MM1 - Algèbre et analyse élémentaires I Section E

Feuille de TD 1 - Les nombres complexes

Exercice 1. Écrire sous forme algébrique les nombres complexes suivants :

(a)
$$\frac{2}{1-2i}$$
,

(b)
$$\frac{1}{1-2i} + \frac{1}{1+2i}$$
, (c) $\frac{2+i}{3-2i}$,

(c)
$$\frac{2+i}{3-2i}$$

(d)
$$\left(\frac{1+i}{2-i}\right)^2$$
,

(e)
$$\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$

(e)
$$\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$
, (f) $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$.

Exercice 2. Écrire sous forme trigonométrique les nombres complexes suivants.

(a)
$$-3\sqrt{2}$$

(b)
$$-\frac{4}{3}i$$

(c)
$$\pi i$$
,

(d)
$$3 + 3i$$
,

(e)
$$\sqrt{3} - i$$
,

(f)
$$\sqrt{2} + \sqrt{6}i$$
,

(g)
$$\frac{1-i}{\sqrt{3}+i}$$
,

(h)
$$(1-i)^9$$
,

(a)
$$-3\sqrt{2}$$
, (b) $-\frac{4}{3}i$, (c) πi , (d) $3+3i$, (e) $\sqrt{3}-i$, (f) $\sqrt{2}+\sqrt{6}i$, (g) $\frac{1-i}{\sqrt{3}+i}$, (h) $(1-i)^9$, (i) $(\sqrt{5}-i)(\sqrt{5}+i)$, (j) e^{3+4i} , (k) $e^{i\frac{\pi}{3}}+e^{i\frac{2\pi}{3}}$, (l) $\sqrt{3}i+e^{-i\pi}$.

(k)
$$e^{i\frac{\pi}{3}} + e^{i\frac{2\pi}{3}}$$

(1)
$$\overline{\sqrt{3}i} + e^{-i\pi}$$
.

Exercice 3. Écrire sous forme exponentielle les nombres complexes suivants :

(b)
$$e^{i\theta} + e^{i\theta'}$$
.

(b)
$$e^{i\theta} + e^{i\theta'}$$
, (c) $e^{i\theta} - e^{i\theta'}$,

(d)
$$\frac{e^{i\theta} + e^{i\theta'}}{e^{i\theta} - e^{i\theta'}}$$
 (ce nombre est-il toujours bien défini?).

Exercice 4. Soit $z=r(\cos\theta+i\sin\theta)$ un nombre complexe non nul écrit sous forme trigonométrique. Écrire $\bar{z},-z,\frac{1}{z}$ sous forme trigonométrique.

Exercice 5. Soit α un réel non congru à $\frac{\pi}{2}$ modulo π et $t = \tan \alpha$.

(a) Quelle est la forme exponentielle de $z = \frac{1+it}{1-it}$?

(b) Mettre z sous forme algébrique et en déduire que $\cos(2\alpha) = \frac{1-t^2}{1+t^2}$ et $\sin(2\alpha) = \frac{2t}{1+t^2}$

Exercice 6. Soient A, B et C trois points du plan complexe d'affixes

$$z_A = \sqrt{2}e^{i\frac{\pi}{4}}, \ z_B = 4 + 2i, \ z_C = -5 - i.$$

Calculer les affixes des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et montrer que A, B et C sont alignés.

Exercice 7. Soient E, F et G trois points du plan complexe d'affixes

$$z_E = -2i, \ z_F = -\sqrt{3} + i, \ z_G = \sqrt{3} + i.$$

Donner la forme algébrique de $\frac{z_F - z_E}{z_G - z_E}$ et la forme trigonométrique. En donner une interprétation géométrique.

Exercice 8. Soit z = x + iy un nombre complexe différent de -2 et $Z = \frac{z + 3i}{z + 2}$.

a) Exprimer Z sous forme algébrique

b) Déterminer l'ensemble des points M du plan complexe d'affixe z vérifiant Z est imaginaire pur.

Exercice 9. Trouver les racines carrées complexes des nombres suivants :

- (a) 16,

- (b) 4i, (c) 3+4i, (d) $-1+i\sqrt{3}$, (e) 1+i, (g) i-2, (h) $2e^{i2\pi/5}$, (i) -5-12i, (j) $\frac{1+i}{1-i}$.

- (f) 6 8i,

Exercice 10. Soit $\theta \in \mathbb{R}$ un nombre réel. Résoudre dans \mathbb{C} les équations suivantes :

- (a) $z^2 2\cos(\theta)z + 1 = 0$,
- (b) $z^4 2\cos(2\theta)z^2 + 1 = 0$.

Exercice 11. (a) Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$ sous forme algébrique et exponentielle.

- (b) En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$
- (c) En utilisant la même méthode, calculer les valeurs de $\cos(\pi/12)$ et $\sin(\pi/12)$.

Exercice 12. Résoudre dans $\mathbb C$ les équations suivantes :

(a)
$$z^2 + z + 1 = 0$$
,

(b)
$$z^2 - iz + 2 = 0$$
,

(c)
$$(3-i)z^2 + (4i-2)z - 8i + 4 = 0$$
, (d) $z^2 - (1+2i)z + i - 1 = 0$,

(d)
$$z^2 - (1+2i)z + i - 1 = 0$$

(e)
$$z(z-i) = iz + 2$$
,

(f)
$$z^2 - 3z + 3 + i = 0$$
,

(g)
$$z^4 + 2z^3 + 4z^2 = 0$$
,

(h)
$$z^4 + 2z^2 + 4 = 0$$
.

Exercice 13. (a) Déterminer les formes algébriques et exponentielles des racines 8-ièmes de l'unité, puis décrire la figure obtenue dans le plan complexe en joignant ces racines avec arguments consécutifs.

- (b) Déterminer les formes algébriques et exponentielles des racines cinquièmes de i, puis décrire la figure obtenue dans le plan complexe en joignant ces racines avec arguments consécutifs.
- (c) Sachant que $(2+4i)^6 = 7488 + 2816i$ donner les racines sixièmes de 7488 + 2816i.

Exercice 14. Dans cet exercice, on admettra que $e^{i2\pi/5} = (\sqrt{5} - 1 + i\sqrt{10 + 2\sqrt{5}})/4$ et on notera μ ce nombre complexe.

- (a) Écrire sous forme algébrique $z = e^{i\pi/3}$.
- (b) Écrire μ/z sous forme trigonométrique et algébrique.
- (c) En déduire les valeurs de $\cos \frac{\pi}{15}$ et $\sin \frac{\pi}{15}$.

Exercice 15. Résoudre dans $\mathbb C$ les équations suivantes :

(a)
$$z^4 + 1 = 0$$

(b)
$$z^5 + 1 = 0$$
.

(c)
$$z^6 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
,

(d)
$$z^6 - 2iz^3 - 1 = 0$$

(e)
$$z^2 - 2z = 0$$
,

(f)
$$\gamma^n - \overline{\gamma}$$

(g)
$$z^2 + \bar{z} - 1$$
 est réel

Exercise 15. Resolute dails
$$\mathbb{C}$$
 les equations suivantes :

(a) $z^4 + 1 = 0$, (b) $z^5 + 1 = 0$, (c) $z^6 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$, (d) $z^6 - 2iz^3 - 1 = 0$, (e) $z^2 - 2\overline{z} = 0$, (f) $z^n = \overline{z}$, (g) $z^2 + \overline{z} - 1$ est réel, (h) $\left(\frac{z+1}{z-1}\right)^3 + \left(\frac{z-1}{z+1}\right)^3 = 0$.

À partir de (b), déduire les valeurs de $\cos \frac{\pi}{5}$ et $\sin \frac{\pi}{5}$.

Exercice 16. (a) Calculer les racines n-ième de -i et de 1+i.

- (b) Résoudre dans \mathbb{C} l'équation $z^2 z + 1 i = 0$.
- (c) En déduire les solutions dans \mathbb{C} de l'équation $z^{2n} z^n + 1 = 0$.

Exercice 17. En utilisant la formule du binôme de Newton, développer les expression suivantes :

(a)
$$(a+b)^6$$
,

(b)
$$(x + iy)^4$$
,

(c)
$$(1+i)^5$$
,

(d)
$$(1-2i)^3$$
,

(e)
$$(10+1)^4$$
,

(f)
$$(a+b+c)^3$$
.

Exercice 18. Pour tout $n \in \mathbb{N}$, calculer :

(a)
$$(1+i)^n + (1-i)^n$$

(b)
$$(1+i)^n - (1-i)^n$$

(a)
$$(1+i)^n + (1-i)^n$$
, (b) $(1+i)^n - (1-i)^n$, (c) $\left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{1-\sqrt{3}i}{2}\right)^{2n}$.

Exercice 19. Exprimer en fonction de $\cos \alpha$ et $\sin \alpha$ les formules trigonométriques suivantes :

(a)
$$\cos(3\alpha)$$
,

(b)
$$\sin(3\alpha)$$
,

(c)
$$\cos(4\alpha)$$
,

(d)
$$\sin(5\alpha)$$
,

Exercice 20. Soit α un nombre réel. Linéariser les formules trigonométriques suivantes :

(a)
$$\cos^3 \alpha$$
,

(b)
$$\sin^3 \alpha$$
,

(c)
$$\cos^4 \alpha$$
,

(d)
$$\sin^4 \alpha$$
,

(e)
$$\cos^5 \alpha$$
,

(f)
$$\sin \alpha \cos^3 \alpha$$
.

Exercice 21. Soient $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Déterminer la valeur de $\sum_{k=0}^{n-1} \sin(k\alpha)$.

Annales

Exercice 22 (Examen, 2013). Dans cet exercice, α désigne un nombre réel tel que $\cos(\alpha) \neq 0$.

- (a) Rappeler les définitions du module et d'un argument d'un nombre complexe $z \neq 0$.
- (b) Écrire sous forme exponentielle le nombre complexe -i.
- (c) Écrire sous forme exponentielle le nombre complexe z_0 donné par :

$$z_0 = \frac{1 + i \, \tan(\alpha)}{1 - i \, \tan(\alpha)}.$$

(d) Trouver les nombres réels α vérifiant l'équation :

$$\left(\frac{1+i\,\tan(\alpha)}{1-i\,\tan(\alpha)}\right)^2 = -i.$$

Exercice 23 (Partiel, 2013). (a) Exprimer les racines 3-ièmes de l'unité sous formes exponentielle, trigonométrique et cartésienne.

- (b) Exprimer les racines 3-ièmes de 2+2i sous formes exponentielle et trigonométrique.
- (c) À l'aide du point (a), exprimer les racines 3-ièmes de 2 + 2i sous forme cartésienne.
- (d) En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- (e) Exprimer $\sin(2\alpha)$ en fonction de $\cos \alpha$ et $\sin \alpha$.
- (f) Linéariser $\cos^3 \alpha$.
- (g) Vérifier les formules des points (e) et (f) pour $\alpha = \frac{\pi}{12}$.

Exercice 24 (Examen, 2014). Les deux parties sont indépendantes.

1. Racines d'un nombre complexe

- (a) Calculer le module et un argument du nombre complexe $16 + 16i\sqrt{3}$. En déduire la forme exponentielle ou trigonométrique de $16 + 16i\sqrt{3}$.
- (b) Déterminer (sous forme exponentielle ou trigonométrique) tous les nombres complexes z tels que

$$z^5 = 16 + 16i\sqrt{3}$$
.

2. Équation de degré deux dans $\mathbb C$

Résoudre dans $\mathbb C$ l'équation d'inconnue z

$$z^2 - (3 - i)z + 4 = 0.$$

Exercice 25 (Partiel, 2014). 1. Écrire le nombre complexe -i sous forme exponentielle.

- 2. Résoudre dans $\mathbb C$ l'équation $z^3=-i$. On définit $u=-\frac{\sqrt{3}}{2}-\frac{i}{2}$.
- 3. Exprimer u sous forme exponentielle et calculer u^3 , u^5 , u^{11} et u^{24} sous formes exponentielles, trigonométriques et cartésiennes, en faisant le moins de calculs possibles.

Exercice 26 (Examen, 2014). 1. Résoudre, dans \mathbb{C} , l'équation $z^6 = 1$.

2. Montrer que i est une solution de l'équation $z^6=-1$. En déduire l'ensemble des solutions de l'équation $z^6=-1$ dans $\mathbb C$ en exprimant les racines de cette équation sous formes exponentielles, cartésiennes et trigonométriques, et les dessiner sur le cercle unité.