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Abstract

One of the most fascinating feature of number theory is the
production of statements which are easy to formulate, but are
either very hard to prove or even remain as conjectures so far.
The abc conjecture of Oesterlé and Masser is a good example.
The consequences of it cover a surprisingly large range of
topics – we will only mention a few of them.

As an introduction we propose a brief overview of the
cooperation in mathematics between India and Europe, with
an accent on the Indo–French cooperation, especially in
number theory.



Indo-European cooperation in mathematics

First example

Godfrey Harold Hardy
1877–1947

Srinivasa Ramanujan
1887–1920

Credit Photo
https://mathshistory.st-andrews.ac.uk/Biographies/

https://mathshistory.st-andrews.ac.uk/Biographies/


Taxi cab number 1729
French Science Today
November 4-26, 2006 : Chennai, Indore, Bhopal, Chandigarh, Delhi,
Ranchi, Kolkata, Belur, Bangalore
October 21 - November 10, 2007 : Mumbai, Pune, Kolkata, Guwahati,
Trivandrum, Chennai
Bhaskaracharya Pratishthana (Shreeram Abhyankar)

Narendra Jadhav

Outcaste – A Memoir :
Life and Triumphs of
an Untouchable
Family in India
(Penguin, India, 2003)

2006–2009 : Vice Chancellor of Savitribai Phule Pune University

International Monetary Fund (IMF), headed economic research at the
Reserve Bank of India, economist, educationist, public policy expert,
professor and writer in English, Marathi and Hindi.



Indo-European cooperation in mathematics

Carl Ludwig Siegel
1896–1981

Kanakanahalli Ramachandra
1933–2011

Credit Photo Siegel : Bhāvanā

https://bhavana.org.in/kc-and-i-my-fond-remembrance/


K. Ramachandra

Kanakanahalli Ramachandra
(1933 – 2011)

PhD 1965

1965 –1995 Tata Institute of
Fundamental Research Bombay

1995 – 2011 National Institute of
Advanced Studies, Bangalore

K. Ramachandra, Contributions to the theory of
transcendental numbers. Acta Arith. 14, (1968), pp. 65–88.

https://en.wikipedia.org/wiki/Kanakanahalli_Ramachandra

https://en.wikipedia.org/wiki/Kanakanahalli_Ramachandra


Indo–Italian cooperation in mathematics

Muhammad Abdus Salam
1926–1996

Shreeram Shankar Abhyankar
1930–2012



Indo–French cooperation in mathematics

André Weil
1906–1998

(1930–1931)

In 1929 Syed Ross Masood, Vice-Chancelor of Aligarh Muslim
University, proposed a chair of French civilization to André
Weil, who was recommended to him by a specialist of
Indology, Sylvain Levi. A few months later this offer was
converted into a chair of mathematics.



Father Racine

Fr Charles Racine
(1897 – 1976)

Father Racine reached India in
1937 as a Jesuit missionary
after having taken his
Doctorate in Mathematics in
1934 under Élie Cartan.

He taught mathematics first at St Joseph’s College in
Tiruchirappally (Trichy, Tamil Nadu) and from 1939 onwards
at Loyola College (Madras). He spent forty-two years in India.

He had connections with many important French
mathematicians of that time like J. Hadamard, J. Leray,
A. Weil, H. Cartan.



Charles Racine’s thesis

Élie Cartan
1869–1951

Doctorate in Mathematics in
1934 under Élie Cartan.
Le problème des N corps dans
la théorie de la relativité.
Thèse 1934
http://www.numdam.org/item?id=THESE_1934__158__1_0

M. Santiago, International conference on teaching and research in
mathematics, in Birth Centenary Celebrations of Father Charles
Racine, S.J. Loyola College, Racine Research Centre, Chennai,
January, 1997.

Madhuri Katti, Two Jesuits who introduced modern education in
India : Father Charles Racine and Father Eugène Lafont, Bhāvanā
vol. 6 Issue 2 April 2022.

http://www.numdam.org/item?id=THESE_1934__158__1_0
https://bhavana.org.in/two-jesuits-who-introduced-modern-education-in-india/


Students of Father Racine

K. S. Chandrasekharan
1920–2017

K.G. Ramanathan
1920–1992

Father Racine encouraged his best students to join the newly
founded Tata Institute of Fundamental Research (TIFR) in
Bombay with K.S. Chandrasekharan and Kollagunta
Gopalaiyer Ramanathan.
C.S. Seshadri, K.S. Chandrasekharan (1920 – 2017), Bhāvanā
Vol. 1 Issue 1 July 2017.

https://bhavana.org.in/k-chandrasekharan-1920-2017/


Visited the TATA Institute early

Jean Dieudonné
1906–1992

Laurent Schwartz
1915–2002

Jean-Louis Koszul
1921–2018

Pierre Samuel
1921–2009

J-P. Serre
Bernard Malgrange

1928–2024

Alexander Grothendieck
1928–2014

François Bruhat
1929–2007

Adrien Douady
1935–2006



M.S. Narasimhan

M.S. Narasimhan
1932–2021

Recipient of the Padma Bhushan in
1990
Ordre national du Mérite in 1989

King Faisal International Prize for

Science in 2006

Head of the research group in Mathematics at the
International Centre for Theoretical Physics (ICTP) in Trieste
from 1993 to 1999.

R. Narasimhan, The coming of age of mathematics in
India, in Miscellanea mathematica, Springer, Berlin, 1991,
pp. 235–258.

https://www.ictp.it/about-ictp/media-centre/news/2021/5/in-memoriam-narasimhan.aspx

https://www.ictp.it/about-ictp/media-centre/news/2021/5/in-memoriam-narasimhan.aspx


C.S. Seshadri

C.S. Seshadri
1932 – 2020

Paris 1957–1960

Doctorat honoris causa, Université
Pierre-et-Marie-Curie (UPMC),
Paris, 2013

Recipient of the Padma Bhushan in

2009

M.S. Narasimhan and C.S. Seshadri were among the first
graduate students of the School of Mathematics, headed by
K.S. Chandrasekharan.

https://fr.wikipedia.org/wiki/C._S._Seshadri

https://fr.wikipedia.org/wiki/C._S._Seshadri


Agreement CMI – ENS

Etienne Guyon
1935–2023

Pierre Cartier
1932–2024

Thanks to an agreement (MoU) between the CMI (Chennai
Mathematical Institute) and ENS (École Normale Supérieure,
rue d’Ulm, Paris), every year since 2000, some three young
students from ENS visit CMI for two months and deliver
courses to the undergraduate students of CMI, and three
students from CMI visit ENS for two months. The French
students are accommodated in the guest house of IMSc, which
participates in this cooperation.
https://fr.wikipedia.org/wiki/Etienne_Guyon

https://mathshistory.st-andrews.ac.uk/Biographies/Cartier/

https://fr.wikipedia.org/wiki/Etienne_Guyon
https://mathshistory.st-andrews.ac.uk/Biographies/Cartier/


Indo-French cooperation in mathematics

Jacques-Louis Lions

1928–2001

Jean–Louis Verdier

1935–1989

Gilles Lachaud

1946–2018

French frequent visitors to India also include :
Marc Chardin, Laurent Clozel, Jean-Louis Colliot-Thélène,
Sinnou David, Jean-Pierre Demailly (1957–2022),
Maria Esteban, Joseph Oesterlé, Patrice Philippon,
Olivier Pironneau, Jacques Tilouine, Pascal Weil. . .



https://www.cefipra.org/

https://www.cefipra.org/


Two examples of success stories for the

Indo-French Cooperation in Number Theory

• Serre’s Modularity Conjecture
(Chandrashekhar Khare, Jean-Pierre Wintenberger),

• Waring’s Problem
(R. Balasubramanian, Jean-Marc Deshouillers, François Dress).



Serre’s Modularity Conjecture

Chandrashekhar Khare J-P. Wintenberger
1954–2019

J-P. Serre

2006 joint work by Chandrashekhar Khare and Jean-Pierre
Wintenberger

Chandrashekhar Khare,
TIFR and a conjecture of Jean-Pierre Serre, Bhāvanā, volume
7 issue 3 July 2023.

https://bhavana.org.in/tifr-and-a-conjecture-of-jean-pierre-serre/


Serre’s Modularity Conjecture
Let

ρ : GQ → GL2(F ).

be an absolutely irreducible, continuous, and odd two-
dimensional representation of GQ over a finite field
F = Fℓr of characteristic ℓ.
There exists a normalized modular eigenform

f = q + a2q
2 + a3q

3 + · · ·

of level N = N(ϱ), weight k = k(ϱ), and some Ne-
bentype character χ : Z/NZ → F ∗ such that for all
prime numbers p, coprime to Nℓ, we have

Trace(ρ(Frobp)) = ap and det(ρ(Frobp)) = pk−1χ(p).



Waring’s Problem
Any positive integer is the sum of at most 19 biquadrates
R. Balasubramanian, J-M. Deshouillers, F. Dress (1986).

n = x4
1 + · · ·+ x4

19

François Dress, R. Balasubramanian, Jean-Marc Deshouillers



19 is optimal

If a number n is less than 34 = 81, then any xi involved in a
formula

n = x4
1 + · · ·+ x4

g

is either 1 or 2. In a minimal such equation, the number of 1’s
is at most 15. Since

81 = 5 · 24 + 1,

the integer < 81 which requests the largest number of
summands is

4 · 24 + 15× 14 = 4 · 16 + 15 = 79

with g = 19.



Lower bound for g(k)
Given k, let g(k) be minimal such that any integer is the sum
of at most g(k) terms xk. For instance g(4) = 19.
Divide 3k by 2k :

3k = qk2
k + rk with 0 < rk < 2k, qk = ⌊(3/2)k⌋.

Any integer < 3k written as xk
1 + · · ·+ xk

g requires xi ∈ {1, 2}.
We look for such an integer which has 2k − 1 summands 1k.
The largest such n < 3k is

nk = (qk − 1)2k + (2k − 1)

for which the number of summands is

Ik = 2k + qk − 2.

Hence g(k) ⩾ Ik for all k ⩾ 2.



Waring’s Problem

Edward Waring
1736–1798

In 1770, a few months before J.L. Lagrange
solved a conjecture of Bachet (1621)
and Fermat (1640) by proving
that every positive integer is the
sum of at most four squares of integers,
E. Waring wrote :

“Omnis integer numerus vel est cubus, vel e duobus, tribus, 4, 5,

6, 7, 8, vel novem cubis compositus, est etiam quadrato-quadratus

vel e duobus, tribus, &.̧ usque ad novemdecim compositus, & sic

deinceps”

“Every integer is a cube or the sum of two, three, . . .nine cubes ;

every integer is also the square of a square, or the sum of up to

nineteen such ; and so forth. Similar laws may be affirmed for the

correspondingly defined numbers of quantities of any like degree.”



Waring’s functions g(k) and G(k)
• Waring’s function g is defined as follows : For any integer
k ⩾ 2, g(k) is the least positive integer s such that any
positive integer N can be written xk

1 + · · ·+ xk
s .

• Waring’s function G is defined as follows : For any integer
k ⩾ 2, G(k) is the least positive integer s such that any
sufficiently large positive integer N can be written
xk
1 + · · ·+ xk

s .

Known : G(1) = 1, G(2) = 4 and G(4) = 16.

G(k) ⩽ g(k).

Conjectured sequence G(k), k ⩾ 1 : https://oeis.org/A079611

1, 4, 4, 16, 6, 9, 8, 32, 13, 12, 12, 16, 14, 15, 16, 64, 18, 27, 20, 25

https://oeis.org/A079611


J.L. Lagrange : g(2) = G(2) = 4

g(2) ⩽ 4 : any positive
number is a sum of at most 4
squares :
n = x21 + x22 + x23 + x24.

g(2) = G(2) ⩾ 4 : there are
(infinitely many) positive
numbers (7 is the smallest of
them) which are not sum of 3
squares.

Joseph-Louis Lagrange
1736 – 1813

Lower bounds are easy, not upper bounds.



Evaluations of g(k) for k = 2, 3, 4, . . .

g(2) = 4 Lagrange 1770
g(3) = 9 Kempner 1912
g(4) = 19 Balusubramanian,Deshouillers, Dress 1986
g(5) = 37 Chen Jingrun 1964
g(6) = 73 Pillai 1940
g(7) = 143 Dickson 1936

Sequence g(k), k ⩾ 1 : https://oeis.org/A002804

1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384, . . .

https://oeis.org/A002804


The Ideal Waring Theorem

g(k) ⩾ I(k) for any k ⩾ 2.

(J. A. Euler, son of Leonhard
Euler).

Johann Albrecht Euler
(1734–1800)

Conjecture. (C.A. Bretschneider, 1853) :
g(k) = I(k) for any k ⩾ 2.

True for 4 ⩽ k ⩽ 471 600 000.



Mahler’s contribution (1957)

The ideal Waring’s Theorem

g(k) = 2k + qk − 2

holds for all sufficiently large
k.

Kurt Mahler
1903–1988

However Mahler’s proof involves non effective results of
Diophantine approximation, we do not know how large k
should be for the upper bound for g(k) to be proven.



Waring’s Problem and the abc Conjecture

Sinnou David Shanta Laishram

S. David : The ideal Waring’s Theorem g(k) = 2k + qk − 2 for
large k follows from the abc Conjecture.

S. Laishram : The ideal Waring’s Theorem for all k follows
from the explicit abc Conjecture.



As simple as abc

The ABC’s of salvation.
How to go to Heaven is as simple as ABC



American Broadcasting Company

http://fr.wikipedia.org/wiki/American_Broadcasting_Company

http://fr.wikipedia.org/wiki/American_Broadcasting_Company


https://abcathome.com/

The woman/parenting/homeschooling/entrepreneur resource
brought to you by a busy, but efficient mother !
Smart Strategies for Parents Wanting to Head Back to School

https://abcathome.com/


ABC Stores

https://abcstores.com/

https://sites.google.com/view/emstmc2026/

https://abcstores.com/
https://sites.google.com/view/emstmc2026/


Annapurna Base Camp, October 22, 2014

Mt. Annapurna (8091m) is the 10th highest mountain in the
world and the journey to its base camp is one of the most
popular treks on earth.
http://www.himalayanglacier.com/trekking-in-nepal/160/

annapurna-base-camp-trek.htm

http://www.himalayanglacier.com/trekking-in-nepal/160/annapurna-base-camp-trek.htm
http://www.himalayanglacier.com/trekking-in-nepal/160/annapurna-base-camp-trek.htm


The radical of a positive integer
According to the fundamental theorem of arithmetic, any
integer n ⩾ 2 can be written as a product of prime numbers :

n = pa11 pa22 · · · patt .

The radical (also called kernel) Rad(n) of n is the product of
the distinct primes dividing n :

Rad(n) = p1p2 · · · pt.

Rad(n) divides n, it is the largest squarefree factor of n.
Examples :

Rad(2a) = 2

Rad(60 500) = Rad(22 · 53 · 112) = 2 · 5 · 11 = 110,

Rad(82 852 996 681 926) = 2 · 3 · 23 · 109 = 15 042.



The sequence of radicals
n = 1 2 3 4 5 6 7 8 9 10 11 12

Rad(n)= 1 2 3 2 5 6 7 2 3 10 11 6

Neil J. A. Sloane

Neil J. A. Sloane’s
encyclopaedia
http://oeis.org/A007947

Largest squarefree

number dividing n: the

squarefree kernel of n,
rad(n), radical of n.

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23,

6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22,

15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, . . .

http://oeis.org/A007947


abc–triples

An abc–triple is a triple of three positive integers a, b, c which
are coprime, a < b and that a+ b = c.

Examples:

1 + 2 = 3, 1 + 8 = 9,

1 + 80 = 81, 4 + 121 = 125,

2 + 310 · 109 = 235, 112 + 325673 = 221 · 23.



There are thirteen abc–triples with c < 10

a, b, c are coprime, 1 ⩽ a < b, a+ b = c and c ⩽ 9.

1 + 2 = 3
1 + 3 = 4
1 + 4 = 5 2 + 3 = 5
1 + 5 = 6
1 + 6 = 7 2 + 5 = 7 3 + 4 = 7
1 + 7 = 8 3 + 5 = 8
1 + 8 = 9 2 + 7 = 9 4 + 5 = 9



Radical of the abc–triples with c < 10

Rad(1 · 2 · 3) = 6
Rad(1 · 3 · 4) = 6
Rad(1 · 4 · 5) = 10 Rad(2 · 3 · 5) = 30
Rad(1 · 5 · 6) = 30
Rad(1 · 6 · 7) = 42 Rad(2 · 5 · 7) = 70 Rad(3 · 4 · 7) = 42
Rad(1 · 7 · 8) = 14 Rad(3 · 5 · 8) = 30

Rad(1 · 8 · 9) = 6 Rad(2 · 7 · 9) = 54 Rad(4 · 5 · 9) = 30

a = 1, b = 8, c = 9, a+ b = c, gcd = 1, Rad(abc) < c.

A single example in this range with Rad(abc) < c.



abc–hits

Following F. Beukers, an
abc–hit is an abc–triple such
that Rad(abc) < c.

Frits Beukers

http://www.staff.science.uu.nl/~beuke106/ABCpresentation.pdf

Example: (1, 8, 9) is an abc–hit since 1 + 8 = 9,
gcd(1, 8, 9) = 1 and

Rad(1 · 8 · 9) = Rad(23 · 32) = 2 · 3 = 6 < 9.

http://www.staff.science.uu.nl/~beuke106/ABCpresentation.pdf


On the condition that a, b, c are relatively prime

Starting with a+ b = c, multiply by a power of a divisor d > 1
of abc and get

adℓ + bdℓ = cdℓ.

The radical did not increase : the radical of the product of the
three numbers adℓ, bdℓ and cdℓ is nothing else than Rad(abc) ;
but c is replaced by cdℓ.

For ℓ sufficiently large, cdℓ is larger than Rad(abc).

But (adℓ, bdℓ, cdℓ) is not an abc–hit.

It would be too easy to get examples without the condition
that a, b, c are relatively prime.



Some abc–hits

(1, 80, 81) is an abc–hit since 1 + 80 = 81, gcd(1, 80, 81) = 1
and

Rad(1 · 80 · 81) = Rad(24 · 5 · 34) = 2 · 5 · 3 = 30 < 81.

(4, 121, 125) is an abc–hit since 4 + 121 = 125,
gcd(4, 121, 125) = 1 and

Rad(4 · 121 · 125) = Rad(22 · 53 · 112) = 2 · 5 · 11 = 110 < 125.



Further abc–hits

• (2, 310 · 109, 235) = (2, 6 436 341, 6 436 343)
is an abc–hit since 2 + 310 · 109 = 235 and
Rad(2 · 310 · 109 · 235) = 15 042 < 235 = 6436 343.

• (112, 32 · 56 · 73, 221 · 23) = (121, 48 234 275, 48 234 496)

is an abc–hit since 112 + 32 · 56 · 73 = 221 · 23 and
Rad(221 · 32 · 56 · 73 · 112 · 23) = 53 130 < 221 · 23 = 48 234 496.

• (1, 5 · 127 · (2 · 3 · 7)3, 196) = (1, 47 045 880, 47 045 881)

is an abc–hit since 1 + 5 · 127 · (2 · 3 · 7)3 = 196 and
Rad(5 · 127 · (2 · 3 · 7)3 · 196) = 5 · 127 · 2 · 3 · 7 · 19 = 506 730.



abc–triples and abc–hits

Among 15 · 106 abc–triples with c < 104, there are 120
abc–hits.

Among 380 · 106 abc–triples with c < 5 · 104, there are 276
abc–hits.



More abc–hits
Recall the abc–hit (1, 80, 81), where 81 = 34.

(1, 316 − 1, 316) = (1, 43 046 720, 43 046 721)

is an abc–hit.
Proof.

316 − 1= (38 − 1)(38 + 1)

= (34 − 1)(34 + 1)(38 + 1)

= (32 − 1)(32 + 1)(34 + 1)(38 + 1)

= (3− 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)

is divisible by 26. (Quotient : 672 605).
Hence

Rad((316 − 1) · 316) ⩽ 316 − 1

26
· 2 · 3 < 316.



Infinitely many abc–hits

Proposition. There are infinitely many abc–hits.

Take k ⩾ 1, a = 1, c = 32
k
, b = c− 1.

Lemma. 2k+2 divides 32
k − 1.

Proof : Induction on k using

32
k − 1 = (32

k−1 − 1)(32
k−1

+ 1).

Consequence :

Rad((32
k − 1) · 32k) ⩽ 32

k − 1

2k+1
· 3 < 32

k

.

Hence
(1, 32

k − 1, 32
k

)

is an abc–hit.



Infinitely many abc–hits

This argument shows that there exist infinitely many
abc–triples such that

c >
1

6 log 3
R logR

with R = Rad(abc).

Question : Does there exist an abc–triples for which
c ⩾ Rad(abc)2 ?

We do not know the answer.

It is expected that the answer is no : always for an abc–triple
one should have

Rad(abc) > c1/2.



Two best known examples
When a, b and c are three positive relatively prime integers
satisfying a+ b = c, define

λ(a, b, c) =
log c

log Rad(abc)
and ϱ(a, b, c) =

log abc

log Rad(abc)
·

The largest known values are (É. Reyssat and A. Nitaj)

λ(a, b, c) = 1.629912 . . . with 2 + 310 · 109 = 235

ϱ(a, b, c) = 4.41901 . . . with 13 · 196 + 230 · 5 = 313 · 112 · 31.

Éric Reyssat Abderrahmane Nitaj



Resource on abc : two references

Abderrahmane Nitaj
https://nitaj.users.lmno.cnrs.fr/abc.html

Bart de Smit
http://www.math.leidenuniv.nl/~desmit/abc/

https://nitaj.users.lmno.cnrs.fr/abc.html
http://www.math.leidenuniv.nl/~desmit/abc/


Explicit abc Conjecture

Shanta Laishram Tarlok Shorey
Alan Baker
1939–2018

According to S. Laishram and T. N. Shorey, an explicit
version, due to A. Baker, of the abc Conjecture, yields

c < Rad(abc)7/4

for any abc–triple (a, b, c).
In other terms for an abc triple one should have

λ(a, b, c) < 1.75.



The abc Conjecture
Recall that for a positive integer n, the radical of n is

Rad(n) =
∏
p|n

p.

abc Conjecture. Let ε > 0. Then the set of abc triples for
which

c > Rad(abc)1+ε

is finite.

Equivalent statement : For each ε > 0 there exists κ(ε) such
that, if a, b and c in Z>0 are relatively prime and satisfy
a+ b = c, then

c < κ(ε)Rad(abc)1+ε.



Lower bound for the radical of abc

The abc Conjecture is a lower bound for the radical of the
product abc :

abc Conjecture. For any ε > 0, there exist κ′(ε) such that, if
a, b and c are relatively prime positive integers which satisfy
a+ b = c, then

Rad(abc) > κ′(ε)c1−ε.



The abc Conjecture of Oesterlé and Masser

Joseph Oesterlé David Masser

The abc Conjecture resulted from a discussion between
J. Oesterlé and D. W. Masser in the mid 1980’s.



C.L. Stewart and Yu Kunrui
Best known non conditional result : C.L. Stewart and Yu
Kunrui (1991, 2001) :

log c ⩽ κR1/3(logR)3

with R = Rad(abc) :

c ⩽ eκR
1/3(logR)3 .

Cam. L. Stewart Yu Kunrui



Szpiro’s Conjecture

J. Oesterlé and A. Nitaj
proved that the abc
Conjecture implies a previous
conjecture by L. Szpiro on the
conductor of elliptic curves.

Lucien Szpiro
(1941–2020)

Given any ε > 0, there exists a constant C(ε) > 0 such that,
for every elliptic curve with minimal discriminant ∆ and
conductor N ,

|∆| < C(ε)N6+ε.



Szpiro’s Conjecture

Conversely, J. Oesterlé proved
in 1988 that the conjecture of
L. Szpiro implies a weak form
of the abc conjecture with
1− ϵ replaced by (5/6)− ϵ.

Joseph Oesterlé



Is abc Conjecture optimal ?

Cam. L. Stewart Rob Tijdeman

Let δ > 0. In 1986, C.L. Stewart and R. Tijdeman proved that
there are infinitely many abc–triples for which

c > R exp

(
(4− δ)

(logR)1/2

log logR

)
.

Better than c > R logR.



Why should the abc Conjecture be true ?

Heuristic assumption : Any knowledge of Rad(a) and Rad(b)
for a and b coprime positive integers should not give any non
trivial information on Rad(a+ b).

For instance if a and b are
(odd) primes, a+ b may be
any (even) integer
(Goldbach’s Conjecture).

Christian Goldbach
1690–1764



Heuristic assumption

Whenever a and b are coprime positive integers, Rad(a+ b) is
independent of Rad(a) and Rad(b).

O. Robert, C.L. Stewart and G. Tenenbaum, A refinement of
the abc conjecture, Bull. London Math. Soc., Bull. London
Math. Soc. (2014) 46 (6) : 1156-1166.
http://blms.oxfordjournals.org/content/46/6/1156.full.pdf

http://iecl.univ-lorraine.fr/~Gerald.Tenenbaum/PUBLIC/Prepublications_et_publications/abc.pdf

http://blms.oxfordjournals.org/content/46/6/1156.full.pdf
http://iecl.univ-lorraine.fr/~Gerald.Tenenbaum/PUBLIC/Prepublications_et_publications/abc.pdf


Machiel van Frankenhuijsen, Olivier Robert,

Cam Stewart and Gérald Tenenbaum



Conjectures by Machiel van Frankenhuijsen, Olivier

Robert, Cam Stewart and Gérald Tenenbaum

Let ε > 0.
? There exists κ(ε) > 0 such that for any abc triple with
R = Rad(abc) > 8,

c < κ(ε)R exp

(
(4
√
3 + ε)

(
logR

log logR

)1/2
)
.

? Further, there exist infinitely many abc–triples for which

c > R exp

(
(4
√
3− ε)

(
logR

log logR

)1/2
)
.



Fermat’s Last Theorem xn + yn = zn for n ⩾ 6

Pierre de Fermat
(1601 – 1665)

Andrew Wiles

Solution in 1993–1994 published in 1995



Fermat’s last Theorem as a consequence of the

explicit abc Conjecture

Assume xn + yn = zn with gcd(x, y, z) = 1 and x < y. Then
(xn, yn, zn) is an abc–triple with

Rad(xnynzn) ⩽ xyz < z3.

If the explicit abc Conjecture c < Rad(abc)2 is true, then one
deduces

zn < z6,

hence n ⩽ 5 (and therefore n ⩽ 2).



Square, cubes. . .
• A perfect power is an integer of the form ab where a ⩾ 1
and b > 1 are positive integers.

• Squares :

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . . .

• Cubes :

1, 8, 27, 64, 125, 216, 343, 512, 729, 1 000, 1 331, . . .

• Fifth powers :

1, 32, 243, 1 024, 3 125, 7 776, 16 807, 32 768, . . .



Perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125,
128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343,
361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, . . .

http://oeis.org/A001597

http://oeis.org/A001597


Nearly equal perfect powers

• Difference 1 : (8, 9)

• Difference 2 : (25, 27), . . .

• Difference 3 : (1, 4), (125, 128), . . .

• Difference 4 : (4, 8), (32, 36), (121, 125), . . .

• Difference 5 : (4, 9), (27, 32),. . .



Two conjectures

Eugène Charles Catalan (1814 – 1894)

Subbayya Sivasankaranarayana Pillai
(1901-1950)

• Catalan’s Conjecture : In the sequence of perfect powers,
8, 9 is the only example of consecutive integers.

• Pillai’s Conjecture : In the sequence of perfect powers, the
difference between two consecutive terms tends to infinity.



Pillai’s Conjecture :

• Pillai’s Conjecture : In the sequence of perfect powers, the
difference between two consecutive terms tends to infinity.

• Alternatively : Let k be a positive integer. The equation

xp − yq = k,

where the unknowns x, y, p and q take integer values, all ⩾ 2,
has only finitely many solutions (x, y, p, q).



32 − 23 = 1

P. Mihăilescu, 2002.

Catalan was right : the
equation xp − yq = 1 where
the unknowns x, y, p and q
take integer values, all ⩾ 2,
has only one solution
(x, y, p, q) = (3, 2, 2, 3). Preda Mihailescu



Previous work on Catalan’s Conjecture

J.W.S. Cassels
(1922–2015)

Rob Tijdeman

Michel Langevin

yq < xp < exp exp exp exp(730)



Previous work on Catalan’s Conjecture

Maurice Mignotte Yuri Bilu



Pillai’s conjecture and the abc Conjecture

There is no value of k ⩾ 2 for which one knows that Pillai’s
equation xp − yq = k has only finitely many solutions.

Pillai’s conjecture as a consequence of the abc Conjecture :
if xp ̸= yq, then

|xp − yq| ⩾ c(ϵ)max{xp, yq}κ−ϵ

with

κ = 1− 1

p
− 1

q
·



Lower bounds for linear forms in logarithms

• A special case of my
conjectures with S. Lang for

|q log y − p log x|
yields

|xp − yq| ⩾ c(ϵ)max{xp, yq}κ−ϵ

with

κ = 1− 1

p
− 1

q
·

Serge Lang
1927–2005

S. Lang, Elliptic curves Diophantine Analysis, Grundlehren der
mathematischen Wissenschaften (GL, volume 231) Springer
1978.

https://link.springer.com/book/10.1007/978-3-662-07010-9


Not a consequence of the abc Conjecture

p = 3, q = 2

Hall’s Conjecture (1971) :

if x3 ̸= y2, then

|x3 − y2| ⩾ cmax{x3, y2}1/6.
Marshall Hall
(1910–1990)

https://en.wikipedia.org/wiki/Marshall_Hall_(mathematician)

https://en.wikipedia.org/wiki/Marshall_Hall_(mathematician)


Conjecture of F. Beukers and C.L. Stewart (2010)

Frits Beukers Cam L. Stewart
? Let p, q be coprime integers with p > q ⩾ 2. Then, for any
c > 0, there exist infinitely many positive integers x, y such
that

0 < |xp − yq| < cmax{xp, yq}κ

with κ = 1− 1

p
− 1

q
·



Generalized Fermat’s equation xp + yq = zr

Consider the equation xp + yq = zr in positive integers
(x, y, z, p, q, r) such that x, y, z relatively prime and p, q, r
are ⩾ 2.

If
1

p
+

1

q
+

1

r
⩾ 1,

then (p, q, r) is a permutation of one of

(2, 2, k), (2, 3, 3), (2, 3, 4), (2, 3, 5),

(2, 4, 4), (2, 3, 6), (3, 3, 3)

and in each case the set of solutions (x, y, z) is known (for
some of these values there are infinitely many solutions).



Frits Beukers and Don Zagier
For

1

p
+

1

q
+

1

r
< 1,

10 primitive solutions (x, y, z, p, q, r) (up to obvious
symmetries) to the equation

xp + yq = zr

are known.

Frits Beukers Don Zagier



Primitive solutions to xp + yq = zr

Condition : x, y, z are relatively prime

Trivial example of a non primitive solution : 2p + 2p = 2p+1.

Exercise (Henri Darmon, Claude Levesque) : for any pairwise
relatively prime integers (p, q, r), there exist positive integers
x, y, z with xp + yq = zr.

Hint :
173 + 27 = 712,(

17× 7121
)3

+
(
2× 719

)7
=
(
7113

)5
.



Generalized Fermat’s equation

For
1

p
+

1

q
+

1

r
< 1,

the equation
xp + yq = zr

has the following 10 solutions with x, y, z relatively prime :

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 338 + 1549 0342 = 15 6133,

1 4143 + 2213 4592 = 657, 9 2623 + 15 312 2832 = 1137,

177 + 76 2713 = 21 063 9282, 438 + 96 2223 = 30 042 9072.



Conjecture of Beal, Granville and Tijdeman–Zagier

The equation xp + yq = zr has no solution in positive integers
(x, y, z, p, q, r) with each of p, q and r at least 3 and with x,
y, z relatively prime.

http://mathoverflow.net/

http://mathoverflow.net/questions/28764/status-of-beal-granville-tijdeman-zagier-conjecture


Andrew Beal

Find a solution with all exponents at least 3, or prove that
there is no such solution.

http://www.forbes.com/2009/04/03/

banking-andy-beal-business-wall-street-beal.html

http://www.forbes.com/2009/04/03/banking-andy-beal-business-wall-street-beal.html
http://www.forbes.com/2009/04/03/banking-andy-beal-business-wall-street-beal.html


Beal’s Prize

Mauldin, R. D. – A generalization of Fermat’s last theorem :
the Beal Conjecture and prize problem. Notices Amer. Math.
Soc. 44 N◦11 (1997), 1436–1437.



Beal’s Prize : 1, 000, 000$ US

An AMS-appointed committee will award this prize for either a
proof of, or a counterexample to, the Beal Conjecture
published in a refereed and respected mathematics publication.
The prize money – currently US$1,000,000 – is being held in
trust by the AMS until it is awarded. Income from the prize
fund is used to support the annual Erdős Memorial Lecture
and other activities of the Society.

One of Andrew Beal’s goals is to inspire young people to think
about the equation, think about winning the offered prize, and
in the process become more interested in the field of
mathematics.

http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize

http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize


Henri Darmon, Andrew Granville
“Fermat-Catalan” Conjecture (H. Darmon and A. Granville),
consequence of the abc Conjecture : the set of solutions
(x, y, z, p, q, r) to xp + yq = zr with x, y, z relatively prime
and (1/p) + (1/q) + (1/r) < 1 is finite.

Henri Darmon Andrew Granville

Hint:
1

p
+

1

q
+

1

r
< 1 implies

1

p
+

1

q
+

1

r
⩽

41

42
·

1995 (H. Darmon and A. Granville) : unconditionally, for fixed
(p, q, r), only finitely many (x, y, z).



Fermat’s Little Theorem, Wieferich primes

For a > 1, any prime p not
dividing a divides ap−1 − 1.

Hence if p is an odd prime,
then p divides 2p−1 − 1.

Pierre de Fermat
(1601 – 1665)

Wieferich primes (1909) : p2 divides 2p−1 − 1

The only known Wieferich primes are 1093 and 3511. These
are the only ones below 4 · 1012.



Assuming abc :

Infinitely many primes are not Wieferich

J.H. Silverman : if the abc
Conjecture is true, given a
positive integer a > 1, there
exist infinitely many primes p
such that p2 does not divide
ap−1 − 1.

Nothing is known about the
finiteness of the set of
Wieferich primes.



Consecutive integers with the same radical

Notice that

75 = 3 · 52 and 1215 = 35 · 5,

hence
Rad(75) = Rad(1215) = 3 · 5 = 15.

But also
76 = 22 · 19 and 1216 = 26 · 19

have the same radical

Rad(76) = Rad(1216) = 2 · 19 = 38.



Consecutive integers with the same radical

For k ⩾ 1, the two numbers

x = 2k − 2 = 2(2k−1 − 1)

and
y = (2k − 1)2 − 1 = 2k+1(2k−1 − 1)

have the same radical, and also

x+ 1 = 2k − 1 and y + 1 = (2k − 1)2

have the same radical.



Consecutive integers with the same radical

Are there further examples of x ̸= y with

Rad(x) = Rad(y) and Rad(x+ 1) = Rad(y + 1)?

Is–it possible to find two distinct integers x, y such that

Rad(x) = Rad(y),

Rad(x+ 1) = Rad(y + 1)

and
Rad(x+ 2) = Rad(y + 2)?



Erdős – Woods Conjecture

Paul Erdős
(1913–1996)

http://school.maths.uwa.edu.au/~woods/

There exists an absolute constant k such that, if x and y are
positive integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, . . . , k − 1, then x = y.

http://school.maths.uwa.edu.au/~woods/


Erdős – Woods as a consequence of abc

M. Langevin : The abc
Conjecture implies that there
exists an absolute constant k
such that, if x and y are
positive integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, . . . , k − 1, then
x = y.

Already in 1975 M. Langevin studied the radical of n(n+ k)
with gcd(n, k) = 1 using lower bounds for linear forms in
logarithms (Baker’s method).



A factorial as a product of factorials
For n > a1 ⩾ a2 ⩾ · · · ⩾ at > 1, t > 1, consider

a1!a2! · · · at! = n!

Trivial solutions : 2r! = (2r − 1)!2!r with r ⩾ 2.
Non trivial solutions :

7!3!22! = 9!, 7!6! = 10!, 7!5!3! = 10!, 14!5!2! = 16!.
Saranya Nair and Tarlok Shorey : The effective abc conjecture
implies Hickerson’s conjecture that the largest non-trivial solution
is given by n = 16.

Saranya Nair Tarlok Shorey



Erdős Conjecture on 2n − 1

In 1965, P. Erdős conjectured that the greatest prime factor
P (2n − 1) satisfies

P (2n − 1)

n
→ ∞ when n → ∞.

In 2002, R. Murty and S. Wong proved that this is a
consequence of the abc Conjecture.
In 2012, C.L. Stewart proved Erdős Conjecture (in a wider
context of Lucas and Lehmer sequences) :

P (2n − 1) > n exp
(
log n/104 log log n

)
.



Conjecture of Alan Baker (1996)

Let (a, b, c) be an abc–triple and let ϵ > 0. Then

c ⩽ κ
(
ϵ−ωR

)1+ϵ

where κ is an absolute constant, R = Rad(abc) and
ω = ω(abc) is the number of distinct prime factors of abc.

Remark of Andrew Granville : the minimum of the function on
the right hand side over ϵ > 0 occurs essentially with
ϵ = ω/ logR. This yields a slightly sharper form of the
conjecture :

c ⩽ κR
(logR)ω

ω!
·



Alan Baker : explicit abc Conjecture (2004)

Let (a, b, c) be an abc–triple.
Then

c ⩽
6

5
R
(logR)ω

ω!
with R = Rad(abc) the
radical of abc and ω = ω(abc)
the number of distinct prime
factors of abc.

Alan Baker
(1939–2018)



Shanta Laishram and Tarlok Shorey

The Nagell–Ljunggren
equation is the equation

yq =
xn − 1

x− 1

in integers x > 1, y > 1,
n > 2, q > 1.

This means that in basis x, all the digits of the perfect power
yq are 1.
If the explicit abc–conjecture of Baker is true, then the only
solutions are

112 =
35 − 1

3− 1
, 202 =

74 − 1

7− 1
, 73 =

183 − 1

18− 1
·



The abc conjecture for number fields

P. Vojta (1987) – variants due to D.W. Masser and K. Győry



The abc conjecture for number fields (continued)

Survey by J. Browkin.

Jerzy Browkin
(1934 – 2015)

The abc– conjecture for
Algebraic Numbers
Acta Mathematica Sinica,
Jan., 2006, Vol. 22, No. 1,
pp. 211–222

http://dx.doi.org/10.1007/s10114-005-0624-3

http://dx.doi.org/10.1007/s10114-005-0624-3


Mordell’s Conjecture (Faltings’s Theorem)

Using an effective extension of the abc Conjecture for a
number field, N. Elkies deduces an effective version of
Faltings’s Theorem on the finiteness of the set of rational
points on an algebraic curve of genus ⩾ 2 over the same
number field.

L.J. Mordell (1922) G. Faltings (1984) N. Elkies (1991)

http://www.math.harvard.edu/~elkies/
Mordell (1888–1972)

http://www.math.harvard.edu/~elkies/


The abc conjecture for number fields

Andrea Surroca
(1973–2022)

The effective abc Conjecture
implies an effective version of
Siegel’s Theorem on the
finiteness of the set of integer
points on a curve.

A. Surroca, Méthodes de transcendance et géométrie
diophantienne, Thèse, Université de Paris 6, 2003.



Thue–Siegel–Roth Theorem (Bombieri)
Using the abc Conjecture for number fields, E. Bombieri
(1994) deduces a refinement of the Thue–Siegel–Roth
Theorem on the rational approximation of algebraic numbers∣∣∣∣α− p

q

∣∣∣∣ > 1

q2+ε

where he replaces ε by

κ(log q)−1/2(log log q)−1

where κ depends only on the
algebraic number α.



Siegel’s zeroes (A. Granville and H.M. Stark)

The uniform abc Conjecture for number fields implies a lower
bound for the class number of an imaginary quadratic number
field, and K. Mahler has shown that this implies that the
associated L–function has no Siegel zero.



abc and Vojta’s height Conjecture

Paul Vojta

Vojta stated a conjectural
inequality on the height of
algebraic points of bounded
degree on a smooth complete
variety over a global field of
characteristic zero which
implies the abc Conjecture.



Further consequences of the abc Conjecture

• Erdős’s Conjecture on consecutive powerful numbers.
• Dressler’s Conjecture : between two positive integers having the same
prime factors, there is always a prime (Cochrane and Dressler 1999).
• Squarefree and powerfree values of polynomials (Browkin, Filaseta,
Greaves and Schinzel, 1995).
• Lang’s conjectures : lower bounds for heights, number of integral points
on elliptic curves (Frey 1987, Hindry Silverman 1988).
• Bounds for the order of the Tate–Shafarevich group (Goldfeld and
Szpiro 1995).
• Greenberg’s Conjecture on Iwasawa invariants λ and µ in cyclotomic
extensions (Ichimura 1998).
• Lower bound for the class number of imaginary quadratic fields
(Granville and Stark 2000), hence no Siegel zero for the associated
L–function (Mahler).
• Fundamental units of certain quadratic and biquadratic fields
(Katayama 1999).
• The height conjecture and the degree conjecture (Frey 1987, Mai and
Murty 1996)



The n–Conjecture

Nils Bruin, Generalization of
the ABC-conjecture, Master
Thesis, Leiden University,
1995.

http://www.cecm.sfu.ca/

~nbruin/scriptie.pdf

Let n ⩾ 3. There exists a positive constant κn such that, if
x1, . . . , xn are relatively prime rational integers satisfying
x1 + · · ·+ xn = 0 and if no proper subsum vanishes, then

max{|x1|, . . . , |xn|} ⩽ Rad(x1 · · · xn)
κn .

? Should hold for all but finitely many (x1, . . . , xn) with
κn = 2n− 5 + ϵ.

http://www.cecm.sfu.ca/~nbruin/scriptie.pdf
http://www.cecm.sfu.ca/~nbruin/scriptie.pdf


A consequence of the n–Conjecture

Open problem : for k ⩾ 5, no positive integer can be written
in two essentially different ways as sum of two k–th powers.

It is not even known whether such a k exists.
Reference : Hardy and Wright : §21.11

For k = 4 (Euler) :

594 + 1584 = 1334 + 1344 = 635 318 657

A parametric family of solutions of x4
1 + x4

2 = x4
3 + x4

4 is known

Reference : http://mathworld.wolfram.com/DiophantineEquation4thPowers.html

http://mathworld.wolfram.com/DiophantineEquation4thPowers.html


abc and meromorphic function fields

Rolf Nevanlinna
(1895–1980)

Nevanlinna value distribution theory.

Recent work of Hu, Pei–Chu, Yang, Chung-Chun and P. Vojta.



ABC Theorem for polynomials

Let K be an algebraically closed field. The radical of a monic
polynomial

P (X) =
n∏

i=1

(X − αi)
ai ∈ K[X]

with αi pairwise distinct is defined as

Rad(P )(X) =
n∏

i=1

(X − αi) ∈ K[X].



ABC Theorem for polynomials

ABC Theorem (A. Hurwitz,
W.W. Stothers, R. Mason).
Let A, B, C be three
relatively prime polynomials in
K[X] with A+B = C and
let R = Rad(ABC). Then

max{deg(A), deg(B), deg(C)}

< deg(R). Adolf Hurwitz (1859–1919)

This result can be compared with the abc Conjecture, where
the degree replaces the logarithm.



The radical of a polynomial as a gcd

The common zeroes of

P (X) =
n∏

i=1

(X − αi)
ai ∈ K[X]

and P ′ are the αi with ai ⩾ 2. They are zeroes of P ′ with
multiplicity ai − 1. Hence

Rad(P ) =
P

gcd(P , P ′)
·



Proof of the ABC Theorem for polynomials

Now suppose A+B = C with A,B,C relatively prime.

Notice that

Rad(ABC) = Rad(A)Rad(B)Rad(C).

We may suppose A, B, C to be monic and, say,
deg(A) ⩽ deg(B) ⩽ deg(C).

Write
A+B = C, A′ +B′ = C ′,

and
AB′ − A′B = AC ′ − A′C.



Proof of the ABC Theorem for polynomials
Recall gcd(A,B,C) = 1. Since gcd(C,C ′) divides
AC ′ − A′C = AB′ − A′B, it divides also

AB′ − A′B

gcd(A,A′) gcd(B,B′)

which is a polynomial of degree

< deg
(
Rad(A)

)
+ deg

(
Rad(B)

)
= deg

(
Rad(AB)

)
.

Hence
deg
(
gcd(C,C ′)

)
< deg

(
Rad(AB)

)
and

deg(C) < deg
(
Rad(C)

)
+ deg

(
Rad(AB)

)
= deg

(
Rad(ABC)

)
.



https://en.wikipedia.org/wiki/Abc_conjecture 2012

In August 2012, Shinichi
Mochizuki released a series of
four preprints announcing a
proof of the abc Conjecture.

When an error in one of the articles was pointed out by
Vesselin Dimitrov and Akshay Venkatesh in October 2012,
Mochizuki posted a comment on his website acknowledging
the mistake, stating that it would not affect the result, and
promising a corrected version in the near future.

https://en.wikipedia.org/wiki/Abc_conjecture


2017

Not Even Wrong
Latest on abc
Posted on December 16, 2017 by Peter Woit
http://www.math.columbia.edu/~woit/wordpress/?p=9871

The ABC conjecture has (still) not been proved
Posted on December 17, 2017 by Frank Calegari
https://galoisrepresentations.wordpress.com/2017/12/

17/the-abc-conjecture-has-still-not-been-proved/

Hector Pasten
Shimura curves and the abc conjecture
https://arxiv.org/abs/1705.09251

http://www.math.columbia.edu/~woit/
http://www.math.columbia.edu/~woit/wordpress/?p=9871
https://galoisrepresentations.wordpress.com/2017/12/17/the-abc-conjecture-has-still-not-been-proved/
https://galoisrepresentations.wordpress.com/2017/12/17/the-abc-conjecture-has-still-not-been-proved/
https://arxiv.org/abs/1705.09251


2022 : Explicit estimates

https://doi.org/10.2996/kmj45201

https://doi.org/10.2996/kmj45201


Mochizuki – Fesenko vs Scholze – Stix

Shinichi Mochizuki Ivan Fesenko

Peter Scholze Jakob Stix



Review by Peter Scholze

Together with J. Stix, the reviewer has spent a week in Kyoto
to discuss these issues with the author, and has detailed the
findings in a manuscript entitled
“Why ABC is still a conjecture”
https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf

that discusses the issues in slightly more detail.

The concerns expressed in this manuscript have not been
addressed in the published version.

https://zbmath.org/?q=an:1465.14002

https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf
https://zbmath.org/?q=an:1465.14002
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