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Abstract

In a series of recent joint papers withClaude Levesque, we
produce new families of Diophantine equations for which
e! ective methods can be applied to solve them. We present a
survey of this work.
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Diophantus of Alexandria
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ThueÕs Theorem (1908)
Let F ! Z[X, Y ] be a homogeneous irreducible form of degree
d " 3:

F(X, Y ) = a0X d + a1X d�1Y + · · · + ad�1XY d�1 + adY d .

Axel Thue
(1863 Ð 1922)

Let k ! Z, k #= 0. Then there
are only Þnitely many integer
solutions(x, y) ! Z $ Z to
the Diophantine equation

F(x, y) = k.
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LiouvilleÕs inequality

LiouvilleÕs inequality. Let ↵
be an algebraic number of
degreed " 2. There exists
c(↵) > 0 such that, for any
p/ q ! Q with q > 0,

����↵ %
p
q

���� >
c(↵)
qd

·

Joseph Liouville, 1844
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On ThueÕs equations and approximation
Whenf ! Z[X] is a polynomial of degreed, we let
F(X, Y ) = Y d f (X/ Y ) denote the associated homogeneous
binary form of degreed.
Assumef is irreducible. Then the following two assertions are
equivalent:
(i ) For any integerk #= 0, the set of(x, y) ! Z2 verifying

F(x, y) = k

is Þnite.
(ii ) For any real numberc > 0 and for any root↵ ! C of f ,
the set of rational numbersp/ q verifying

����↵ %
p
q

���� &
c
qd

is Þnite.
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Improvements ofLiouvilleÕs inequality

In the lower bound
����↵ %

p
q

���� >
c(↵)
qd

for a real algebraic number↵ of degreed " 2, the exponentd
of q in the denominator is best possible ford = 2, not for
d " 3.

In 1909,A. Thuesucceeded to prove that it can be replaced
by  with any > (d/ 2) + 1.
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ThueÕs inequality

Let ↵ be an algebraic number of degreed " 3 and let
 > (d/ 2) + 1. Then there existsc(↵,) > 0 such that, for
anyp/ q ! Q with q > 0,

����↵ %
p
q

���� >
c(↵,)

q
·
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Thueinequation

ThueÕs result
For any integerk #= 0, the set of(x, y) ! Z2

verifying
F(x, y) = k

is Þnite.

can also be phrased by stating that for any positive integerk,
the set of(x, y) ! Z2 verifying

0 < |F(x, y)| & k

is Þnite.
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Thueequation

For any number ÞeldK , for any nonÐzero elementk in K and
for any elements↵1, . . . ,↵n in K with Card{↵1, . . . ,↵n} " 3,
the Thue equation

(X %↵1Y ) · · · (X %↵nY ) = k

has but a Þnite number of solutions(x, y) ! Z $ Z.
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Improvements ofLiouvilleÕs inequality

In the lower bound
����↵ %

p
q

���� >
c(↵)
qd

for ↵ real algebraic number of degreed " 3, the exponentd
of q in the denominator of the right hand side was replaced by

• any > (d/ 2) + 1 by A. Thue(1909),

• 2
'

d by C.L. Siegelin 1921,

•
'

2d by F.J. DysonandA.O. GelÕfondin 1947,

• any > 2 by K.F. Roth in 1955.

11 / 60

ThueÐSiegelÐRothTheorem

Axel Thue
(1863 Ð 1922)

Carl Ludwig Siegel
(1896 Ð 1981)

Klaus Friedrich
Roth (1925 Ð
2015)

For any real algebraic number↵, for any✏ > 0, the set of
p/ q ! Q with |↵ %p/ q| < q�2�✏ is Þnite.
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SchmidtÕs Subspace Theorem (1970)

For m " 2 let L0, . . . , Lm�1 be
m independent linear forms in
m variables with algebraic
coe! cients. Let✏ > 0. Then
the set

{x = ( x0, . . . , xm�1) ! Zm ;

|L0(x) · · · Lm�1(x)| & |x|�✏}

is contained in the union of
Þnitely many proper
subspaces ofQm.

W.M. Schmidt
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Subspace Theorem

W.M. Schmidt H.P. Schlickewei
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Consequences of the Subspace Theorem

Work of P. Vojta, S. Lang, J-H. Evertse, K. Gyýory,
P. Corvaja, U. Zannier, Y. Bilu, P. Autissier, A. Levin . . .
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GelÕfondÐBaker method

The ThueÐSiegelÐRoth Theorem is not e! ective: upper
bounds for the number of solutions can be derived, but not
upper bounds for the solutions.

BakerandFelÕdmandeveloped an e! ective method introduced
by A.O. GelÕfond, involvinglower bounds for linear
combinations of logarithms of algebraic numbers with
algebraic coe! cients.
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Lower bound for linear combinations of logarithms

A lower bound for a nonvanishing di! erence

↵b1
1 · · ·↵bn

n %1

is essentially the same as a lower bound for a nonvanishing
number of the form

b1 log↵1 + · · · + bn log↵n,

sinceez %1 ( z for z ) 0.
The Þrst nontrivial lower bounds were obtained by
A.O. GelÕfond. His estimates were e! ective only forn = 2: for
n " 3, he needed to use estimates related to the
ThueÐSiegelÐRoth Theorem.
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Explicit version ofGelÕfondÕs estimates

A. Schinzel(1968) computed
explicitly the constants
introduced byA.O. GelÕfond.
in his lower bound for

��↵b1
1 ↵b2

2 %1
�� .

He deduced explicit Diophantine results using the approach
introduced byA.O. GelÕfond.
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Alan Baker

In 1968,A. Bakersucceeded
to extend to anyn " 2 the
transcendence method used
by A.O. GelÕfondfor n = 2.
As a consequence, e! ective
upper bounds for the solutions
of ThueÕs equations have
been derived.
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ThueÕs equation andSiegelÕs unit equation
The main idea behind theGelÕfondÐBakerapproach for solving
ThueÕs equation is to exploitSiegelÕs unit equation.
Assume↵1,↵2,↵3 are algebraic integers andx, y rational
integers such that

(x %↵1y)(x %↵2y)(x %↵3y) = 1 .

Then the three numbers

u1 = x %↵1y, u2 = x %↵2y, u3 = x %↵3y,

are units. Eliminatingx andy, one deducesSiegelÕs unit
equation

u1(↵2 %↵3) + u2(↵3 %↵1) + u3(↵1 %↵2) = 0 .
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SiegelÕs unit equation
Write SiegelÕs unit equation

u1(↵2 %↵3) + u2(↵3 %↵1) + u3(↵1 %↵2) = 0

in the form

u1(↵2 %↵3)
u2(↵1 %↵3)

%1 =
u3(↵1 %↵2)
u2(↵1 %↵3)

·

The quotient
u1(↵2 %↵3)
u2(↵1 %↵3)

is the quantity
↵b1

1 · · ·↵bn
n

in GelÕfondÐBakerDiophantine inequality.
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Work onBakerÕs method:

A. Baker(1968), N.I. Feldman(1971), V.G. Sprindùzuckand
H.M. Stark (1973), K. GyýoryandZ.Z. Papp(1983),
E. Bombieri(1993), Y. BugeaudandK. Gyýory(1996),
Y. Bugeaud(1998). . .

SolvingThue equations:
A. PethýoandR. Schulenberg(1987), B. de Weger(1987),
N. TzanakisandB. de Weger(1989), Y. Bilu andG. Hanrot
(1996), (1999). . .

SolvingThueÐMahlerequations:
J.H. Coates(1969), S.V. KotovandV.G. Sprindùzuk(1973),
A. B«erczesÐYu KunruiÐK. Gy¬ory(2006). . .
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Diophantine equations

A.O. GelÕfond, A. Baker, V. Sprindùzuk, K. Gyýory, M. Mignotte,
R. Tijdeman,
M. Bennett, P. Voutier, Y. Bugeaud, T.N. Shorey, S. Laishram. . .
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N. Saradha, T.N. Shorey, R. Tijdeman

Survey byT.N. Shorey
Diophantine approximations, Diophantine equations,
transcendence and applications.
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Families ofThueequations
The Þrst families ofThue equations having only trivial
solutions were introduced byA. Thuehimself.

(a + 1) X n %aYn = 1.

He proved that the only solution in positive integersx, y is
x = y = 1 for n prime anda su" ciently large in terms ofn.
For n = 3 this equation has only this solution fora " 386.
M. Bennett (2001) proved that this is true for alla andn with
n " 3 anda " 1. He used a lower bound for linear
combinations of logarithms of algebraic numbers due to
T.N. Shorey.
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E. ThomasÕs family ofThueequations

E. Thomasin 1990 studied
the families ofThue equations
x3 %(n %1)x2y %(n + 2) xy2 %y3 = 1

Set

Fn(X, Y ) = X3 %(n %1)X2Y %(n + 2) XY 2 %Y 3.

The cubic ÞeldsQ(�) generated by a root� of Fn(X, 1) are
called byD. Shanksthe simplest cubic Þelds.The roots of the
polynomialFn(X, 1) can be described via homographies of
degree3.
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D. ShanksÕs simplest cubic ÞeldsQ(�).

Let � be one of the three
roots of

Fn(X, 1) = X3 %(n %1)X2 %(n + 2) X %1.

Then Q(�) is a real Galois
cubic Þeld.

Write

Fn(X, Y ) = ( X %�0Y )(X %�1Y )(X %�2Y )

with
�0 > 0 > �1 > %1 > �2.

Then

�1 = %
1

�0 + 1
and �2 = %

�0 + 1
�0

·
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Simplest Þelds.

When the following polynomials are irreducible fors, t ! Z,
the ÞeldsQ(!) generated by a root! of respectively

8
><

>:

sX3 %tX 2 %(t + 3s)X %s,

sX4 %tX 3 %6sX2 + tX + s,

sX6 %2tX 5 %(5t + 15s)X4 %20sX3 + 5tX 2 + (2 t + 6s)X + s,

are cyclic overQ of degree3, 4 and6 respectively.
For s = 1, they are calledsimplest Þeldsby many authors.
For s " 1, I. Wakabayashicall themsimplest Þelds.

In each of the three cases, the roots of the polynomials can be
described via homographies ofPSL2(Z) of degree3, 4 and6
respectively.
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E. ThomasÕs family ofThueequations

In 1990,E. Thomasproved in some e! ective way that the set
of (n, x, y) ! Z3 with

n " 0, max{|x|, |y|} " 2 and Fn(x, y) = ±1

is Þnite.

In his paper, he completely solved the equationFn(x, y) = 1
for n " 1.365· 107: the only solutions are(0, %1), (1, 0) and
(%1, +1) .

SinceFn(%x, %y) = %Fn(x, y), the solutions toFn(x, y) = %1 are
given by(%x, %y) where(x, y) are the solutions toFn(x, y) = 1 .
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Exotic solutions found byE. Thomasin 1990

F0(X, Y ) = X3 + X2Y %2XY 2 %Y 3

Solutions(x, y) to F0(x, y) = 1 :
(%9, 5), (%1, 2), (2, %1), (4, %9), (5, 4)

F1(X, Y ) = X3 %3XY 2 %Y 3

Solutions(x, y) to F1(x, y) = 1 :
(%3, 2), (1, %3), (2, 1)

F3(X, Y ) = X3 %2X2Y %5XY 2 %Y 3

Solutions(x, y) to F3(x, y) = 1 :
(%7, %2), (%2, 9), (9, %7)
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M. MignotteÕs work onE. ThomasÕs family

In 1993,M. Mignotte completed the work ofE. Thomasby
solving the problem for eachn.

For n " 4 and forn = 2, the
only solutions toFn(x, y) = 1
are(0, %1), (1, 0) and
(%1, +1) , while for the cases
n = 0, 1, 3, the only nontrivial
solutions are the ones found
by E. Thomas.
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E. ThomasÕs family ofThueequations

For the same family

Fn(X, Y ) = X3 %(n %1)X2Y %(n + 2) XY 2 %Y 3,

givenk #= 0, M. Mignotte A. Pethýo and F. Lemmermeyer
(1996) studied the family of Diophantine equations
Fn(X, Y ) = k.
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M. MignotteA. PethýoandF. Lemmermeyer
(1996)

For n " 2, whenx, y are rational integers verifying

0 < |Fn(x, y)| & k,

then
log|y| & c(logn)(log n + log k)

with an e! ectively computable absolute constantc.

One would like an upper bound formax{|x|, |y|} depending
only onk, not on n.

33 / 60

M. MignotteA. PethýoandF. Lemmermeyer

Besides,M. Mignotte A. PethýoandF. Lemmermeyerfound all
solutions of theThue inequality|Fn(X, Y )| & 2n + 1.

As a consequence, whenk is a given positive integer, there
exists an integern0 depending uponk such that the inequality
|Fn(x, y)| & k with n " 0 and |y| > 3

'
k impliesn & n0.

Note that for 0 < |t | & 3
'

m, (%t , t ) and (t , %t ) are solutions.
Therefore, the condition|y| > 3

'
k cannot be omitted.
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E. ThomasÕs family ofThueinequations

In 1996, for the family ofThue inequations

0 < |Fn(x, y)| & k,

Chen Jian Huahas given a bound forn by usingPad«eÕs
approximations. This bound was highly improved in 1999 by
G. Lettl, A. PethýoandP. Voutier.
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Homogeneous variant ofE. Thomasfamily

I. Wakabayashi, using again
the approximants ofPad«e,
extended these results to the
families of forms, depending
upon two parameters,

sX3 %tX 2Y %(t + 3s)XY 2 %sY3,

which includes the family ofThomasfor s = 1 (with
t = n %1).
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May 2010, Rio de JaneiroWhat were we doing on the beach of Rio?
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Question ofClaude Levesque
ConsiderThomasÕs family of cubicThue equations
Fn(X, Y ) = ±1 with

Fn(X, Y ) = X3 %(n %1)X2Y %(n + 2) XY 2 %Y 3.

Write

Fn(X, Y ) = ( X %�0nY )(X %�1nY )(X %�2nY )

where�in are units in the totally real cubic ÞeldQ(�0n).
According toE. Thomas, there are only Þnitely many(n, x, y)
satisfying

n " 0, max{|x|, |y|} " 2 and Fn(x, y) = ±1.

DeÞne

Fn,2(X, Y ) = ( X %�2
0nY )(X %�2

1nY )(X %�2
2nY ).

Question:Are there only Þnitely many(n, x, y) satisfying

n " 0, max{|x|, |y|} " 2 and Fn,2(x, y) = ±1?
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Expanding the suggestion ofClaude Levesque
Given any irreducible binary formF ! Z[X, Y ] and a unit✏ in
the ÞeldQ(↵) where↵ is a root ofF(X, 1), one may consider
a family of Diophantine equations

Fa(X, Y ) = k, (a ! Z)

whereFa(X, Y ) is deduced fromF(X, Y ) by twisting with✏a:
assumingQ(↵) = Q(↵✏a), we deÞneFa(X, 1) as the
irreducible polynomial of↵✏a.

F(X, Y ) =
dY

i=1

(X %�i (↵)Y ),

Fa(X, Y ) =
dY

i=1

(X %�i (↵✏a)Y ).
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Non e↵ective results

With Claude Levesque, we started this program by using
SchmidtÕs Subspace Theorem. We obtained general but non
e! ective results for the twists of a givenThue equation. For
instance :

Let ↵ be an algebraic number of degreed " 3 andK be the
ÞeldQ(↵). When" is a unit ofK such that↵" has degreed,
let f"(X) be the irreducible polynomial of↵" and letF"(X, Y )
be its homogeneous version. Then for all but Þnitely many of
these units, theThue equationF"(x, y) = ±1 has only the
trivial solutionsx, y in Z wherexy = 0.
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Non e↵ective results on families of ThueÐMahler
equations

With Claude Levesque, Familles dÕ«equations de Thue-Mahler
nÕayant que des solutions trivialesActa Arithmetica,155
(2012), 117-138.

Previous results by

J-H. Evertse, K. Gyýory, P. Vojta
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Twists of a givenThueequation (e↵ective results)
With Claude Levesquewe obtained e! ective partial results in
several cases:
• Our Þrst paper (Springer Proceedings in Mathematics &
Statistics, 2013) was dealing with non totally real cubic Þelds.
• Our second one (Ramanujan Math. Soc. Lecture Notes,
published in 2016) was dealing withThue equations attached to a
number Þeld having at most one real embedding.
• In the third paper (MJCNT, 2013), for each (irreducible) binary
form attached to an algebraic number Þeld, which is not a totally
real cubic Þeld, we exhibited an inÞnite family of equations twisted
by units for whichBakerÕs method provides e! ective bounds for the
solutions.
• In a fourth paper (Contemporary Mathematics, 2015), we go one
step further by considering twists by a power of a totally real unit.
• In a paper in JTNBx (2015), we solve the problem for the family
obtained by twisting ThomasÕs equations related with the simplest
cyclic cubic Þelds.
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Back toThomasÕs family

In ThomasÕs family, introduce a new parametera ! Z:

Fn,a(X, Y ) = ( X %�a
0nY )(X %�a

1nY )(X %�a
2nY ) ! Z[X, Y ].

Then we get a family of cubicThue equations depending on
two parameters(n, a):

Fn,a(x, y) = ±1.

Question:Are there only Þnitely many(n, a, x, y) satisfying

Fn,a(x, y) = ±1?
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ThomasÕs family with two parameters

Joint work withClaude Levesque

Main result (2014): there is an e" ectively computable
absolute constantc > 0 such that, if(x, y, n, a) are nonzero
rational integers withmax{|x|, |y|} " 2 and

Fn,a(x, y) = ±1,

then
max{|n|, |a|, |x|, |y|} & c.

For all n " 0, trivial solutions witha " 2:
(1, 0), (0, 1)
(1, 1) for a = 2

44 / 60



Exotic solutions toFn,a(x, y) = 1 with a " 2

(n, a) (x, y)

(0, 2) (%14, %9) (%3, %1) (%2, %1) (1, 5) (3, 2) (13, 4)

(0, 3) (2, 1)

(0, 5) (%3, %1) (19, %1)

(1, 2) (%7, %2) (%3, %1) (2, 1) (7, 3)

(2, 2) (%7, %1) (%2, %1)

(4, 2) (3, 2)

No further solution in the range

0 & n & 10, 2 & a & 70, %1000& x, y & 1000.

Open question: are there further solutions?
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Computer search by specialists
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Further Diophantine results on the familyFn,a(x, y)

Let k " 1. There exists an absolute e! ectively computable
constant such that, if there exists(n, a, k, x, y) ! Z5 with
a #= 0 verifying

0 < |Fn,a(x, y)| & k,

then
log max{|x|, |y|} & µ

with

µ =

(
(logk + |a| log|n|)(log |n|)2 log log|n| for |n| " 3,

logk + |a| for n = 0,±1,±2.

For a = 1 , this follows from the above mentioned result of
M. Mignotte, A. Pethýo and F. Lemmermeyer.
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Further Diophantine results on the familyFn,a(x, y)

Let k " 1. There exists an absolute e! ectively computable
constant such that, if there exists(n, a, k, x, y) ! Z5 with
a #= 0 verifying

0 < |Fn,a(x, y)| & k,

with n " 0, a " 1 and |y| " 2 3
'

k, then

a & µ0

with

µ0 =

8
<

:
(logk + log n)(log n) log logn for n " 3,

1 + log k for n = 0, 1, 2.
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Further Diophantine results on the familyFn,a(x, y)

Let k " 1. There exists an absolute e! ectively computable
constant such that, if there exists(n, a, k, x, y) ! Z5 with
a #= 0 verifying

0 < |Fn,a(x, y)| & k,

with xy #= 0, n " 0 anda " 1, then

a & max
⇢

1, (1 + log |x|) log log(n + 3) , log|y|, logk
log(n + 2)

�
.
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Conjecture on the familyFn,a(x, y)

Assume that there exists(n, a, k, x, y) ! Z5 with xy #= 0 and
|a| " 2 verifying

0 < |Fn,a(x, y)| & k.

We conjecture the upper bound

max{log|n|, |a|, log|x|, log|y|} & (1 + log k).

For k > 1 we cannot give an upper bound for|n|.

Since the rank of the units ofQ(�0) is 2, one may expect a
more general result as follows:
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Conjecture on a familyFn,s,t (x, y)

Conjecture. For s, t andn in Z, deÞne

Fn,s,t(X, Y ) = ( X %�s
0n�

t
1nY )(X %�s

1n�
t
2nY )(X %�s

2n�
t
0nY ).

There exists an e! ectively computable positive absolute
constant with the following property: Ifn, s, t , x, y, k are
integers satisfying

max{|x|, |y|} " 2, (s, t ) #= (0 , 0) and 0 < |Fn,s,t(x, y)| & k,

then

max{log|n|, |s|, |t |, log|x|, log|y|} & (1 + log k).
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Sketch of proof

We want to prove theMain result : there is an e" ectively
computable absolute constantc > 0 such that, if(x, y, n, a)
are nonzero rational integers withmax{|x|, |y|} " 2 and

Fn,a(x, y) = ±1,

then
max{|n|, |a|, |x|, |y|} & c.

We may assumea " 2 andy " 1.

We Þrst consider the case wheren is su" ciently large.
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Sketch of proof (continued)

Write �i for �in, (i = 0, 1, 2):

Fn(X, Y )= X3 %(n %1)X2Y %(n + 2) XY 2 %Y 3

= ( X %�0Y )(X %�1Y )(X %�2Y ).

We have
8
>>>>><

>>>>>:

n +
1
n

& �0 & n +
2
n

,

%
1

n + 1
& �1 & %

1
n + 2

,

%1 %
1
n

& �2 & %1 %
1

n + 1
·
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Sketch of proof (continued)

DeÞne
�i = x %�a

i y, (i = 0, 1, 2)

so that Fn,a(x, y) = ±1 becomes�0�1�2 = ±1.

One�i , say�i0, has a small absolute value, namely

|�i0| &
1

y2�a
0
,

the two others, say�i1, �i2, have large absolute values:

min{|�i1|, |�i2|} > y|�2|a.
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Sketch of proof (continued)

Use�0,�2 as a basis of the group of units ofQ(�0): there
exist� = ±1 and rational integersA andB such that

8
>><

>>:

�0,a = ��A
0�

B
2 ,

�1,a = ��A
1�

B
0 = ���A+ B

0 ��A
2 ,

�2,a = ��A
2�

B
1 = ���B

0 �A�B
2 .

We can prove

|A| + |B| & 

✓
logy
log�0

+ a
◆

.
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Sketch of proof (continued)

The Siegel equation

�i0,a(�a
i1 %�a

i2) + �i1,a(�a
i2 %�a

i0) + �i2,a(�a
i0 %�a

i1) = 0

leads to the identity

�i1,a(�a
i2 %�a

i0)
�i2,a(�a

i1
%�a

i0
)

%1 = %
�i0,a(�a

i1 %�a
i2)

�i2,a(�a
i1

%�a
i0
)

and the estimate

0 <

����
�i1,a(�a

i2 %�a
i0)

�i2,a(�a
i1

%�a
i0
)

%1

���� &
2

y3�a
0
·
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End of the proof whenn is large

We complete the proof whenn is large by means of a lower
bound for a linear form in logarithms of algebraic numbers
(BakerÕs method).

Next we need to consider the case wheren is bounded. We
have results which are valid not only for theThue equations of
the family ofThomas. The next result completes the proof of
our main theorem.
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Twists of a given cubicThueequation
Consider a monic irreducible cubic polynomialf (X) ! Z[X]
with f (0) = ±1 and write

F(X, Y ) = Y 3f (X/ Y ) = ( X %✏1Y )(X %✏2Y )(X %✏3Y ).

For a ! Z, a #= 0, deÞne

Fa(X, Y ) = ( X %✏a1Y )(X %✏a2Y )(X %✏a3Y ).

Then there exists an e" ectively computable constant > 0,
depending only onf , such that, for anyk " 2, any(x, y, a) in
the set
�

(x, y, a) ! Z2 $ Z | xya#= 0, max{|x|, |y|} " 2, |Fa(x, y)| & k
 

satisÞes
max

�
|x|, |y|, e|a|

 
& k.
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A conjecture

One of our goals is to prove the following:

Conjecture. There exists a constant > 0, depending only
on ↵, such that, for anyk " 2, all solutions(x, y, ") in
Z $ Z $ Z⇥

K of the inequality

|F"(x, y)| & k, with xy #= 0 and [Q(↵") : Q] " 3,

satisfy
max{|x|, |y|, eh(↵")} & k.
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