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Lecture on Families of Diophantine equations

. . In a series of recent joint papers wittaude Levesquwe
Michel Waldschmiat produce new families of Diophantine equations for which
Universite P. et M. Curie (Paris 6) el ective methods can be applied to solve them. We present a
survey of this work.

http://www.imj-prg.fr/ ~michel.waldschmidt/
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Diophantus of Alexandria ThueOs Theorem (1908)
LetF ! Z[X,Y] be a homogeneous irreducible form of degree
d" 3
{ DIOPHANTE FOX,Y) = aX?+ aX9Y + ...+ a,_1 XY 1+ a,Y 7.
D’.-\LE_}»(%?{DRIE
fi:“:w ¢ Letk! Z,k #0. Then there
e are only pnitely many integer
EEES solutions(x,y) ! Z$ Z to

the Diophantine equation

F(x,y) = k.

Axel Thue
(1863 b 1922)
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LiouvilleOs inequality On Thueds equations and approximation

Whenf | Z[X] is a polynomial of degrek we let

F(X,Y)= Y (X/Y) denote the associated homogeneous
binary form of degred.

Assumef is irreducible. Then the following two assertions are
equivalent:

(i) For any integek # 0, the set of(x,y) ! Z? verifying

Liouville Os inequality Let o Joseph Liouvillel844
be an algebraic number of \

degreed " 2. There exists
c(a) > 0 such that, for any
p/q! Q withg> 0,

- Fixy) = k

a%P|> _C(‘;‘). is Pnite.
q q (i) For any real number > 0 and for any rootr ! C of f,
the set of rational numbens/ q verifying
a %B‘ & =
al 9
is Pnite.
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Improvements afiouvill®©s inequality ThueDs inequality
In the lower bound
aoPls &) Let o be an algebraic number of degké 3 and let
qd k> (d/2)+ 1. Then there exists(«, ) > 0 such that, for
. anyp/q! Qwithqg> 0O,
for a real algebraic number of degreed " 2, the exponent
of g in the denominator is best possible o 2, not for p|_ cla,r)
d" 3 a% | > Q-

In 1909,A. Thue succeeded to prove that it can be replaced
by « with anyx > (d/2) + 1.
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Thueinequation

ThueOs result
For any integek # 0, the set of(x,y) ! Z2

verifying
F(x,y) =k

is Pnite.

can also be phrased by stating that for any positive integer
the set of(x,y) ! Z2? verifying

0< |F(X,y)| & k

is Pnite.
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Improvements afiouvill®©s inequality

In the lower bound
c(a)
qd

for « real algebraic number of degre€ 3, the exponentd
of g in the denominator of the right hand side was replaced by

>

oz%B
q

eanyx > (d/2)+1 by A. Thue(1909),
e 2 dbyC.L. Siegein 1921,
e 2d by F.J. Dysonand A.O. GelOfonith 1947,

e anyx > 2 by K.F. Rothin 1955.
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Thueequation

For any number beld, for any nonbzero elemehntn K and
for any elementsy, ..., «a, in K with Card{ay, ...,a,} " 3,
the Thue equation

(X %arY) - (X %a,Y) = K

has but a Pnite number of solutiofsy) ! Z$ Z.
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ThuesiegdiRoth Theorem
Axel Thue Carl Ludwig Siegel Klaus Friedrich
(1863 B 1922) (1896 B 1981) Roth (1925 b

2015)

For any real algebraic numbey for anye > 0, the set of
p/q! Q with |a%p/q| < q~2~¢is Pnite.

12/60



Schmid®s Subspace Theorem (1970)

Form" 2letly,...,L,_1 be
m independent linear forms in W.M. Schmidt
m variables with algebraic
coéd cients. Lete > 0. Then
the set

(X= (Yo Xmo1) | 27

ILo(X) -+ - Lm—1(X)| & |X| 7}

is contained in the union of
Pnitely many proper
subspaces d".
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Consequences of the Subspace Theorem

Work of P. Vojta, S. Lang, J-H. Evertse, K. Gy®ry,
: Zannier, Y. Bilu, P. Autissier, A. Levin ...

IF

P. Corvaja, U

Wf
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Subspace Theorem

W.M. Schmidt H.P. Schlickewei
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GelOfondbBaker method

The ThuebSiegebRoth Theorem is not eective: upper
bounds for the number of solutions can be derived, but not
upper bounds for the solutions.

Bakerand FelOdmadeveloped an!ective method introduced
by A.O. GelOfopdnvolvinglower bounds for linear
combinations of logarithms of algebraic numbers with
algebraic coecients.
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Lower bound for linear combinations of logarit|

A lower bound for a nonvanishing drence
¥ a %l

is essentially the same as a lower bound for a nonvanishing
number of the form

b,logay + -- -+ b, loga,,

sincee* %1 ( zforz) O.

The Prst nontrivial lower bounds were obtained by

A.O. GelOfondHis estimates were ective only fom = 2: for
n" 3, he needed to use estimates related to the
ThueBSiegdbRoth Theorem.
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Alan Baker

In 1968,A. Bakersucceeded
to extend to anyn " 2 the
transcendence method used
by A.O. GelOforfdr n = 2.

As a consequence!, ective
upper bounds for the solutions
of ThueDs equations have
been derived.
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Explicit version dbelOfods estimates

A. Schinze(1968) computed
explicitly the constants
introduced byA.O. GelOfond
in his lower bound for

|afla§2 % 1‘ .

He deduced explicit Diophantine results using the approach
introduced byA.O. GelOfond
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ThueDs equation afiegeDds unit equation

The main idea behind theelOfondbBakapproach for solving
ThueDs equation is to expl&itegeDs unit equation.
Assumen, anp, a3 are algebraic integers amdy rational
integers such that

(X % any)(X Yazy)(X %azy) =1.
Then the three numbers
Up = X%a1y, U= x%azy, Uz=X%asy,

are units. Eliminating andy, one deduceSiegeDs unit
equation

Up(ae Yo az) + Ux(az Yoaq) + uz(ag Yoap) =0.
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SiegdDs unit equation
Write SiegeDs unit equation
Ur(ap % aig) + Up(az Yoavr) + Ug(ag Yoap) =0

in the form

U (a2 % as) %1 = Us(ag % ay)
e — 0 — B )
Up (1 % i) Up(cr1 Y )
The quotient
Uy (ap % a3)
Ux(ag % a3)

is the quantity

b
(Mll .. ‘ngn

in GelOfondDBakRiophantine inequality.
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Diophantine equations

A.O. GelOfond, A. Baker, V. Sprindauk, K. Gygry, M. Mignotte,
R. Tijdeman,
M. Bennett, P. Voutier, Y. Bugeaud, T.N. Shprey, S. Laishram...
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Work onBake®s method:

A. Baker(1968), N.I. Feldman(1971),V.G. Sprinduzucland
H.M. Stark (1973),K. Gygryand Z.Z. Papp(1983),

E. Bombieri(1993), Y. Bugeaudand K. Gyory(1996),

Y. Bugeaud(1998). ..

SolvingThue equations:

A. Pethgand R. Schulenberl987), B. de Wegel(1987),
N. Tzanakisand B. de Wege(1989), Y. Bilu and G. Hanrot
(1996), (1999)...

SolvingThuebMahleequations:
J.H. Coateq1969), S.V. Kotovand VV.G. Sprinduuk1973),
A. BerczeBru Kunrub K. Gyery(2006). ..

N. Saradha, T.N. Shorey, R. Tijdeman

L

Survey byT.N. Shorey
Diophantine approximations, Diophantine equations,
transcendence and applications.
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Families off hueequations

The brst families of hue equations having only trivial
solutions were introduced By Thue himself.

(a+1)X"%ay"=1.

He proved that the only solution in positive integers is

x =y =1 for n prime anda su’ ciently large in terms af.
For n = 3 this equation has only this solution far' 386

M. Bennett (2001) proved that this is true for afl and n with
n" 3anda" 1. He used a lower bound for linear
combinations of logarithms of algebraic numbers due to
T.N. Shorey

'S~ !
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D. Shank®s simplest cubic b&){s).

Let A\ be one of the three
roots of

Fo(X,1) = X2%(n%1)X2%(n+2)X %1. %

ThenQ()) is a real Galois

cubic peld.
Write
F.OK,Y) = (X %Y )X %ALY)X %NY)
with
A > 0> A1 > %> )\,
Then

1 Ao+ 1
M=%— and M=% .
1T+ 27 7%

27160

E. Thoma®s family dthueequations

E. Thomasin 1990 studied
the families ofT hue equations
x3 % (n % 1)x%y % (n+ 2)xy*> %y3 =1

Set
Fa(X,Y) = X3%(n%1)X%Y %(n+2)XY2%Y 3.

The cubic Peld®()\) generated by a rook of F,(X,1) are
called byD. Shankghe simplest cubic Peldg.he roots of the
polynomialF,(X, 1) can be described via homographies of
degrees.

26/60

Simplest belds.

When the following polynomials are irreduciblesfar! Z,
the beld€Q(w) generated by a roat of respectively

sX3 %tX2%(t +3s)X %s,

SX* %tX 3 9%6sX? + tX + s,

SX® % 2tX ° % (5t + 155)X* % 20sX3 + 5tX 2 + (2t +6S)X + S,
are cyclic oveQ of degree3, 4 and 6 respectively.

Fors =1, they are callegimplest beldby many authors.
Fors" 1, |. Wakabayasheall themsimplest pelds

In each of the three cases, the roots of the polynomials can be
described via homographiesR$L,(Z) of degree3, 4 and6
respectively.
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E. Thoma®s family dthueequations Exotic solutions found By Thomasn 1990

In 1990,E. Thomasproved in some!ective way that the set Fo(X,Y) = X3+ X2Y %2XY2%Y?3

of (n,x,y) ! Z® with Solutions(x, y) to Fo(x,y) = 1:
0, 0, 0, 0,
n" 0. maxixllyl}* 2 and Fy(x.y)= +1 09,5), (61,2, (2960, (50, 6.4

is Pnite. Fi(X,Y) = X3%3XY2%Y3
Solutions(x, y) to Fi(x,y) = 1:

In his paper, he completely solved the equaligix,y) = 1 (963,2), (1,9%3), (2,1)

forn" 1.365-10": the only solutions aréd, %1), (1,0) and

(%1, +1).

Fa(X,Y) = X3%2X2Y %5XY2%Y 3

SinceF,(%x, %y) = %F,(x,y), the solutions toF,(x,y) = %l are Solutions(x, y) to Fs(x,y) = 1:
n y = n\A, y n(X, = % 0 N 0 .
given by(%x, %y) where(x,y) are the solutions td-,(x,y) =1. (%7, %2), (%2,9), (9, %7)
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M. Mignott€Ds work oB. Thoma®s family E. Thoma®s family dthueequations

In 1993,M. Mignotte completed the work of. Thomasby For the same family
solving the problem for each (X, Y) = X2 %(n%1)X2Y %(n+2)XY2 %Y 3,
givenk # 0, M. Mignotte A. Pethg and F. Lemmermeyer

(1996) studied the family of Diophantine equations
F.(X,Y) = k.

Forn" 4 and forn =2, the
only solutions td~,(x,y) =1
are (0, %1), (1,0) and

(%1, +1), while for the cases
n=0,1,3, the only nontrivial
solutions are the ones found
by E. Thomas
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M. MignotteA. PethgandF. Lemmermeyer
(1996)

Forn" 2, whenx,y are rational integers verifying
0< |Fu.(x,y)| & k,

then
logly| & c(logn)(logn + log k)

with an @ ectively computable absolute constant

One would like an upper bound forax{|x|, |y|} depending
only onk, not onn.
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. Thoma®s family dthueinequations

In 1996, for the family of hue inequations
0< [Fi(x,y)| & K,

Chen Jian Hudas given a bound far by usingPad®s
approximations. This bound was highly improved in 1999 by
G. Lettl, A. PethgandP. Voutier
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M. MignotteA. PethgandF. Lemmermeyer

BesidesM. Mignotte A. Pethgand F. Lemmermeyefiound all
solutions of therhueinequality|F,(X,Y)| & 2n+ 1.

As a consequence, wheris a given positive integer, there
exists an integen, depending upok such that the inequality
IF.(X,y)| & k withn" Oandly| > °k impliesn & np.

Note that for 0 < |t| & *m, (%t,t) and(t, %t) are solutions.
Therefore, the conditiorfy| > °k cannot be omitted.
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Homogeneous variantef Thomadgamily

I. Wakabayashiusing again
the approximants oPade
extended these results to the
families of forms, depending
upon two parameters,

SX3 %tX %Y %(t +3s)XY? %sY?,

which includes the family dfhomasfor s = 1 (with
t=n%1).
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Ma.y 2010, RIO de JaneWPQ were we doing on the beach of Rio?
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Expanding the suggestionGdude Levesque

Given any irreducible binary foffn! Z[X,Y ] and a unite in
the PeldQ(a) wherea is a root ofF (X, 1), one may consider
a family of Diophantine equations

F.(X,Y)=k, (a! 2)

whereF,(X,Y) is deduced fronk (X, Y) by twisting withe?:
assumingQ(a) = Q(ae?), we debnéd-,(X, 1) as the
irreducible polynomial afe?.

d
FOXY) = [J(X %ai(a)Y),

i=1

d
F.(X,Y) = (X %oi(ae?)Y).

i=1
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Question ofClaude Levesque

ConsiderThoma®s family of cubithue equations
F,(X,Y) = +1 with

Fo(X,Y) = X3%(n%1)X2%Y %(n+2)XY2%Y 3.

Write
Fa(X,Y) = (X %A0nY )(X % A1,Y )(X % A2,Y)

where)\;, are units in the totally real cubic Pe@{\o,).
According toE. Thomas there are only Pnitely mary, X, y)
satisfying

n" 0, max|x|,|y|}" 2 and F,(x,y)= £1
Debne

Fo2(X,Y) = (X %73,Y)(X %A3,Y)(X %A3,Y).
Question:Are there only bnitely many, x,y) satisfying
yl}" 2 and F,a(x,y)= +1?

n" 0, max|x
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Non dedtive results

With Claude Levesquwe started this program by using
Schmid®s Subspace Theorem. We obtained general but non
el ective results for the twists of a givéimue equation. For
instance :

Let o be an algebraic number of degeté 3 andK be the
PeldQ(a). Whene is a unit ofK such thatas has degred,

let f.(X) be the irreducible polynomial of and letF.(X,Y)

be its homogeneous version. Then for all but Pnitely many of
these units, thelhue equationF.(x,y) = +1 has only the

trivial solutionsx,y in Z wherexy = 0.
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Non dedtive results on families of ThuebMahl

equations
With Claude LevesquEamilles dOequations de Thue-Mahler

nOayant que des solutions trividlesa Arithmetica,155
(2012), 117-138.

Previous results by

J-H. Evertse, K. Gy¥ry, P. Vojta
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Back toThoma®s family

In Thoma©s family, introduce a new parametérZ:
Fra(X,Y) = (X %A, Y)X %A, Y)X %A, Y)! Z[X,Y].

Then we get a family of cubithue equations depending on
two parametergn, a):

Fna(X,y)= £1
Question:Are there only Pnitely man(y, a, x,y) satisfying

Fna(x,y) = £17?
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Twists of a giveifthueequation (&edtive results)

With Claude Levesquwe obtained &ective partial results in

several cases:

e Our brst paper (Springer Proceedings in Mathematics &
Statistics, 2013) was dealing with non totally real cubic belds.

e Our second one (Ramanujan Math. Soc. Lecture Notes,
published in 2016) was dealing wiffhue equations attached to a
number Peld having at most one real embedding.

e In the third paper (MJCNT, 2013), for each (irreducible) binary
form attached to an algebraic number beld, which is not a totally
real cubic bpeld, we exhibited an inPnite family of equations twisted
by units for whichBakeiOs method provides ective bounds for the
solutions.

¢ In a fourth paper (Contemporary Mathematics, 2015), we go one
step further by considering twists by a power of a totally real unit.
e In a paper in JTNBx (2015), we solve the problem for the family
obtained by twisting ThomasQOs equations related with the simplest

cyclic cubic pelds.
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Thoma®s family with two parameters
Joint work withClaude Levesque

Main result (2014): there is an eectively computable
absolute constant > 0 such that, if(x,y, n,a) are nonzero
rational integers witmax{|x|, |y|} " 2 and

Fna(X,y) = £1,

then
max{|nl, |a], [x[, |y|} & c.

For alln™ O, trivial solutions witha" 2:
(1,0), (0,2)
(1,1) fora=2
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Exotic solutions téna(X,y) =1 witha" 2

(n,a) (x,y)

(0,2) | (%14,%9) (%3,%1) (%2,%1) (1,5) (3,2) (13,4)
©,3)| (2,1)

(0,5) | (%3,%1) (19, %l)

(1,2) | (%7,9%2) (%3,%1) (2,1) (7.3)

(2,2) | (%7,%1) (%2, %1)

4,2)| (3,2

No further solution in the range

0& né& 10, 2& a& 70, %1000& X,y & 100Q

Open question: are there further solutions?
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Further Diophantine results on the fafjly(x, y)

Letk " 1. There exists an absoluté ectively computable
constantx such that, if there existén, a, k,x,y) ! Z° with
a# 0 verifying

0< |F..(x,y)| &k,
then

logmax|x|, ly|} & xp
with

[ (logk + |allog|n|)(log |n[)?log log|n|  for |n| 3,
B logk + |a| forn=0,+1,+2.

Fora =1, this follows from the above mentioned result of
M. Mignotte, A. Pethg and F. Lemmermeyer

47160

Computer search by specialists
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Further Diophantine results on the famgily(X, y)

Letk " 1. There exists an absoluté ectively computable
constantx such that, if there existén, a, k,x,y) ! Z° with
a# 0 verifying

0< [Faa(x,y)| & k,

withn" 0,a" land|y|" 2°k, then
a& kW
with

) (logk +log n)(logn)loglogn forn™" 3,
1+logk forn=0,1,2.
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Further Diophantine results on the faffily(x, y)

Letk " 1. There exists an absolute ectively computable
constantx such that, if there existén, a, k,x,y) ! Z° with
a# 0 verifying

0< |F,.(Xx,y)| & K,

with xy #0,n" Oanda" 1, then

a& /-smax{l, (1 +log [x]) loglog( + 3), logly], %}'
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Conjecture on a familfy, s (X, y)

Conjecture. Fors,t andnin Z, debPne
Frs.e(X,Y) = (X %AG5,A1,Y ) (X %AL,A5,Y (X %A3,A0,Y).

There exists an'ectively computable positive absolute
constantx with the following property: Ih, s, t,x,y, k are
integers satisfying

max{|x|,ly|}" 2, (s,t)#(0,0) and 0< |F,s.(X,y)| &Kk,
then

max{log|n|, |s], [t],log|x]|,log|y|} & x(1 + log k).
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Conjecture on the famify a(x, y)

Assume that there exist®, a,k,x,y) ! Z° with xy # 0 and
la| " 2 verifying
0< |F,.(X,y)| & k.

We conjecture the upper bound

max{log|n

al,log|x|,logly|} & (1 +log k).

Fork > 1 we cannot give an upper bound far.

Since the rank of the units & (o) is 2, one may expect a
more general result as follows:
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Sketch of proof

We want to prove thévlain result : there is an &ectively
computable absolute constaat> 0 such that, if(x,y, n, a)
are nonzero rational integers withex{|x|, [y|} " 2 and

Fna(X,y) = £1,

then
max{|n, [a], x|, |y|} & c.

We may assuma" 2 andy " 1.

We brst consider the case wheres su ciently large.
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Sketch of proof (continued) Sketch of proof (continued)

Write \; for \;,, (1=0,1,2):

DebPne
F.(X,Y)= X3%(n%1)X2%Y %(n+2)XY2%Y?3 vi=X%\y, (i=0,1,2)
= (X %Y )(X %A Y)(X %NY). so thatF, .(x,y) = +1 becomesyy17, = +1.
We have One~;, sayv,,, has a small absolute value, namely
1
, 1 2 Vio| & ——
+ = + = Viol 27
n+ - & XN & n o O YA
% &M & % , the two others, sayy;, v,, have large absolute values:
n+1 n+2
WU & Ny & %1% : min |7y [, [ve[} > y[A2|*.
\ n n+1
53/60 54/60
Sketch of proof (continued) Sketch of proof (continued)

Uselo, X, as a basis of the group of units @{\o): there The Siegel equation

existd = +1 and rational integeré andB such that a2 %A2) + 7 a(A2 %AZ) + 7, (A2 %) = 0

1

Toa = OAGAZ, leads to the identity

Ta = OMAS = NI 202 %)2) i a(A2 %22)

Toa = OMAP = OAgENTE. a0 ) = 2 e %)
We can prove and the estimate

A+ Bl (2 a). 0< |22stNe 0N o) g 2

V(A2 %A2) yeA
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End of the proof wheamis large

We complete the proof wheamis large by means of a lower
bound for a linear form in logarithms of algebraic numbers
(Bake®s method).

Next we need to consider the case wheis bounded. We
have results which are valid not only for theue equations of
the family ofThomas The next result completes the proof of
our main theorem.
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A conjecture

One of our goals is to prove the following:

Conjecture. There exists a constant > 0, depending only
on «, such that, for anyk " 2, all solutiongx,y,¢) in
Z$ Z$ Z; of the inequality

[Fe(X,y)| & k, with xy#0 and [Q(ac): Q]" 3,

satisfy

max{|x|, |y|, e"9} & k*.
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Twists of a given cubithueequation

Consider a monic irreducible cubic polynorh{xl) ! Z[X]
with f (0) = +1 and write

F(X,Y) = Y 3f (X1Y)=(X%eY)(X %eY) (X %esY).
Fora! Z, a# 0, debne
F.OKY) = (X %e]Y ) (X %esY ) (X %egY).

Then there exists an'ectively computable constant> 0,
depending only of, such that, for anyk " 2, any(x,y,a) in
the set

{(x,y,a)! Z*$ Z | xya# 0, max{|[x|,|y|} " 2, [Fa(x,y)| & Kk}

satisbes
max{ |x

y|, e} & k”.
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