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Abstract

It is easy to check that the equation

x2 + y2 + z2 = 3xyz,

where the three unknowns x, y, z are positive integers, has
infinitely many solutions. There is a simple algorithm which
produces all of them. However, this does not answer to all
questions on this equation : in particular, Frobenius asked
whether it is true that for each integer z > 0, there is at most
one pair (x, y) such that x < y < z and (x, y, z) is a solution.
This question is an active research topic nowadays.
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Abstract (continued)

Markoff’s equation occurred initially in the study of minima of
quadratic forms at the end of the XIX–th century and the
beginning of the XX–th century. It was investigated by many a
mathematician, including Lagrange, Hermite, Korkine,
Zolotarev, Markoff, Frobenius, Hurwitz, Cassels. The solutions
are related with the Lagrange-Markoff spectrum, which
consists of those quadratic numbers which are badly
approximable by rational numbers. It occurs also in other parts
of mathematics, in particular free groups, Fuchsian groups and
hyperbolic Riemann surfaces (Ford, Lehner, Cohn, Rankin,
Conway, Coxeter, Hirzebruch and Zagier. . .).

We discuss some aspects of this topic without trying to
cover all of them.
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The sequence of Markoff numbers

A Markoff number is a
positive integer z such that
there exist two positive
integers x and y satisfying

x2 + y2 + z2 = 3xyz.

For instance 1 is a Markoff
number, since
(x, y, z) = (1, 1, 1) is a
solution.

Andrei Andreyevich Markoff
1856 – 1922

Photos :
http://www-history.mcs.st-andrews.ac.uk/history/
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The On-Line Encyclopedia of Integer Sequences
1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897,
4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666,

43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, . . .

The sequence of Markoff
numbers is available on the
web
The On-Line Encyclopedia
of Integer Sequences

Neil J. A. Sloane

http://oeis.org/A002559
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Integer points on a surface

Given a Markoff number z, there exist infinitely many pairs of
positive integers x and y satisfying

x2 + y2 + z2 = 3xyz.

This is a cubic equation in the 3 variables (x, y, z), of which
we know a solution (1, 1, 1).

There is an algorithm producing all integer solutions.
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Markoff’s cubic variety

The surface defined by
Markoff’s equation

x2 + y2 + z2 = 3xyz.

is an algebraic variety with
many automorphisms :
permutations of the variables,
changes of signs and

(x, y, z) 7→ (3yz − x, y, z).

A.A. Markoff
1856–1922
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Algorithm producing all solutions

Let (m,m1,m2) be a solution of Markoff’s equation :

m2 +m2
1 +m2

2 = 3mm1m2.

Fix two coordinates of this solution, say m1 and m2. We get a
quadratic equation in the third coordinate m, of which we
know a solution, hence, the equation

x2 +m2
1 +m2

2 = 3xm1m2.

has two solutions, x = m and, say, x = m′, with
m+m′ = 3m1m2 and mm′ = m2

1 +m2
2. This is the cord and

tangent process.

Hence, another solution is (m′,m1,m2) with
m′ = 3m1m2 −m.
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Three solutions derived from one

Starting with one solution (m,m1,m2), we derive (most
often) three new solutions :

(m′,m1,m2), (m,m′1,m2), (m,m1,m
′
2).

If the solution we start with is (1, 1, 1), we produce only one
new solution, (2, 1, 1) (up to permutation).

If we start from (2, 1, 1), we produce only two new solutions,
(1, 1, 1) and (5, 2, 1) (up to permutation).

A new solution means distinct from the one we start with.
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New solutions

We shall see that any solution different from (1, 1, 1) and from
(2, 1, 1) yields three new different solutions – and we shall see
also that, in each other solution, the three numbers m, m1

and m2 are pairwise distinct.

Two solutions are called neighbors if they share two
components.

For instance

• (1, 1, 1) has a single neighbor, namely (2, 1, 1),

• (2, 1, 1) has two neighbors : (1, 1, 1) et (5, 2, 1),

• any other solution has exactly three neighbors.
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A new solution from an old one
Let (m,m1,m2) be a solution of Markoff’s equation

m2 +m2
1 +m2

2 = 3mm1m2.

Denote by m′ the other root of the quadratic polynomial

X2 − 3m1m2X +m2
1 +m2

2.

Then (m′,m1,m2) is again a solution.
From

X2 − 3m1m2X +m2
1 +m2

2 = (X −m)(X −m′)

we deduce

m+m′ = 3m1m2, mm′ = m2
1 +m2

2.
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m1 6= m2

Let us check that if m1 = m2, then m1 = m2 = 1 :
this holds only for the two exceptional solutions (1, 1, 1),
(2, 1, 1).

Assume m1 = m2. We have

m2 + 2m2
1 = 3mm2

1 hence m2 = (3m− 2)m2
1.

Therefore m1 divides m. Let m = km1. We have
k2 = 3km1 − 2, hence k divise 2.
For k = 1 we get m = m1 = 1.
For k = 2 we get 6m1 = 6, m1 = 1, m = 2.

Consider now a solution distinct from (1, 1, 1) or (2, 1, 1) :
hence m1 6= m2.
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Two larger, one smaller

Assume m2 > m1.

Consider the number a = (m2 −m)(m2 −m′).

Since m+m′ = 3m1m2, and mm′ = m2
1 +m2

2, we have

a= m2
2 −m2(m+m′) +mm′

= 2m2
2 +m2

1 − 3m1m
2
2

= (2m2
2 − 2m1m

2
2) + (m2

1 −m1m
2
2).

However 2m2
2 < 2m1m

2
2 and m2

1 < m1m
2
2, hence a < 0.

This means that m2 is in the interval defined by m and m′.
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Order of the solutions

We order the solution according to the largest coordinate.

If m < m2, we have m2 < m′ and the new solution
(m′,m1,m2) is larger than the initial solution (m,m1,m2).

If m > m2, we have m2 > m′ and the new solution
(m′,m1,m2) is smaller than the initial solution (m,m1,m2).

m < m1 < m2 =⇒ m1 < m2 < m′ larger solution

m1 < m < m2 =⇒ m1 < m2 < m′ larger solution

m1 < m2 < m =⇒ m′ < m2 smaller solution.
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Markoff’s tree

If we start with (m,m1,m2) satisfying m > m2 > m1, the
three new solutions

(m′,m1,m2), (m,m′1,m2), (m,m1,m
′
2).

have
m′1 > m′2 > m > m′.

Then two of the neighbors of (m,m1,m2) are larger than the
initial solution, the third one is smaller.

Hence, if we start from (1, 1, 1), we produce infinitely many
solutions, which we organize in a tree : this is Markoff’s tree.
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This algorithm yields all the solutions

Conversely, starting from any solution other than (1, 1, 1), the
algorithm produces a smaller solution.

Hence, by induction, we get a sequence of smaller and smaller
solutions, until we reach (1, 1, 1).

Therefore the solution we started from was in Markoff’s tree.
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First branches of Markoff’s tree

Richard Guy Unsolved problems in number theory. Problem books in mathematics,
Springer Verlag 1994. Chap. D12 : Markoff numbers.
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Markoff’s tree starting from (2, 5, 29)

DON ZAGIER 

FIGURE2 

Markoff triples (p, q,  r ) with max( p ,  q )  100000 


Conversely, given a Markoff triple ( p ,  q, r )  with r > 1, one checks easily that 
3pq - r < r; and from t h s  it follows by induction that all Markoff triples occur, 
and occur only once, on this tree (for a fuller discussion of t h s  and other properties 
of the Markoff tree, see [2]). 

To prove the theorem we must analyze the asymptotic behavior of the Markoff 
tree. From the Markoff equation (1) we find that 3r2 2 3pqr or r 2 pq; if p is large 
(which will happen for all but a small portion of the tree, contributing O(log x )  to 
M(x)), then this implies that r is much larger than q and hence (1) gives r 2  < 3pqr < 
r 2  + o(r2)  or r - 3pq. Multiplying both sides of this equation by 3 and taking 
logarithms gives 

log(3p) + log(3q) = log(3r) + o(1) (p large) 
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Markoff’s tree up to 100 000
DON ZAGIER 

FIGURE2 

Markoff triples (p, q,  r ) with max( p ,  q )  100000 


Conversely, given a Markoff triple ( p ,  q, r )  with r > 1, one checks easily that 
3pq - r < r; and from t h s  it follows by induction that all Markoff triples occur, 
and occur only once, on this tree (for a fuller discussion of t h s  and other properties 
of the Markoff tree, see [2]). 

To prove the theorem we must analyze the asymptotic behavior of the Markoff 
tree. From the Markoff equation (1) we find that 3r2 2 3pqr or r 2 pq; if p is large 
(which will happen for all but a small portion of the tree, contributing O(log x )  to 
M(x)), then this implies that r is much larger than q and hence (1) gives r 2  < 3pqr < 
r 2  + o(r2)  or r - 3pq. Multiplying both sides of this equation by 3 and taking 
logarithms gives 

log(3p) + log(3q) = log(3r) + o(1) (p large) 

Don Zagier,
On the number of Markoff
numbers below a given bound.
Mathematics of Computation,
39 160 (1982), 709–723.

Don Zagier
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Continued fractions and the Markoff tree

Enrico Bombieri

E. Bombieri,

Continued fractions and the
Markoff tree,

Expo. Math. 25 (2007),

no. 3, 187–213.
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a2 + b2 + c2 = 3abc

X2 − 3abX + a2 + b2 =
(X − c)(X − 3ab+ c)

x′ = 3yz − x y′ = 3xz − y z′ = 3xy − z

Ying Zhang, Congruence and Uniqueness of Certain Markoff Numbers
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Markoff’s tree

Ying Zhang, Congruence and Uniqueness of Certain Markoff Numbers,
Acta Arithmetica 128 3 (2007), 295-301. arXiv:math/0612620
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Growth of Markoff’s sequence

To identify primitive words in
a free group with two
generators, H. Cohn (1978)
used Markoff forms.

Harvey Cohn
1923 – 2014

Order of magnitude of m, m1 and m2 for
m2 +m2

1 +m2
2 = 3mm1m2 with m1 < m2 < m,

3mm1m2 > m2 > m2
2 > m2

1, m ∼ 3m1m2,

log(3m1) + log(3m2) = log(3m) + o(1).

x 7→ log(3x) : (m1,m2,m) 7→ (a, b, c) with a+ b ∼ c.
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Euclidean tree
Start with (0, 1, 1). From a triple (a, b, c) satisfying a+ b = c
and a ≤ b ≤ c, one produces two larger such triples
(a, c, a+ c) and (b, c, b+ c) and a smaller one (a, b− a, b) or
(b− a, a, b).

(0, 1, 1)
|

(1, 1, 2)
|

(1, 2, 3)
|

| |

(1, 3, 4) (2, 3, 5)

| |
| | | |

(1, 4, 5) (3, 4, 7) (2, 5, 7) (3, 5, 8)

|
...

...

|
...

...

|
...

...

|
...

...
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The Markoff tree and the Euclide tree

Thomas Cusik

Tom Cusik &
Mary Flahive,
The Markoff— and
Lagrange spectra,
Math. Surveys and
Monographs 30, AMS
(1989).

Mary Flahive
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Growth of Markoff’s sequence

Don Zagier (1982) :
estimating the number of the
Markoff triples bounded by x :

C(log x)2+O
(
log x(log log x)2

)
,

C = 0.180 717 0 . . .
Don Zagier

Conjecture : the n-th Markoff number mn is

mn ∼ A
√
n with A = 10.510 150 4 · · ·

Remark : C = 1/(logA)2.
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Zagier’s constant
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The Fibonacci sequence and the Markoff equation

The smallest Markoff number is 1. When we impose z = 1 in
the Markoff equation x2 + y2 + z2 = 3xyz, we obtain the
equation

x2 + y2 + 1 = 3xy.

Going along Markoff’s tree starting from (1, 1, 1), we obtain
the subsequence of Markoff numbers

1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, . . .

which is the sequence of Fibonacci numbers with odd indices

F 1 = 1, F 3 = 2, F 5 = 5, F 7 = 13, F 9 = 34, F 11 = 89, . . .
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Leonardo Pisano (Fibonacci)

The Fibonacci sequence
(F n)n≥0 :

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233 . . .

is defined by

F 0 = 0, F 1 = 1,

F n = F n−1 +F n−2 (n ≥ 2).

Leonardo Pisano (Fibonacci)
1170 – 1250
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Encyclopedia of integer sequences (again)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, . . .

The Fibonacci sequence is available
online
The On-Line Encyclopedia
of Integer Sequences

http://oeis.org/A000045
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Encyclopedia of integer sequences A000045
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Fibonacci numbers with odd indices
Fibonacci numbers with odd indices are Markoff’s numbers.

(Cassini identity 1680)

Fn−1Fn+1 − F 2
n = (−1)n.

Proof :(
1 1
1 0

)n

=

(
Fn+1 Fn

Fn Fn−1

)
.

Giovanni Domenico Cassini
1625 – 1712

Replace n by 2n :

F 2
2n = F 2n−1F 2n+1 − 1,

(F 2n−1 − F 2n+1)
2 = F 2n−1F 2n+1 − 1,

1 + F 2
2n−1 + F 2

2n+1 = 3F 2n−1F 2n+1. 32 / 93



Prime factors
Let m be a Markoff number with

m2 +m2
1 +m2

2 = 3mm1m2.

1. The gcd of m, m1 and m2 is 1 : indeed, if p divides m1,
m2 and m, then p divides the new solutions which are
produced by the preceding process – going down in the tree
shows that p would divide 1.
2. The odd prime factors of m are all congruent to 1 modulo 4
(since they divide a sum of two relatively prime squares).
3. One can prove that if m is even, then the numbers

m

2
,

3m− 2

4
,

3m+ 2

8
,

are odd integers.
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Prime Markoff numbers

• https://oeis.org/A178444 Markov numbers that are
prime.
Triples of prime Markoff numbers appear to be very rare.
For Markoff numbers less than 101000, only five are known :
(2, 5, 29), (5, 29, 433), (5, 2897, 43261), (2, 5741, 33461), and

(89, 6017226864647074440629, 1606577036114427599277221).

• It is conjectured that infinitely many Markoff numbers are
prime.

• https://oeis.org/A256395 Composite Markoff numbers.
Almost all Markoff numbers are composite (Bourgain,
Gamburd, and Sarnak).
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Markoff’s Conjecture

We have an algorithm which produces the sequence of Markoff
numbers. Each Markoff number occurs infinitely often in the
tree as one of the components of the solution.

According to the definition, for a Markoff number m > 2,
there exist a pair (m1,m2) of positive integers with
m > m1 > m2 such that m2 +m2

1 +m2
2 = 3mm1m2.

Question : Given m, is such a pair (m1,m2) unique ?

The answer is yes, as long as m ≤ 10105.
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Frobenius’s work

Markoff’s Conjecture does not
occur in Markoff’s 1879 and
1880 papers but in
Frobenius’s one in 1913.

Ferdinand Georg Frobenius
1849 – 1917

E. Bombieri, Continued fractions and the Markoff tree, Expo. Math. 25 (2007), no. 3,
187–213. MR2345177
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Special cases https://baragar.faculty.unlv.edu/

The Conjecture has been
proved for certain classes of
Markoff numbers m like

pn,
pn ± 2

3
for p prime.
A. Baragar (1996), m = p
and m = 2p.

Arthur Baragar

P. Schmutz (1996), m = pn and m = 2pn

J.O. Button (1998),
M.L. Lang, S.P. Tan (2005),
Ying Zhang (2007) : 4pn, 8pn.
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Powers of a prime number

Anitha Srinivasan, 2007
A really simple proof of the
Markoff conjecture for prime
powers

Number Theory Web

Created and maintained by
Keith Matthews, Brisbane,
Australia Anitha Srinivasan

Anitha Srinivasan
Markoff numbers and ambiguous classes
Journal de Théorie des Nombres de Bordeaux 21 (2009), 757–770
Numdam
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Square Markoff numbers Richard Guy

In a 2008-02-07 email, Bryan Orman asks if 169 = 132 is the
only example of one Markoff number being the square of
another. Gary Walsh notes that if the uniqueness conjecture is
not true for a fixed z, then there is a divisor u of z with
1 < u ≤

√
z and integers v, w for which (u2, v, w) is a Markov

triple.

De : rkg@cpsc.ucalgary.ca

Objet : Rép : Square Markov numbers

Date : 14 février 2008 04:27:57 HNEC

À : NMBRTHRY@LISTSERV.NODAK.EDU
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Markoff Equation and Nilpotent Matrices

Norbert Riedel (2007) Arxiv 0709.1499

A triple (a, b, c) of positive integers is called a Markoff triple iff
it satisfies the diophantine equation a2 + b2 + c2 = abc.
Recasting the Markoff tree, whose vertices are Markoff triples,
in the framework of integral upper triangular 3× 3 matrices,

it will be shown that the
largest member of such a
triple determines the other
two uniquely. This answers a
question which has been open
for almost 100 years.

Norbert Riedel
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Markoff Equation and Nilpotent Matrices

arXiv:0709.1499 [math.NT]

From : Norbert Riedel
Submission history
[v1] Mon, 10 Sep 2007 22 :11 :39 GMT (11kb)
[v2] Thu, 13 Sep 2007 18 :45 :29 GMT (11kb)
[v3] Tue, 4 Dec 2007 17 :43 :40 GMT (15kb)
[v4] Tue, 5 Aug 2008 21 :24 :23 GMT (15kb)
[v5] Thu, 12 Mar 2009 14 :08 :48 GMT (15kb)
[v6] Tue, 28 Jul 2009 18 :49 :17 GMT (15kb)
[v7] Fri, 29 Mar 2013 12 :36 :56 GMT (0kb,I) (withdrawn)

Comments : Most of the (correct) portion of this paper has been
incorporated into the paper “On the Markoff equation”
https://arxiv.org/abs/1208.4032
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On the Markoff Equation arXiv:1208.4032

Norbert Riedel
[v1] Mon, 20 Aug 2012 15 :05 :47 GMT (51kb)
[v2] Mon, 1 Apr 2013 10 :21 :39 GMT (52kb)
[v3] Wed, 15 May 2013 17 :39 :35 GMT (52kb)
[v4] Mon, 8 Jul 2013 17 :35 :21 GMT (53kb)
[v5] Sun, 13 Oct 2013 21 :23 :28 GMT (50kb)
[v6] Sun, 20 Oct 2013 13 :37 :31 GMT (50kb)
[v7] Mon, 25 Nov 2013 19 :11 :53 GMT (53kb)
[v8] Sun, 12 Jan 2014 14 :59 :52 GMT (53kb)
[v9] Mon, 15 Dec 2014 18 :50 :40 GMT (58kb)
[v10] Fri, 6 Feb 2015 20 :16 :28 GMT (59kb)
[v11] Sat, 5 Sep 2015 12 :30 :49 GMT (59kb)
[v12] Thu, 25 Aug 2022 14 :25 :51 UTC (61 KB)
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Serge Perrine

http://www.tessier-ashpool.fr/html/markoff.html

La théorie de Markoff
et ses développements
Tessier et Ashpool, 2002.
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From Frobenius to Riedel :

analysis of the solutions of the Markoff equation

http://hal.archives-ouvertes.fr/hal-00406601/fr/

Comments by Serge Perrine

On the version 2 on November 7, 2007, 32 p.
On the version 3 on April 25, 2008, 57 p.
On the version 4 on March 10, 2009, 103 p.
On the versions 5 and 6 on July 29, 2009, 145 p.
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Sur la conjecture de Frobenius relative aux

solutions de l’équation de Markoff (Première

partie)

Serge Perrine
Version 1
Submitted January 5, 2015
Last modified March 31, 2021
https://hal.archives-ouvertes.fr/hal-01099931
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Why the coefficient 3 ?
Let n be a positive integer.
If the equation x2 + y2 + z2 = nxyz has a solution in positive
integers, then
either n = 3 and x, y, z are relatively prime,
or n = 1 and the gcd of the numbers x, y, z is 3.

Friedrich Hirzebruch
1927 – 2012

Don Zagier

Friedrich Hirzebruch & Don Zagier,
The Atiyah–Singer Theorem and elementary number theory,
Publish or Perish (1974)
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Markoff type equations

Bijection between the solutions for n = 1 and those for n = 3 :

• if x2 + y2 + z2 = 3xyz, then (3x, 3y, 3z) is solution of
X2 + Y 2 + Z2 = XY Z, since
(3x)2 + (3y)2 + (3z)2 = (3x)(3y)(3z).

• if X2 + Y 2 + Z2 = XY Z, then X, Y , Z are multiples of 3
and (X/3)2 + (Y /3)2 + (Z/3)2 = 3(X/3)(Y /3)(Z/3).

The squares modulo 3 are 0 and 1. If neither X, Y nor Z is a
multiple of 3, then X2 + Y 2 + Z2 is a multiple of 3.

If one or two (not three) integers among X, Y , Z are
multiples of 3, then X2 + Y 2 + Z2 is not a multiple of 3.
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Equations x2 + ay2 + bz2 = (1 + a + b)xyz
If we insist that (1, 1, 1) is a solution, then up to permutations
there are only two more Diophantine equations of the type

x2 + ay2 + bz2 = (1 + a+ b)xyz

having infinitely many integer solutions, namely those with
(a, b) = (1, 2) and (2, 3) :

x2 + y2 + 2z2 = 4xyz and x2 + 2y2 + 3z2 = 6xyz

• x2 + y2 + z2 : tessalation of the plane by equilateral triangles
• x2 + y2 + 2z2 = 4xyz : tessalation of the plane by isoceles
rectangle triangles
• x2 + 2y2 + 3z2 = 6xyz : tessalation ?
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Hurwitz’s equation (1907)

For each n ≥ 2 the set Kn of
positive integers k for which
the equation

x21 +x22 + · · ·+x2n = kx1 · · · xn

has a solution in positive
integers is finite.

Adolf Hurwitz
1859 – 1919

The largest value of k in Kn is n with the solution

(1, 1, . . . , 1).

Examples :
K2= {2},
K3= {1, 3},
K4= {1, 4},
K7= {1, 2, 3, 5, 7}. 49 / 93



Hurwitz’s equation

x2
1 + x2

2 + · · · + x2
n = kx1 · · · xn

When there is a solution in positive integers, there are infinitely
many solutions, which can be organized in finitely many trees.

A. Baragar proved that there exists such equations which
require an arbitrarily large number of trees :
J. Number Theory (1994), 49 No 1, 27-44.

The analog for the rank of elliptic curves over the rational
number field is yet a conjecture.

50 / 93



Markoff and Diophantine approximation

J.W.S. Cassels,
An introduction to
Diophantine approximation,
Cambridge Univ. Press (1957)

John William Scott Cassels
1922 – 2015
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Connection with Hurwitz’s Theorem
Don Zagier,
On the number of Markoff numbers below a given bound.
Mathematics of Computation, 39 160 (1982), 709–723.

MATHEMATICS OF COMPUTATION 
VOLUME 39, NUMBER 160 
OCTOBER 1982, PAGES 709-723 

On the Number of Markoff Numbers 

Below a Given Bound 


By Don Zagier 

Abstract. According to a famous theorem of Markoff, the indefinite quadratic forms with 
exceptionally large minima (greater than f of the square root of the discriminant) are in 1 : 1 
correspondence with the solutions of the Diophantine equation p2 + q2  + r 2  = 3pqr. By 
relating Markoff's algorithm for finding solutions of this equation to a problem of count- 
ing lattice points in triangles, it is shown that the number of solutions less than x 
equals Clog23x + O(log x loglog2 x )  with an explicitly computable constant C = 
0.1807 170471 1507. . . . Numerical data up to is presented which suggests that the true 
error term is considerably smaller. 

1.By a Markoff triple we mean a solution ( p ,  q, r )  of the Markoff equation 

(1) P 2 + q 2 + r 2 = 3 p q r  ( p , q , r ~ Z , l ~ p ~ q ~ r ) ;  
a Markoff number is a member of such a triple. These numbers, of which the first few 
are 

1, 2 ,5 ,  13,29, 34, 89, 169, 194,233,433,610,985,. . ., 
play a role in a famous theorem of Markoff [lo] (see also Frobenius [6], Cassels 121): 
the GL2(Z)-equivalence classes of real indefinite binary quadratic forms Q of 
discriminant 1 for whlch the invariant 

is greater than 3 are in one-to-one correspondence with the Markoff triples, the 
invariant p(Q) for the form corresponding to ( p ,  q, r )  being (9 - 4r-2)-'/2. Thus 
the part of the Markoff spectrum (the set of all p(Q)) lying above 3 is described 
exactly by the Markoff numbers. An equivalent theorem is that, under the action of 
SL2(Z) on R U {a)given by x * (ax + b)/(cx + d), the SL2(Z)-equivalence 
classes of real numbers x for which the approximation measure 

is > are in 1 : 1 correspondence with the Markoff triples, the spectrum being the 
same as above (e.g. p(x) = 5-'I2 for x equivalent to the golden ratio and p(x) G 8-'12 
for all other x). Thus the Markoff numbers are important both in the theory of 
quadratic forms and in the theory of Diophantine approximation. They have also 
arisen in connection with problems in several other branches of mathematics, e.g. the 
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lim sup =∞, lim inf ≤ 1/
√

5.
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Historical origin : rational approximation

Hurwitz’s Theorem (1891) :
For any real irrational number
x, there exist infinitely many
rational numbers p/q such
that ∣∣∣∣x− p

q

∣∣∣∣ ≤ 1√
5q2
·

Golden ratio
Φ = (1 +

√
5)/2 =

1.618 033 9 . . .
Hurwitz’s result is optimal.

Adolf Hurwitz
1859 – 1919

F 2
n

∣∣∣∣Φ− Fn+1

Fn

∣∣∣∣→ 1/
√

5·
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Lagrange’s constant

For x ∈ R \Q denote by λ(x) ∈ [
√

5,+∞] the least upper
bound of the numbers λ > 0 such that there exist infinitely
many p/q ∈ Q satisfying∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

λq2
·

This means

1

λ(x)
= lim inf

q→∞

(
qmin

p∈Z
|qx− p|

)
.

Hurwitz : λ(x) ≥
√

5 = 2.236 067 9 · · · for any x and
λ(Φ) =

√
5.
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Badly approximable numbers
An irrational real number x is badly approximable by rational
numbers if its Lagrange’s constant is finite. This means that
there exists λ > 0 such that, for any p/q ∈ Q,∣∣∣∣x− p

q

∣∣∣∣ ≥ 1

λq2
·

For instance Liouville’s numbers have an infinite Lagrange’s
constant.

A real number is badly approximable if and only if the sequence
(an)n≥0 of partial quotients in its continued fraction expansion

x = [a0, a1, a2, . . . , an, . . . ]

is bounded.
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Badly approximable numbers

Any quadratic irrational real number has a finite Lagrange’s
constant (= is badly approximable).

It is not known whether there exist real algebraic numbers of
degree ≥ 3 which are badly approximable.

It is not known whether there exist real algebraic numbers of
degree ≥ 3 which are not badly approximable . . .

One conjectures that any irrational real number which is not
quadratic and which is badly approximable is transcendental.
This means that one conjectures that no real algebraic number
of degree ≥ 3 is badly approximable.
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Lebesgue measure

The set of badly approximable
real numbers has zero
measure for Lebesgue’s
measure.

Henri Léon Lebesgue
1875–1941
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Properties of the Lagrange’s constant

We have

λ(x+ 1) = λ(x) :

∣∣∣∣x+ 1− p

q

∣∣∣∣ =

∣∣∣∣x− p+ q

q

∣∣∣∣
and

λ(−x) = λ(x) :

∣∣∣∣−x− p

q

∣∣∣∣ =

∣∣∣∣x+
p

q

∣∣∣∣ ,
Also λ(1/x) = λ(x) :

p2
∣∣∣∣1x − q

p

∣∣∣∣ = q2
∣∣∣∣ pqx
∣∣∣∣ · ∣∣∣∣x− p

q

∣∣∣∣ .
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The modular group

The multiplicative group
generated by the three
matrices(

1 1
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
is the group GL2(Z) of 2× 2
matrices(
a b
c d

)
with coefficients in Z

and determinant ±1.

Jean-Pierre Serre

J-P. Serre – Cours d’arithmétique, Coll. SUP, Presses
Universitaires de France, Paris, 1970.
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(
a b

c d

)
x =

ax + b

cx + d

(
1 1
0 1

)
x = x+ 1

(
1 0
0 −1

)
x = −x

(
0 1
1 0

)
x =

1

x

λ(x+ 1) = λ(x) λ(−x) = λ(x) λ(1/x) = λ(x)

Consequence : Let x ∈ R \Q and let a, b, c, d be rational
integers satisfying ad− bc = ±1. Set

y =
ax+ b

cx+ d
·

Then λ(x) = λ(y).
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Hurwitz’s work (1891)

The inequality λ(x) ≥
√

5 for
all real irrational x is optimal
for the Golden ratio and for
all the noble irrational
numbers whose continued
fraction expansion ends with
an infinite sequence of 1’s –
these numbers are roots of
quadratic polynomials having
discriminant 5 :

Adolf Hurwitz
1859 – 1919

Φ = [1, 1, 1, . . . ] = [1].

Notice that
√

5 = 2 + 1
2+
√
5

= [2, 4] is not a noble number.
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Noble numbers

A noble number, whose continued fraction expansion ends
with an infinite sequence of 1’s, is a number related to the
Golden ratio Φ by a homography of determinant ±1 :

aΦ + b

cΦ + d
with

(
a b
c d

)
∈ GL2(Z).
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The first elements of the spectrum
For all the real numbers which are not noble numbers, a
stronger inequality than Hurwitz’s inequality

λ(x) ≥
√

5 = 2, 236 067 977 . . .

is valid, namely

λ(x) ≥ 2
√

2 = 2, 828 427 125 . . .

This is optimal for
√

2 = 1.414 213 562 373 095 048 801 688 724 209 698 078 . . .

whose continued fraction expansion is

[1; 2, 2, . . . , 2, . . . ] = [1; 2].
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Lagrange Spectrum

The constant
√

5 is best possible in Hurwitz’s Theorem.

If α is not GL(2,Z) equivalent to the Golden ratio, the
constant

√
5 improves to

√
8.

If we also exclude the numbers which are GL(2,Z) equivalent
to 1 +

√
2, then we can take

√
221/5 as the constant.

The sequence

L1 =
√

5 = 2.236 . . . , L2 =
√

8 = 2
√

2 = 2.828 . . . ,

continues as follows :

L3 =

√
221

5
= 2.973 . . . , L4 =

√
1517

13
, L5 =

√
7565

29
, . . .

64 / 93



Lagrange Spectrum

There is an infinite increasing sequence of real numbers
(Li)i≥1 with limit 3, and an associated sequence of quadratic
irrationalities (θi)i≥1, such that for any i ≥ 1, if α is not
GL(2,Z) equivalent to any of θ1, . . . , θi−1, then there is
infinitely many rational numbers that satisfy∣∣∣∣α− p

q

∣∣∣∣ < 1

Liq2
,

and this is best possible when α is GL(2,Z) equivalent to θi.
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Lagrange Spectrum

Denoting by m1,m2, . . . the sequence of Markoff numbers,
one has

Li =
√

9− (4/mi
2)

and

θi =
−3mi + 2ki +

√
9mi

2 − 4

2mi

,

where ki is an integer satisfying aiki ≡ bi (mod mi) and
(ai, bi,mi) is a solution of Markoff’s equation with
mi ≥ max{ai, bi}.

Here one assumes Markoff’s Conjecture to get unicity of
(ai, bi).
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First values : Markoff (1880)

Li =
√

9− (4/mi
2), θi =

−3mi + 2ki +
√

9mi
2 − 4

2mi

F i(X,Y ) = miX
2 + (3mi − 2ki)XY +

ki
2 − 3kimi + 1

mi

Y 2.

i mi ki Li θi F i

1 1 1
√

5 (−1 +
√

5)/2 X2 +XY − Y 2

2 2 1
√

8 −1 +
√

2 2(X2 + 2XY − Y 2)

3 5 2
√

221/5 (−11 +
√

221)/10 5X2 + 11XY − 5Y 2
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Minima of quadratic forms
Let f(X,Y ) = aX2 + bXY + cY 2 be a quadratic form with
real coefficients. Denote by ∆(f) its discriminant b2 − 4ac.

Consider the minimum m(f) of |f(x, y)| on Z2 \ {(0, 0)}.
Assume ∆(f) 6= 0 and set

C(f) = m(f)/
√
|∆(f)|.

Let α and α′ be the roots of f(X, 1) :

f(X,Y ) = a(X − αY )(X − α′Y ),

{α, α′} =

{
1

2a

(
−b±

√
∆(f)

)}
.
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Example with ∆ < 0
The form

f(X,Y ) = X2 +XY + Y 2

has discriminant ∆(f) = −3 and minimum m(f) = 1, hence

C(f) =
m(f)√
|∆(f)|

=
1√
3
·

For ∆ < 0, the form

f(X,Y ) =

√
|∆|
3

(X2 +XY + Y 2)

has discriminant ∆ and minimum
√
|∆|/3. Again

C(f) =
1√
3
·
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Definite quadratic forms (∆ < 0)

If the discriminant is negative, J.L. Lagrange and Ch. Hermite
(letter to Jacobi, August 6, 1845) proved C(f) ≤ 1/

√
3 with

equality for f(X,Y ) = X2 +XY + Y 2. For each
% ∈ (0, 1/

√
3], there exists such a form f with C(f) = %.

Joseph-Louis Lagrange
1736 – 1813

Charles Hermite
1822 – 1901

Carl Jacobi
1804 – 1851
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Example with ∆ > 0
The form

f(X,Y ) = X2 −XY − Y 2

has discriminant ∆(f) = 5 and minimum m(f) = 1, hence

C(f) =
m(f)√
∆(f)

=
1√
5
·

For ∆ > 0, the form

f(X,Y ) =

√
∆

5
(X2 −XY − Y 2)

has discriminant ∆ and minimum
√

∆/5. Again

C(f) =
1√
5
·
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Indefinite quadratic forms (∆ > 0)
Assume ∆ > 0

A. Korkine and E.I.. Zolotarev
proved in 1873 C(f) ≤ 1/

√
5

with equality for
f 0(X,Y ) = X2 −XY − Y 2.
For all forms which are not
equivalent to f 0 under
GL(2,Z), they prove
C(f) ≤ 1/

√
8.

Egor Ivanovich Zolotarev
1847–1878

1/
√

5 = 0.447 213 595 . . . 1/
√

8 = 0.353 553 391 . . .
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Indefinite quadratic forms (∆ > 0).

The works by Korkine and
Zolotarev inspired Markoff
who pursued the study of this
question in 1879 and 1880.
He produced infinitely many
values C(f i), i = 0, 1, . . .,
between 1/

√
5 and 1/3, with

the same property as f 0.
Andrei Andreyevich Markoff

1856 – 1922

These values form a sequence which converges to 1/3. He
constructed them by means of the tree of solutions of the
Markoff equation.
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Indefinite quadratic forms (∆ > 0)

Assume f(X,Y ) = aX2 + bXY + cY 2 ∈ R[X,Y ] with a > 0
has discriminant ∆ > 0.

If |f(x, y)| is small with y 6= 0, then x/y is close to a root of
f(X, 1), say α.

Then
|x− α′y| ∼ |y| · |α− α′|

and α− α′ =
√

∆/a.

Hence

|f(x, y)| = |a(x− αy)(x− α′y)| ∼ y2
√

∆

∣∣∣∣α− x

y

∣∣∣∣ .
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Lagrange spectrum and Markoff spectrum
Markoff spectrum = set of values taken by

1

C(f)
=
√

∆(f)/m(f)

when f runs over the set of quadratic forms ax2 + bxy + cy2

with real coefficients of discriminant ∆(f) = b2 − 4ac > 0 and
m(f) = inf(x,y)∈Z2\{0} |f(x, y)|.
Lagrange spectrum = set of values taken by Lagrange’s
constant.

λ(x) = 1/ lim inf
q→∞

q(min
p∈Z
|qx− p|)

when x runs over the set of real numbers.
The Markoff spectrum contains the Lagrange spectrum.
The intersection with the intervall [

√
5, 3) is the same for both

of them, and is a discrete sequence.
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Chronologie

J. Liouville, 1844
J-L. Lagrange et Ch. Hermite, 1845
A. Korkine et E.I. Zolotarev, 1873
A. Markoff, 1879
F. Frobenius, 1915
L. Ford, 1917, 1938
R. Remak, 1924
J.W.S. Cassels, 1949
J. Lehner, 1952, 1964
H. Cohn, 1954, 1980
R.A. Rankin, 1957
A. Schmidt, 1976
S. Perrine, 2002
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Continued fraction and hyperbolic geometry

Référence : Caroline Series
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The Geometry of Markoff Numbers

Caroline Series

Caroline Series,
The Geometry of Markoff
Numbers,
The Mathematical
Intelligencer 7 N.3 (1985),
20–29.
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Fuchsian groups and hyperbolic Riemann surfaces

Markoff’s tree can be seen as
the dual of the triangulation
of the hyperbolic upper half
plane by the images of the
fundamental domain of the
modular invariant under the
action of the modular group. Lazarus Immanuel Fuchs

1833 – 1902
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Triangulation of polygons, metric properties of polytopes

Harold Scott MacDonald Coxeter
1907 – 2003

Robert Alexander Rankin
1915 – 2001

John Horton Conway
1937 – 2020
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Fricke groups

The subgroup Γ of SL2(Z) generated by the two matrices(
1 1
1 2

)
and

(
2 1
1 1

)
is the free group with two generators.

The Riemann surface quotient of the Poincaré upper half
plane by Γ is a punctured torus. The minimal lengths of the
closed geodesics are related to the C(f), for f indefinite
quadratic form.

Robert Karl Emanuel Fricke (1861 – 1930)
https://mathshistory.st-andrews.ac.uk/Biographies/Fricke/
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Free groups.

Fricke proved that if A and B are two generators of Γ, then
their traces satisfy

(trA)2 + (trB)2 + (trAB)2 = (trA)(trB)(trAB)

Harvey Cohn showed that quadratic forms with a Markoff
constant C(f) ∈ (1/3, 1/

√
5] are equivalent to

cx2 + (d− a)xy − by2

where (
a b
c d

)
is a generator of Γ.
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Fundamental domain of a punctured disc

Caroline Series, The Geometry of Markoff Numbers, The Mathematical
Intelligencer 7 N.3 (1985), 20–29.
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A simple curve on a punctured disc

Caroline Series, The Geometry of Markoff Numbers, The Mathematical
Intelligencer 7 N.3 (1985), 20–29. 84 / 93



Hyperbolic geometric aspects of the Markoff spectrum (24/01/2000)

Late in the 19th century, A. A. Markoff initiated an extensive theory of
the minima of indefinite binary quadratic forms, or, what is the same,
extending Hurwitz’s Theorem of diophantine approximation. He showed
in particular that these minima begin with a countable discrete spectrum
which monotonically increases to 3. Early the 20th century, work of L. E.
Ford then implies that these values are related to the geometry of the
modular surface.
Some forty years later, H. Cohn recognized a connection between these
initial values of Markoff’s spectrum and certain closed geodesics on the
so-called homology cover of the modular surface. In particular, the
Markoff numbers, which comprise this initial countable set of values of
the spectrum, correspond one-to-one to the simple closed geodesics on a
hyperbolic once-punctured torus Γ′\H which is a six-fold cover of the
modular surface.
https://www.imj-prg.fr/tn/STN/00/resume-Sheingorn.html
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Geodesics on a hyperbolic once-punctured torus

Thomas A. Schmidt Mark Sheingorn

Schmidt, Thomas A. ; Sheingorn, Mark.
Low height geodesic on Γ3/H height formulas and examples.
Int. J. Number Theory 3, No. 3 (2007), 475–501.
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Ford circles

The Ford circle associated to
the irreducible fraction p/q is
tangent to the real axis at the
point p/q and has radius
1/2q2.

Ford circles associated to two
consecutive elements in a
Farey sequence are tangent.

Lester Randolph Ford
(1886–1967)

Amer. Math. Monthly (1938).
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Farey sequence of order 5

0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1
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Complex continued fraction

The third generation of Asmus Schmidt’s complex continued
fraction method.

http://www.maa.org/editorial/mathgames/mathgames−03−15−04.html
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Laurent’s phenomenon
Connection with Laurent polynomials (S. Fomin and A.
Zelevinsky https://arxiv.org/abs/math/0104241).

If f and g are Laurent polynomials in one variable x, i.e.,
polynomials in x, x−1, in general g

(
f(x)

)
is not a Laurent

polynomial :

f(x) =
x2 + 1

x
= x+

1

x
,

f
(
f(x)

)
=

(
x+

1

x

)2

+ 1

x+
1

x

=
x4 + 3x2 + 1

x(x2 + 1)
·

James Propp, The combinatorics of frieze patterns and Markoff numbers,
https://arxiv.org/abs/math/0511633
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Simultaneous rational approximation and Markoff

spectrum

Relation between Markoff
numbers and extremal
numbers : simultaneous
approximation of x and x2 by
rational numbers with the
same denominator.

Damien Roy

Markoff–Lagrange spectrum and extremal numbers,
arXiv.0906.0611 [math.NT] 2 June 2009
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Greatest prime factor of Markoff pairs

Pietro Corvaja and Umberto Zannier, 2006 :
The greatest prime factor of the product xy when x, y, z is a
solution of Markoff’s equation tends to infinity with
max{x, y, z}.

Equivalent statement :
If S denotes a finite set of prime numbers, the equation

x2 + y2 + z2 = 3xyz

has only finitely many solutions in positive integers x, y, z,
such that xy has no prime divisor outside S.
(The integers x and y are called S–units. )

92 / 93



January 9, 2024

Oregon State University, College of Science, Department of Mathematics
Algebra & Number Theory Seminar

On line

On Markoff Numbers

Michel Waldschmidt

Professeur Émérite, Sorbonne Université,
Institut de Mathématiques de Jussieu, Paris

http://www.imj-prg.fr/~michel.waldschmidt/
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