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Abstract

Given a complex function f and an algebraic point α where f is defined,
we investigate the algebraic nature of f(α): is–it a rational number, an
irrational algebraic number, or else a transcendental number? No general
result exists, one needs to restrict the study to special functions f . We first
consider the E–functions and then theG–functions introduced by C.L. Siegel
in 1929. Next, we consider meromorphic functions satisfying differential
equations as in the so–called Schneider–Lang criterion. Finally, we deal
with analytic functions satisfying functional equations, where a powerful
method has been introduced by K. Mahler.

1 Introduction: Emil Strauss question

After the proof by Hermite of the transcendence of the number e, the proof
by Lindemann of the transcendence of the number π, and the Theorem
of Hermite Lindemann stating that the only algebraic value α where the
exponential function takes an algebraic value eα is α = 0, E. Strauss (1886)
tried to prove that a transcendental function which is analytic in an open
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domain D of C containing 0 cannot take rational values at all rational points
of D. According to P. Stäckel [51], K. Weierstrass sent him a letter where
he supplied him with a counterexample (see [38, §35]).

As pointed out in [57, Chap. 6], Hilbert’s seventh problem include the
following comment:

we expect transcendental functions to assume, in general, tran-
scendental values for [. . . ] algebraic arguments [. . . ] we shall still
consider it highly probable that the exponential function eiz, [. . . ]
will [. . . ] always take transcendental values for irrational alge-
braic values of the argument z.

For a transcendental function f , denote by Ef the set of algebraic num-
bers α such that f(α) is algebraic.

Thanks to the work by A. Hurwitz (1891), P. Stäckel (1895), G. Faber
(1904), C.G. Lekkerkerker (1949), A.O. Gel’fond (1965), K. Mahler (1965),
it is known that for each countable subset A of C and each family of dense
subsets Eα,s of C indexed by (α, s) ∈ A × N, there exists a transcendental
entire function f : C→ C such that f (s)(α) ∈ Eα,s for each (α, s) ∈ A× N.
See [38, §35] and [25]. In 1968, A.J. van der Poorten showed that there exist
entire functions mapping each number field into itself. The paper [53] by
A. Surroca is related with some work by J. Pila, which was the origin of the
introduction of tools from logic (o–minimality) which yielded a breakthrough
towards main conjectures in Diophantine questions (Manin–Mumford and
André–Oort conjectures, unlikely intersections).

In [29], it is proved that for each countable subset A of C and each
family of dense subsets Eα,s of C indexed by (α, s) ∈ A × N, there exists a
transcendental entire function f : C → C such that f (s)(α) ∈ Eα,s for each
(α, s) ∈ A× N.

Therefore we cannot expect general results on the arithmetic properties
of the values of analytic functions, unless we restrict to special functions.
Among many references on special functions, let us quote [30, 16].

2 E–functions

We first consider the E–functions and then the G–functions introduced by
C.L. Siegel in 1929 [49], which includes Bessel’s functions and hypergeomet-
ric functions. Siegel came back to this subject in 1949 [50].
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Consider a power series

f(z) =
∑
n≥0

an
n!
zn ∈ Q[[z]]

such that
• an increases at most exponentially in n (hence f is an entire function)
• f satisfies a linear differential equation with coefficients in Q(z)
• The common denominator of a0, a1, . . . , an increases at most exponentially
in n.

This is a typical example of a E–function of Siegel. The general definition
replaces the rational numbers an by algebraic numbers. Examples of E–
functions are algebraic constants, polynomials with algebraic coefficients,
the exponential function ez, the trigonometric functions cos z and sin z. Our
next example is Bessel’s function of index 0:

J0(z) =
∑
n≥0

(−1)n

(n!)2

(z
2

)2n
= 1−

(z
2

)2
+

1

4

(z
2

)4
− 1

36

(z
2

)6
+ · · ·

which is a solution of the Bessel differential equation

y′′ +
1

z
y′ + y = 0.

More generally, for λ ∈ C, if we define

Kλ(z) =
∑
n≥0

(−1)n

(λ+ 1)nn!

(z
2

)2n
,

then the function

Jλ(z) =
∑
n≥1

(−1)n(z/2)2n+λ

n!Γ(n+ 1 + λ)
=

1

Γ(λ+ 1)

(z
2

)λ
Kλ(z),

is a solution of the differential equation

z2y′′ + zy′ + (z2 − λ2)y = 0,

and J−λ(z) is a solution of the same differential equation. The modified
Bessel functions of the first kind are

Iλ(z) =
∑
n≥1

(z/2)2n+λ

n!Γ(n+ 1 + λ)
= i−λJλ(iz).
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See [30, Chap. 6]. Among the results proved by Siegel in 1929 is the tran-
scendence of the so–called Continued Fraction Constant

I1(2)

I0(2)
= [0; 1, 2, 3, . . . ] = 0.697774658 . . .

Other similar continued fractions, like

I1/2(1) =

√
2

π
· e+ e−1

2
, I1/2(1) =

√
2

π
· e− e

−1

2
,

[1; 3, 5, 7 . . . ] =
e2 + 1

e2 − 1
=
I−1/2(1)

I1/2(1)
, [2; 6, 10, 14 . . . ] =

e+ 1

e− 1
=
I−1/2(1/2)

I1/2(1/2)
,

are considered in [54].
An interesting connection between Bessel’s functions and Ramanujan’s

work is quoted by H. Cohen [18].
Further examples of E–functions are Siegel hypergeometric E–functions.

Let a1, . . . , a`, b1, . . . , bm be rational numbers with m > ` and b1, . . . , bm not
in {0,−1,−2, . . . } and bm = 1. Define

cn =
(a1)n · · · (a`)n
(b1)n · · · (bm)n

where (x)n denotes Pochhammer symbol: (rising factorial power)

(x)n = x(x+ 1) · · · (x+ n− 1) =
Γ(x+ n)

Γ(x)
·

Set t = m− `. Then
f(z) =

∑
n≥1

cnz
tn

is an E–function.
For an introduciton to hypergeometric functions, see [10, 11].
After the work by Siegel, and later by Shidlovski and his school, the

theory of E–functions has now reached a satisfactory state: to prove the
algebraic independence of values, it suffices to prove the algebraic indepen-
dence of the functions. Among many references on this topic [23, Chap. 2
§ 4], [46, Chap. V], [34, Chap. VII], [38], [5, § 11], [48], [19, Chap. 5], [7,
§ 1.4, Th. 1.10], [56, Chap. 5].

Here is an example of a result achieved by this theory. Let K be a number
field, E1, E2, . . . , En be E–functions which are algebraic independent over
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K(z) and satisfy a system of linear differential equations

y′i =
n∑
j=1

fij(x)yj (i = 1, . . . , n)

with fij ∈ K[z] and α be a non-zero algebraic number in K not pole of the
Ei. Then E1(α), E2(α), . . . , En(α) are algebraically independent.

3 G–functions

Consider a power series

g(z) =
∑
n≥0

anz
n ∈ Q[[z]]

such that
• g has a positive radius of convergence
• g satisfies a linear differential equation with coefficients in Q(z)
• The common denominator of a0, a1, . . . , an increases at most exponentially
in n.

This is a typical example of a G–function of Siegel. The general definition
replaces the rational numbers an by algebraic numbers. References on G–
functions are [49], [19, Chap. 5, § 7], [2, 3]. The recent manuscript ?? by
S. Fischler and T. Rivoal includes a survey on Diophantine properties of
values of G–functions together with new results.

From the definitions, it follows that
∑

n≥0 anz
n is a G–function if and

only if
∑

n≥0(an/n!)zn is an E–function.
Examples of G–functions are algebraic functions, Gauss hypergeometric

functions 2F1

(
a b
c

∣∣∣∣z) with rational parameters a, b, c [11], solutions of

Picard–Fuchs equations over Q(z). The hypergeometric function

2F1

(
a b

c

∣∣∣∣z) =
∑
n≥0

(a)n(b)n
(c)nn!

zn

satisfies the second order linear differential equation

z(z − 1)y′′ +
(
(a+ b+ 1)z − c

)
y′ + aby = 0.

Special cases of hypergeometric functions are

2F1

(
1 1

2

∣∣∣∣z) = −1

z
log(1− z)
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2F1

(
1/2 1

1

∣∣∣∣z) = (1− z)−1/2

2F1

(
1/2 1/2

1

∣∣∣∣z) =
2

π

∫ 1

0

dt√
(1− t2)(1− zt2)

·

The G–function∑
n≥0

(−1)n
(
5n
n

)
4n+ 1

z4n+1 = z − z5 + 10
z9

2!
− 15 · 14

z13

3!
+ · · · ,

which converges for |z| < 5−5/4, is a solution of the quintic equation x5+x =
z. (see [11, 52]).

Apéry’s proof of the irrationality of ζ(3) is related with the theory of
G–functions [20, 32].

In [21], Fischler and Rivoal introduce the set G of all values taken by
any analytic continuation of any G–function at any algebraic point. Using
a theorem of André–Chudnovski–Katz, they prove that G is a countable
subring of C which contains the field Q of algebraic numbers and the log-
arithms of algebraic numbers. Conjecturally, G is not a field. According
to a conjecture of Bombieri and Dwork, G should coincide with the set of
periods of algebraic varieties defined over Q. See also [31].

It is expected (see [33]) that Euler constant

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
= 0.577 215 664 901 . . .

does not belong the the field of fractions of G.
The group of units of G contains Q× and the values B(a, b), (a, b in Q)

of Euler Beta function. The numbers Γ(a/b)b , a/b ∈ Q \ {0,−1,−2, . . . },
are units in the ring G. For instance, π = Γ(1/2)2 is a unit:

π =
∑
n≥1

4(−1)n

2n+ 1
,

1

π
=
∑
n≥1

(42n+ 5)
(
2n
n

)3
212n+4

·

The formula
16

π
=
∑
n≥0

(42n+ 5)
(1/2)3n
n!326n

appeared in the Walt Disney film High School Musical – see [9].
Adapting Strauss’s question (see § 1) to the context of G–functions, it

is natural to ask:
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Let g be a G–function which is not algebraic. Is–it true that g(α) is algebraic
for at most finitely many algebraic α?

For Gauss hypergeometric functions, the answer is given by a result

of Wolfart [60]: Let f(z) = 2F1

(
a b

c

∣∣∣∣z) with a, b, c in Q. Let ∆ be the

monodromy group and

E =
{
α ∈ Q | f(α) ∈ Q

}
.

(1) If f is algebraic (∆ finite), then E = Q.
(2) If f is arithmetic, then E is dense in Q.
(3) Otherwise, E is finite.
For the definitions of the monodromy group and of arithmetic, see [55].
An example is given by taking a = 1/12, b = 5/12, c = 1/2. Then the
monodromy group is SL(2,Z). It can be shown that

2F1

(
1/12 5/12

1/2

∣∣∣∣1− 1

J(τ)

)4

=
E4(τ)

E4(i)

where

E4(τ) = 1 + 240
∑
n≥1

n3qn

1− qn
, ∆(τ) = q

∏
n≥1

(1− qn)24

with q = e2iπτ and J(τ) = E4(τ)3/1728∆(τ). So

J(q) = q−1

(
1 + 240

∞∑
m=1

m3 qm

1− qm

)3 ∞∏
n=1

(1− qn)−24

=
1

q
+ 744 + 196884 q + 21493760 q2 + · · ·

In particular J(i) = 1. From the theory of Complex Multiplication, it
follows that if τ0 ∈ Q(i), Im(τ0) > 0, then both J(τ0) and E4(τ0)/E4(i) are
algebraic.

Other examples (Beukers–Wolfart [12]) are

2F1

(
1/12 5/12

1/2

∣∣∣∣1323

1331

)
=

3

4
4
√

11,

2F1

(
1/4 1/2

3/4

∣∣∣∣80

81

)
=

9

5
,

2F1

(
1/3 2/3

5/6

∣∣∣∣27

32

)
=

8

5
,
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as well as (Akihito Ebisu, 2014)

2F1

(
1/12 1/4

5/6

∣∣∣∣135

256

)
=

2

5
6
√

270

and also (Yifan Yang, 2015)

2F1

(
1/24 7/24

5/6

∣∣∣∣− 210335

114

)
=
√

6
6

√
11

55
·

Non arithmetic examples, due to Beukers, are

2F1

(
1− 3a 3a

a

∣∣∣∣12
)

= 23−2a cosπa,

2F1

(
2a 1− 4a

1− a

∣∣∣∣12
)

= 4a cosπa

and

2F1

(
7/48 31/48

29/24

∣∣∣∣− 1

3

)
= 25/243−11/125 ·

√
sinπ/24

sin 5π/24
·

4 Schneider–Lang criterion

One of the very powerful tools for proving the transcendence of values of
meromorphic functions is the so–called Schneider–Lang criterion see for in-
stance [46, Chap. II § 3], [34, Chap. III], [58, Th. 1.1.1], [5, § 6.1], [19,
Chap. 3 § 3 Th. 3.18], [42, Chap. 9], [7, § 2.3], [39, Th. 19.1], [57, Th. 6.3],
[56, Chap. 2].

Theorem 4.1 (Schneider–Lang). Let d ≥ 2 be an integer and f1, . . . , fd
be meromorphic functions of finite order of growth. Assume f1 and f2 are
algebraically independent. Let K be a number field. Assume that for 1 ≤
i ≤ d, the derivative f ′i of fi belongs to the ring K[f1, . . . , fd]. Then the
set of w ∈ C which are not pole of f1, . . . , fd and such that fi(w) ∈ K for
i = 1, 2, . . . , d is finite.

Corollaries of this results are the Theorem of Hermite and Lindemann on
the transcendence of eα, the Theorem of Gel’fond and Schneider on the tran-
scendence of αβ, as well as elliptic analogues due to Schneider [46, Chap. II
§ 4], [34, Chap. III], [58, Chap. 3], [5, Chap. 6], [19, Chap. 6], [42, Chap. 11–
18], [39, Chap. 20], [57, Chap. 6].
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An extension of the Schneider–Lang Theorem in several variables in-
cludes a number of further results, in particular Baker’s Theorem on linear
independence of logarithms of algebraic numbers (as noticed by Bertrand
and Masser – see [59, Chap. 4]), as well as a number of results related
with abelian functions and algebraic groups [34, Chap. IV], [58, Chap. 5].
Among these results is the Theorem of Schneider (1941) [46, Chap. II § 4],
[58, Th. 5.2.8] [61] on the transcendence of B(a, b) for rational numbers a
and b such that a+ b is not a negative integer.

A number of far reaching recent results are included in the very recent
book [56]. Among the topics included in this book are modular functions and
criteria for complex multiplication, periods of 1–forms on complex curves
and Abelian varieties, transcendence criterion for complex multiplication on
K3 surfaces, Hodge structures of higher level.

A remarkable development of this classical method has been achieved by
the so–called Théorème Stéphanois [8], [7, § 1.5], which answers a question of
Mahler in the complex case and of Manin in the p–adic case: for q a complex
or p–adic number satisfying 0 < |q| < 1, one at least of the to numbers q,
J(q) is transcendental.

The proof in [8], based on the Gel’fond–Schneider transcendence method,
also involves ideas close to the ones which occur in the method of Mahler
(see § 6 below).

A modern presentation of the proof of the Schneider–Lang Theorem, us-
ing the slope method of J–B. Bost based on Arakelov theory (developed also
by A. Chambert–Loir, C. Gasbarri, É. Gaudron, Ph. Graftieaux, M. Herblot
[28], G. Rémond, E. Viada and others – see [17]) and using Falting’s height,
is given in [24].

5 Linear and algebraic independence

After the pioneer work of A. Baker on the linear independence of logarithms
of algebraic numbers (see [5, Chap. 2], [7, § 2.1], [42, Chap. 19–20]) his
method has been extensively developed, in particular in the realm of alge-
braic groups (see [7, S 5.5: The Wüstholz Theory]). Strong tools are now
available to prove the linear independence of transcendental numbers – see
for instance [61].

The method used by Gel’fond and Schneider to solve Hilbert’s seventh
problem on the transcendence of αβ [57, Chap. 6] has been extended by
Gel’fond to obtain results of algebraic independence [23, Chap. 3 § 4].
This approach has been developed by many a mathematicians, including
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W.D. Brownawell, G.V. Chudnovskii and Yu. V. Nesterenko – see [5, Chap. 12],
[44, Chap. 3, 4,13 and 14], [13], [43], [39, Chap. 20].

The transcendence of Γ(a/b) for a/b ∈ Q is known only for a restricted
set of values of a/b: in the interval (0, 1), we know that the numbers

Γ(1/6), Γ(1/4), Γ(1/3), Γ(1/2), Γ(2/3), Γ(3/4), Γ(5/6)

are transcendental, but we do not know any further irrational value of Γ. It
is conjectured by Deligne, Rohrlich and Lang [35, 41, 26]2 that any algebraic
relations among Gamma values at rational points should belong to the ideal
of relations generated by the standard relations, namely
Translation:

Γ(a+ 1) = aΓ(a),

Reflection:

Γ(a)Γ(1− a) =
π

sin(πa)

and
Multiplication: for any positive number n,

n−1∏
k=0

Γ

(
a+

k

n

)
= (2π)(n−1)/2n−na+(1/2)Γ(na).

An example [4] is

Γ(1/24)Γ(11/24)

Γ(5/24)Γ(7/24)
=
√

3

√
2 +
√

3,

a root of X4 − 12X2 + 9.
It is not know whether the three numbers Γ(1/5), Γ(2/5) and eπ

√
5 are

algebraically independent: this would follow from the above mentioned con-
jecture of Deligne–Rohrlich–Lang, as shown by F. Adiceam, who also de-
duces from Nesterenko’s result that each of the three numbers

Γ(1/20)Γ(3/20)Γ(7/20)Γ(9/20),

2For the history of this conjecture, see [41, §16.3]. As pointed out by P. Deligne, the
transcendance conjecture is probably a consequence of Grothendieck period conjecture,
which is a good way to say that if we have a family of motives over Q, giving rise to
the (Betti) motivic Galois group G, to the G-torsor P of isomorphisms between the Betti
and de Rham realisations (G and P are defined over Q), and to the element ”can” of
P (C), the canonical isomorphism between the complexifications of the Betti and de Rham
realization, then this element ”can” is Zariski dense in P .
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Γ(1/5)Γ(7/20)Γ(9/20),

Γ(1/5)−1Γ(1/20)Γ(3/20)

is transcendental over the field Q(π, eπ
√
5).

We refer to the book [42] by R. Murty and P. Rath for a large collection
of further results concerning elliptic integrals and hypergeometric series,
Dirichlet series and L-functions, values of modular forms, periods, multiple
zeta functions and ζ(3). See also [27].

There are also many recent papers dealing with special values of the Rie-
mann zeta function, they would deserve a specific survey updating [20].For
a reference to MZV, see [15]

6 Mahler’s method

The name Fredholm series is often wrongly attributed to the power series

χ2(z) =
∑
n≥0

z2
n

(for instance in [7, § 1.5]). According to [1, Notes on chapter 13 p. 403],
Fredholm studied rather the theta series∑

n≥0
zn

2
.

It is ironical that both series occur in connection with modular functions
and paper folding [40, 47].

The transcendence of χ2(1/2) was proved by A.J. Kempner in 1916.
Much more general results were achieved by K. Mahler in 1930, and then
in 1969, an example of which is the transcendence of the values at algebraic
points of the function

χd(z) =
∑
n≥0

zd
n

for d ≥ 2. The point is that this function satisfies a functional equation

χd(z) = z + χd(z
d) (|z| < 1).

The theory of Mahler (see for instance [6, Chap. 15], [45], [44, Chap. 12], [39,
§ 11]) has now reached a satisfactory state. In order to prove the algebraic
independence of values, it suffices to prove the algebraic independence of the
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functions. Here is a recent example [14]. For ` > 1, denote by Φ` the `-th
cyclotomic polynomial and set Φ1(x) = 1− x. For d ≥ 2, define

Fd,`(z) =
∏
j≥0

Φ`(z
dj ).

Given positive integers d ≥ 2 and ` ≥ 1, P. Bundschuh and K. Väänänen
prove that the following statements are equivalent:
(i) d is composite or does not divide `.
(ii) Fd,` is hypertranscendental.
(iii) Fd,` is not a rational function.
Using the functional equation

Fd,`(z) = Φ`(z)Fd,`(z
d)

together with Mahler’s method, they deduce deep results of algebraic inde-
pendence on the values of this infinite product and its derivatives.
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[4] Y. André. Groupes de Galois motiviques et périodes. Astérisque, to
appear, (Séminaire Bourbaki, n◦ 1104, Novembre 2015), 2016.

[5] A. Baker. Transcendental number theory. Cambridge Mathematical
Library. Cambridge University Press, Cambridge, second edition, 1990.

[6] A. Baker and D. W. Masser, editors. Transcendence theory: advances
and applications. Academic Press [Harcourt Brace Jovanovich, Pub-
lishers], London-New York, 1977.
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ume 12 of Sémin. Congr., pages 119–178. Soc. Math. France, Paris,
2005.

[14] P. Bundschuh and K. Väänänen. Arithmetic properties of infinite prod-
ucts of cyclotomic polynomials. Bull. Aust. Math. Soc., 93(3):375–387,
2016.

[15] J. I. Burgos Gil and J. Fresán. Multiple zeta values: from numbers to
motives. Clay Mathematics Proceedings, to appear.

[16] K. Chakraborty, S. Kanemitsu, and H. Tsukada. Vistas of special func-
tions II. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2010.
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čisla, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1952.
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