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EQUIVARIANT INDEX FORMULAS FOR ORBIFOLDS

MICHELE VERGNE

1. Introduction. Let P be a smooth manifold. Let H be a compact Lie group
acting on P. We assume that the action of H is infinitesimally free, that is, the
stabilizer H(y) of any point y e P is a finite subgroup of H. We write the action
of H on the right. The quotient space P/H is an orbifold. (If H acts freely, then
P/H is a manifold.) Reciprocally, any orbifold M can be presented this way: for
example, one might choose P to be the bundle of orthonormal frames for a
choice of a metric on M and H O(n) if n dim M. We will assume that there
is a compact Lie group G acting on P such that its action commutes with the
action of H. We will write the action of G on the left. Then the space P/H is
provided with a G-action. Such data (P,H, G) will be our definition of a pre-
sented G-orbifold. We will say shortly that P/H is a G-orbifold.

Consider a compact G-orbifold P/H. A tangent vector on P tangent at y P
to the orbit H.y will be called a vertical tangent vector. Let TP be the
subbundle of T*P orthogonal to all vertical vectors. We will say that TfP is the
horizontal cotangent space. We denote by (y, ) a point in T*P. Consider two
(G x H)-equivariant vector bundles o+ on P. Let F(P,o+) be the spaces of
smooth sections of o+. Let

A: r(P, e+) r(P,

be a (G x H)-invariant differential operator. Consider the principal symbol tr(A) of
A. The operator A is said to be H-transversally elliptic if

o(A)(y, 0)" o o
is invertible for all 0 (ZiP)y- {0}. When A is H-transversally elliptic, the
equivariant index of A is defined as in [1] and is a trace-class virtual representation
of G H. Introduce (G x H)-invariant metrics on P and on o+. Let A* be the
formal adjoint of A. The virtual space Q(A) of H-invariant "solutions" of A

Q(A) [(Ker(A))n] -[(Ker(A*))n]

is a finite-dimensional virtual representation space for G. More generally, we con-
sider (G H)-transversally elliptic operators on P. Then the space Q(A) of H-
invariant "solutions" of A is a trace-class virtual representation of G.
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Let us first consider the case where A is H-transversally elliptic and H acts
freely. It is then easy to describe what is the virtual representation Q(A) of G.
Since A commutes with H, the operator A determines a map

r(v, e+) r(v,

We have F(P, +)n F(P/H, +/H), and Av/n is a G-invariant elliptic operator
on P/H. Thus, we have, for s G,

Tr Q(A)(s) index(AP/n)(s).

Let (P/H)(s) be the set of fixed points for the action of s on P/H. The equivari-
ant index formula ofAtiyah-Segal-Singer [2], [4] allows us to write index(AV/n)(s)
as an integral over T*(P/H)(s). If H acts only infinitesimally freely, we will give
an integral formula for Tr Q(A)(s) generalizing the formula for index(AP/n)(s) in
the case of free action.
More generally, if A is a (G H)-transversally elliptic operator on P, we state

in Theorem 2 a formula for the character of the trace-class virtual representation
Q(A) of G in terms of the equivariant cohomology of T*(P/H). This theorem
generalizes the cohomological index formula given in [7], [9] for the equivariant
index of G-transversally elliptic operators on compact manifolds to the case of
compact orbifolds.

If G {e}, we identify Q(A) with an integer. Several authors gave an integral
formula for this integer in various degrees of generality. The notion of an orbi-
fold was introduced by Satake who proved a Gauss-Bonnet formula [16] for
orbifolds. For any H-transversally elliptic operator A, a formula for the number
Q(A) was given by Atiyah [1, Corollary 9.12] in the case where H is a torus.
When P/H is a complex algebraic variety, /H an holomorphic orbifold bundle
on P/H, and A the 0 operator on the space of sections of /H, the number Q(A)
was computed by Kawasaki [12]. It is the Riemann-Roch number of a sheaf
on P/H. For H an arbitrary compact group and any H-transversally elliptic
operator A, a formula for the number Q(A) was given by Kawasaki [13].

In our case as well as in Kawasaki’s proof in [13], Atiyah’s algorithm to
compute the equivariant index of an H-transversally elliptic operator is a fun-
damental ingredient. Indeed, our proof of the general formula for index of trans-
versally elliptic operators [9] relies heavily on Atiyah’s results in [1]. Once this
general formula is established, it is a pleasant exercise on Fourier inversion for
compact groups to deduce the formula given here for G-transversally elliptic
operators on orbifolds from our index formula for transversally elliptic operators
on manifolds. I feel it is useful to do this exercise in order to extend to symplectic
orbifolds the universal formula [17] for the character of a quantized represen-
tation. In fact, G-orbifolds appear naturally when studying the quantized rep-
resentation associated to a prequantized symplectic manifold M. Let M be a
symplectic manifold with Hamiltonian action of G x H. Let be a Kostant-
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Souriau line bundle on M, and let/z: M--. D* be the moment map for the H-
action. Consider the space Mred #-I(0)/H. When 0 is a regular value of #, the
space Mred is a symplectic orbifold with a G-action. The quantized representa-
tion Q(M,) is a virtual representation of G x H constructed as the (TZ/27z)-
graded space of solutions of the L’-twisted Dirac operator on M. If Mred is an
orbifold, the virtual representation Q(Mred, AVred) of G can be constructed in a
similar way [19]. We give in Proposition 4 an integral formula for the character
of the quantized representation Q(Mred, Cred) of the symplectic orbifold Mred.

2. Equivariant index formula on orbifolds

2.1. Differential forms and inte#ration. Let N be a manifold with infinitesi-
mally free action of a compact group H. Let G be a compact Lie group acting on
N such that the action of G commutes with the action of H. A differential form
e z’(N) will be called H-horizontal (or simply horizontal if H is understood) if

t(Ylv) 0 for all Y e D. A form on N is called H-basic if is H-horizontal and
H-invariant. If the action of H on N is free, a basic form is the pullback of a form
on N/H. Thus, we will also say that an H-basic differential form on N is a dif-
ferential form on N/H. The operator da on G-equivariant differential forms on
N is defined as in [5, Chapter 7]. For X , we denote by dx the operator
d- t(Xv) on forms on N. A G-equivariant differential form on N is called H-
basic if, for all X e g, the differential form (X) is H-basic. We will also say that

is a G-equivariant differential form on N/H. The operator d preserves the
space of G-equivariant differential forms on N/H.
We identify the bundle of vertical vectors with N D. Choose a (G x H)-

invariant decomposition

TN Thor N (N x D).

This decomposition allows us to identify TffN with TorN.
The decomposition (1) gives us a connection form

(2) 0 (,.1 (N) () [)HxG.

We denote by O e azf’2(N) () D the curvature of 0. Let b be a smooth function
on I). Then we define the horizontal form b((R)) on N using Taylor’s expansion of

at 0. If is invariant, then b((R)) is basic.
The stabilisers H(y) of points y e N are finite subgroups of H. The set B of

conjugacy classes of stabilizers of elements of N is a partially ordered set. Let Na
be a connected component of N. Then the set {H(y), y Na} has a unique mini-
mal element [10]. This element Sa is referred to as the generic stabilizer on Na.
We consider the generic stabilizer as a locally constant function from N to con-
jugacy classes of subgroups of H writing S(y) Sa if y Na. Let IS(y)l be the
order of S(y). In particular, y-o IS(y)l is a locally constant function on N. We
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denote this function by IS] (or ISUl when we need to specify the manifold N). An
element y e N such that H(y) is conjugated to S(y) is called reoular. We denote
by Nreg the set of regular elements. It is an H-invariant open subset of N, and
Nreg/H is a manifold.
Assume the bundle TorN has an H-invariant orientation o. We will then say

that N/H is oriented. If N is connected, we define dim(N/H) to be dim N-
dim H. Otherwise, we consider dim(N/H) as a locally constant function on N.
An H-basic differential form defines a differential form on Nreg/H. If e is

compactly supported on N, then the component [dim(N/n)] of exterior degree
dim(N/H) of is integrable on the oriented manifold Nreg/H. By definition,

(3) /N,/H ,[dim(N/H)]

Let us fv/H Let ngive a formula for as an integral over N dim b. Let E
E2,..., En be a basis of b. We write the connection form 0 1(N) (R) b as

n

0-- OkEk.

Let El,E2,... ,En be the dual basis of [9". It defines a Euclidean volume form dY
on t) and an orientation 0 on b. We denote by dh the Haar measure on H tangent
to dY at the identity of H. Notice that the form

Vo (vol(H, dh))-101 A 02/’’"/ On

depends only of 0 and o.
Assume N/H is oriented. Let ov/H be the corresponding orientation. Then

N is oriented. We choose as positive volume form 09 A Vo if 09 is a positive H-
invariant section of AmaxTN. We denote this orientation by oN/H A o. If is a
basic form on N with compact support, then

(4)

In this formula, the orientation on N is the orientation ov/n A ot.
If N is an H-equivariant vector bundle over N with projection P0, then

the integration over the fiber of an H-basic differential form on is an H-basic
differential form on N. If is compactly supported, we have the integration
formula
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Let us define the cotangent bundle to an orbifold N/H. When H acts freely on
N, then N/H is a smooth manifold and we have a canonical identification
T*(N/H) (TzN)/H. In our case, the action of H on TN is infinitesimally
free, and we define T*(N/H) as an orbifold by T*(N/H) (TN)/H. It is im-
portant to notice that the orbifold T*(N/H) is orientable. Indeed, the restriction
of the canonical 1-form o9N of T*N to TN is a basic 1-form; that is, a form
on T*(N/H). We denote it by o9v// and refer to it as the canonical 1-form on
T*(N/H). The 2-form dcoN/H is nondegenerate on Thor(T_iN). We will choose
on T*(N/H) the symplectic orientation given by -&oN/H.

2.2. Index formula. Let M P/H be a compact G-orbifold. Consider two
(G x H)-equivariant vector bundles o+ on P. Let

A: F(P, e+) F(P, e-)

be a (G H)-invariant differential operator. We assume that A is a (G x H)-
transversally elliptic operator on P. We will give an integral formula for Tr Q(A)
in terms of the equivariant cohomology of T*M. We need some definitions.

Let o be an H-equivariant bundle over P. If V is an H-invariant connection on
o, we define its moment # F(P, End(o)) (R) I)* and the equivariant curvature of
V as in [5, Chapter 7]. Our conventions for characteristic classes will be those of
[11]. They differ slightly from those of [5]. In particular, if F(Y) (Y I)) is the
equivariant curvature of V, the equivariant Chern character will be ch(o, V)(Y)
Tr(eF(Y)).
We will say that V is an H-horizontal connection if #(Y) 0 for all Y I). It is

always possible to choose a horizontal connection on o. This can be done as fol-
lows. Consider a connection form 0 ,,1 (p) ) D for the action of H on P. Let V
be an H-invariant connection on o with moment # F(P, End(o))(R) t)*. Then
the contraction (#, 0) is an End(d)-valued 1-form on P. Define V’= V + (#, 0).
Then V’ is horizontal.

If o is a (G x H)-equivariant vector bundle on P, it is always possible to
choose on o a (G x H)-invariant horizontal connection V. Then the equivariant
Chern character of (o, V) is a G-equivariant basic form on P. An important
example in the following is the case of a trivial vector bundle [V] P x V,
where is a representation space of H. Let us denote also by z the infinitesimal
representation of D in V. It is easy to see that d + z(O) is a horizontal connection
with equivariant Chern character the basic equivariant form ch([V])(X)=
Tr(z(exp O(X))) where, for X g, O(X) -(O, Xp) + ) is the equivariant
curvature.

If (s, u) e G x H, the manifold

P(s, u) {p P; sp pu}

is a (G(s) x H(u))-manifold, where G(s) is the centralizer of s e G and H(u) the
centralizer of u e H. The group H(u) acts infinitesimally freely on P(s,u). We
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denote by M(s,u) the orbifold P(s, u)/H(u). If y is conjugated to u, the orbifold
M(s, ) is diffeomorphic to M(s, u).

Consider the horizontal bundle ThorP(s, u) c:: TrorPlm,u and the horizontal
normal bundle

Zhor, P(s,u)P Zhorelp(s,u)/ Zhore(s, u).

The vector bundles ThorP(s,u) and Zhor,P(s,u)P are (G(s) x H(u))-equivariant
vector bundles on P(s, u).

Define TM(s,u)M to be the orbifold bundle (Thor,P(s,u)P)/H(u) over M(s, u). If M
is a G-manifold, then TM(s,u)M is the normal bundle to M(s, u) in M.

Let V be a (G x H)-invariant horizontal connection on ThorP. Then V induces
H(u)-horizontal connections V0 on Thore(s, u) and V1 on Thor,P(s,u)P. Let Ro(X),
RI(X) be the G(s)-equivariant curvatures of V0 and V1. On P(s, u) the action of
(s, u) induces an endomorphism g(s, u) of the bundle Thor,P(s,u)P. Define the G(s)-
equivariant closed forms on e(s, u)/n(u)

(6) (eRo(X) e-Ro(X)/2,’J(M(s, u))(X) det
\ Ro(X)

and

(7) D(s,,,)(TM(s,,)M)(X) det(1 g(s, u)eRl(x))

for X e fl(s).
We denote by p0 the projection TP P. We denote by a0 the restriction

of the principal symbol a of A to TP. Let V be horizontal connections on g+.
Consider the superconnection &0(a0) on pg pg+ ( pg- defined by

V+ ia; ) o(ao)
iao p;V-

Then the equivariant Chern character ch,u(&o(ao))(X) is a G(s)-equivariant
form on the space (Tro,rP(s,u))/n(u) T*M(s,u). Thus, we can define a G(s)-
equivariant closed, basic differential form on TrorP(s u) given for X e g(s) small
by

(8) I(s, u, o-o)(X) J(M(s, u))(X)Ds,u(TM(s,u)M)(X)

For X 0, we write

(9) I(s, u, oo) I(s, u, a0) (0).
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Assume first that A is H-transversally elliptic. Then the restriction tr0 of
the principal symbol of A is homogeneous of positive order on each fiber of
the vector bundle TorP. Furthermore, a0(Y,0) is invertible when 0 is not
zero. Thus, for X g(s), the form chs,u(/k0(tr0))(X) is rapidly decreasing on
Tore(s,u (this is seen as in [7]), so that I(s,u, tro)(X) can be integrated over
T*M(s,u).
For s G, we denote by C(s) the set of elements V H such that P(s,

Then C(s) is invariant by conjugacy and the set (C(s)) C(s)/Ad(n) is a finite
set. Let M(s,v) be the orbifold P(s, v)/H(v). We denote by S(s, ) the generic
stabilizer for the action of H(V) on P(s, ). The functions dim M(s, ) and [S(s, V)I
are locally constant functions on P(s, ).
THEOREM 1. Let M P/H be an orbifold. Let A be a (G x H)-invariant dif-

ferential operator on P. Assume that A is H-transversally elliptic. Then, for each
s G, the trace of the virtual finite-dimensional representation Q(A) of G satisfies
theformula

Tr Q(A)(s exp X) E
(C(s))

(2izc)-dim M(s,e) lS(s,
M(s,,)

chs,, lo tro X)
J(M(s, ") (X)Ds,,( TM(s,,)M) (X)

for X small in g(s).

Assume now that A is only (G H)-transversally elliptic. Let o9M be the
canonical 1-form of T*M. Similarly we obtain canonical 1-forms on o9M(s,r) on
T*M(s, y). Define then

e-i’ixE(s’) chs,, (o(ao)) (X)I"(s, y, ao)(X) J(M(s, "),))(X)Ds,,(TM(s,,)M)(X)

Then the form I(s, , tr0)(X) is a G(s)-equivariant form on T*M(s, ), which can
be integrated in g(s)-mean [8].
The formula for Tr Q(A) given in Theorem 1 for A an H-transversally elliptic

operator has to be modified to obtain a meaningful formula in the case of a
(G x H)-transversally elliptic operator A where Tr Q(A) is only a generalized
function on G. The next theorem extends the cohomological formula for the
index of G-transversally elliptic operators on manifolds [8], [9] to the case of
G-transversally elliptic operators on orbifolds.

THEOREM 2. Let M P/H be an orbifold. Let A be a (G x H)-invariant dif-
ferential operator on P. Assume that A is (G x H)-transversally elliptic. Then, for
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each s G, the trace of the virtual trace-class representation Q(A) ofG satisfies the
equality

Tr Q(A)(s exp X) (2iTz)-dim M(,e)IS(S, T)1-1
*M(s,r)r(C(s))

e-ulxM(’) chs,r (&0(a0))(X)

as an equality ofgeneralized functions on a neighborhood ofO in l(s).
Remark 2.1. If A is only pseudodifferential, the formula above holds, pro-

vided we choose a "good" representative a0 [8] of the symbol of A.

Before proving these theorems, let us write more explicitly the formula of
Theorem 1 in the case where G {e}. Then we must consider the set C(e) of
elements V H such that the set P(V) {p P, pv p} is not empty. We define
M(V) P(v)/H(v). The formula obtained for the number Q(A) dim(Ker(A))n-
dim(Ker A*)n is thus Kawasaki’s formula:

(10) Q(A)-- (C(e IT (2izr’)-dimM(r)lS(’)[-1 chr(Ak(a))
r )) *M(r) J(M(7))Dr(TM(7)M)"

Let us give two examples where this formula is easily seen to be true.
(1) Assume H is a finite group. Then the dimension of the space Q(A) is evi-

dently given by the average of the equivariant index

Q(A) [HI-1Z index(A)().
reH

Using the equivalent expression given in [7] of the Atiyah-Segal-Singer formula
[2], [4], we have

index(A)() --/T.P(r)(2iTr,)-dim P(r) chr (&o(ao))
J(P())Dr( TP(r)P)

In particular, index(A)() is 0 if y does not belong to C(e). Let C(e). In
this case, T*M() T*P()/H(). On each connected component of P(), the
map T*P() T*P()/H() is a cover of order IH(y)/S(y)I and, by definition,
for a a differential form on P()

(2iz)-dim M(r) fZ In(T)l-l[s(T)l(2in)-dimP(r)"
*M(r)
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Rewriting the set C(e) as union of conjugacy classes, we see that the formula
for Q(A) is indeed just the average of the Atiyah-Segal-Singer formula.

(2) Assume H acts freely on P. Then C(e) {e}. Let M P/H. The restric-
tion a0 of tr to TIP determines an elliptic symbol still denoted by a0 on T*M
TP/H which is the principal symbol of AP/H. We have Q(A)- index(AP/n).
Formula (10) for Q(A) as an integral over T*M of an equivariant characteristic
class agrees with the Atiyah-Singer formula for the index of AP/t-I in function of
its principal symbol.

Proof. Let us now prove Theorem 1 and Theorem 2. We give only the proof
of the first theorem, as both proofs are very similar to the proof of the Frobenius
reciprocity for free actions [9, Theorem 26]. We give the main steps. Define

,,-o) (x) (2i)-dim M(s,V)lS(s, y)[-1 chs,r (&0 (a0)) (X)

We must prove that

(11) Tr Q(A)(s exp X) v(s, , ao)(X).
(C(s))

Consider the virtual character index(A) of G H. Let be the set of classes
of irreducible finite-dimensional representations of H. For z e , consider the
operator

A (R) Ivy: F(P, +) (R) V F(P, d-) (R) V.

For z e , let [G] be the trivial bundle on P with fiber G. We have

r(P, e+) (R) r(P, e+ (R) IVy]).

We denote by A the operator A (R) Ivy. It has symbol tr, a (R) Ip*[V]. The map
F(P, g+) (R) G (R) G, ---} F(P, +) given by (b (R) f) (b, f) for f e V* and b in
F(P,d+) (R) V induces an isomorphism from (F(P, d+) (R) )n (R) V, to the iso-
typic space of type z* in F(P, d+). By definition, the trace of the action of G in

[(Ker(A (R) Ivy)u] -[(Ker(A* (R) Ivy)u] is Q(A). Thus, we see that

index(A)(s, h) Tr Q(A)(s) Tr ’r* (h).

To verify equation (11) for Q(A), it is sufficient to verify, for each s G and
X (s) small, that we have the equality of generalized functions of H

(12) index(A)(sexpX, h)--, ,(C(s))
v(s, , ao)(X) Tr z*(h).
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To simplify formulas, we compute only for X 0. We write v(s, y, tr) for

Let u H and let b be an H-invariant test function on H with support in a
small neighborhood of the conjugacy class of u. In particular, we assume that if

(C(s)) is not conjugated to u, the support of b does not intersect the orbit of
7. Let l)(u) be the Lie algebra of H(u). Let

(13) Vl (qk) fH index(A)(s, h)q(h) dh

and

,t r(C(s))
v(s, y, trio) fH Tr z* (h)b(h) dh.

We need to verify the equality

(15) Vl () V2().

Let us first state the main technical lemma. Let N be the manifold

N=P x I)*.

We denote by f: P x [9" I)* the second projection. We consider the 1-form

v= (0, f)

on N. We choose a basis El, E2,..., En of t)*. This determines the form Vo on P.
We writef fiEi. We denote by df df A df2 A A df’. We denote by pl

the projection of N P x I)* on P with fiber t)*. The integration over the fiber is
defined once an orientation is chosen on each fiber. We use the orientation given
by df. Furthermore, the integration over the fiber is defined with conventions of
signs as in [5]: if p: P B is an oriented fibration, p,( A p*fl) p,() A fl if is a
form on P and fl a form on B.
The following lemma is obtained as Proposition 28 of [9].

LEMMA 3. If q is a test function on b, we have

(2irc)-dim n (pl ), ( fb e-idY’qk( y) dy) (_ l )n(n+l)/2 (vol H, dh)voq({9)"

Let us return to the proof of the identity (15).
We first compute vl (b). The generalized function index(A) can be computed as
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a special case of the index formula for (G H)-transversally elliptic operators.
Let, for Y t)(u),

J(u)(Y) dett(u)
ead Y/2 e-ad Y/2

ad Y

Using the Weyl integration formula, we have

(16) 1()-- VOl(n/n(u)) index(A)(s, ueV)q(ueg)J(u)(Y)
(u)

x detb/b(u) (1 ueY) dY.

Let p: T*P P the projection. Define on the superbundle p* p*o+ p*’-
the superconnection

p*V
g+ itr* )itr p*V’-

Let T*P TlorP ) P x D*. We can assume by homotopy the symbol tr of A
of the form tr(y, )= tro(y, 0) where 0 is the projection of on (TtorP)y. We
choose on TP the direct sum of a horizontal connection on ThorP and of the
trivial connection on P x b.

Let oe be the canonical 1-form on T*P. Its restriction to N P I)* is the
1-form v (0, f).

Let (s, u)z G x H. The index formula for A gives in particular for Y
sufficiently small:

index(A)(s’uer) fT" (2in)_dime(s,u) e-iar’lr*P(s’u) chs,u(&(tr))(Y)
*P(s,u) J(P(s, u) YlDs,u( re(s,u)P)( Y)

The restriction of the connection form 0 to P(s, u) is valued in D(u) and is a
connection form for the n(u)-action on e(s, u). We have T*e(s, u) TlorP(s u) )
P(s, u) x Ig(u)*. Thus, the bundle T*P(s, u) projects on N(s, u) P(s, u) x D* (u)
as well as on TorP(S u). We still denote by the pullback to T*P(s, u) of a form
on N(s, u) and by fl the pullback to T*P(s, u) of a form fl on TorP(S u). For

our choices of connections and symbols, we have

chs,u($(tr))(Y) chs,u($ko(tro))

J(P(s, u))(Y) J(M(s, u))J(u)(Y)

Ds,,,,( Tp(s,,,)P)( Y) Ds,,,( TM(s,,,)M) detb/(.) (1 ueY).
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Thus, we obtain

index(A) (s, ueY)Jb(u)(Y) detb/b(u) (1 ueY)

fT (2i)-dim P(s,,) e-iav’elr’e("")chs,u(&o((ro))
*P(s,u) J(M(s, u))Ds,u(TM(s,u)M)

Let (y,) T*P(s,u) TorP(s,u P(s,u) x I)(u)*. If 0 +f with 0
(ZaorP(s, tl))y andf I)(u)*, the Chern character chs,u(&0(a0)) is rapidly decreas-
ing with respect of the variable 0. The factor e-iaY’PIr*e<s,u) integrated against a
test function of Y 19(u) is rapidly decreasing in the variable f. A transgression
argument similar to those proven in [8] allows us to replace coP in tv + (1 t)cop
with e [0, 1]. Then we have also

index(A) (s, ueY)J(u)(Y) det/)(u) (1 ueY)

fT.P(s,u)(2i)-dim P(s,u)e-idgvlr.m,.) chs,u(&O(aO))
J(M(s, u) )Ds,u( TM(s,u)M)

We denote by v0 the restriction of v to P(s, u) I)(u)*. Consider the fibration
p: T*P(s, u) TlorP(s u) with fiber t)(u)*. Using notation (9), we thus have

index(A) (s, ueY)Jb(u) Y)det/b(u) 1 uev)

fT. (2izr)-dimP(s’U)(P)*(e-idrv)I(s’u’trO)"
rP(X,t0

Let (R)0 be the restriction of (9 to P(s, u). The function Y qi(u exp Y) is an
H(u)-invariant function on D(u) and the form q(u exp (90) is a basic form on
P(s, u). Applying Lemma 3 to the manifold P(s, u) D(u)* and integration for-
mula (16), we obtain

f
/31() /3 vol(H, dh) [ (2ix)-dimM(s’U)Vo(,)q(u exp (90)I(s,u, ao),

JT;orP(s,u)

where e is a sign.
Finally applying formula (4) to the basic form ff(u exp (R)0)I(s, u, ao), we obtain

(17) IS(s,u)l-l(2irc)-dimM(s’u)q(U exp Oo)I(s,u, ao)./)1 (q) vol(H, dh)
"M(s,u)

(A check of orientations shows that the sign e disappears.)
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We now compute V2(). Define

f
v2(?, b) v(s, , trio) ] Tr z* (h)(h) dh.

z e I:I .I H

Let z c/. Let us compute

(2ix)-dimM(s’r)lS(s’ 7)l-1V(S, ], 0")
*M(s,?)

chs,,(o(a))
J(M(s, y))Ds,,(TM(s,,)M)"

We have

chs,,(o(a)) chs,,(&o(ao))chs,,([V]).

For the horizontal connection
Tr(z(y exp 190)). Thus,

d+z(O) on [V], we have ch,r([V])

(2ix)-dim M(,r) I(s, ?, go) Tr(z(V exp (R)o)).IS(s, r)l

We obtain

(2i)-dim M(s,) I(s, , ao)

( Tr z(V exp tg0)(/H Trz*(h)q(h)dh))
(2izr)-dim M(s,r) I(S, y, a0) (y exp 190)vol(H, dh)

*M(s,r) IS(s, ?)[

using the Fourier inversion formula.
The basic form ( exp 00) depends on the Taylor expansion of # at ? e H.

Recall that vanishes on a neighborhood of if is not conjugated to u. Thus,
only the class (u) makes a nonzero contribution to v2() )-’r(C(s))v2(?, ), and
we obtain

(18) (2ix)-dimM(s’u)lS(s,u)l-lI(s,u, tro)q(U exp (R)0).v2() vol(H, dh)
*M(s,u)

Comparing formulas (17) and (18), we obtain formula (15). I-]
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3. Quantization on orbifolds. We here consider the special case of Dirac
operators. Consider the case where P has a (G H)-invariant metric and where
T,P is a (G H)-equivariant oriented even-dimensional bundle with spin struc-
ture. Let

TP ThorP @ P D

be the orthogonal decomposition of the tangent bundle. We identify TP with
ThorP with the help of the metric. Let 5hor be the spin bundle for ThorP. Choose a
(G x H)-invariant orientation o on ThorP. The orientation o determines a g/2g-
gradation 5hor 5P-or ) gVor If v (ThorP)y, then the Clifford multiplication c(v)
is an odd operator on (SCho)y. Let -be a (G x H)-equivariant Hermitian vector
bundle on P. Let 5thor (R) be the twisted horizontal spin bundle. With the help of
a choice of a (G x H)-invariant unitary connection V V+ @ V- on 5thor (R)
oqVffo @ ’@ 5Po (), We may define the formally selfadjoint "horizontal" Dirae
operator Dhor,- by

Dhor, E c(ei)Ve,,

+where ei runs over an orthonormal basis of ThorP. We have Dhor," Dhor,)
Dor,: with

+ "F(P, +Dhor,-. ,Vho (R) -) -o F(P, ’-or () ’)

and

Dor,-" r(P, 9or ( .’) --} r(P, ff’h+or t) ’).

Clearly, the operators D+hor,r are H-transversally elliptic operators and commute
+ is given bywith the natural action of G. The principal symbol of Dhor,-a(D-or,-)(y ) c+(0) (R) I-y,

where 0 is the projection of (T*P)y on (TP)y. We define

(--1)dimM/2Q +

When H acts freely, this coincides with the quantization assignment defined in
[17]. We generalize to this case the universal formula for the virtual representation
Q(P/H,’) [6], [17], [18].

Consider the vector bundle TP- P with projection P0. We have chosen a
(G x H)-invariant orientation o of TP.



EQUIVARIANT INDEX FORMULAS FOR ORBIFOLDS 651

The horizontal connection V0 of TaorP determines a connection on ahor.

Consider on the equivariant bundle a horizontal connection. Then chs,,() is
a G(s)-equivariant form on M(s, u).

Consider the pullback of 6ehor (R) to T*P. Then

k(tr) --Co () Ip, + p*76ehr(R)-,

where e0 is the odd-bundle endomorphism ofp*ff’hor given by e0(y, ) c(0), where
c is the Clifford action of (ZP)y on (ahor)y and 0 the projection of on (Te)y.

Let B be the superconnection on P(ff’hor) TorP defined by

(19) B --C0 -- p)VSehr.

Let (s, u) e G x H. We have for X e g(s)

chs,u(&(a))(X) chs,u(B)(X) chs,u()(X).

Consider the bundle TorP(s,u P(s,u). It is a (G(s)x H(u)) even-dimen-
sional equivariant orientable vector bundle (see [5, Lemma 6.10]).

Let us choose an orientation o’ on the vector bundle TaorP(S u) P(s, u). The
rank of this vector bundle is dim M(s, u) If rr’" is the Thom form of the vector..O
bundle TorP(s u) P(s, u), we have

/dim M/2chs,u(B)(S

e((s, u), o, o’)(-2n)dimM(s’u)/2j1/2(T*M(s, u))(X)D],(TM(s,u)M)(X)Uo, (X),

where e((s, u), o, o’) is a sign. This followsfrom [14] (see also [5, Chapter 7]). The
equation determines the sign e((s, u), o, o’). Here the generic stabilizer of the action
of H(u) on TorP(s u) is equal to the generic stabilizer S(s, u) for the action of
H(u) on M(s, u). Thus, integrating over the fibers the formula of Theorem 1 for the

+ and using Formula 5, we obtain the following proposition, which isindex of Dhor,
the analogue of the equivariant Hirzebruch-Riemann-Roch theorem in the form
given in [6], [18].

PROVOSTIO 4. Let M P/H be an even-dimensional orbifold such that ThorP
is a (G x H)-oriented spin vector bundle with orientation o. Let be a (G x H)-
equivariant complex vector bundle on P. Then

Tr Q(P/H,)(s exp X) -8imM/2 fM (2n)-dimM(s,r)/2lS(s,)]-I
r(C()) (,),o’

for X small in g(s).

e((s, ), o, o’) chs,,(-) (X)
1/2j1/2(M(s, T))(X)Ds,, (TM(s,,)M)(X)
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