
HIGHER CATEGORIES

MURIEL LIVERNET

These few notes are intended to present the progression of the course, some references and
exercises.

Lecture 1 (9th march 2022). Introduction and presentation of the course; mostly two
models of (∞, 1)-categories (quasicategories and simplicial categories) and their comparison.

There are other models, and we refer to the book of J. Bergner, The homotopy Theory of
(∞, 1)-categories, for the models presented by Segal categories and complete Segal spaces.
There are other models developped by Barwick and Kan in Relative categories: another
model for the homotopy theory of homotopy theories. If one would like to understand theory
of (∞, n)-categories, the paper by D. Ara, Higher quasi-categories vs Higher Rezk spaces,
explains generalization of quasicategories and complete Segal spaces and proves the Quillen
equivalence between them. Some of them will be explored during the course.

Note on the bibliography:
On model categories– Hirschorn, Localization of model categories

Date: April 14, 2022.
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Chapter 1: Quasicategories

This chapter follows indifferently the following references: D.C. Cisinski, Higher categories
and homotopical algebra, A. Joyal, The Theory of quasicategories and its applications, J.
Lurie, Higher topos theory.

1. Reminder

1.1. Presheaves. We refer to section 1.1 of Cisinski.

1.2. Localisation. We recall here the meaning of localization and take benefit of it to talk
about equivalence of categories.

Exercise 1.2.1. Let F : C→ D : G be an adjunction, F being the left adjoint.

(1) Show that G is fully faithful if and only if the counit of the adjunction is an isomor-
phism.

(2) Show F is fully faithful if and only if the unit of the adjunction is an isomorphism.
(3) Deduce that the adjunction is an equivalence of categories if and only if F is fully

faithful and essentially surjective.

1.3. Model categories. Presentation using weak factorization systems (see E. Riehl, A
concise definition of a model category).
Recollection from the course by Idrissi Homotopy 2: homotopy category of a model category
C denoted Ho(C), Whitehead Theorem and its corollary: a map f in C is a weak equivalence
if and only if Ho(f) is an isomorphism.

A useful Proposition (due to Dugger) concerning Quillen adjunction

Proposition 1.3.1 (Hirschorn 8.6.3). An adjunction (F,G) is a Quillen adjunction if and
only if one of the following holds:

(1) F preserves cofibrations between cofibrant objects and all acyclic cofibrations;
(2) G preserves fibrations between fibrant objects and all acyclic fibrations;
(3) F preserves cofibrations between cofibrant objects and G preserves fibrations;
(4) G preserves fibrations between fibrant objects and F preserves cofibrations.

Example 1.3.2. Let ∆̂ be the category of simplicial sets. These are examples of model
category structures:

• Kan-Quillen on ∆̂: mono, we, Kan fibration
• Quillen on Top: retract of cell attachments, we, Serre fibrations.
• Joyal-Tierney on Cat: mono, equivalences of categories, isofibrations.

Exercise 1.3.3. (1) Show that the notion of isofibration is self-dual: a functor F : X→
Y is an isofibration iff the opposite functor F o : Xo → Yo is an isofibration.

(2) Show that a functor F : X→ Y is an isofibration iff it has the right lifting property
with respect to the inclusion {0} ⊂ J , where J is the groupoid generated by one
isomorphism 0 ∼= 1

Lecture 2 (11th march 2022).
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1.4. Simplicial sets. Notation: ∆n, ∂∆n,Λn
k ; recollection on Kan fibrations, Kan com-

plexes.
The constant functor Set→ ∆̂ admits a left adjoint denoted by τ0:

π0(X) = coeq(X1

d1 //

d0

// X0)

When X is a Kan complex, π0(X) = X0/ ∼ where x ∼ y if and only if there exists f ∈ X1

such that d1f = x; d0f = y, is an equivalence relation. The constant functor has a right
adjoint given by X 7→ X0.

1.5. Nerve of a category. (see Section 1.4 of Cisinski)

Definition of the nerve functor: ∆̂ → Cat. It admits a left adjoint τ1 defined by left
Kan extension along the Yoneda functor of the functor ∆ → Cat which associated to [n]
the Poset category 0 < 1 . . . < n. τ1 is not easy to describe since it is not easy to describe
colimits of categories (see exercise 1.5.1). Statement of the nerve theorem (see Proposition
1.4.11 in Cisinski’s book).

Exercise 1.5.1. We denote by [n] the category (poset) 0 < 1 < . . . < n. We denote by
δi : [n− 1]→ [n] the functor that ”misses” i.

(1) Show that the colimit of the following diagramme is [2]:

[1] [1]

[0]

δ0

__

δ1

??

(2) What is the colimit of the diagramme:

[0]
δ0

��

δ0

��
[1] [1]

[0]

δ1

__

δ1

??

(3) Show that τ1(Λ3
1) = τ1(∂∆3) = τ1(Λ3

2) = [3].

Exercise 1.5.2. Let X be a topological space. Compute τ1(Sing(X)).

Exercise 1.5.3. Let C be a category. Show that the nerve of C is a Kan complex if and only
if C is a groupoid.

2. Quasicategories

2.1. First definitions. Where we define quasicategories (see definition 1.5.1 of Cisinski’s).
Definition of the opposite of a simplicial set, denoted Xop.

Exercise 2.1.1. Show that N(C)op is isomorphic to N(Cop). Show that X is a quasicategory
if and only if Xop is.
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2.2. Weak composition and homotopy category associated to a quasicategory.
Notation: let X be a simplicial set, a, b ∈ X0. We define X1(a, b) as the pullback (in sets) of
the diagramme

X1

(d1,d0)

��
∗

(a,b)
// X0 ×X0

We define a relation on X1(a, b) (defined by Boardman-Vogt) and prove that it is an equiva-
lence relation and that it endows hX with a structure of category. hX is called the homotopy
category associated to X or its fundamental category. (see Section 1.6 of Cisinski’s book).

Lecture 3 (Wednesday 16th of march)
We prove that that category hX is isomorphic to the category τ1(X). For f ∈ X1(a, b) we

denote by [f ] its image in in hX(a, b).

Remark 2.2.1. Let X be a quasicategory and f, g, k in X1. The equality [k] = [g] ◦ [f ] in hX
amounts to the existence of a 2-cell σ in X2 such that d0σ = g, d1σ = k, d2σ = f .

Definition 2.2.2. Let X be a quasicategory.

(1) An element f in X1 is invertible (or is an equivalence) if [f ] is an isomorphism in hX.
(2) A quasicategory is an∞-groupoid if every element f ∈ X1 is invertible, or equivalently

if hX is a groupoid.

Example: a Kan complex is an ∞-groupoid. If X is a topological space, then Sing(X) is
a Kan complex and hSing(X) is the fundamental groupoid of X.

Exercise 2.2.3. Let X be a simplicial set having the right lifting property with respect to
inner horns inclusion Λn

k → ∆n for n = 2 and n = 3. Show that the relation defined by
Boardmann Vogt is an equivalence relation, that it induces a structure of category on hX
and that hX is isomorphic to τ1(X).

2.3. The category of quasicategories.

2.3.1. Natural transformations. Let X, Y be two quasicategories. A morphism of simplicial
sets f : X → Y is called a functor. We denote by Qcat the category whose objects are
quasicategories and morphisms are functors, that is the full subcategory of quasicategories
in ∆̂.

Definition 2.3.1. Let X, Y be two quasicategories. A morphism of simplicial sets H :
X×∆1 → Y is called a natural transformation from f = H ◦ (1X × δ1) to g = H ◦ (1X × δ0).
We say that the natural transformation H is invertible if for every x ∈ X0 the induced
1-simplex f(x) → g(x) ∈ Y1 is invertible (that is its image in hY is an isomorphism). We
say that two quasicategories X, Y are equivalent if there exist functors F : X → Y and
G : Y → X and invertible natural transformations from GF to the identity and from the
identity to FG.

Exercise 2.3.2. Let C,D be categories. Let [1] be the category 0 < 1. Let δ0(resp. δ1) :
∗ → [1] denote the functors sending ∗ to 1 (resp. 0). Let F,G : C → D be two functors.
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(1) Show that a natural transformation α from F toG is an isomorphism (that is there is a
natural transformation β from G to F such that α◦β and β◦α are the identity natural
transformations) if and only if for every object c of C the morphism αc : Fc→ Gc in
D is an isomorphism.

(2) Show that given a natural transformation τ from F to G is equivalent to given
H : C × [1]→ D such that H ◦ (1X × δ0) = G and H ◦ (1X × δ1) = F .

(3) Deduce that τ is a natural transformation (in the classical sense of categories) if and
only if Nτ is a natural transformation (in the sense of quasicategories).

(4) Prove that τ is an isomorphism if and only if Nτ is invertible.
(5) Deduce that C and D are equivalent if and only if NC and ND are.

2.3.2. The category Qcat is cartesian closed. For X, Y simplicial sets we denote by Y X the
simplicial set defined by (Y X)n = Hom∆̂(X × ∆n, Y ). We wil show later that if Y is a
quasicategory then Y X is.

Exercise 2.3.3. Show that for C,D categories, if we denote by Fun(C,D) the functor cat-
egory, then NDNC = N(Fun(C,D)). Show that if X is a simplicial set we have (ND)X

is isomorphic to N(Fun(τ1(X),D)) (providing that we know that τ1 commutes with finite
products).

Exercise 2.3.4. Let X, Y be quasicategories; we assume that Y X is a quasicategory. Show
that if H ∈ (Y X)1 is invertible, then H is an invertible natural transformation as defined in
Definition 2.3.1. Can you prove the converse?

Let X be a simplicial set. Define X(a, b) to be the pullback of the diagram

X∆1

��
∗

(a,b)
// X ×X

We have that X(a, b)0 = X1(a, b) and if X is a quasicategory the relation defined on X(a, b)
by f ' g if there exists H ∈ X(a, b)1 such that d0H = g and d1H = f is equivalent to the
relation defined on X1(a, b) in Section 2.2. Hence π0(X(a, b)) = hX(a, b).

For f, g ∈ X(a, b)0 we define Comp(f, g) as the pullback of the diagram

X∆2

��

∗
(f,g)
// XΛ2

1

We will see later that Comp(f, g) is a contractible Kan complex.

2.3.3. Limits and colimits in QCat. We have proved that QCat is stable under products,
coproducts and filtered colimits.

Exercise 2.3.5. Show that Λ2
1 is not a quasicategory. Explain it provides a counter example

to the stability of QCat under finite colimits.

Lecture 4 (Friday 18th of march)
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2.4. Inner anodyne extensions and inner fibrations. Notation: for S a set of monomor-
phisms in ∆̂ we denote by S̄ the smallest saturated class of morphisms containing S. We
recall that (S̄, (S)�) is a weak factorization system. Let Min = {Λn

k → ∆n}n≥2,0<k<n. An
inner anodyne extension is a map in Min and an inner fibration is a map in (Min)�).

Proposition 2.4.1. Every functor X → NC with X a quasicategory and C a category is
an inner fibration.

For i : X → Y , j : A→ B and f : U → V we recall the notation:

i�j : X ×B ∪X×A Y × A→ Y ×B

f�j : UY → V Y ×V X UX .

Proposition 2.4.2. We have Min = {(Λ2
1 → ∆2)�(∂∆n → ∆n)}n≥0

Theorem 2.4.3. If i is an inner anodyne extension and j is a monomorphism, then i�j is
an inner anodyne extension.
If j is a mono and f is an inner fibration then f�j is an inner fibration.
If i is an inner anodyne extension and f is an inner fibration, then f�i is a trivial (Kan)
fibration.

Corollary 2.4.4. For K a simplicial set and X a quasicategory (resp. Kan complex) une
quasicategory (resp complexe de Kan) alors XK is a quasicategory (resp. Kan complex) .

Corollary 2.4.5. Let X be a simplicial set. The following propositions are equivalent.

(1) Xis a quasicategory

(2) X∆2 → XΛ2
1 is a trivial (Kan) fibration.

(3) ∀n ≥ 2, X∆n → XIn is a trivial (Kan) fibration.

In particular comp(f, g) is contractible.

This corollary has been proved, except for the fact that the inclucion In → ∆n is an inner
anodyne extension. The following exercise will help to finish the proof.

Exercise 2.4.6. We prove by induction on n, that the spine inclusion In → ∆n is an inner
anodyne extension. It is clearly true for n = 2. Assume that In → ∆n is an inner anodyne
extension.

(1) Show that In+1 → In+1 ∪ ∂0∆n+1 ∪ ∂n+1∆n+1 is an inner anodyne extension.
(2) Show that for all 1 ≤ i ≤ n− 1, In+1 → In+1 ∪ (∪ij=0∂j∆

n+1) ∪ ∂n+1∆n+1 is an inner
anodyne extension.

(3) Conclude.

Exercise 2.4.7. Find a simplicial set that has the right lifting property with respect to all
spine inclusions, but which is not a quasicategory. Hint: show that the pushout S of the
diagram

I3
//

��

∂∆3

∆3

is not a quasicategory but has the right lifting property with respects to all spine inclusions.
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Lecture 5 (Wednesday 23th of march)

Exercise 2.4.8. Let p : X → Y be a map between simplicial sets. Show that the following
assertions are equivalent

(1) p is an inner fibration.
(2) For every inner anodyne extension i, p�i is a trivial fibration.
(3) For every monomomorphism j, p�j is an inner fibration
(4) For i = Λ2

1 → ∆2, p�i is a trivial fibration.

Proposition 2.4.9. If j : X → Y is an inner anodyne extension then τ1(j) is an equivalence
of categories.

2.5. Equivalences.

Proposition 2.5.1. The functor τ1 preserves finite products.

We have defined: the core of a category (right adjoint to the inclusion functor from
groupoids to categories);

Exercise 2.5.2. For a given quasicategory X and a given subcategory S of hX we have
defined S ′ as the pullback of the inclusion S → hX along the unit of the adjunction X →
NhX: the subquasicategory of X generated by S ′. Show that hS ′ is isomorphic to S.

This permits us to define Core(X) has the subquasicategory of X generated by Core(hX).

Exercise 2.5.3. Show that Core defines a functor QCat→∞− gpd, right adjoint to the
inclusion functor.

We define τ0 as the composite π0 ◦Core ◦ τ1, namely on objects τ0(X) is the isomorphism
classes of objects in τ1(X). We proved that τ0 preserves finite products.

Following Joyal notation, let Sτ0 be the category whose objects are simplicial sets and
given two simplicial sets X, Y

Sτ0(X, Y ) = τ0(Y X).

We have proved that this forms a category and that there is a well defined functor τ0 : ∆̂→
Sτ0

Definition 2.5.4. A morphism f : X → Y of simplicial sets is a categorical equivalence if
τ0(f) is an isomorphism in Sτ0 .

We explained that if X, Y are quasicategories then this amounts to having a map g : Y →
X and H ∈ (XX)1 and K ∈ (Y Y )1 invertible so that H is a homotopy from fg to idX and
K a homotopy from fg to idY .

Exercise 2.5.5. We recall that two maps f, g : X → Y are homotopic if there exists
H : X × ∆1 → Y such that H|X×{0} = f,H|X×{1} = g. Recall that this relation is not
necessarily an equivalence relation.

(1) Recall why it is an equivalence relation when Y X is a Kan complex.
(2) Deduce that if X and Y are Kan complexes, then f : X → Y is a categorical

equivalence if and only if it is a homotopy equivalence.

Example 2.5.6. Any trivial fibration between quasicategories is a categorical equivalence.
Any functor f : C → D between two categories is an equivalence of category if and only if
Nf is a categorical equivalence.
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Proposition 2.5.7. Let f : X → Y be a categorical equivalence between two quasicategories.
We have:

(1) hf : hX → hY is an equivalence of categories.
(2) τ0f : τ0X → τ0Y is a bijection.

Exercise 2.5.8. Let f : X → Y be a morphism of simplicial sets. Show that

(1) If f is a trivial fibration, then f is a categorical equivalence. (check that the proof
we presented for X, Y quasicategories, work the same.

(2) If f is a categorical equivalence, then τ1(f) is an equivalence of categories.

Definition 2.5.9. Let f : X → Y be a map of simplicial sets. We say that f is a weak
categorical equivalence if for every quasicategory Z, τ0(f, Z) : Sτ0(Y, Z) → Sτ0(X,Z) is a
bijection.

Theorem 2.5.10. Let f : X → Y be a map of simplicial sets. TFAE

(1) for every quasicategory Z, Z�f = f ∗ : ZY → ZX is a categorical equivalence
(2) for every quasicategory Z, h(f ∗) : h(ZY )→ h(ZX) is an equivalence of categories.
(3) for every quasicategory Z, Core(f ∗) : Core(ZY ) → Core(ZX) is a homotopy equiva-

lence
(4) f is a weak categorical equivalence.

Lecture 6 (Friday 25th of march)

Exercise 2.5.11. Prove (1)⇒ (3).

Example 2.5.12. Any inner anodyne extension is a weak categorical equivalence.
Any categorical equivalence between quasicategories is a weak categorical equivalence (and
conversely).

2.6. Isofibrations.

Definition 2.6.1. A functor F : C → D between quasicategories is an isofibration if

• F is an inner fibration
• hF : hC → hD is an isofibration of categories

Example 2.6.2. For X a quasicategory, the unique map p : X → ∗ is an isofibration.

Definition 2.6.3. A functor F : C → D between quasicategories is conservative if for every
f ∈ C1, if Ff is invertible so is f .

Exercise 2.6.4. Show that F : C → D is an isofibration if and only if F op is an isofibration.

Example 2.6.5. Left and right fibrations are conservative isofibrations.

Theorem 2.6.6 (Joyal lifting lemma). Let p : X → Y be an inner fibration between quasi-
categories and let f : x 7→ x′ in X1 such that pf is invertible in Y1. TFAE:

(1) f is invertible
(2) every map from Λn

0 → ∆n to p where the initial arrow is invertible admits a lift.
(3) every map from Λn

n → ∆n to p where the terminal arrow is invertible admits a lift.

Corollary 2.6.7. Let X be a quasicategory. X is a Kan complex if and only if hX is a
groupoid.
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Corollary 2.6.8. Let X be a quasicategory and let f ∈ X1, that is, f : ∆1 → X. f is
invertible if and only if f extends to a morphism J → X, where J is the groupoid generated
by [1].

Corollary 2.6.9. Let p : X → Y be an inner fibration between quasicategories. TFAE

(1) p is an isofibration
(2) p has the RLP with respect to {0} → J .
(3) Core(p) is a Kan fibration between Kan complexes.

Proposition 2.6.10. Let p : X → Y be an isofibration between quasicategories. For every
monomorphism i : K → L, p�i is an isofibration. Same result holds if p is an inner fibration
and i0 : K0 → L0 is a bijection. For such a monomorphism, if X is a quasicategory then
i∗ : XL → XK is a conservative isofibration.

Lecture 7 (Wednesday 30th of march)

Exercise 2.6.11. Show that conservative isofibrations are preserved by pullbacks

Corollary 2.6.12. Let F,G : X → Y be two functors between quasicategories and η :
X ×∆1 → Y be a natural transformation between them. η is invertible in (Y X)1 if and only
if ηx : F (x)→ G(x) is invertible in Y1.
If X is a quasicategory, then for every x, y ∈ X0 the simplicial set MapX(x, y) is a Kan
complex.

Corollary 2.6.13. Let p : X → Y be a conservative isofibration between quasicategories.
We have

(1) The fibers of p are Kan complexes.
(2) If Y is a Kan complex then p is a Kan fibration.

Exercise 2.6.14. Let p : X → Y is be a functor between quasicategories. Show that p is
conservative if and only if we have a cartesian square in simplicial sets

Core(X) //

Core(p)
��

X

p

��
Core(Y ) // Y

Exercise 2.6.15. Let p : X → Y is be a functor between quasicategories. Let f : B → Y
be a functor of quasicategories. Let A = B ×Y X be the pullback of f along p in simplicial
sets, namely we have the cartesian square (D) in ∆̂:

A //

��

X

p
��

B
f
// Y

(1) Explain why (D) is not necessarily a cartesian square in QCat.
(2) Show that if p is an inner fibration then (D) is a cartesian square in QCat.
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(3) In case p is an inner fibration, is Core(D)

Core(A) //

��

Core(X)

Core(p)
��

Core(B)
Core(f)

// Core(Y )

a cartesian square in the category of Kan complexes Kan (the full subcategory of ∆̂
whose objects are Kan complexes)?

(4) Show that Core(D) is a cartesian square in Kan if p is an isofibration. Deduce that
the functor Core preserves pullback along isofibrations.

(5) Why couldn’t we use the fact that Core is right adjoint to the inclusion Kan→ QCat
to prove the previous proposition?

Theorem 2.6.16. Let p : X → Y be a functor between quasicategories.

(1) p is a trivial fibration if and only if p is an isofibration and a (weak) categorical
equivalence.

(2) p is an isofibration if and only if p has the RLP with respect to monomorphisms that
are weak categorical equivalences.

2.7. Joyal model structure.

Theorem 2.7.1. There exists a Quillen model structure on ∆̂ where cofibrations are monomor-
phisms, weak equivlalences are weak categorical equivalences. Furthermore fibrant objects are
quasicategories, and fibrations between quasicategories are isofibrations.

Exercise 2.7.2. Show the end of the Theorem: in the Joyal model structure, fibrant objects
are quasicategories, and fibrations between quasicategories are isofibrations.

Exercise 2.7.3. Show that the Joyal model category is not right proper, by exploring the
counterexample of Lurie, that is the pullback of the diagram

∆{0,2}

��
Λ2

1
// ∆2

Lecture 8 (Friday 1st of april) Reference: Rune Haugsgeng, course on ∞-categories.

3. Limits and colimits in quasicategories

3.1. Joins in categories. Definition and adjunction properties.

3.2. Joins for simplicial set. Definition of the join of two simplicial sets.

Exercise 3.2.1. Prove that ∆n ∗∆m ' ∆n+m+1, ∆0 ∗ ∂∆n ' Λn+1
0 , ∂∆n ∗∆0 ' Λn+1

n+1.

Proposition 3.2.2. Let X be a simplicial set. The functor −∗X : ∆̂→ X/∆̂ admits a right

adjoint, which associates to p : X → Y the simplcial set Y/p. The functor X ∗− : ∆̂→ X/∆̂
admits a right adjoint, which associates to p : X → Y the simplcial set Yp/.
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Exercise 3.2.3. Let F : C → D be a functor between categories. We have ND/NF '
N(D/F ).

Lemma 3.2.4. If X and Y are quasicategories, so is X ∗ Y .

3.3. Properties of the slices.
Special case: When y : ∆0 → X, the slice Yy/ is the simplicial sets whose n-simplices are

thoses n+ 1-simpices σ of X satsifying σ(0) = y.

Functoriality: Any j : T → S and p : S → X and f : X → Y morphisms in ∆̂ yield
commutative diagrams:

X/p
//

��

Y/fp

��

Xp/
//

��

Yfp/

��
X/pj

// Y/fpj Xpj/
// Yfpj/

3.4. Pushout/join, Pullback/slices.

Definition 3.4.1. Let i : A→ B, j = K → L, define i� j : A ∗ L ∪A∗K B ∗K → B ∗ L

Exercise 3.4.2. Show that

• (Λn
j → ∆n) � (∂∆m → ∆m) ' Λn+m+1

j → ∆n+m+1

• (∂∆m → ∆m) � (Λn
j → ∆n) ' Λn+m+1

j+m+1 → ∆n+m+1

• (∂∆m → ∆m) � (∂∆n → ∆n) ' ∂∆n+m+1 → ∆n+m+1

Definition 3.4.3. Let i : A → B, p : B → X and h = X → Y , morphisms of simplicial
sets. Define < i, p, h >/−: X/p → X/pi ×Y/hpi Y/hp and < i, p, h >−/: Xp/ → Xpi/ ×Yhpi/ Yhp/
Proposition 3.4.4. Let i : A → B, j : K → L, h : X → Y . The following proposition are
equivalent

(1) i� j has the LLP against h
(2) For every q : L→ X, i has the left lifting property against < j, q, h >/−

(3) For any p : B → X j has the left lifting property against < i, p, h >−/

Corollary 3.4.5. Let C be a quasicategory. p : S → C and j : T → S.

(1) If j is a monomorphism then Cp/ → Cpj/ is a left fibration.
(2) If j is a monomorphism then C/p → C/pj is a right fibration.
(3) If j is right anodyne then Cp/ → Cpj/ is a trivial fibration.
(4) If j is left anodyne then C/p → C/pj is a trivial fibration.

In addition C/p and Cp/ are quasicategories.

3.5. Initial and terminal object.

Definition 3.5.1. An object x in a quasicategory C is initial (resp. terminal) if Cx/ → C
(resp. C/x → C) is a trivial fibration.

Proposition 3.5.2. x is initial in C if and only if every map σ : ∂∆n → C such that σ(0) = x
extends to a map from ∆n.

Remark 3.5.3. Let C be a quasicategory. The full subquasicategory Cinit of C spanned by
initial objects is a contractible Kan complex.
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3.6. Limits and colimits.

Definition 3.6.1. Let p : K → C a morphism of simplicial sets with C a quasicategory. A
colimit of p is an initial object of Cp/. A limit of p is a terminal object in C/p.

Proposition 3.6.2. Let p̄ : K ∗ ∆0 → C be such that p̄|K = p. We have p̄ ∈ (Cp/)0 is a
colimit of p if and only if Cp̄/ → Cp/ is a trivial fibration.
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Chapter 2: Simplicial categories

Lecture 9 (Wednesday 6th of april)
For references on enriched categories, see Emily Riehl Categorical homotopy theory, Part

I-Chapter 3.
For references on the model category structure for simplicial categories, see the book by

Julie Bergner, The homotopy Theory of (∞, 1)-categories

1. Enriched categories

We assume that the notions of symmetric monoidal categories and (lax) monoidal functors
between symmetric monoidal categories is known. Given a symmetric monoidal category V ,
we define the notion of V-enriched categories (or shortly V-categories).

1.1. First definitions.

Definition 1.1.1. Let C,D be two V-enriched categories. A V-functor F : C → D is the
following data: to each object x of C is associated an object F (x) of D; to each pair x, y
of objects of C is associated an arrow Fxy : C(x, y) → D(Fx, Fy) in V , satisfying the usual
axioms.

Proposition 1.1.2. Let F : V → U be a (lax) monoidal functor between symmetric monoidal
categories. Let C be a V-category. The functor F induces a structure of U-category on C
denoted F∗C, whose objets are those of C and morphisms are defined by F (C(x, y)).

Example 1.1.3. Let V be a small symmetric monoidal category and IV be the unit for this
monidal structure. The functor V(IV ,−) : V → Set is lax monoidal; hence every V-category
C induces a (normal) category denoted C0: its objects are those of C and morphisms are
defined by C0(x, y) = HomV(IV , C(x, y)). Note that every V-functor F : C → D gives rise to
a functor F0 : C0 → D0.
Every f : IV → C(x, y) in V is denoted f : x→ y seen as an arrow in C0(x, y).

Exercise 1.1.4. Prove Proposition 1.1.2. Show that if F : V → U is a (lax) monoidal
functor between symmetric monoidal categories and C is a V-category, then F induces a
functor C0 → (F∗C)0.

Example 1.1.5. A closed symmetric monoidal category V is a category for which X ⊗
− admits a right adjoint denoted Hom(X,−). It thus induces a V-enriched category V .
Furthermore V0 = V .

Definition 1.1.6. A simplicial category C is a ∆̂-enriched category (where the symmetric
monoidal structure is given by the product, which is closed). Given a simplicial category
amounts to given the following data: a class of objects, and for every pair of objects x, y a
simplicial set C(x, y). We have: C0(x, y) = C(x, y)0. We denote by π0C the category having
the same objects as those of C and for morphisms π0(C(x, y)). A simplicial functor (or functor

for short) between two simplicial categories is a ∆̂-functor. Denote by Cat∆ the category of
simplicial categories and simplicial functors.
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1.2. V-enriched natural transformations. Let D be a V-category and g ∈ D0(y, z). We
define an arrow in V : g∗ : D(x, y) ∼= IV ⊗ D(x, y) → D(y, z) ⊗ D(x, y) → D(x, z). One can
deduce 3 (representable) functors from g∗:

• D(x,−) : D0 → V a functor;
• D0(x,−) : D0 → Set a functor;
• IF V is closed monoidal: D(x,−) : D → V a V-functor.

Note that (D(x,−))0 : D0 → V corresponds to the functor D(x,−).

Definition 1.2.1. A natural V-transformation τ from a V-functor F to a V-functor G is the
following data: to each object x of C is associated τx : Fx→ Gx ( an arrow in C0(Fx,Gx))
such that the following diagram commutes

C(x, y)

Gxy

��

Fxy // D(Fx, Fy)

(τy)∗
��

D(Gx, Fy)
(τx)∗

// D(Fx,Gy)

Definition 1.2.2. Two objects x, y of a V-category C are said to be isomorphic if they are
isomorphic in C0.

Theorem 1.2.3. Assume V is closed monoidal. The objects x and y are isomorphic if and
only if their representable functors are naturally isomorphic (in the third case, naturally
V-isomorphic).

Definition 1.2.4. Let F : C → D be a V-functor. F is a V-equivalence of V-categories if

(1) For each pair x, y of objects of C, Fxy is an isomorphism in V .
(2) F0 : C0 → D0 is essentially surjective.

Exercise 1.2.5. Under condition (1) in the previous definition, show that the second con-
dition is equivalent to the condition: F0 is an equivalence of categories.

2. V-enriched categories when V is a Quillen model category

Let V be a Quillen model category, and denote γ : V → Ho(V) its localization with respect
to weak equivalences.

2.1. Monoidal model categories.

Definition 2.1.1. V is a monoidal model category if it is endowed with both a Quillen
model category structure and a symmetric monoidal structure satisfying:

(1) If f : A→ B and g : K → L are cofibrations, then f�g : A⊗L∪A⊗KB⊗K → K⊗L
is a cofibration, acyclic if f or g is.

(2) For every cofibrant X and for every cofibrant replacement QI of IV , the map X ⊗
QI → X ⊗ I ∼= X is a weak equivalence.
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2.2. Exercises.

Exercise 2.2.1. Let V be a closed monoidal model category, we denote by e its initial object.

(1) Show that for every X object in V , e⊗X ∼= e.
(2) Show that if K,L are cofibrant so is K ⊗ L.
(3) Deduce that if f is a cofibration and K is cofibrant then f ⊗ IdK is a cofibration

(acyclic if f is).
(4) Deduce that if f, g are cofibrations between cofibrant objects then so is f ⊗ g, acyclic

if f and g are.
(5) Show that Ho(V) is endowed with a monoidal structure and γ is lax monoidal.

Exercise 2.2.2. Show that ∆̂ with the Kan-Quillen model structure and the cartesian
product is a closed monoidal model category. We denote by H = Ho(∆̂) and by γ : ∆̂→ H
the localization functor. Let C be a simplicial category. Denote by Ho(C) := γ∗C the H-
enriched category induced by γ. Prove that its underlying category is π0(C), which is called
The homotopy category of the simplicial category C.

3. Model structure on Cat∆.

3.1. Dwyer-Kan equivalences, Dwyer-Kan fibrations.

Definition 3.1.1. A simplicial functor F : C → D is a Dwyer-Kan equivalence if HoF :
Ho(C) → Ho(D) is an H-equivalence of H-enriched categories. Equivalently, F is a DK-
equivalence if and only if

(W1) for every objects c, c′ of C, Fcc′ is a weak homotopy equivalence of simplicial sets.
(W2’ ) π0F : π0C → π0D is an equivalence of categories.

Note that under hypothesis (W1), hypothesis (W2′) is equivalent to hypothesis (W2):
π0F is essentially surjective.

Lecture 10 (Friday 8th of april)

Remark 3.1.2. Recall that the constant embedding ι : Cat→ Cat∆ admits for right adjoint
(−)0 and for left adjoint π0 and that π0ι(C) ∼= C. If F is a functor between two categories,
then F is an equivalence of categories if and only if ιF is a DK-equivalence between simplicial
categories.

Definition 3.1.3. A simplicial functor F : C → D is a Dwyer-Kan fibration if

(F1) for every pair of objects c, c′ of C, Fcc′ is a Kan fibration.
(F2 ) π0F : π0C → π0D is an isofibration.

3.2. Bergner’s Theorem.

Theorem 3.2.1 (Bergner). There exists a cofibrantly generated model category structure on
Cat∆ where weak equivalences are Dwyer-Kan equivalences and fibrations are Dwyer-Kan
fibrations. Fibrant objects are categories enriched in Kan complexes (we say that they are
locally Kan categories). This model structure is left and right proper. But not a cartesian
closed model category.

Proposition 3.2.2. F : C → D is a DK-fibration and a DK-equivalence, if and only if for
every x, y objects of C, Fxy is a trivial fibration and π0F is surjective on objects (equivalently
F is surjective on objects).
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Remark 3.2.3. If you are interested in conditions for which the category of V-enriched cat-
egories with V a monoidal model category admits a model category structure with weak
equivalences DK-equivalences and fibrations DK-fibrations, a good reference is F. Muro,
Dwyer-Kan homotopy theory of enriched categories, (J. Topol, 2015).

4. Quillen’s equivalence

4.1. The adjunction. We define an adjunction:

C : ∆̂
//
Cat∆⊥oo : N∆

using a cosimplicial object in Cat∆. Let PosCat be the category of categories enriched in
Posets, with enriched functors as morphisms. For all n ≥ 0, let Pn be the enriched category
in Posets defined as:

(1) Objects of Pn are 0, 1, . . . , n.
(2) For 0 ≤ i ≤ j ≤ n, Pn(i, j) = {A|{i, j} ⊂ A ⊂ [[i, j]]}, ordered by inclusion.
(3) For i > j, Pn(i, j) = ∅.
(4) The composition Pn(j, k)× Pn(i, j)→ Pn(i, k) is defined by (A,B) 7→ A ∪B.

Note that for every i < j, we have Pn(i, j) = [1]×j−i−1.

Since the nerve functor Cat → ∆̂ is strong monoidal, we have an enriched category in
simplicial sets: P̃n = N∗(Pn). Note that every ϕ : [n]→ [m] ∈∆ induces an enriched functor

ϕ∗ : Pn → Pm hence a functor ∆̂→ Cat∆.

Exercise 4.1.1. Show that for every n, 0 ≤ i ≤ j ≤ n, P̃n(i, j) is a quasicategory and
that for every ϕ : [n] → [m] ∈ ∆, ϕ∗ : P̃n(i, j) → P̃m(ϕ(i), ϕ(j)) is an isofibration between
quasicategories. Remark: it is not in general a trivial fibration unless ϕ is surjective

Definition 4.1.2. Let C be a simplicial category. The homotopy coherent nerve of C (or
simplicial nerve) is defined by: N∆(C)n = HomCat∆

(P̃n, C). It admits a left adjoint denoted

C and C(∆n) ∼= P̃n.

We have

• N∆(C)0 = Ob(C) = N(C0)0

• N∆(C)1 = N(C0)1

• An element in N∆(C)2 consists in the following data: a triangle (f, g, h) : ∂∆2 →
N(C0) of arrows in C0, namely f : a → b, g : b → c, h : a → c, together with an
element H ∈ C(a, c)1 such that d0H = g ◦ f, d1H = h.

Lecture 11 (Wednesday 13th of april)

Note that N∆(C) 6= N(C0). However we have the following diagram of categories

∆̂
C //

Cat∆⊥

N∆

oo

π0 //

γ∗ $$

Cat⊥
ι

oo

CatH

(−)0

;;
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where the adjunction on the right is induced by the adjunction π0 : ∆̂ → Set : ι and γ∗ is
the functor between enriched categories induced by the localization functor γ : ∆̂→ H with
respect to the Kan-Quillen model structure on ∆̂.

In particular we have
τ1(X) ∼= π0(C(X)).

Exercise 4.1.3. Assuming that for any fibrant simplicial category C, N∆(C) is a quasicat-
egory, show that h(N∆(C)) ∼= π0(C).

Theorem 4.1.4. The adjunction (C(−), N∆) is a Quillen equivalence.

Proof. Here is an idea of the proof: We first prove that it is a Quillen adjunction using (4)
of 1.3.1:

(1) C preserves cofibrations.
(2) N∆ preserves fibrations between fibrant objects.

We use two strong results in Lurie:

• C[f ] is a DK-equivalence if and only if f is a weak categorical equivalence. (Propo-
sition 2258)
• For every C fibrant in Cat∆ we have C(N∆(C))→ C is a DK-equivalence.

These two results imply that the derived counit is a DK equivalence and the derived unit is
a weak categorical equivalence. �
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Chapter 3: From model categories to (∞, 1)-categories

1. A little bit of ”size” and ”set”

We refer to ncat lab Grothendieck Universe (https://ncatlab.org/nlab/show/Grothendieck+universe)
and Mike Schulman Set theory for category theory, for more details and Murfet’s notes
”http://therisingsea.org/notes/FoundationsForCategoryTheory.pdf” We have defined the no-
tion of Grothendieck universe U , with the axioms

(1) Transitivity: if t ∈ U and x ∈ t then x ∈ U .
(2) If x, y ∈ U then {x, y} ∈ U .
(3) If x in U then P(x) ∈ U .
(4) If I ∈ U and (xi)i∈I is a family of elements of U , then ∪i∈Ixi ∈ U .

Exercise 1.1. Show that (3) implies that ∅ ∈ U . Show that for x, y ∈ U , x×y ⊂ P(P(x∪y)).
Show that the set of all functions f : x→ y is a subset of P(x× y).

Elements (or members) of U are called U -small set. Subsets of U are called U -moderate
sets USet is the category consisting of U -small sets and functions between them.

Definition 1.2. A U -small category is a category C such that Ob(C) is a U -small set and
Mor(C) is a U -small set, or equivalently because of axiom (4), for every objects x, y of C,
C(x, y) is a U -small set. A category satisfying the latter condition is called a locally U -small
category.

From Quillen Theory one gets:

Proposition 1.3. If C is a U -small model category (resp. locally U -small model category),
with class of weak equivalences denoted byW then C[W−1] is U -small (resp. locally U -small).

Remark 1.4. If C is a U -small category then the category Fun(Cop,USet) is locally U -small.
The objects of this category are U -moderate.
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