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Abstract

According to the classical theory of Lidstone interpolation, an
entire function of a single complex variable having exponential
type < π is determined by it derivatives of even order at 0 and
1. This theory can be generalized to several variables. In this
lecture, we will give an introduction to this generalization by
explaining how it works for two variables.

We first review the one variable theory.

In December 2021, I give a series of four courses on this topic at The
Institute of Mathematical Sciences (IMSc) Chennai.
The courses are recorded; see

https://sites.google.com/view/profmichelwaldschmidthlectures/home

The link is also available on my website
http://www.imj-prg.fr/~michel.waldschmidt/
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Lidstone interpolation problem
We denote by 2N the set of even nonnegative integers.
The following interpolation problem was considered by
G.J. Lidstone in 1930.
Given two sequences of complex numbers (at)t∈2N and
(bt)t∈2N, does there exist an entire function f satisfying

f (t)(0) = at, f (t)(1) = bt for t ∈ 2N ?

Is such a function f unique?

The answer to unicity is plain: the function sin(πz) satisfies
these conditions with at = bt = 0, hence there is no unicity,
unless we restrict the question to entire functions satisfying
some extra condition. Such a condition is a bound on the
growth of f .

We start with unicity (at = bt = 0) and polynomials.
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Even derivatives at 0 and 1

Lemma.
Let f be a polynomial satisfying

f (t)(0) = f (t)(1) = 0 for all t ∈ 2N.

Then f = 0.

Proof.
By induction on the degree of the polynomial f .
If f has degree ≤ 1, say f(z) = a0z + a1, the conditions
f(0) = f(1) = 0 imply a0 = a1 = 0, hence f = 0.
If f has degree ≤ d with d ≥ 2 and satisfies the hypotheses,
then f ′′ also satisfies the hypotheses and has degree < d,
hence by induction f ′′ = 0 and therefore f has degree ≤ 1.
The result follows.
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An isomorphism

Let T ∈ 2N. The space C[z]≤T+1 of polynomials of degree
≤ T + 1 has dimension T + 2. All elements f ∈ C[z]≤T+1

satisfy f (k) = 0 for k ≥ T + 2.
The previous lemma shows that the linear map

C[z]≤T+1 −→ CT+2

f 7−→
(
f (t)(0), f (t)(1)

)
0≤t≤T ,t∈2N

is injective. Hence it is an isomorphism.
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Solution of Lidstone interpolation problem

Given numbers at and bt (t ∈ 2N), all but finitely many of
them are 0, there is a unique polynomial f such that

f (t)(0) = at and f (t)(1) = bt for all t ∈ 2N.

A polynomial f is uniquely determined by the numbers

f (t)(0) and f (t)(1) for t ∈ 2N.
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Lidstone expansion of a polynomial

Theorem (G. J. Lidstone (1930)).
There exist two sequences of polynomials,

(
Λt,0(z)

)
t∈2N,(

Λt,1(z)
)
t∈2N, such that any polynomial f can be written as a

finite sum

f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z).

Using Kronecker symbol, this is equivalent to

Λ
(τ)
t,1 (0) = 0 and Λ

(τ)
t,1 (1) = δτt for τ ∈ 2N and t ∈ 2N,

Λ
(τ)
t,0 (1) = 0 and Λ

(τ)
t,0 (0) = δτt for τ ∈ 2N and t ∈ 2N.
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Classical notation for Lidstone polynomials: Λk

Usually, the polynomials that we denote Λt,1(z) with t even,
are denoted Λk(z) when t = 2k:

f(z) =
∑
k≥0

f (2k)(0)Λk(1− z) +
∑
k≥0

f (2k)(1)Λk(z).

The involution: z 7→ 1− z shows that

Λt,0(z) = Λt,1(1− z).

For t = 2k, our polynomials Λ2k,0(z) are nothing else than
Λk(1− z) in the classical notation.
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Differential equations

Λ0,1(z) = z: Λ0,1(0) = 0, Λ0,1(1) = 1,

Λ
(t)
0,1(0) = Λ

(t)
0,1(1) = 0 for t ≥ 2, t ∈ 2N.

The sequence of Lidstone polynomials
(
Λt,1

)
t∈2N is determined

by Λ0,1(z) = z and

Λ′′t,1 = Λt−2,1 for t ≥ 2, t ∈ 2N,

with the initial conditions Λt,1(0) = Λt,1(1) = 0 for t ≥ 2,
t ∈ 2N.
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Lidstone polynomials

For t ∈ 2N, the polynomial Λt,1 is odd, it has degree t+ 1 and
leading term 1

(t+1)!
zt+1. For instance

Λ0,1(z) = z,

Λ2,1(z) =
1

6
(z3 − z) =

1

6
z(z − 1)(z + 1),

Λ4,1(z) =
1

120
z5 − 1

36
z3 +

7

360
z =

1

360
z(z2 − 1)(3z2 − 7).
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Inductive formula
For t ∈ 2N, the polynomial f t(z) = zt+1 satisfies

f t
(τ)(0) = 0 for τ ∈ 2N,

f t
(τ)(1) =

{
(t+1)!

(t−τ+1)!
for 0 ≤ τ ≤ t, τ ∈ 2N

0 for τ ≥ t+ 2, τ ∈ 2N.

Hence

zt+1 =
∑
0≤τ≤t
τ∈2N

(t+ 1)!

(t− τ + 1)!
Λτ,1(z),

which yields the induction formula

Λt,1(z) =
1

(t+ 1)!
zt+1 −

∑
0≤τ≤t−2
τ∈2N

1

(t− τ + 1)!
Λτ,1(z).
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Λt,0(z)

The same proof gives, for t even,

zt

t!
= Λt,0(z) +

∑
0≤τ≤t
τ∈2N

1

(t− τ)!
Λτ,1(z)

giving a formula for Λt,0(z) in terms of the Λτ,1(z).
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Order and exponential type

Order of an entire function :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|.

Exponential type of an entire function :

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type is finite, then f has order ≤ 1. If f has
order < 1, then the exponential type is 0.

For ζ ∈ C \ {0}, the function eζz has order 1 and exponential
type |ζ|.
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Exponential type < π: unicity

Theorem (H. Poritsky, 1932).
Let f be an entire function of exponential type < π satisfying
f (t)(0) = f (t)(1) = 0 for all sufficiently large t ∈ 2N. Then f
is a polynomial.

This is best possible: the entire function sin(πz) has
exponential type π and satisfies f (t)(0) = f (t)(1) = 0 for all
t ∈ 2N.
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Proof of Poritsky’s unicity Theorem

Let f̃ = f − P , where P is the polynomial satisfying

P (t)(0) = f (t)(0) and P (t)(1) = f (t)(1) for t ∈ 2N.

We have f̃
(t)

(0) = f̃
(t)

(1) = 0 for all t ∈ 2N.

The functions f̃(z) and f̃(1− z) are odd, hence f̃(z) is
periodic of period 2. Therefore there exists an entire function
g such that f̃(z) = g(eπiz). Since f̃(z) has exponential type
< π, we deduce f̃ = 0 and f = P .
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Exponential type < π: existence of the expansion

Theorem (H. Poritsky, 1932).
For any entire function f of exponential type < π, we have

f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z),

with absolutely convergent series for each z ∈ C.
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Solution of the Lidstone interpolation problem

Consequence of Poritsky’s expansion formula: Let (at)t∈2N and
(bt)t∈2N be two sequences of complex numbers satisfying

lim sup
t→∞

|at|1/t < π and lim sup
t→∞

|bt|1/t < π.

Then the function

f(z) =
∑
t∈2N

atΛt,0(z) +
∑
t∈2N

btΛt,1(z)

is the unique entire function of exponential type < π satisfying

f (t)(0) = at and f (t)(1) = bt for all t ∈ 2N.
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Poritsky’s expansion for eζz with 0 < |ζ| < π

Assume Poritsky’s expansion formula holds for f ζ(z) := eζz.

Since f
(t)
ζ (0) = ζt and f

(t)
ζ (1) = eζζt, we deduce

eζz =
∑
t∈2N

Λt,0(z)ζt + eζ
∑
t∈2N

Λt,1(z)ζt.

Replacing ζ with −ζ yields

e−ζz =
∑
t∈2N

Λt,0(z)ζt + e−ζ
∑
t∈2N

Λt,1(z)ζt.

Hence
eζz − e−ζz = (eζ − e−ζ)

∑
t∈2N

Λt,1(z)ζt.
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Generating series
For ζ ∈ C, ζ 6∈ πiZ, the entire function

f(z) =
sinh(ζz)

sinh(ζ)
=

eζz − e−ζz

eζ − e−ζ

satisfies
f ′′ = ζ2f, f(0) = 0, f(1) = 1,

hence f (t)(0) = 0 and f (t)(1) = ζt for all t ∈ 2N.
For 0 < |ζ| < π and z ∈ C, we deduce

sinh(ζz)

sinh(ζ)
=
∑
t∈2N

Λt,1(z)ζt

Notice that

eζz =
sinh((1− z)ζ)

sinh(ζ)
+ eζ

sinh(ζz)

sinh(ζ)
·
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Proof of Poritsky’s expansion formula
Once we know Poritsky’s expansion formula for the functions
eζz when 0 < |ζ| < π, we deduce the general case for an entire
function of exponential type τ(f) < π by means of Laplace
transform:

f(z) =
∑
k≥0

ak
zk

k!
, F (ζ) =

∑
k≥0

akζ
−k−1.

For r > τ(f) we use the inverse Laplace transform formula

f(z) =
1

2πi

∫
|ζ|=r

eζzF (ζ)dζ

with

f (t)(z) =
1

2πi

∫
|ζ|=r

ζteζzF (ζ)dζ.
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Entire function of finite exponential type
Proposition (I.J. Schoenberg, 1936).
Let f be an entire function of finite exponential type τ(f) satisfying
f (t)(0) = f (t)(1) = 0 for all t ∈ 2N. Then there exist complex numbers
C1, . . . , CK with K ≤ τ(f)/π such that

f(z) =

K∑
k=1

Ck sin(kπz).

Theorem (R.C. Buck, 1955).
Let K be a positive integer. Let f be an entire function of finite
exponential type τ(f) < (K + 1)π. Then there exists entire functions gt
(t ∈ 2N) and constants C1, . . . , CK such that, for z ∈ C, we have

f(z) =
∑
t∈2N

f (t)(0)gt(1− z) +
∑
t∈2N

f (t)(1)gt(z) +
K∑
k=1

Ck sin(kπz).
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Two variables

We now work with two variables z = (z1, z2) ∈ C2. We write
|z| for max{|z1|, |z2|}. We keep the notation

|f |r = sup
|z|=r
|f(z)|.

For t = (t1, t2) ∈ N2, we set ‖t‖ = t1 + t2 and we define

Dt =

(
∂

∂z1

)t1 ( ∂

∂z2

)t2
.

We also write zt = z1
t1z2

t2 .
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Lidstone approximation on the triangle

• 2005 Francesco Aldo Costabile & Francesco Dell’Accio. Lidstone
approximation on the triangle Appl. Numer. Math.
The authors use the univariate theory to cover the triangle with
corners (0, 0), (1, 0), (0, 1): they write the expansion of a function
on each segment [(t, 0), (0, t)], 0 ≤ t ≤ 1, by means of Lidstone
interpolation in a single variable.

• 2005 Teodora Cătinaş. The combined Shepard-Lidstone bivariate
operator.

• 2008 Francesco Aldo Costabile, Francesco Dell’Accio, & Luca
Guzzardi. New bivariate polynomial expansion with boundary data
on the simplex

• 2012 Rosanna Caira, Francesco Aldo Costabile, & Filomena
Di Tommaso. On the bivariate Shepard-Lidstone operators
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Using Lidstone polynomials in one variable

Using Lidstone polynomials in one variable yields an expansion
of a polynomial in two variables in terms of the derivatives Dt

with t1 and t2 even at the four points (0, 0), (0, 1), (1, 0) and
(1, 1). However such an expansion is not unique.
Let T ≥ 0 be even. For a polynomial f of total degree
≤ T + 1, we have Dtf = 0 as soon as ‖t‖ ≥ T + 2. The
dimension of the space C[z]≤T+1 of polynomials of total
degree ≤ T + 1 is 1

2
(T + 2)(T + 3).

The number of t ∈ N2 with t1 and t2 even and ‖t‖ ≤ T is
1
8
(T + 2)(T + 4).

With four points, we have too many values; with three points,
we do not have enough values.
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Example: T = 2
The space of polynomials of total degree ≤ 3 in 2 variables
has dimension 10, a basis is

1, z1, z2, z1
2, z1z2, z2

2, z1
3, z1

2z2, z1z2
2, z2

3.

The derivatives D(t1,t2) with t1 and t2 even and t1 + t2 ≤ 2 are
D(0,0), D(2,0), D(0,2). With 4 points this gives 12 values, which
is too big, larger than 10. With 3 points this gives 9 values,
which is too small, less than 10.
If we keep three points and add D(1,1), again we have 12
values, too much.
Our solution: at (0, 0) we take 4 derivatives,

D(0,0), D(2,0), D(0,2), D(1,1),

at (1, 0) and (0, 1) we take only 3 derivatives,

D(0,0), D(2,0), D(0,2).
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Checking the dimensions

Our conditions at (0, 0) involve all Dt with t1 + t2 even, while
the conditions at (1, 0) and (0, 1) involve only the Dt with
both t1 and t2 even.

The number of t ∈ N2 with ‖t‖ even and ‖t‖ ≤ T is
1
4
(T + 2)2.

The number of t ∈ N2 with t1 and t2 even and ‖t‖ ≤ T is
1
8
(T + 2)(T + 4).

We have

1

4
(T + 2)2 +

1

4
(T + 2)(T + 4) =

1

2
(T + 2)(T + 3).
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The set T
We introduce the following subset of N2 × {0, 1, 2}:

T =
{

(t, 0) | ‖t‖ ∈ 2N,
⋃{

(t, i) ∈ N2×{1, 2} | t1, t2 ∈ 2N
}
.

For T ≥ 0 even, there is a natural bijective map between the
set of k ∈ N2 with ‖k‖ ≤ T + 1 and the set
{(t, i) ∈ T | ‖t‖ ≤ T}: the image of (k1, k2) with k1 + k2
even is ((k1, k2), 0), the image of (k1, k2) with k1 odd and k2
even is ((k1 − 1, k2), 1), and finally the image of (k1, k2) with
k1 even and k2 odd is ((k1, k2 − 1), 2).

For the inverse bijective map, the image of ((t1, t2), 0) is
(t1, t2), the image of ((t1, t2), 1) is (t1 + 1, t2) and the image
of ((t1, t2), 2) is (t1, t2 + 1).
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Unicity

Define e0 = (0, 0), e1 = (1, 0), e2 = (0, 1).

Here is the corresponding generalization of Lemma 1:

Lemma.
Let f ∈ C[z] be a polynomial satisfying

Dtf(ei) = 0 for all (t, i) ∈ T .

Then f = 0.

There are several proofs of this lemma; one of them is to use
the theory in one variable.
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An isomorphism

One deduces:

Lemma.
For T even, the map f 7→

(
(Dtf)(ei)

)
(t,i)∈T
‖t‖≤T

is an isomorphism

from the space of polynomials of total degree ≤ T + 1 to the
space of complex tuples

(
at,i
)
(t,i)∈T ,‖t‖≤T .

From this Lemma we deduce:

Theorem.
For each (t, i) ∈ T , there exists a unique polynomial Λt,i

satisfying, for all (τ , j) ∈ T ,

(DτΛt,i)(ej) = δτ ,tδij.
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The polynomials Λt,i(z1, z2)
An equivalent formulation is the following:

Corollary.
Any polynomial f ∈ C[z1, z2] can be expanded as a finite sum

f(z1, z2) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z1, z2).

This formula can be written

f(z1, z2) =
∑
‖t‖∈2N

(Dtf)(0, 0)Λt,0(z1, z2)

+
∑

t1,t2∈2N

(Dtf)(1, 0)Λt,1(z1, z2)

+
∑

t1,t2∈2N

(Dtf)(0, 1)Λt,2(z1, z2).
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Examples
From the corollary one deduces, for t1 and t2 even,

z1
t1+1

(t1 + 1)!

z2
t2

t2!
=

∑
0≤τ1≤t1
τ1∈2N

1

(t1 − τ1 + 1)!
Λ(τ1,t2),1(z),

z1
t1

t1!

z2
t2+1

(t2 + 1)!
=

∑
0≤τ2≤t2
τ2∈2N

1

(t2 − τ2 + 1)!
Λ(t1,τ2),2(z),

z1
t1

t1!

z2
t2

t2!
= Λt,0(z) +

∑
0≤τ1≤t1
τ1∈2N

1

(t1 − τ1)!
Λ(τ1,t2),1(z)

+
∑

0≤τ2≤t2
τ2∈2N

1

(t2 − τ2)!
Λ(t1,τ2),2(z),

while for t1 and t2 odd we have

z1
t1

t1!

z2
t2

t2!
= Λt,0(z).
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Inductive formulae
This yields recurrence formulae producing the polynomials Λt,i by
induction on ‖t‖: for t1 and t2 even, we have

Λt,1(z) =
z1
t1+1

(t1 + 1)!

z2
t2

t2!
−

∑
0≤τ1≤t1−2
τ1∈2N

1

(t1 − τ1 + 1)!
Λ(τ1,t2),1(z),

Λt,2(z) =
z1
t1

t1!

z2
t2

t2!
−

∑
0≤τ2≤t2−2
τ2∈2N

1

(t2 − τ2 + 1)!
Λ(t1,τ2),2(z),

Λt,0(z) =
z1
t1

t1!

z2
t2

t2!
−

∑
0≤τ1≤t1
τ1∈2N

1

(t1 − τ1)!
Λ(τ1,t2),1(z)

−
∑

0≤τ2≤t2
τ2∈2N

1

(t2 − τ2)!
Λ(t1,τ2),2(z).

For t1 and t2 odd, we have

Λt,0(z) =
z1
t1

t1!

z2
t2

t2!
·
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Exponential type

We will say that an entire function f of two variables has
exponential type ≤ τ in both variables if for each z1 ∈ C, the
function z2 7→ f(z1, z2) has exponential type ≤ τ and for each
z2 ∈ C, the function z1 7→ f(z1, z2) has exponential type ≤ τ :

lim sup
r→∞

1

r
log sup

|z2|≤r
|f(z1, z2)| ≤ τ for all z1 ∈ C

and

lim sup
r→∞

1

r
log sup

|z1|≤r
|f(z1, z2)| ≤ τ for all z2 ∈ C.
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Unicity for entire functions of two variables

We extend the result of H. Poritsky on the unicity of the
expansion to two variables.

Proposition.
Let f be an entire function in C2 having exponential type < π
in both variables. If

(Dτf)(ei) = 0 for all (t, i) ∈ T ,

then f = 0.

One can prove this result by using the one variable result. It
also follows from the next theorem.
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Expansion for entire functions of two variables

We extend the result of H. Poritsky on the existence of an
expansion to two variables.

Theorem.
Let f be an entire function in C2 having exponential type < π
in both variables. Then

f(z) =
∑

(t,i)∈T

(Dτf)(ei)Λt,i(z).

For each z ∈ C2 the series is absolutely convergent.
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A special case
Consider the function eζz where ζ ∈ C2 satisfies
0 < |ζ1|, |ζ2| < π. We claim:

eζz =
∑
‖t‖∈2N

Λt,0(z)ζt +
∑

t1, t2∈2N

Λt,1(z)eζ1ζt

+
∑

t1, t2∈2N

Λt,2(z)eζ2ζt.

which can be written

eζz =
∑

(t,i)∈T

Λt,i(z)eζiζt

by setting ζ0 = 0.
We wish to use this formula by replacing ζ1 with −ζ1 and/or
ζ2 with −ζ2. However the first sum does not behave well
under these substitutions. So we split it into two parts.
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Four generating series
Let us introduce the four generating series M ij

M00(ζ, z) =
∑

t1,t2 both even

Λ(t1,t2),2(z1, z2)ζ1
t1ζ2

t2 ,

M01(ζ, z) =
∑

t1,t2 both even

Λ(t1,t2),1(z1, z2)ζ1
t1ζ2

t2 ,

M10(ζ, z) =
∑

t1,t2 both even

Λ(t1,t2),0(z1, z2)ζ1
t1ζ2

t2 ,

M11(ζ, z) =
∑

t1,t2 both odd

Λ(t1,t2),0(z1, z2)ζ1
t1ζ2

t2 ,

so that∑
(t,i)∈T

Λt,i(z)ζt = M00(ζ, z)+M01(ζ, z)+M10(ζ, z)+M11(ζ, z).
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Four generating series

We get

eζ1z1+ζ2z2 = M1,0(ζ, z) +M1,1(ζ, z) +M0,1(ζ, z)eζ1 +M0,0(ζ, z)eζ2 ,

e−ζ1z1+ζ2z2 = M1,0(ζ, z)−M1,1(ζ, z) +M0,1(ζ, z)e−ζ1 +M0,0(ζ, z)eζ2 ,

eζ1z1−ζ2z2 = M1,0(ζ, z)−M1,1(ζ, z) +M0,1(ζ, z)eζ1 +M0,0(ζ, z)e−ζ2 ,

e−ζ1z1−ζ2z2 = M1,0(ζ, z) +M1,1(ζ, z) +M0,1(ζ, z)e−ζ1 +M0,0(ζ, z)e−ζ2 .

This is a system of 4 linear equations in 4 unknowns, namely the
generating series M ij .
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Solving the system

We obtain :

M00(ζ, z) = cosh(ζ1z1)
sinh(ζ2z2)

sinh(ζ2)
,

M01(ζ, z) =
sinh(ζ1z1)

sinh(ζ1)
cosh(ζ2z2),

M11(ζ, z) = sinh(ζ1z1) sinh(ζ2z2)

and

M10(ζ, z) = cosh(ζ1z1) cosh(ζ2z2)−
sinh(ζ1z1) cosh(ζ2z2)

tanh(ζ1)

− cosh(ζ1z1) sinh(ζ2z2)

tanh(ζ2)
·
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Explicit formulae for the polynomials Λt,i
For t1 and t2 both in 2N,

Λ(t1,t2),1(z1, z2) = Λt1,1(z1)
z2
t2

t2!
,

Λ(t1,t2),2(z1, z2) =
z1
t1

t1!
Λt2,1(z2),

Λ(t1,t2),0(z1, z2) =
z1
t1

t1!
Λt2,0(z2) + Λt1,0(z1)

z2
t2

t2!
− z1

t1z2
t2

t1!t2!
,

while for t1 and t2 both odd,

Λ(t1,t2),0(z1, z2) =
z1
t1

t1!

z2
t2

t2!
·

These formulae can also be deduced from the recurrence
formulae, or else checked directly using the definition of the
Λt,i.
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Back to entire functions of exponential type < π

Once we know the explicit expressions of the four generating
series, one deduces

eζz =
∑

(t,i)∈T

Λt,i(z)eζiζt.

The existence and unicity of the expansion

f(z) =
∑

(t,i)∈T

(Dτf)(ei)Λt,i(z).

for entire functions of exponential type < π in both variables
follows by means of Laplace transform in two variables.
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Entire functions of finite exponential type

Here is an extension to two variables of the result of
I.J. Schoenberg:

Proposition.
Let f be an entire function having exponential type ≤ τ in
both variables, with τ < (K + 1)π . Assume (Dtf)(ei) = 0
for all (t, i) ∈ T . Then there exist even entire functions of a
single variable hk,1 and hk,2 (k = 1, 2, . . . , K) having
exponential type ≤ τ such that

f(z1, z2) =
K∑
k=1

(
hk,1(z1) sin(kπz2) + sin(kπz1)hk,2(z2)

)
.
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Entire functions of finite exponential type

Here is an extension to two variables of the result of R.C. Buck:

Theorem.
Let K be a nonnegative integer. Let f be an entire function in C2

of finite exponential type ≤ τ in both variables, with
τ < (K + 1)π. Then for z ∈ C2 we have

f(z) =
∑

(t,i)∈T

gt,i(z)(D
tf)(ei)

+

K∑
k=1

(hk,1(z1) sin(kπz2) + sin(kπz1)hk,2(z2)) ,

where the functions gt,i(z) are entire functions in C2, the series is
absolutely convergent and hk,1, hk,2 (k = 1, 2, . . . ,K) are even
entire functions of a single variable of exponential type ≤ τ .
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Several variables

In 2 variables, we had 3 points e0 = (0, 0), e1 = (1, 0) and
e2 = (0, 1), we took the derivatives Dt with ‖t‖ even at e0
and only with t1, t2 both even at e1 and e2.

In n variables, we take n+ 1 points, first e0 = 0 (the origine),
next the canonical basis e1, . . . , en of Cn.

We take the derivatives Dt with ‖t‖ even at all n+ 1 points,
without restriction at e0, with the restriction t1 even at e1, and
more generally for 1 ≤ i ≤ n with the restriction that t1, . . . , ti
are even at ei. Notice that at en−1 and en the restriction is the
same: we only take all ti even.
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The set T and the polynomials Λt,i

We denote by T the set of (t, i) with t ∈ Nn, ‖t‖ even,
i ∈ {0, 1, . . . , n}, which satisfy the additional condition, for
i ≥ 1, that t1, . . . , ti are even.

Theorem.
For each (t, i) ∈ T , there exists a unique polynomial
Λt,i ∈ C[z] satisfying, for all (τ , j) ∈ T ,

(DτΛt,i)(ej) = δτ ,tδij.

The total degree of Λt,i is ≤ ‖t‖+ 1.
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Expansion for polynomials

Corollary.
Any polynomial f ∈ C[z] can be expanded as a finite sum

f(z) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z).

Consequence: Applying this result to the functions zk

k!
yields

inductive formulae for Λt,i.
One deduces explicit formulae for these polynomials in terms
of the one variable Lidstone polynomials.
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Expansion for entire functions of exponential type

< π

Theorem.
Any entire function f in Cn of exponential type < π in each of
the variables can be written in a unique way as the sum of a
series

f(z) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z)

which is absolutely convergent for all z ∈ Cn.

This result for the functions eζz yields explicit formulae for the
generating series of 2n families of polynomials Λt,i(z).
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Expansion for entire functions of finite exponential

type
Theorem.
Let K be a nonnegative integer. Let f be an entire function in
Cn of finite exponential type ≤ τ in all variables, with
τ < (K + 1)π. Then for z ∈ Cn we have

f(z) =
∑

(t,i)∈T

gt,i(z)(Dtf)(ei)

+
K∑
k=1

n∑
i=1

hk,i(z1, . . . , zi−1, zi+1 . . . , zn) sin(kπzi),

where the functions gt,i(z) are entire functions in Cn, the
series is absolutely convergent and hk,i, (k = 1, 2, . . . , K,
i = 1, . . . , n) are even entire functions of n− 1 variable of
exponential type ≤ τ in all n− 1 variables.
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