Examen de topologie algébrique du 6 juin 2023 Durée de l'épreuve : 3 heures

Pas de documents-Les deux problèmes sont indépendants

Notations du sujet :

- Si G et H sont des groupes abéliens, la somme directe et le produit coincident, que l'on notera indifféremment $G \times H = G \oplus H$.
- \mathbb{D}^n représente la boule de dimension n, \mathbb{S}^n la sphère de dimension n, $P_n(\mathbb{R})$ l'espace projectif réel de dimension n. I^n désigne le cube $[0,1]^n$ de dimension n et ∂I^n son bord.
- Pour X et Y des espaces topologiques $X \sqcup Y$ désigne l'union disjointe de X et Y.
- Un espace topologique est dit CALCA, s'il est connexe et localement connexe par arcs.
- Pour X un espace topologique, $H_i(X)$ représente le *i*-ième groupe d'homologie à coefficients dans \mathbb{Z} .
- Pour toutes paires d'espaces topologiques (X, A) et (Y, B) une application continue $f: X \to Y$ vérifiant $f(A) \subset B$ est notée $f: (X, A) \to (Y, B)$.
- Etant données deux applications $f, g: (X, A) \to (Y, B)$ telles que $f(a) = g(a), \forall a \in A$, une homotopie relative H entre f et g est une application continue $H: X \times I \to Y$ telle que $H(x, 0) = f(x), H(x, 1) = g(x), \forall x \in X$ et H(a, t) = f(a) = g(a) pour tout $a \in A$ et $t \in I$.
- Soit (X, x_0) un espace topologique pointé. L'ensemble des composantes connexes par arcs de X est noté $\pi_0(X)$. Pour $n \geq 1$, on note $\pi_n(X, x_0)$ l'ensemble des classes d'homotopie pointées d'applications $f: (\mathbb{S}^n, p_0) \to (X, x_0)$, ou de manière analogue l'ensemble des classes d'homotopie relatives d'applications de paires $(I^n, \partial I^n) \to (X, x_0)$. Pour $n \geq 2$, cet ensemble est muni d'une structure de groupe abélien donnée par

$$(f+g)(t_1,\ldots,t_n) = \begin{cases} f(2t_1,\ldots,t_n), & \text{si } 0 \le t_1 \le \frac{1}{2} \\ g(2t_1-1,\ldots,t_n), & \text{si } \frac{1}{2} \le t_1 \le 1. \end{cases}$$

Enfin, on pourra utiliser le résultat du cours suivant :

Si $p: E \to B$ est un revêtement, et Y est un espace CALCA, pour tout couple (f_0, H) d'applications avec $f_0: Y \to E, H: Y \times I \to B$ satisfaisant $pf_0(y) = H(y, 0), \forall y \in Y$, il existe un unique relèvement $\tilde{H}: Y \times I \to E$ de H tel que $\tilde{H}(y, 0) = f_0(y), \forall y \in Y$.

Premier problème

Le but du problème est l'étude de l'espace topologique $\mathbb{S}^1 \times P_2(\mathbb{R})$.

1. Considérons une suite exacte courte de groupes abéliens

$$0 \longrightarrow G_1 \xrightarrow{i} G_2 \xrightarrow{p} G_3 \longrightarrow 0$$

La suite exacte courte est dite **scindée** s'il existe un morphisme de groupes abéliens $s: G_3 \to G_2$ tel que ps = id. Montrer que la suite exacte courte est scindée si et seulement si le groupe G_2 est isomorphe au groupe $G_1 \oplus G_3$.

2. Dans cette partie, on se propose de déterminer à isomorphisme près les groupes abéliens G et H qui interviennent dans la suite exacte

$$0 \longrightarrow G \longrightarrow \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \xrightarrow{\varphi} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \longrightarrow H \longrightarrow \mathbb{Z} \longrightarrow 0 \ ,$$
 où $\varphi(a,b) = (a+b,a+b).$

- (a) Que vaut G?
- (b) Soit K un groupe abélien tel que

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\alpha} K \xrightarrow{\beta} \mathbb{Z} \longrightarrow 0$$

est une suite exacte courte de groupes abéliens. Montrer que K est isomorphe à $(\mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}$.

- (c) Conclure que H est isomorphe à $(\mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}$.
- 3. Dans cette partie nous nous consacrons au calcul de l'homologie de $\mathbb{S}^1 \times P_2(\mathbb{R})$. On considère \mathbb{S}^1 comme l'ensemble des nombres complexes de module 1 et on considère les deux points de \mathbb{S}^1 suivants : $p_1 = 1$ et $p_{-1} = -1$. On considère par la suite le recouvrement de $\mathbb{S}^1 \times P_2(\mathbb{R})$ par les ouverts $U = (\mathbb{S}^1 \setminus \{p_1\}) \times P_2(\mathbb{R})$ et $V = (\mathbb{S}^1 \setminus \{p_{-1}\}) \times P_2(\mathbb{R})$.
 - (a) Calculer les homologies réduites suivantes : $\tilde{H}_*(U \cap V)$, $\tilde{H}_*(U)$ et $\tilde{H}_*(V)$.
 - (b) Dans la suite exacte longue de Mayer-Vietoris associée au recouvrement d'ouverts U et V, donner l'expression du morphisme $H_1(U \cap V) \to H_1(U) \oplus H_1(V)$
 - (c) En déduire le calcul de l'homologie à coefficients dans \mathbb{Z} de $\mathbb{S}^1 \times P_2(\mathbb{R})$.
- 4. Dans cette partie nous nous intéressons aux revêtements de $\mathbb{S}^1 \times P_2(\mathbb{R})$.
 - (a) Sans démonstration, exprimer $\pi_1(\mathbb{S}^1 \times P_2(\mathbb{R}))$.
 - (b) Soient $p:E\to B$ et $p':E'\to B'$ deux revêtements CALCA. Montrer que $p\times p':E\times E'\to B\times B'$ est un revêtement CALCA.
 - (c) Construire le revêtement universel de $\mathbb{S}^1 \times P_2(\mathbb{R})$.
 - (d) Construire deux revêtements CALCA à 10 feuillets de $\mathbb{S}^1 \times P_2(\mathbb{R})$.
 - (e) Est-ce que tout revêtement CALCA de $\mathbb{S}^1 \times P_2(\mathbb{R})$ s'obtient comme en 3b? (Justifier)
 - (f) Décrire tous les revêtements CALCA de $\mathbb{S}^1 \times P_2(\mathbb{R})$.

Deuxième problème

Le but du problème est d'étudier quelques propriétés des groupes d'homotopie supérieure, notamment la suite exacte longue d'homotopie supérieure relative à une fibration.

On notera p_0 un point base de la sphère \mathbb{S}^n . Pour $n \geq 2$, on note

$$J^n = I^{n-1} \times \{0\} \cup_{\partial I^{n-1} \times \{0\}} \partial I^{n-1} \times I$$

et $j_n: J^n \to I^n$ l'inclusion canonique. Pour $n = 1, J^1 = \{0\}.$

On appelle **fibration** tout application continue $p:E\to B$ vérifiant la propriété suivante : tout diagramme commutatif de la forme

$$J^{n} \xrightarrow{f_{0}} E$$

$$\downarrow^{j_{n}} \downarrow^{p}$$

$$\downarrow^{p}$$

$$I^{n} \xrightarrow{H} B$$

admet un relèvement $\tilde{H}: I^n \to E$ tel que $p\tilde{H} = H$ et $\tilde{H}j_n = f_0$. On appelle **fibre au-dessus de** $b_0 \in B$ le sous-espace topologique $F_0 = p^{-1}(\{b_0\})$ de E.

- 1. Soit $f: (\mathbb{S}^n, p_0) \to (X, x_0)$ une application continue.
 - (a) Montrer que si $H_n(f)$ est non nulle alors $\pi_n(X, x_0) \neq 0$.
 - (b) En déduire que $\pi_n(\mathbb{S}^n, p_0) \neq 0$.
- 2. Dans cette question on considère $p: E \to B$ un revêtement CALCA. On fixe un point $e_0 \in E$ et on pose $b_0 = p(e_0)$. Les deux questions suivantes sont indépendantes.
 - (a) Montrer que l'application $\pi_n(p) : \pi_n(E, e_0) \to \pi_n(B, b_0)$ est un isomorphisme pour $n \ge 2$. En déduire que $\pi_n(\mathbb{S}^1, p_0) = 0$ pour tout $n \ge 2$.
 - (b) Montrer que p est une fibration.
- 3. Pour X,Y espaces topologiques, on munit l'ensemble des applications continues de X vers Y, de la topologie compacte-ouverte, engendrée par la collection d'ouverts

$$U(K,V) = \{ f : X \to Y | f(K) \subset V \}$$

avec K un compact de X et V un ouvert de Y. On note Y^X cet espace topologique. On admettra que si les espaces topologiques X,Y et Z sont séparés et localement compacts, alors $g:X\to Y^Z$ est continue si et seulement si l'application adjointe $\tilde{g}:X\times Z\to Y$ qui à (x,z) associe g(x)(z) est continue.

On fixe (X, x_0) un espace topologique pointé, localement compact et séparé. On considérera les deux sous-espaces topologiques suivants de X^I :

$$P_0X = \{\gamma : I \to X | \gamma(0) = x_0\}; \qquad \Omega_0X = \{\gamma : I \to X | \gamma(0) = x_0 = \gamma(1)\}$$

- (a) Montrer que l'application $p: P_0X \to X$ qui à $\gamma: I \to X$ associe $\gamma(1)$ est une fibration. Identifier sa fibre au-dessus de x_0 .
- (b) Montrer que P_0X est contractile.
- (c) On suppose que X est connexe par arcs. Déterminer les composantes connexes par arcs de $\Omega_0(X)$.

- 4. Soit $p:(E,e_0)\to (B,p_0)$ une fibration et $f:(I^n,\partial I^n)\to (B,b_0)$ une application continue. On note $c_{e_0}:J^n\to E$ l'application constante.
 - (a) Soit $n \geq 2$. Montrer que tout relèvement $l_f: I^n = I^{n-1} \times I \to E$ du couple (f, c_{e_0}) vérifie $l_f(x,1) \in F_0$, pour tout $x \in I^{n-1}$. On note $\partial f: I^{n-1} \to E$ l'application définie par $\partial f(x) = l_f(x,1)$.
 - (b) Montrer que l'application $\pi_n(B, b_0) \to \pi_{n-1}(F_0, e_0)$ qui à [f] associe $[\partial f]$ est bien définie et est un morphisme de groupes pour $n \geq 2$.
 - (c) Montrer que pour n=1, on peut définir une application analogue $\pi_1(B,b_0) \to \pi_0(F_0)$.
- 5. Pour la suite, on admettra le résultat suivant. Pour $p:(E,e_0)\to (B,b_0)$ une fibration avec E et B CALCA, il existe une suite exacte longue

$$\dots \longrightarrow \pi_n(F_0, e_0) \xrightarrow{\pi_n(i)} \pi_n(E, e_0) \xrightarrow{\pi_n(p)} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F_0, e_0) \xrightarrow{\pi_n(i)} \dots$$

$$\dots \pi_1(E, e_0) \xrightarrow{\pi_1(p)} \pi_1(B, b_0) \xrightarrow{\partial} \pi_0(F_0)$$

Plus précisément, la suite exacte longue est une suite exacte longue de groupes, sauf à la fin, où $\pi_0(F_0)$ est identifié au quotient du groupe $\pi_1(B, b_0)$ par l'image par $\pi_1(p)$ du groupe $\pi_1(E, e_0)$.

- (a) Retrouver le résultat de la question (2a) de l'exercice.
- (b) Calculer les groupes d'homotopie supérieure de l'espace $\Omega_0(X)$ (voir question 3.) en fonction de ceux de X et retrouver le résultat de la question 3c.
- (c) La fibration de Hopf est une fibration $p: \mathbb{S}^3 \to \mathbb{S}^2$ de fibre \mathbb{S}^1 . En déduire que $\pi_3(\mathbb{S}^2) \neq 0$.