# On the abc Conjecture and some of its consequences 

Michel Waldschmidt<br>Professeur Émérite, Sorbonne Université, Institut de Mathématiques de Jussieu, Paris http://www.imj-prg.fr/~michel.waldschmidt/

## Abstract

We explain the statement of the $a b c$ Conjecture proposed by Oesterlé and Masser in the mid 80's and we give a collection of easy to state consequences of this conjecture. It will not include an introduction to the Inter-universal Teichmüller Theory of Shinichi Mochizuki.

## Abstract (continued)

According to Nature News, 10 September 2012, quoting Dorian Goldfeld, the $a b c$ Conjecture is "the most important unsolved problem in Diophantine analysis". It is a kind of grand unified theory of Diophantine curves: "The remarkable thing about the $a b c$ Conjecture is that it provides a way of reformulating an infinite number of Diophantine problems," says Goldfeld, "and, if it is true, of solving them." Proposed independently in the mid-80s by David Masser of the University of Basel and Joseph Oesterlé of Pierre et Marie Curie University (Paris 6), the abc Conjecture describes a kind of balance or tension between addition and multiplication, formalizing the observation that when two numbers $a$ and $b$ are divisible by large powers of small primes, $a+b$ tends to be divisible by small powers of large primes. The $a b c$ Conjecture implies - in a few lines - the proofs of many difficult theorems and outstanding conjectures in Diophantine equationsincluding Fermat's Last Theorem.

## Abstract (continued)

This talk will be at an elementary level, giving a collection of consequences of the $a b c$ Conjecture. It will not include an introduction to the Inter-universal Teichmüller Theory of Shinichi Mochizuki.

## Inter-universal Geometer

E-mail:
motizukiekur ims. kyoto-u. ac. jp

## Shinichi Mochizuki

Professor
Research Institute
for Mathematical Sciences
Kyoto University
Kyoto 606-8502, JAPAN

http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html

## Poster with Razvan Barbulescu - Archives HAL

The $a b c$ conjecture and some of its consequences

https://hal.archives-ouvertes.fr/hal-01626155

## As simple as abc



The ABC's of salvation.
How to go to Heaven is as simple as $A B C$

## American Broadcasting Company


http://fr.wikipedia.org/wiki/American_Broadcasting_Company

## https://abcathome.com/



The woman/parenting/homeschooling/entrepreneur resource brought to you by a busy, but efficient mother! Smart Strategies for Parents Wanting to Head Back to School

## Annapurna Base Camp, October 22, 2014



Mt. Annapurna (8091m) is the 10th highest mountain in the world and the journey to its base camp is one of the most popular treks on earth.
http://www.himalayanglacier.com/trekking-in-nepal/160/ annapurna-base-camp-trek.htm

## The radical of a positive integer

According to the fundamental theorem of arithmetic, any integer $n \geq 2$ can be written as a product of prime numbers :

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a_{t}}
$$

The radical (also called kerne/) $\operatorname{Rad}(n)$ of $n$ is the product of the distinct primes dividing $n$ :

$$
\operatorname{Rad}(n)=p_{1} p_{2} \cdots p_{t}
$$

$$
\operatorname{Rad}(n) \leqslant n
$$

Examples: $\operatorname{Rad}\left(2^{a}\right)=2$,
$\operatorname{Rad}(60500)=\operatorname{Rad}\left(2^{2} \cdot 5^{3} \cdot 11^{2}\right)=2 \cdot 5 \cdot 11=110$,
$\operatorname{Rad}(82852996681926)=2 \cdot 3 \cdot 23 \cdot 109=15042$.

## $a b c-$ triples

An $a b c$-triple is a triple of three positive integers $a, b, c$ which are coprime, $a<b$ and that $a+b=c$.

Examples:

$$
\begin{gathered}
1+2=3, \quad 1+8=9 \\
1+80=81, \quad 4+121=125 \\
2+3^{10} \cdot 109=23^{5}, \quad 11^{2}+3^{2} 5^{6} 7^{3}=2^{21} \cdot 23
\end{gathered}
$$

## 13 abc-triples with $c<10$

$a, b, c$ are coprime, $1 \leqslant a<b, a+b=c$ and $c \leqslant 9$.

$$
\begin{array}{lll}
1+2=3 & & \\
1+3=4 & & \\
1+4=5 & 2+3=5 & \\
1+5=6 & & \\
1+6=7 & 2+5=7 & 3+4=7 \\
1+7=8 & & 3+5=8 \\
1+8=9 & 2+7=9 &
\end{array}
$$

## Radical of the $a b c$-triples with $c<10$

```
\(\operatorname{Rad}(1 \cdot 2 \cdot 3)=6\)
\(\operatorname{Rad}(1 \cdot 3 \cdot 4)=6\)
\(\operatorname{Rad}(1 \cdot 4 \cdot 5)=10 \quad \operatorname{Rad}(2 \cdot 3 \cdot 5)=30\)
\(\operatorname{Rad}(1 \cdot 5 \cdot 6)=30\)
\(\operatorname{Rad}(1 \cdot 6 \cdot 7)=42 \quad \operatorname{Rad}(2 \cdot 5 \cdot 7)=70 \quad \operatorname{Rad}(3 \cdot 4 \cdot 7)=42\)
\(\operatorname{Rad}(1 \cdot 7 \cdot 8)=14 \quad \operatorname{Rad}(3 \cdot 5 \cdot 8)=30\)
\(\operatorname{Rad}(1 \cdot 8 \cdot 9)=6 \quad \operatorname{Rad}(2 \cdot 7 \cdot 9)=54 \quad \operatorname{Rad}(4 \cdot 5 \cdot 9)=30\)
\[
a=1, b=8, c=9, a+b=c, \operatorname{gcd}=1, \operatorname{Rad}(a b c)<c .
\]
```

Following F. Beukers, an $a b c$-hit is an $a b c$-triple such that $\operatorname{Rad}(a b c)<c$.

http://www.staff.science.uu.nl/~beuke106/ABCpresentation.pdf
Example: $(1,8,9)$ is an $a b c$-hit since $1+8=9$, $\operatorname{gcd}(1,8,9)=1$ and

$$
\operatorname{Rad}(1 \cdot 8 \cdot 9)=\operatorname{Rad}\left(2^{3} \cdot 3^{2}\right)=2 \cdot 3=6<9
$$

## On the condition that $a, b, c$ are relatively prime

Starting with $a+b=c$, multiply by a power of a divisor $d>1$ of $a b c$ and get

$$
a d^{l}+b d^{l}=c d^{l} .
$$

The radical did not increase : the radical of the product of the three numbers $a d^{\ell}, b d^{\ell}$ and $c d^{\ell}$ is nothing else than $\operatorname{Rad}(a b c)$; but $c$ is replaced by $c d^{\ell}$.

For $\ell$ sufficiently large, $c d^{\ell}$ is larger than $\operatorname{Rad}(a b c)$.
But $\left(a d^{\ell}, b d^{\ell}, c d^{\ell}\right)$ is not an $a b c$-hit.
It would be too easy to get examples without the condition that $a, b, c$ are relatively prime.

## Some $a b c$-hits

$(1,80,81)$ is an $a b c$-hit since $1+80=81, \operatorname{gcd}(1,80,81)=1$ and

$$
\operatorname{Rad}(1 \cdot 80 \cdot 81)=\operatorname{Rad}\left(2^{4} \cdot 5 \cdot 3^{4}\right)=2 \cdot 5 \cdot 3=30<81
$$

$(4,121,125)$ is an $a b c$-hit since $4+121=125$, $\operatorname{gcd}(4,121,125)=1$ and
$\operatorname{Rad}(4 \cdot 121 \cdot 125)=\operatorname{Rad}\left(2^{2} \cdot 5^{3} \cdot 11^{2}\right)=2 \cdot 5 \cdot 11=110<125$.

## Further $a b c$-hits

- $\quad\left(2,3^{10} \cdot 109,23^{5}\right)=(2,6436341,6436343)$
is an $a b c$-hit since $2+3^{10} \cdot 109=23^{5}$ and
$\operatorname{Rad}\left(2 \cdot 3^{10} \cdot 109 \cdot 23^{5}\right)=15042<23^{5}=6436343$.

$$
\left(11^{2}, 3^{2} \cdot 5^{6} \cdot 7^{3}, 2^{21} \cdot 23\right)=(121,48234275,48234496)
$$

is an $a b c$-hit since $11^{2}+3^{2} \cdot 5^{6} \cdot 7^{3}=2^{21} \cdot 23$ and
$\operatorname{Rad}\left(2^{21} \cdot 3^{2} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 23\right)=53130<2^{21} \cdot 23=48234496$.

$$
\left(1,5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3}, 19^{6}\right)=(1,47045880,47045881)
$$

is an $a b c$-hit since $1+5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3}=19^{6}$ and $\operatorname{Rad}\left(5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3} \cdot 19^{6}\right)=5 \cdot 127 \cdot 2 \cdot 3 \cdot 7 \cdot 19=506730$.

## $a b c$-triples and $a b c$-hits

Among $15 \cdot 10^{6}$ abc-triples with $c<10^{4}$, we have 120 $a b c-h i t s$.

Among $380 \cdot 10^{6} a b c$-triples with $c<5 \cdot 10^{4}$, we have 276 $a b c-h i t s$.

## More $a b c$-hits

Recall the $a b c$-hit $(1,80,81)$, where $81=3^{4}$.

$$
\left(1,3^{16}-1,3^{16}\right)=(1,43046720,43046721)
$$

is an $a b c$-hit.
Proof.

$$
\begin{aligned}
3^{16}-1 & =\left(3^{8}-1\right)\left(3^{8}+1\right) \\
& =\left(3^{4}-1\right)\left(3^{4}+1\right)\left(3^{8}+1\right) \\
& =\left(3^{2}-1\right)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right) \\
& =(3-1)(3+1)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right)
\end{aligned}
$$

is divisible by $2^{6}$. (Quotient : 672605 ).
Hence

$$
\operatorname{Rad}\left(\left(3^{16}-1\right) \cdot 3^{16}\right) \leqslant \frac{3^{16}-1}{2^{6}} \cdot 2 \cdot 3<3^{16}
$$

## Infinitely many $a b c$-hits

Proposition. There are infinitely many abc-hits.
Take $k \geq 1, a=1, c=3^{2^{k}}, b=c-1$.
Lemma. $2^{k+2}$ divides $3^{2^{k}}-1$.
Proof : Induction on $k$ using

$$
3^{2^{k}}-1=\left(3^{2^{k-1}}-1\right)\left(3^{2^{k-1}}+1\right) .
$$

Consequence :

$$
\operatorname{Rad}\left(\left(3^{2^{k}}-1\right) \cdot 3^{2^{k}}\right) \leqslant \frac{3^{2^{k}}-1}{2^{k+1}} \cdot 3<3^{2^{k}}
$$

Hence

$$
\left(1,3^{2^{k}}-1,3^{2^{k}}\right)
$$

is an $a b c$-hit.

## Infinitely many $a b c$-hits

This argument shows that there exist infinitely many $a b c$-triples such that

$$
c>\frac{1}{6 \log 3} R \log R
$$

with $R=\operatorname{Rad}(a b c)$.

Question : Are there abc-triples for which $c>\operatorname{Rad}(a b c)^{2}$ ?

We do not know the answer.

## Examples

When $a, b$ and $c$ are three positive relatively prime integers satisfying $a+b=c$, define

$$
\lambda(a, b, c)=\frac{\log c}{\log \operatorname{Rad}(a b c)}
$$

Here are the two largest known values for $\lambda(a b c)$

| $a+b$ | $=$ | c | $\lambda(a, b, c)$ | authors |
| :---: | :---: | :---: | :---: | :---: |
| $2+3^{10} \cdot 109$ | $=$ | $23^{5}$ | 1.629912 | É. Reyssat |
| $11^{2}+3^{2} 5^{6} 7^{3}$ | $=$ | $2^{21} \cdot 23$ | 1.625990 | B.M. de Weger |

## Number of digits of the good $a b c$-triples

At the date of September 11, 2008, $217 a b c$ triples with $\lambda(a, b, c) \geq 1.4$ were known. At the date of August 1, 2015, 238 were known. On March 2, 2019, the total is 241 . http://wur.math. .eidenuniv.nn//desmit/abc/index.php?sort=1


The list up to 20 digits is complete.

## Bart De Smit

There are currently 241 known $A B C$ triples of quality at least 1.4, which are often called good $A B C$ triples. The next plot counts them by their number of digits. For instance, the graph says that there are 11 good triples where $c$ has 20 digits.


The method of ABC@home finds all ABC triples for a given lower bound on the quality and an upper bound on the size. By a run of an early implementation of Jeroen Demeyer from Gent in June 2007 we know that the list of good triples up to 20 digits is now complete. So when new good triples are discovered, only the red part in the plot above will grow. Demeyer's search turned up nine new triples with $c$ of at most 20 digits.

By a completely independent method, Frank Rubin has found a number of new good ABC triples in the last few years, including most of the good triples with more than 20 digits, and all of the good triples with 30 digits.

Eric Reyssat : $2+3^{10} \cdot 109=23^{5}$


## Example of Reyssat $2+3^{10} \cdot 109=23^{5}$

$$
\begin{aligned}
& a+b=c \\
& \quad a=2, \quad b=3^{10} \cdot 109, \quad c=23^{5}=6436343,
\end{aligned}
$$

$$
\operatorname{Rad}(a b c)=\operatorname{Rad}\left(2 \cdot 3^{10} \cdot 109 \cdot 23^{5}\right)=2 \cdot 3 \cdot 109 \cdot 23=15042
$$

$$
\lambda(a, b, c)=\frac{\log c}{\log \operatorname{Rad}(a b c)}=\frac{5 \log 23}{\log 15042} \simeq 1.62991
$$

## Continued fraction

$$
2+109 \cdot 3^{10}=23^{5}
$$

Continued fraction of $109^{1 / 5}:[2 ; 1,1,4,77733, \ldots]$, approximation : $[2 ; 1,1,4]=23 / 9$

$$
\begin{aligned}
109^{1 / 5} & =2.55555539 \ldots \\
\frac{23}{9} & =2.55555555 \ldots
\end{aligned}
$$

N. A. Carella. Note on the ABC Conjecture http://arXiv.org/abs/math/0606221

## Benne de Weger : $11^{2}+3^{2} \cdot 5^{6} \cdot 7^{3}=2^{21} \cdot 23$

$\operatorname{Rad}\left(2^{21} \cdot 3^{2} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 23\right)=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=53130$.

$$
2^{21} \cdot 23=48234496=(53130)^{1.625990 \ldots}
$$



## Explicit abc Conjecture



According to S. Laishram and T. N. Shorey, an explicit version, due to A. Baker, of the $a b c$ Conjecture, yields

$$
c<\operatorname{Rad}(a b c)^{7 / 4}
$$

for any $a b c$-triple $(a, b, c)$.

## The $a b c$ Conjecture

Recall that for a positive integer $n$, the radical of $n$ is

$$
\operatorname{Rad}(n)=\prod_{p \mid n} p
$$

$a b c$ Conjecture. Let $\varepsilon>0$. Then the set of $a b c$ triples for which

$$
c>\operatorname{Rad}(a b c)^{1+\varepsilon}
$$

is finite.
Equivalent statement: For each $\varepsilon>0$ there exists $\kappa(\varepsilon)$ such that, if $a, b$ and $c$ in $\mathbb{Z}_{>0}$ are relatively prime and satisfy $a+b=c$, then

$$
c<\kappa(\varepsilon) \operatorname{Rad}(a b c)^{1+\varepsilon} .
$$

## Lower bound for the radical of $a b c$

The $a b c$ Conjecture is a lower bound for the radical of the product $a b c$ :
$a b c$ Conjecture. For any $\varepsilon>0$, there exist $\kappa(\varepsilon)$ such that, if $a, b$ and $c$ are relatively prime positive integers which satisfy $a+b=c$, then

$$
\operatorname{Rad}(a b c)>\kappa(\varepsilon) c^{1-\varepsilon} .
$$

## The $a b c$ Conjecture of Oesterlé and Masser



Joseph Oesterlé


David Masser

The $a b c$ Conjecture resulted from a discussion between J. Oesterlé and D. W. Masser in the mid 1980's.
C.L. Stewart and Yu Kunrui

Best known non conditional result: C.L. Stewart and Yu Kunrui $(1991,2001)$ :

$$
\log c \leqslant \kappa R^{1 / 3}(\log R)^{3}
$$

with $R=\operatorname{Rad}(a b c)$ :

$$
c \leqslant e^{\kappa R^{1 / 3}(\log R)^{3}}
$$



## Szpiro's Conjecture

J. Oesterlé and A. Nitaj proved that the $a b c$
Conjecture implies a previous conjecture by L. Szpiro on the conductor of elliptic curves.


Lucien Szpiro
(1941-2020)
Given any $\varepsilon>0$, there exists a constant $C(\varepsilon)>0$ such that, for every elliptic curve with minimal discriminant $\Delta$ and conductor $N$,

$$
|\Delta|<C(\varepsilon) N^{6+\varepsilon}
$$

## Szpiro's Conjecture

Conversely, J. Oesterlé proved in 1988 that the conjecture of L. Szpiro implies a weak form of the $a b c$ conjecture with $1-\epsilon$ replaced by $(5 / 6)-\epsilon$.


## Further examples

When $a, b$ and $c$ are three positive relatively prime integers satisfying $a+b=c$, define

$$
\varrho(a, b, c)=\frac{\log a b c}{\log \operatorname{Rad}(a b c)}
$$

Here are the two largest known values for $\varrho(a b c)$, found by A. Nitaj.

| $a+b$ | $=c$ | $\varrho(a, b, c)$ |
| ---: | :--- | :--- |
| $13 \cdot 19^{6}+2^{30} \cdot 5$ | $=3^{13} \cdot 11^{2} \cdot 31$ | $4.41901 \ldots$ |
| $2^{5} \cdot 11^{2} \cdot 19^{9}+5^{15} \cdot 37^{2} \cdot 47$ | $=3^{7} \cdot 7^{11} \cdot 743$ | $4.26801 \ldots$ |

On March 19, 2003, $47 a b c$ triples were known with $0<a<b<c, a+b=c$ and $\operatorname{gcd}(a, b)=1$ satisfying $\varrho(a, b, c)>4$.

## Abderrahmane Nitaj

https://nitaj.users.lmno.cnrs.fr/ab




THE ABC CONJECTURE HOME PAGE


La conjecture abc est aussi difficile que la conjecture ... xyz. (P. Ribenboim) (read the story).
The abc conjecture is the most important unsolved problem in diophantine analysis. (D. Goldfeld)

Created and maintained by Abderrahmane Nitaj
Last updated January 16, 2023

## Bart de Smit


http://www.math.leidenuniv.nl/~desmit/abc/

## Escher and the Droste effect


https://www.math.leidenuniv.nl/~desmit/escherdroste/

## https://en.wikipedia.org/wiki/ABC@Home



ABC@home was an educational and non-profit distributed computing project finding abc-triples related to the $A B C$ conjecture.

In 2011, the project met its goal of finding all $a b c$-triples of at most 18 digits. By 2015, the project had found 23.8 million triples in total, and ceased operations soon after.

## Fermat's Last Theorem $x^{n}+y^{n}=z^{n}$ for $n \geq 6$



Solution in 1993-1994 published in 1995

## Fermat's last Theorem for $n \geq 6$ as a consequence of the $a b c$ Conjecture

Assume $x^{n}+y^{n}=z^{n}$ with $\operatorname{gcd}(x, y, z)=1$ and $x<y$. Then $\left(x^{n}, y^{n}, z^{n}\right)$ is an abc-triple with

$$
\operatorname{Rad}\left(x^{n} y^{n} z^{n}\right) \leqslant x y z<z^{3}
$$

If the explicit $a b c$ Conjecture $c<\operatorname{Rad}(a b c)^{2}$ is true, then one deduces

$$
z^{n}<z^{6}
$$

hence $n \leqslant 5$ (and therefore $n \leqslant 2$ ).

## Square, cubes...

- A perfect power is an integer of the form $a^{b}$ where $a \geq 1$ and $b>1$ are positive integers.
- Squares :
$1,4,9,16,25,36,49,64,81,100,121,144,169,196, \ldots$
- Cubes :
$1,8,27,64,125,216,343,512,729,1000,1331, \ldots$
- Fifth powers :

```
1,32, 243, 1024, 3125, 7776, 16 807, 32 768,\ldots.
```


## Perfect powers

$1,4,8,9,16,25,27,32,36,49,64,81,100,121,125$,
$128,144,169,196,216,225,243,256,289,324,343$, $361,400,441,484,512,529,576,625,676,729,784, \ldots$


Neil J. A. Sloane's encyclopaedia http://oeis.org/A001597

## Nearly equal perfect powers

- Difference $1:(8,9)$
- Difference 2 : $(25,27), \ldots$
- Difference $3:(1,4),(125,128), \ldots$
- Difference $4:(4,8),(32,36),(121,125), \ldots$
- Difference $5:(4,9),(27,32), \ldots$



## Two conjectures



## Subbayya Sivasankaranarayana Pillai

Eugène Charles Catalan (1814-1894)
(1901-1950)

- Catalan's Conjecture: In the sequence of perfect powers, 8,9 is the only example of consecutive integers.
- Pillai's Conjecture: In the sequence of perfect powers, the difference between two consecutive terms tends to infinity.


## Pillai's Conjecture :

- Pillai's Conjecture : In the sequence of perfect powers, the difference between two consecutive terms tends to infinity.
- Alternatively : Let $k$ be a positive integer. The equation

$$
x^{p}-y^{q}=k,
$$

where the unknowns $x, y, p$ and $q$ take integer values, all $\geq 2$, has only finitely many solutions $(x, y, p, q)$.

## Results

P. Mihăilescu, 2002.

Catalan was right: the equation $x^{p}-y^{q}=1$ where the unknowns $x, y, p$ and $q$ take integer values, all $\geq 2$, has only one solution $(x, y, p, q)=(3,2,2,3)$.


## Previous work on Catalan's Conjecture


J.W.S. Cassels (1922-2015)


Rob Tijdeman


$$
x^{p}<y^{q}<\exp \exp \exp \exp (730)
$$

Michel Langevin

## Previous work on Catalan's Conjecture



Maurice Mignotte

## Pillai's conjecture and the $a b c$ Conjecture

There is no value of $k \geq 2$ for which one knows that Pillai's equation $x^{p}-y^{q}=k$ has only finitely many solutions.

Pillai's conjecture as a consequence of the $a b c$ Conjecture : if $x^{p} \neq y^{q}$, then

$$
\left|x^{p}-y^{q}\right| \geq c(\epsilon) \max \left\{x^{p}, y^{q}\right\}^{\kappa-\epsilon}
$$

with

$$
\kappa=1-\frac{1}{p}-\frac{1}{q} .
$$

## Lower bounds for linear forms in logarithms

- A special case of my

Serge Lang conjectures with S. Lang for
(1927-2005)

$$
|q \log y-p \log x|
$$

yields
$\left|x^{p}-y^{q}\right| \geq c(\epsilon) \max \left\{x^{p}, y^{q}\right\}^{\kappa-\epsilon}$ with

$$
\kappa=1-\frac{1}{p}-\frac{1}{q}
$$



## Not a consequence of the $a b c$ Conjecture

$p=3, q=2$
Hall's Conjecture (1971) :
if $x^{3} \neq y^{2}$, then
$\left|x^{3}-y^{2}\right| \geq c \max \left\{x^{3}, y^{2}\right\}^{1 / 6}$.


Marshall Hall
(1910-1990)
https://en.wikipedia.org/wiki/Marshall_Hall_ (mathematician)

## Conjecture of F. Beukers and C.L. Stewart (2010)



Let $p, q$ be coprime integers with $p>q \geq 2$. Then, for any $c>0$, there exist infinitely many positive integers $x, y$ such that

$$
0<\left|x^{p}-y^{q}\right|<c \max \left\{x^{p}, y^{q}\right\}^{\kappa}
$$

with $\kappa=1-\frac{1}{p}-\frac{1}{q}$.

## Generalized Fermat's equation $x^{p}+y^{q}=z^{r}$

Consider the equation $x^{p}+y^{q}=z^{r}$ in positive integers ( $x, y, z, p, q, r$ ) such that $x, y, z$ relatively prime and $p, q, r$ are $\geq 2$.

If

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \geq 1
$$

then $(p, q, r)$ is a permutation of one of

$$
\begin{gathered}
(2,2, k), \quad(2,3,3), \quad(2,3,4), \quad(2,3,5), \\
(2,4,4), \quad(2,3,6), \quad(3,3,3)
\end{gathered}
$$

and in each case the set of solutions ( $x, y, z$ ) is known (for some of these values there are infinitely many solutions).

## Frits Beukers and Don Zagier

For

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

10 primitive solutions ( $x, y, z, p, q, r$ ) (up to obvious symmetries) to the equation

$$
x^{p}+y^{q}=z^{r}
$$

are known.


## Primitive solutions to $x^{p}+y^{q}=z^{r}$

Condition : $x, y, z$ are relatively prime

Trivial example of a non primitive solution : $2^{p}+2^{p}=2^{p+1}$.

Exercise (Henri Darmon, Claude Levesque) : for any pairwise relatively prime $(p, q, r)$, there exist positive integers $x, y, z$ with $x^{p}+y^{q}=z^{r}$.

Hint :

$$
\left(17 \times 71^{21}\right)^{3}+\left(2 \times 71^{9}\right)^{7}=\left(71^{13}\right)^{5}
$$

## Generalized Fermat's equation

For

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

the equation

$$
x^{p}+y^{q}=z^{r}
$$

has the following 10 solutions with $x, y, z$ relatively prime :

$$
\begin{gathered}
1+2^{3}=3^{2}, \quad 2^{5}+7^{2}=3^{4}, \quad 7^{3}+13^{2}=2^{9}, \quad 2^{7}+17^{3}=71^{2} \\
3^{5}+11^{4}=122^{2}, \quad 33^{8}+1549034^{2}=15613^{3} \\
1414^{3}+2213459^{2}=65^{7}, \quad 9262^{3}+15312283^{2}=113^{7} \\
17^{7}+76271^{3}=21063928^{2}, \quad 43^{8}+96222^{3}=30042907^{2}
\end{gathered}
$$

## Conjecture of Beal, Granville and Tijdeman-Zagier



The equation $x^{p}+y^{q}=z^{r}$ has no solution in positive integers $(x, y, z, p, q, r)$ with each of $p, q$ and $r$ at least 3 and with $x$, $y, z$ relatively prime.
http://mathoverflow.net/

## Andrew Beal

Find a solution with all exponents at least 3, or prove that there is no such solution.


llams Dusiness Irwesing Tachralogy Entvepren
The Banker Who Said No
Bemard Condon and Naffan Vardi. 04.03.09, 05.00 PM EDT
While the nation's lenders ran amok during the boom, Andy Beal hourded his moeey. Now he's cleaning up-with scant help from Uncle 5 am
http://www.forbes.com/2009/04/03/
banking-andy-beal-business-wall-street-beal.html

## Beal's Prize

Mauldin, R. D. - A generalization of Fermat's last theorem : the Beal Conjecture and prize problem. Notices Amer. Math. Soc. 44 N ${ }^{\circ} 11$ (1997), 1436-1437.

The prize. Andrew Beal is very generously offering a prize of $\$ 5,000$ for the solution of this problem. The value of the prize will increase by $\$ 5,000$ per year up to $\$ 50,000$ until it is solved. The prize committee consists of Charles Fefferman, Ron Graham, and R. Daniel Mauldin, who will act as the chair of the committee. All proposed solutions and inquiries about the prize should be sent to Mauldin.

## Beal's Prize : 1, 000, $000 \$$ US

An AMS-appointed committee will award this prize for either a proof of, or a counterexample to, the Beal Conjecture published in a refereed and respected mathematics publication. The prize money - currently US\$1,000,000 - is being held in trust by the AMS until it is awarded. Income from the prize fund is used to support the annual Erdős Memorial Lecture and other activities of the Society.

One of Andrew Beal's goals is to inspire young people to think about the equation, think about winning the offered prize, and in the process become more interested in the field of mathematics.
http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize

## Henri Darmon, Andrew Granville

"Fermat-Catalan" Conjecture (H. Darmon and A. Granville), consequence of the $a b c$ Conjecture : the set of solutions $(x, y, z, p, q, r)$ to $x^{p}+y^{q}=z^{r}$ with $x, y, z$ relatively prime and $(1 / p)+(1 / q)+(1 / r)<1$ is finite.


Hint: $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$ implies $\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leqslant \frac{41}{42}$.
1995 (H. Darmon and A. Granville) : unconditionally, for fixed $(p, q, r)$, only finitely many $(x, y, z)$.

## Henri Darmon, Loïc Merel : $(p, p, 2)$ and $(p, p, 3)$

Unconditional results by H. Darmon and L. Merel (1997) : For $p \geq 4$, the equation $x^{p}+y^{p}=z^{2}$ has no solution in relatively prime positive integers $x, y, z$.
For $p \geq 3$, the equation $x^{p}+y^{p}=z^{3}$ has no solution in relatively prime positive integers $x, y, z$.


## Fermat's Little Theorem

For $a>1$, any prime $p$ not dividing $a$ divides $a^{p-1}-1$.

Hence if $p$ is an odd prime, then $p$ divides $2^{p-1}-1$.


Wieferich primes (1909) : $p^{2}$ divides $2^{p-1}-1$
The only known Wieferich primes are 1093 and 3511. These are the only ones below $4 \cdot 10^{12}$.

## Infinitely many primes are not Wieferich assuming

 $a b c$

Joseph H. Silverman
J.H. Silverman : if the $a b c$ Conjecture is true, given a positive integer $a>1$, there exist infinitely many primes $p$ such that $p^{2}$ does not divide $a^{p-1}-1$.

Nothing is known about the finiteness of the set of Wieferich primes.

## Consecutive integers with the same radical

Notice that

$$
75=3 \cdot 5^{2} \quad \text { and } \quad 1215=3^{5} \cdot 5
$$

hence

$$
\operatorname{Rad}(75)=\operatorname{Rad}(1215)=3 \cdot 5=15
$$

But also

$$
76=2^{2} \cdot 19 \quad \text { and } \quad 1216=2^{6} \cdot 19
$$

have the same radical

$$
\operatorname{Rad}(76)=\operatorname{Rad}(1216)=2 \cdot 19=38
$$

## Consecutive integers with the same radical

For $k \geq 1$, the two numbers

$$
x=2^{k}-2=2\left(2^{k-1}-1\right)
$$

and

$$
y=\left(2^{k}-1\right)^{2}-1=2^{k+1}\left(2^{k-1}-1\right)
$$

have the same radical, and also

$$
x+1=2^{k}-1 \quad \text { and } \quad y+1=\left(2^{k}-1\right)^{2}
$$

have the same radical.

## Consecutive integers with the same radical

Are there further examples of $x \neq y$ with

$$
\operatorname{Rad}(x)=\operatorname{Rad}(y) \quad \text { and } \quad \operatorname{Rad}(x+1)=\operatorname{Rad}(y+1) ?
$$

Is-it possible to find two distinct integers $x, y$ such that

$$
\operatorname{Rad}(x)=\operatorname{Rad}(y)
$$

$$
\operatorname{Rad}(x+1)=\operatorname{Rad}(y+1)
$$

and

$$
\operatorname{Rad}(x+2)=\operatorname{Rad}(y+2) ?
$$

## Erdős - Woods Conjecture



$$
\begin{aligned}
& \text { Paul Erdős } \\
& (1913-1996)
\end{aligned}
$$


http://school.maths.uwa.edu.au/~woods/

There exists an absolute constant $k$ such that, if $x$ and $y$ are positive integers satisfying

$$
\operatorname{Rad}(x+i)=\operatorname{Rad}(y+i)
$$

for $i=0,1, \ldots, k-1$, then $x=y$.

## Erdős - Woods as a consequence of $a b c$

M. Langevin : The $a b c$

Conjecture implies that there exists an absolute constant $k$ such that, if $x$ and $y$ are positive integers satisfying

$$
\operatorname{Rad}(x+i)=\operatorname{Rad}(y+i)
$$


for $i=0,1, \ldots, k-1$, then
$x=y$.
Already in 1975 M. Langevin studied the radical of $n(n+k)$ with $\operatorname{gcd}(n, k)=1$ using lower bounds for linear forms in logarithms (Baker's method).

## A factorial as a product of factorials

For $n>a_{1} \geq a_{2} \geq \cdots \geq a_{t}>1, t>1$, consider

$$
a_{1}!a_{2}!\cdots a_{t}!=n!
$$

Trivial solutions :

$$
2^{r}!=\left(2^{r}-1\right)!2!^{r} \text { with } r \geq 2
$$

Non trivial solutions :

$$
7!3!22!=9!, 7!6!=10!, 7!5!3!=10!, 14!5!2!=16!
$$

Saranya Nair and Tarlok Shorey: The effective $a b c$ conjecture implies Hickerson's conjecture that the largest non-trivial solution is given by $n=16$.


## Erdős Conjecture on $2^{n}-1$

In 1965, P. Erdős conjectured that the greatest prime factor $P\left(2^{n}-1\right)$ satisfies

$$
\frac{P\left(2^{n}-1\right)}{n} \rightarrow \infty \quad \text { when } \quad n \rightarrow \infty
$$

In 2002, R. Murty and S. Wong proved that this is a consequence of the $a b c$ Conjecture. In 2012, C.L. Stewart proved Erdős Conjecture (in a wider context of Lucas and Lehmer sequences) :

$$
P\left(2^{n}-1\right)>n \exp (\log n / 104 \log \log n)
$$

## Is $a b c$ Conjecture optimal?



Let $\delta>0$. In 1986, C.L. Stewart and R. Tijdeman proved that there are infinitely many $a b c$-triples for which

$$
c>R \exp \left((4-\delta) \frac{(\log R)^{1 / 2}}{\log \log R}\right)
$$

Better than $c>R \log R$.

## Conjectures by Machiel van Frankenhuijsen, Olivier Robert, Cam Stewart and Gérald Tenenbaum

Let $\varepsilon>0$. There exists $\kappa(\varepsilon)>0$ such that for any $a b c$ triple with $R=\operatorname{Rad}(a b c)>8$,

$$
c<\kappa(\varepsilon) R \exp \left((4 \sqrt{3}+\varepsilon)\left(\frac{\log R}{\log \log R}\right)^{1 / 2}\right)
$$

Further, there exist infinitely many $a b c$-triples for which

$$
c>R \exp \left((4 \sqrt{3}-\varepsilon)\left(\frac{\log R}{\log \log R}\right)^{1 / 2}\right)
$$

Machiel van Frankenhuijsen, Olivier Robert, Cam Stewart and Gérald Tenenbaum


## Heuristic assumption

Whenever $a$ and $b$ are coprime positive integers, $R(a+b)$ is independent of $R(a)$ and $R(b)$.
O. Robert, C.L. Stewart and G. Tenenbaum, A refinement of the abc conjecture, Bull. London Math. Soc., Bull. London Math. Soc. (2014) 46 (6) : 1156-1166.
http://blms.oxfordjournals.org/content/46/6/1156.full.pdf

## Waring's Problem

In 1770, a few months before J.L. Lagrange solved a conjecture of Bachet (1621) and Fermat (1640) by proving that every positive integer is the sum of at most four squares of integers,


Edward Waring
(1736-1798) E. Waring wrote :
"Omnis integer numerus vel est cubus, vel e duobus, tribus, 4, 5, $6,7,8$, vel novem cubis compositus, est etiam quadrato-quadratus vel e duobus, tribus, \&, usque ad novemdecim compositus, \& sic deinceps"
"Every integer is a cube or the sum of two, three, ...nine cubes; every integer is also the square of a square, or the sum of up to nineteen such ; and so forth. Similar laws may be affirmed for the correspondingly defined numbers of quantities of any like degree."

## Waring's functions $g(k)$ and $G(k)$

- Waring's function $g$ is defined as follows: For any integer $k \geq 2, g(k)$ is the least positive integer $s$ such that any positive integer $N$ can be written $x_{1}^{k}+\cdots+x_{s}^{k}$.
- Waring's function $G$ is defined as follows: For any integer $k \geq 2, G(k)$ is the least positive integer $s$ such that any sufficiently large positive integer $N$ can be written $x_{1}^{k}+\cdots+x_{s}^{k}$.
J.L. Lagrange : $g(2)=4$.
$g(2) \leqslant 4$ : any positive number is a sum of at most 4 squares :
$n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$.
$g(2) \geq 4$ : there are positive numbers (for instance 7 ) which are not sum of 3 squares.


Lower bounds are easy, not upper bounds.
$g(4) \geq 19$.
We want to write 79 as sum $a_{1}^{4}+a_{2}^{4}+\cdots+a_{s}^{4}$ with $s$ as small as possible.

Since $79<81$, we cannot use $3^{4}$. Hence we can use only $2^{4}=16$ and $1^{4}=1$.

Since $79<5 \times 16$, we can use at most 4 terms $2^{4}$.

Now

$$
79=64+15=4 \times 2^{4}+15 \times 1^{4}
$$

with $4+15$ terms $a^{4}$ (namely 4 with $2^{4}$ and 15 with $1^{4}$ ).
The number of terms is 19 .

$$
n=x_{1}^{4}+\cdots+x_{19}^{4}: g(4)=19
$$

Any positive integer is the sum of at most 19 biquadrates R. Balasubramanian, J-M. Deshouillers, F. Dress (1986).


François Dress, R. Balasubramanian, Jean-Marc Deshouillers

## Evaluations of $g(k)$ for $k=2,3,4, \ldots$

| $g(2)=4$ | Lagrange | 1770 |
| :---: | :---: | :---: |
| $g(3)=9$ | Kempner | 1912 |
| $g(4)=19$ | Balusubramanian,Dress,Deshouillers | 1986 |
| $g(5)=37$ | Chen Jingrun | 1964 |
| $g(6)=73$ | Pillai | 1940 |
| $g(7)=143$ | Dickson | 1936 |

## Lower bound for $g(k)$

Let $k \geq 2$. Select $N<3^{k}$ of the form $N=2^{k} q-1$. Since $N<3^{k}$, writing $N$ as a sum of $k$-th powers can involve no term $3^{k}$, and since $N<2^{k} q$, it involves at most $(q-1)$ terms $2^{k}$, all others being $1^{k}$; so the mot economical way of writing $N$ as a sum of $k$-th powers is

$$
N=(q-1) 2^{k}+\left(2^{k}-1\right) 1^{k}
$$

which requires a total number of $(q-1)+\left(2^{k}-1\right)$ terms. The largest value is obtained by taking for $q$ the largest integer with $2^{k} q<3^{k}$. Since $(3 / 2)^{k}$ is not an integer, this integer $q$ is $\left\lfloor(3 / 2)^{k}\right\rfloor$ (quotient of the division of $3^{k}$ by $2^{k}$ ).

For each integer $k \geq 2$, define $I(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2$.
Then $g(k) \geq I(k)$.
(J. A. Euler, son of Leonhard Euler).


Johann Albrecht Euler (1734-1800)

Conjecture (C.A. Bretschneider, 1853) : $g(k)=I(k)$ for any $k \geq 2$.
True for $4 \leqslant k \leqslant 471600000$.

## The ideal Waring's "Theorem" : $g(k)=I(k)$

Recall

$$
I(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2 .
$$

Conjecture (C.A. Bretschneider, 1853) : $g(k)=I(k)$ for any $k \geq 2$.
Divide $3^{k}$ by $2^{k}$ :

$$
3^{k}=2^{k} q+r \quad \text { with } \quad 0<r<2^{k}, \quad q=\left\lfloor(3 / 2)^{k}\right\rfloor
$$

The remainder $r=3^{k}-2^{k} q$ satisfies $r<2^{k}$. A slight improvement of this upper bound would yield the desired result. L.E. Dickson and S.S. Pillai proved independently in 1936 that $g(k)=I(k)$, provided that $r=3^{k}-2^{k} q$ satisfies

$$
r \leqslant 2^{k}-q-3 \quad \text { with } \quad q=\left\lfloor(3 / 2)^{k}\right\rfloor .
$$

## The condition $r \leqslant 2^{k}-q-3$

The condition $r \leqslant 2^{k}-q-3$ is satisfied for $4 \leqslant k \leqslant 471600000$.

If, for some $k$, the condition $r \leqslant 2^{k}-q-3$ is not satisfied, then $(3 / 2)^{k}$ is extremely close to an integer :

$$
q+1-\frac{q-3}{2^{k}}<\left(\frac{3}{2}\right)^{k}<q+1
$$

which is unlikely: one expects that the numbers $(3 / 2)^{k}$ are well distributed modulo 1 .

## Mahler's contribution

- The estimate

$$
r \leqslant 2^{k}-q-3
$$

is valid for all sufficiently large $k$.

Kurt Mahler


Hence the ideal Waring's Theorem

$$
g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2
$$

holds for all sufficiently large $k$.

## Mahler's contribution

- The ideal Waring's Theorem

$$
g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2
$$

holds for all sufficiently large $k$.


## Waring's Problem and the $a b c$ Conjecture


> S. David:

> The ideal Waring's Theorem $g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2$ for large $k$ follows from the $a b c$ Conjecture.
S. Laishram : the ideal Waring's Theorem for all $k$ follows from the explicit $a b c$ Conjecture.

## Conjecture of Alan Baker (1996)

Let $(a, b, c)$ be an $a b c$-triple and let $\epsilon>0$. Then

$$
c \leqslant \kappa\left(\epsilon^{-\omega} R\right)^{1+\epsilon}
$$

where $\kappa$ is an absolute constant, $R=\operatorname{Rad}(a b c)$ and $\omega=\omega(a b c)$ is the number of distinct prime factors of $a b c$.

Remark of Andrew Granville : the minimum of the function on the right hand side over $\epsilon>0$ occurs essentially with $\epsilon=\omega / \log R$. This yields a slightly sharper form of the conjecture :

$$
c \leqslant \kappa R \frac{(\log R)^{\omega}}{\omega!}
$$

## Alan Baker : explicit $a b c$ Conjecture (2004)

Let $(a, b, c)$ be an $a b c$-triple. Then

$$
c \leqslant \frac{6}{5} R \frac{(\log R)^{\omega}}{\omega!}
$$

with $R=\operatorname{Rad}(a b c)$ the radical of $a b c$ and $\omega=\omega(a b c)$ the number of distinct prime


Alan Baker
(1939-2018) factors of $a b c$.

## Shanta Laishram and Tarlok Shorey



The Nagell-Ljunggren
equation is the equation

$$
y^{q}=\frac{x^{n}-1}{x-1}
$$

in integers $x>1, y>1$, $n>2, q>1$.

This means that in basis $x$, all the digits of the perfect power $y^{q}$ are 1.
If the explicit $a b c$-conjecture of Baker is true, then the only solutions are

$$
11^{2}=\frac{3^{5}-1}{3-1}, \quad 20^{2}=\frac{7^{4}-1}{7-1}, \quad 7^{3}=\frac{18^{3}-1}{18-1}
$$

## The $a b c$ conjecture for number fields

P. Vojta (1987) - variants due to D.W. Masser and K. Győry


## The $a b c$ conjecture for number fields (continued)

Survey by J. Browkin.


The $a b c-$ conjecture for Algebraic Numbers
Acta Mathematica Sinica, Jan., 2006, Vol. 22, No. 1, pp. 211-222
http://dx.doi.org/10.1007/s10114-005-0624-3

## Mordell's Conjecture (Faltings's Theorem)

Using an effective extension of the $a b c$ Conjecture for a number field, N . Elkies deduces an effective version of Faltings's Theorem on the finiteness of the set of rational points on an algebraic curve of genus $\geq 2$ over the same number field.
L.J. Mordell (1922) G. Faltings (1984) N. Elkies (1991)

http://www.math.harvard.edu/~elkies/ Mordell (1888-1972)

## The $a b c$ conjecture for number fields



> The effective $a b c$ Conjecture implies an effective version of Siegel's Theorem on the finiteness of the set of integer points on a curve.

Andrea Surroca (1973-2022)
A. Surroca, Méthodes de transcendance et géométrie diophantienne, Thèse, Université de Paris 6, 2003.

## Thue-Siegel-Roth Theorem (Bombieri)

Using the $a b c$ Conjecture for number fields, E. Bombieri (1994) deduces a refinement of the Thue-Siegel-Roth Theorem on the rational approximation of algebraic numbers

$$
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2+\varepsilon}}
$$

where he replaces $\varepsilon$ by

$$
\kappa(\log q)^{-1 / 2}(\log \log q)^{-1}
$$

where $\kappa$ depends only on the algebraic number $\alpha$.


## Siegel's zeroes (A. Granville and H.M. Stark)

The uniform $a b c$ Conjecture for number fields implies a lower bound for the class number of an imaginary quadratic number field, and K . Mahler has shown that this implies that the associated $L$-function has no Siegel zero.


## $a b c$ and Vojta's height Conjecture



Vojta stated a conjectural inequality on the height of algebraic points of bounded degree on a smooth complete variety over a global field of characteristic zero which implies the $a b c$ Conjecture.

## Further consequences of the $a b c$ Conjecture

- Erdős's Conjecture on consecutive powerful numbers.
- Dressler's Conjecture : between two positive integers having the same prime factors, there is always a prime (Cochrane and Dressler 1999).
- Squarefree and powerfree values of polynomials (Browkin, Filaseta, Greaves and Schinzel, 1995).
- Lang's conjectures : lower bounds for heights, number of integral points on elliptic curves (Frey 1987, Hindry Silverman 1988).
- Bounds for the order of the Tate-Shafarevich group (Goldfeld and Szpiro 1995).
- Greenberg's Conjecture on Iwasawa invariants $\lambda$ and $\mu$ in cyclotomic extensions (Ichimura 1998).
- Lower bound for the class number of imaginary quadratic fields (Granville and Stark 2000), hence no Siegel zero for the associated L-function (Mahler).
- Fundamental units of certain quadratic and biquadratic fields (Katayama 1999).
- The height conjecture and the degree conjecture (Frey 1987, Mai and Murty 1996)


## The $n$-Conjecture



Nils Bruin, Generalization of the ABC-conjecture, Master Thesis, Leiden University, 1995.

```
http://www.cecm.sfu.ca/
~nbruin/scriptie.pdf
```

Let $n \geq 3$. There exists a positive constant $\kappa_{n}$ such that, if $x_{1}, \ldots, x_{n}$ are relatively prime rational integers satisfying $x_{1}+\cdots+x_{n}=0$ and if no proper subsum vanishes, then

$$
\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} \leqslant \operatorname{Rad}\left(x_{1} \cdots x_{n}\right)^{\kappa_{n}}
$$

? Should hold for all but finitely many $\left(x_{1}, \ldots, x_{n}\right)$ with $\kappa_{n}=2 n-5+\epsilon$ ?

## A consequence of the $n$-Conjecture

Open problem : for $k \geq 5$, no positive integer can be written in two essentially different ways as sum of two $k$-th powers.

It is not even known whether such a $k$ exists.
Reference : Hardy and Wright : §21.11

For $k=4$ (Euler) :

$$
59^{4}+158^{4}=133^{4}+134^{4}=635318657
$$

A parametric family of solutions of $x_{1}^{4}+x_{2}^{4}=x_{3}^{4}+x_{4}^{4}$ is known

Reference : http://mathworld.wolfram.com/DiophantineEquation4thPowers.html

## $a b c$ and meromorphic function fields

Recent work of Hu, Pei-Chu, Yang, Chung-Chun and P. Vojta.

## $A B C$ Theorem for polynomials

Let $K$ be an algebraically closed field. The radical of a monic polynomial

$$
P(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)^{a_{i}} \in K[X]
$$

with $\alpha_{i}$ pairwise distinct is defined as

$$
\operatorname{Rad}(P)(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in K[X]
$$

## $A B C$ Theorem for polynomials

$A B C$ Theorem (A. Hurwitz, W.W. Stothers, R. Mason).

Let $A, B, C$ be three relatively prime polynomials in $K[X]$ with $A+B=C$ and let $R=\operatorname{Rad}(A B C)$. Then $\max \{\operatorname{deg}(A), \operatorname{deg}(B), \operatorname{deg}(C)\}$

$$
<\operatorname{deg}(R)
$$



Adolf Hurwitz (1859-1919)

This result can be compared with the $a b c$ Conjecture, where the degree replaces the logarithm.

## The radical of a polynomial as a gcd

The common zeroes of

$$
P(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)^{a_{i}} \in K[X]
$$

and $P^{\prime}$ are the $\alpha_{i}$ with $a_{i} \geq 2$. They are zeroes of $P^{\prime}$ with multiplicity $a_{i}-1$. Hence

$$
\operatorname{Rad}(P)=\frac{P}{\operatorname{gcd}\left(P, P^{\prime}\right)} .
$$

## Proof of the $A B C$ Theorem for polynomials

Now suppose $A+B=C$ with $A, B, C$ relatively prime.
Notice that

$$
\operatorname{Rad}(A B C)=\operatorname{Rad}(A) \operatorname{Rad}(B) \operatorname{Rad}(C)
$$

We may suppose $A, B, C$ to be monic and, say, $\operatorname{deg}(A) \leqslant \operatorname{deg}(B) \leqslant \operatorname{deg}(C)$.

Write

$$
A+B=C, \quad A^{\prime}+B^{\prime}=C^{\prime}
$$

and

$$
A B^{\prime}-A^{\prime} B=A C^{\prime}-A^{\prime} C
$$

## Proof of the $A B C$ Theorem for polynomials

 Recall $\operatorname{gcd}(A, B, C)=1$. Since $\operatorname{gcd}\left(C, C^{\prime}\right)$ divides $A C^{\prime}-A^{\prime} C=A B^{\prime}-A^{\prime} B$, it divides also$$
\frac{A B^{\prime}-A^{\prime} B}{\operatorname{gcd}\left(A, A^{\prime}\right) \operatorname{gcd}\left(B, B^{\prime}\right)}
$$

which is a polynomial of degree

$$
<\operatorname{deg}(\operatorname{Rad}(A))+\operatorname{deg}(\operatorname{Rad}(B))=\operatorname{deg}(\operatorname{Rad}(A B))
$$

Hence

$$
\operatorname{deg}\left(\operatorname{gcd}\left(C, C^{\prime}\right)\right)<\operatorname{deg}(\operatorname{Rad}(A B))
$$

and
$\operatorname{deg}(C)<\operatorname{deg}(\operatorname{Rad}(C))+\operatorname{deg}(\operatorname{Rad}(A B))=\operatorname{deg}(\operatorname{Rad}(A B C))$.

## Shinichi Mochizuki



INTER-UNIVERSAL TEICHMÜLLER THEORY IV :
LOG-VOLUME COMPUTATIONS AND SET-THEORETIC FOUNDATIONS by

Shinichi Mochizuki
http：／／www．kurims．kyoto－u．ac．jp／～motizuki／top－english．html

## Inter－universal Geometer

E－mail：
motizuki＠kurims．kyoto－u．ac．jp

## Shinichi Mochizuki

Professor
Research Institute
for Mathematical Sciences
Kyoto University
Kyoto 606－8502，JAPAN

$\square$



Troushts


Papers
－Ountionken
To Prospectino


Mistons
Trumel and

## Papers of Shinichi Mochizuki

- General Arithmetic Geometry
- Intrinsic Hodge Theory
- $p$-adic Teichmüller Theory
- Anabelian Geometry, the Geometry of Categories
- The Hodge-Arakelov Theory of Elliptic Curves
- Inter-universal Teichmüller Theory


## Shinichi Mochizuki

[1] Inter-universal Teichmüller Theory I : Construction of Hodge Theaters. PDF
[2] Inter-universal Teichmüller Theory II : Hodge-Arakelov-theoretic Evaluation. PDF
[3] Inter-universal Teichmüller Theory III : Canonical Splittings of the Log-theta-lattice. PDF
[4] Inter-universal Teichmüller Theory IV : Log-volume Computations and Set-theoretic Foundations. PDF

In August 2012, Shinichi
Mochizuki released a series of four preprints announcing a proof of the $a b c$ Conjecture.


When an error in one of the articles was pointed out by Vesselin Dimitrov and Akshay Venkatesh in October 2012, Mochizuki posted a comment on his website acknowledging the mistake, stating that it would not affect the result, and promising a corrected version in the near future. He proceeded to post a series of corrected papers of which the latest dated November 2017.

## http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html

Inter-universal Teichmuller Theory
[1] Inter-universal Teichmuller Theory I: Construction of Hodge Theaters. PDF NEW !! (2017-08-18)
[2] Inter-universal Teichmuller Theory II: Hodge-Arakelov-theoretic Evaluation. PDF NEW !! (2017-08-18)
[3] Inter-universal Teichmuller Theory III: Canonical Splittings of the Log-theta-lattice. PDF NEW !! (2017-11-01)
[4] Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations. PDF NEW !! (2017-11-01)


# Workshop on IUT Theory of Shinichi Mochizuki, December 

 7-11 2015CMI Workshop supported by Clay Math Institute and Symmetries and Correspondences

Organisers : Ivan Fesenko, Minhyong Kim, Kobi Kremnitzer Finding the speakers and the program of the workshop: Ivan Fesenko

## Inference Vol. 2, No. 3 / September 2016

Mathematics / Critical Essay - Fukugen by Ivan Fesenko https://inference-review.com/article/fukugen


Ivan Fesenko is a number theorist at the University of Nottingham.

IUT yields proofs of several outstanding problems in number theory : the strong Szpiro conjecture for elliptic curves, Vojta's conjecture for hyperbolic curves, and the Frey conjecture for elliptic curves.
And it settles the famous Oesterlé-Masser or abc conjecture.

## 2017

Not Even Wrong
Latest on abc
Posted on December 16, 2017 by Peter Woit
http://www.math.columbia.edu/~woit/wordpress/?p=9871

The ABC conjecture has (still) not been proved
Posted on December 17, 2017 by Frank Calegari
https://galoisrepresentations.wordpress.com/2017/12/
17/the-abc-conjecture-has-still-not-been-proved/

## Hector Pasten

Shimura curves and the abc conjecture https://arxiv.org/abs/1705.09251

## Why $a b c$ is still a conjecture by Peter Scholze and Jakob Stix

https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf In March 2018, the authors spent a week in Kyoto at RIMS of intense and constructive discussions with Prof. Mochizuki and Prof. Hoshi about the suggested proof of the abc conjecture. We thank our hosts for their hospitality and generosity which made this week very special. We, the authors of this note, came to the conclusion that there is no proof. We are going to explain where, in our opinion, the suggested proof has a problem, a problem so severe that in our opinion small modifications will not rescue the proof strategy. We supplement our report by mentioning dissenting views from Prof. Mochizuki and Prof. Hoshi about the issues we raise with the proof and whether it constitutes a gap at all, cf. the report by Mochizuki

## Why $a b c$ is still a conjecture by Peter Scholze and Jakob Stix

On the fifth and final day, Mochizuki tried to explain to us why this is not a problem after all. In particular, he claimed that up to the "blurring" given by certain indeterminacies the diagram does commute ; it seems to us that this statement means that the blurring must be by a factor of at least $O\left(\ell^{2}\right)$ rendering the inequality thus obtained useless.
https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf

## 2022 : Explicit estimates

## June 2022 <br> Explicit estimates in inter-universal Teichmüller theory

Shinichi Mochizuki, Ivan Fesenko, Yuichiro Hoshi, Arata Minamide, Wojciech Porowski
Author Affiliations +

Kodai Math. J. 45(2): 175-236 (June 2022). DOI: 10.2996/kmj45201
https://doi.org/10.2996/kmj45201

## Million Dollar Prize for Scholze and Stix

Posted on July 7, 2023 by woit

At a news conference in Tokyo today there evidently were various announcements made about IUT, the most dramatic of which was a 140 million yen (roughly one million dollar) prize for a paper showing a flaw in the claimed proof of the abc conjecture. It is generally accepted by experts in the field that the Scholze-Stix paper Why abc is still a conjecture conclusively shows that the claimed proof is flawed. For a detailed discussion with Scholze about the problems with the proof, see here. For extensive coverage of the IUT story on this blog, see here.
https://www.math.columbia.edu/~woit/wordpress/?p=13573

## Mochizuki - Fesenko vs Scholze - Stix



Shinichi Mochizuki


Ivan Fesenko


Peter Scholze


Jakob Stix

# On the abc Conjecture and some of its consequences 

Michel Waldschmidt<br>Professeur Émérite, Sorbonne Université, Institut de Mathématiques de Jussieu, Paris http://www.imj-prg.fr/~michel.waldschmidt/

