1, the length of the shortest vectors can be as small as we wish (consider a lattice

in R2 with basis (ε, 0), (0, 1/ε)). This length cannot be too large (see [L2001, Prop. 4.2]):

Lemma. There exists x ∈ Λ with 0 < ‖x‖ 6 2

c
1/n
n

covol(Λ)1/n.

Notice that 2

c
1/n
n

6
√
n.

Fix n. For Λ lattice in Rn of covolume 1, let `(Λ) be the length of a shortest vector in Λ.
Hermite constant:

γn = sup
Λ
`(Λ)2.

From the Lemma we deduce the upper bound γn 6 n.
Here are the only known exact values:

n = 1 2 3 4 5 6 7 8 24
γnn = 1 4/3 2 4 8 64/3 64 = 26 256 = 28 424

Remark: changing the norm produces different sphere packing. Example: for Rn with the sup norm, the
associated packing is a partition of Rn by fundamentals parallelograms (hypersquares) with density 1.

Further topics which would deserve to be included.

• LLL reduction algorithm (A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovász, 1982). See [L2001], [TW2006,
Chap. 18], [L2008], [G2018, Chap. 17].

• Theorems of Blichfeld and Minkowski. See [Sc1980, Chap. II §12], [L2008, §6], [Sa2013, §4.1], [N2013, Chap.
I], [St2020, §5 Geometry of numbers].

• Lattices and codes. Unimodular lattices, integral lattices in Rn, even lattices, root lattices. See [CS1999],
[TW2006, §18], [Eb2013, §§1 and 4].

• Diophantine approximation, Geometry of numbers, Blichfeldt’s Theorem, Dirichlet’s Theorems on convex
bodies. See [Sc1980, Chap. II §1], [L2008, §7].

• Finiteness results in algebraic number theory, Dirichlet’s unit Theorem, class number. See [L2008, §3], [Sa2013,
Chap. 4], [N2013, Chap. I], [St2020, §5 Geometry of numbers, Number rings as lattices].

• Lattices and their theta functions [El2019]. See the course by Samuele Anni on Modular Forms
http://www.rnta.eu/Yogyakarta2025/courses.html
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Exercises on Lattices

1. Let Λ be the lattice of R2 with basis

(
1
2

)
and

(
3
−1

)
.

(a) What is the covolume of Λ?
(b) What is the length of the shortest vectors of Λ?
(c) What is the density of the corresponding sphere packing?
(d) Let Λ? be the dual lattice. What is the covolume of Λ?? Give a basis of Λ?, the length of the shortest
vectors and the density of the sphere packing.

2. Let u1, . . . , un be nonzero real numbers. Let Λ be the lattice in Rn with basis
u1

0
...
0

 ,


0
u2

...
0

 , . . . ,


0
0
...
un

 .

Let t =

t1...
tn

 ∈ Rn. Find the nearest vectors to t in Λ.

3. Let A be the subring Z[
√

3] of R. For x = a+ b
√

3 ∈ A, write x′ = a− b
√

3. Let

L :=

{(
x
x′

)
∈ R2 | x ∈ A

}
.

Check that L is a lattice in R2. What is its covolume? What is the length of the shortest vectors? What is the
density of the corresponding sphere packing?

4. Let n > 2.
(a) Let a1, . . . , an and d be rational integers with d > 0. Let Λ be the set of (x1, . . . , xn) in Zn which satisfy

a1x1 + · · ·+ anxn ≡ 0 mod d.

(a1) Show that Λ is a lattice in Rn. What is its covolume?
(a2) Assume that a1 and d are relatively prime. Find positive integers u1, . . . , un−1 such that

u1

1
0
...
0

 ,


u2

0
1
...
0

 , . . . ,


un−1

0
0
...
1

 ,


d
0
0
...
0


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is a basis of Λ.
(a3) Assume n = 2. Let δ be the gcd of a1 and d. Find a positive integer u such that(

u
δ

)
,

(
d/δ
0

)
is a basis of Λ.
(b) Assume a1 = · · · = an = 1 and d = 2, so that Λ is the set of (x1, . . . , xn) in Zn which satisfy

x1 + · · ·+ xn ≡ 0 mod 2.

This lattice is denoted Dn.
(b1) Give a basis of Dn.
(b2) We use the Euclidean norm on Rn:

‖(x1, . . . , xn)‖ =

(
n∑
i=1

x2
i

)1/2

.

Show that for any v and w in Dn with v 6= w, we have ‖v −w‖ >
√

2.
(b3) Show that the spheres of radius

√
2/2 with centers in Dn give a sphere packing in Rn. Compute the density.

5. Check that the three subsets Λ0, Λ1, Λ2 of Z3 defined by

Λ0 = {(x, y, z) ∈ Z3 | x ≡ y ≡ z ≡ 0 mod 7},
Λ1 = {(x, y, z) ∈ Z3 | 2x+ 3y ≡ z ≡ 0 mod 7},
Λ2 = {(x, y, z) ∈ Z3 | 2x+ 3y + 5z ≡ 0 mod 7}

are lattices in R3. What are their covolume? Give a basis for each of them.

6. Let ε satisfy 0 < ε < 1. Let Λ be the lattice in R3 with basis1
0
0

 ,

1
1
0

 ,

1
1
ε

 .

Compute the covolume of Λ, the length of the shortest vectors and the density of the associated packing.
Repeat for the dual Λ?.

Lattices 12 Update: 05/08/2025



Universitas Gadjah Mada (UGM), Yogyakarta Lattices
CIMPA School: Arithmetic in Action: July 14 – 25, 2025
Number Theory and its Applications to Cryptography and Coding Theory
Teachers : Adeline Roux-Langlois and Michel Waldschmidt

Solutions of the exercises on Lattices

1. The covolume is the absolute value of the determinant of the matrix(
1 3
2 −1

)
hence is 7.

For (a, b) ∈ Z2, the square of the norm of (a+ 3b, 2a− b) is 5a2 + 2ab+ 10b2. Let us check that the minimum
over Z2 r {0} of this quadratic form is 5 (with a = ±1 and b = 0). This follows from the remark that for
(a, b) ∈ Z2 one at least of the two inequalities

10b2 > 2|ab| 5a2 > 2|ab|

is true (consider the two cases |a| 6 |b| and |a| > |b|). The same argument shows that for (a, b) ∈ Z2 different
from (0, 0), (1, 0) and (−1, 0), we have 5a2 + 2ab+ 10b2 > 10 (second shortest vector).

Hence the shortest vectors have length
√

5. The area of the disk of radius
√

5/2 is 5π/4. Since the covolume
of Λ is 7,, the density of the sphere packing is

5π

28
= 0.56099 . . .

The covolume of Λ? is 1/7. The matrices B and B? associated to Λ and Λ? are

B =

(
1 3
2 −1

)
and B? = (Bt)−1 =

1

7

(
1 2
3 −1

)
Hence a basis of Λ? is (

1/7
3/7

)
,

(
2/7
−1/7

)
.

The square of the norm of an element (1/7)(a+ 2b, 3a− b) of Λ? is

1

49

(
(a+ 2b)2 + (3a− b)2

)
=

1

49
(10a2 − 2ab+ 5b2).

The minimum over Z2 of the quadratic form 10a2 − 2ab+ 5b2 is 5 (for (a, b) = (0,±1)), hence the length of the
shortest vectors of Λ? is √

5

7
= 0.319 . . .

The discs of radius
√

5/14 centered at the lattice points are pairwise disjoint, hence the density of the sphere
packing is 5π/28 = 0.56099 . . . .
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2. For 1 6 i 6 n, let ai be one of the nearest integer to ti/ui; if 2ti/ui ∈ Z and ti/ui 6∈ Z then there are two
solutions ai, namely ti

ui
− 1

2 and ti
ui

+ 1
2 . Then

a1


u1

0
...
0

+ a2


0
u2

...
0

+ · · ·+ an


0
0
...
un

 =


a1u1

a2u2

...
anun


is a nearest vector of t in Λ.

3. Since
√

3 is irrational, L is the Z–sub–module of R2 with basis(
1
1

)
,

( √
3

−
√

3

)
,

which is a basis of R2 over R, hence L is a lattice in R2 (draw a picture). The covolume of L is the absolute
value of the determinant (

1
√

3

1 −
√

3

)
,

hence is 2
√

3.
The square of the norm of an element (a+ b

√
3, a− b

√
3) ∈ L is

(a+ b
√

3)2 + (a− b
√

3)2 = 2(a2 + 3b2).

The minimum of a2 + 3b2 for (a, b) ∈ Z2 r {0} is 1, hence the shortest vectors have length
√

2. The discs with
radius

√
2/2 have area π/2. The density of the corresponding sphere packing is π/4

√
3 = 0.4534 . . . .

N.B. The highest density for a lattice sphere packing in 2 dimensions is π/2
√

3 = 0.9068 . . . with the hexagonal
lattice associated to Z + Z(1 +

√
3)/2.

4.
(a1) Let δ1 be the gcd of a1, . . . , an, d. We show that Λ is a lattice in Rn of covolume d/δ1.

Firstly, assume that a1, . . . , an are relatively prime, hence δ1 = 1. The map

ϕ : Zn −→ Z
(x1, . . . , xn) 7−→ a1x1 + · · ·+ anxn

is therefore surjective. Let s : Z→ Z/dZ be the canonical surjective map. So s ◦ ϕ : Zn −→ Z/dZ is surjective;
its kernel is Λ. Hence Λ is a subgroup of Zn of index d. Therefore Λ is a lattice of covolume d: a fundamental
domain of Λ is the union of d fundamental domains of Zn.

In general, let δ be the gcd of a1, . . . , an. Hence δ1 is the gcd of δ and d. Write a′i = δai, δ = δ1δ2, d = δ1d1

with gcd(a′1, . . . , a
′
n) = 1, gcd(δ2, d1) = 1. Then the condition

a1x1 + · · ·+ anxn ≡ 0 mod d

is equivalent to
a′1x1 + · · ·+ a′nxn ≡ 0 mod d1.

Hence Λ is a subgroup of Zn of index d1 and a lattice in Rn of covolume d1.
(a2) Since a1 and d are relatively prime, there exists an integer a′1 such that a1a

′
1 ≡ 1 mod d. Let ui be a
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positive integer congruent to −a′1ai+1 modulo d. Then aiui + ai+1 ≡ 0 mod d. Since the absolute value of the
determinant of the matrix 

u1 u2 . . . un−1 d
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


is d, which is the covolume of Λ, we obtain a basis of Λ.
(a3) Write a1 = δã1, d = δd̃, with ã1 and d̃ relatively prime. Let a′1 satisfy a′1ã1 ≡ 1 mod d̃. Let ui be a
positive integer congruent to −a′1a2 modulo d̃. Then ã1u ≡ −a2 mod d̃, hence a1u1 + a2δ ≡ 0 mod d. Since
the absolute value of the determinant of the matrix(

u1 d/δ
δ 0

)
is d, which is the covolume of Λ, we obtain a basis of Λ.

(b1) Take u1 = · · · = un−1 = 1 in (a2).
(b2) For x ∈ Zn, we have ‖x‖2 ∈ Z, and ‖x‖ = 0 if and only if x = 0. The elements x in Zn of norm 1 have all
components but 1 which is 0, and the component which is not 0 is 1 or −1, hence for such an element we have

x1 + · · ·+ xn = ±1.

We deduce that such an element does not belong to Dn, and therefore the elements of Dn r {0} have norm
>
√

2. For any v and w in Dn with v 6= w, we have v −w ∈ Λ r {0}, hence ‖v −w‖ >
√

2.
(b3) From the triangle inequality it follows that two spheres of radius

√
2/2 with centers two different elements

of Dn have an empty intersection. The covolume of Dn is 2. Let

cn =
πn/2

Γ((n/2) + 1)

be the volume of the unit sphere in Rn. The volume of the sphere of radius
√

2/2 is cn/2
n/2 and the density of

the packing is δ(Dn) = cn/2
(n/2)+1 for n > 2.

Examples.

• n = 1, Γ(1/2) =
√
π, Γ(3/2) = 1

2Γ(1/2) =
√
π

2 , c1 = 2. For n = 1 the covolume of D1 = 2Z is 2, the shortest
vectors have length 2 and the sphere packing has density 1.
• n = 2 (square packing) the density of D2 is π/4 = 0.7853 . . . .
• n = 3 (face centered cubic packing in 3 dimension). The density of D3 is

π3/2

4
√

2Γ(2.5)
= 0.7405 . . .

• n = 4, the density of D4 is
π2

23Γ(3)
=
π2

16
= 0.6168 . . .

• n = 8, the density of D8 is
π4

32 · Γ(4)
=

π4

768
= 0.1268 . . .
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5. We have Λ0 = 7Z3 and
Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ Z3.

A basis of Λ0 is 7
0
0

 ,

0
7
0

 ,

0
0
7

 ,

a basis of Λ1 is 7
0
0

 ,

2
1
0

 ,

0
0
7

 ,

a basis of Λ2 is 1
0
1

 ,

2
1
0

 ,

0
0
7

 .

The covolumes are respectively 73, 72 and 7.

6. The covolume of Λ is ε. The shortest vectors have length ε. The area of the sphere of radius ε/2 is πε3/6.
Hence the density of the sphere packing associated to Λ is πε2/6.

The inverse of the matrix

B =

1 1 1
0 1 1
0 0 ε

 is B−1 =

1 −1 0
0 1 −1/ε
0 0 1/ε

 .

The transpose of B−1 is

(Bt)−1 =

 1 0 0
−1 1 0
0 −1/ε 1/ε

 .

Hence a basis of the dual Λ? is  1
−1
0

 ,

 0
1
−1/ε

 ,

 0
0

1/ε

 .

The covolume est 1/ε, the shortest vectors have length 1, the sphere of radius 1/2 has volume π/6, hence the
packing density of Λ? is πε/6.
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