Level algebras and Steenrod operations

David Chataur CRM Barcelona Muriel Livernet Université Paris 13

Mini-Conference Aberdeen 23-25 January 2003

Contents

- What are level algebras?
- On E_{∞} operads.
- Detecting Steenrod operations in E_{∞} operads.
- Using level algebras for an operadic description of Adem and Cartan relations.

Level Algebra

Definition: A level algebra (A, *) is a commutative algebra (non associative) satisfying

$$(a*b)*(c*d) = (a*c)*(b*d)$$

Fundamental example : Carlsson unstable module over \mathcal{A}_2 :

$$K = \mathbb{F}_2[\hat{x}_i, i \in \mathbb{Z}], \qquad ||\hat{x}_i|| = (2^{-i}, 1).$$

$$K(i)^j = \mathbb{F}_2 < \prod \widehat{x}_k^{\alpha_k} \mid \sum \frac{\alpha_k}{2^k} = i, \sum \alpha_k = j > .$$

 $Sq^1(\hat{x}_i) = \hat{x}_{i+1}^2 + Cartan formula.$

Proposition: (K(i),*) is a level algebra

$$(\prod \widehat{x}_k^{\alpha_k}) * (\prod \widehat{x}_l^{\alpha_l}) = \prod \widehat{x}_{k+1}^{\alpha_k} \widehat{x}_{l+1}^{\alpha_l}.$$

Action of A_2 satisfies Cartan.

Level trees

Planar rooted binary tree

Equivalence relation: exchanging part above same level

Proposition: (Davis-Miller)

$$K(1)^n = <\prod \widehat{x}_k^{\alpha_k}| \qquad \longleftrightarrow \qquad \{\text{n-level trees}\}$$

$$\sum \frac{\alpha_k}{2^k} = 1, \sum \alpha_k = n >$$

Operads

Definition: Operad $\mathcal{P} = (\mathcal{P}(n))_{n \geq 1}$

- Σ_n -action on $\mathcal{P}(n)$.

$$-\circ_i:\mathcal{P}(n)\otimes\mathcal{P}(m)\to\mathcal{P}(n+m-1)$$

 \mathcal{P} -algebra A : $\mathcal{P}(n) \otimes A^{\otimes n} \to A$.

$$\{\text{Operads}\} \xrightarrow{\overbrace{\mathcal{U}}^{\mathcal{F}ree}} \{\Sigma - \text{modules}\}$$

Type of algebra	Product	Relation
Commutative	2, com	3, as
Associative	2	3, as
Level	2, com	4, (a*b)*(c*d)
		=(a*c)*(b*d)

Type \mathcal{P}	Operad ${\cal P}$	$\mathcal{P}(n)$
\mathcal{C} om	\mathcal{F} ree $(k)/R_{\mathcal{C}}$ om	k
As	\mathcal{F} ree $(k[\Sigma_2])/R_{\mathcal{A}s}$	$k[\Sigma_n]$
Lev	\mathcal{F} ree $(k)/R_{Lev}$	٠٠

The operad Lev

Definition : A n-labelled level tree is a n-level tree where the summits are labelled.

Remark : $\{n\text{-labelled level trees}\}$ is in 1-to-1 correspondance with the set of all ordered partition of $\{1,\ldots,n\},\ I=(I_j)_{j\geq 0}$ such that $\sum \frac{|I_j|}{2^j}=1$.

Theorem : (L., Schwartz) The collection of vector spaces generated by $\{n\text{-labelled level trees}\}$ defines an operad. This operad is Lev.

Corollary: K(1) is the free level algebra on one generator \hat{x}_0 .

E_{∞} -operads over \mathbb{F}

Definition: a E_{∞} -operad is a $(\mathcal{F}ree(V), d)$ with

- -V(n) is a $\mathbb{F}[\Sigma_n]$ -projective module
- $(\mathcal{F}ree(V), d) \xrightarrow{\sim} \mathcal{C}om$.

A E_{∞} -algebra is a $\mathcal{F}ree(V)$ -algebra.

Importance of E_{∞} -operads :

- $C^*(X)$ is a E_{∞} -algebra.
- (Mandell) This structure determines the homotopy type of X.
- (Chataur) There exists a structure of E_{∞} algebra on $H^*(X; \mathbb{F})$ inducing the usual commutative structure.

Problem : Understand the combinatorics of E_{∞} -operads to make computation, e.g. find a "nice" E_{∞} -operad (McClure-Smith, Berger-Fresse).

Steenrod operations in E_{∞} -operads

(May) A E_{∞} -algebra is an algebra over \mathcal{B}_2 .

- Where can we read Steenrod operations? $via \cup_i -products in \mathcal{E}(2)$
- Where can we read Adem and Cartan relations?
 - A priori in $\mathcal{E}(4)$, or using a resolution of level operads
- Can we find higher order cohomology operations?

A major ingredient

 (\mathcal{P},d) is a dg operad; $(A,\partial_A) \text{ is a dg } \mathcal{P}\text{-algebra, means the evaluation map}$

$$\mathcal{P}(n) \otimes A^{\otimes n} \longrightarrow A$$

$$p \otimes a_1 \otimes \ldots \otimes a_n \mapsto p(a_1, \ldots, a_n)$$

satisfies the Leibniz rule

$$\partial_A(p(a_1,\ldots,a_n)) = (dp)(a_1,\ldots,a_n) + \sum_{i=1}^n \pm p(a_1,\ldots,\partial_A a_i,\ldots,a_n).$$

If
$$\partial_A = 0$$
, then $(dp)(a_1, \ldots, a_n) = 0$.

This gives a relation between elements in A.

Application : \cup_{i} -products and Steenrod operations

Let \mathcal{E} be an E_{∞} -operad; since $\mathcal{E}(2) \stackrel{\sim}{\to} \mathcal{C}om(2) = \mathbb{F}_2$, we can choose

$$\begin{cases} \mathcal{E}(2)_{-i} = \mathbb{F}_2[\Sigma_2] = \mathbb{F}_2 < e_i, \tau e_i > \\ de_i = e_{i-1} + \tau e_{i-1} \end{cases}$$

Corollary: A a E_{∞} -algebra, $x, y \in A$. $x \cup_i y := e_i(x, y)$; $\operatorname{Sq}^i(x) := x \cup_{|x|-i} x$.

- 1. $\partial_A = 0$ implies $x \cup_i y = y \cup_i x$
- 2. $Sq^i(x) = 0 \text{ if } i > |x|$
- 3. $Sq^{|x|}(x) = x^2$.

Adem relations, Cartan formula

Adem relations : i < 2j

$$Sq^{i}Sq^{j}x = \sum_{k=0}^{\left[\frac{i}{2}\right]} {j-k-1 \choose i-2k} Sq^{i+j-k}Sq^{k}x.$$

equality

$$e_l(e_k(x,x),e_k(x,x)) = Sq^{2|x|-l-k}Sq^{|x|-k}(x)$$

implies this formula reads in ${\mathcal E}$

$$R_{Ad}(x) = (dp)(x, x, x, x)$$
 for $p \in \mathcal{E}(4)$

Cartan formula:

$$Sq^{n}(xy) = \sum_{i+j=n} Sq^{i}(x)Sq^{j}(y),$$

$$e_m(e_0(x,y),e_0(x,y)) = \sum_{k+l=m} e_0(e_k(x,x),e_l(y,y))$$

implies this formula reads in ${\cal E}$

$$R_{Cq}(x) = (dq)(x, x, y, y)$$
 for $q \in \mathcal{E}(4)$.

Using the level operad

Main idea : Associativity of the product is not involved in Cartan and Adem relations. \Rightarrow replace \mathcal{C} om by Lev and find a resolution of it.

Theorem : (Chataur,L.) there exists a cofibrant operad Lev^{AC} satisfying

- 1. Lev $^{AC}(2) = \mathcal{E}(2)$
- 2. there is a fibration $f: Lev^{AC} \to Lev$ s.t. f induces an iso $H^0(Lev^{AC}) \simeq Lev$.

and boundaries in Lev^{AC} give

- → Explicit operadic description of Cartan formula
- → Explicit operadic description of Adem relations

Relation with E_{∞} -algebras

Since Lev $\to \mathcal{C}$ om then Lev $^{AC} \to \mathcal{C}$ om can be lifted to Lev $^{AC} \to \mathcal{E}$.

Corollary : If A is an E_{∞} -algebra, with $\partial_A = 0$, then A is an algebra over the extended Steenrod algebra \mathcal{B}_2 .

Secondary cohomological operations

We have an evaluation map

$$\mathsf{Lev}^{AC}(4) \otimes H^*(X, \mathbb{F}_2)^{\otimes 4} \to H^*(X, \mathbb{F}_2)$$

Theorem : there are elements $G_n^m \in \text{Lev}^{AC}(4)$ such that for $x \in H^*(X, \mathbb{F}_2)$, $G_n^m(x, x, x, x)$ coincides with the stable secondary cohomological operations of Adams.

Idea of construction of Lev AC

Construction by adjoining cells to \mathcal{F} ree(\mathcal{E})(4). Let $u_{m,n} \in \mathcal{F}$ ree(\mathcal{E})(4) defined by

$$u_{m,n} = \sum_{k} e_m(e_k, \tau^k e_{n-k})$$
$$= e_m(\Delta e_n)$$

First step : Attach ${\cal G}_n^1$ in degree -n with the relation

$$dG_{n+1}^{1} = (id + (12)(34))G_{n}^{1} + u_{0,n} + (23)u_{n,0}.$$

Proposition : If A is a Lev^{AC}-algebra, with $\partial_A = 0$, then A satisfies the Cartan formula.

Proof :
$$(dG_{n+1}^1)(x, x, y, y) = 0$$
 reads

$$\sum_{k} e_0(e_k(x, x), e_{n-k}(y, y)) = e_n(e_0(x, y), e_0(x, y))$$

Idea of construction of Lev^{AC}

Higher steps : by induction, we attach some cells G_n^m for $m \ge 1$ in degree -n with $n \ge m$.

Proposition : If A is a Lev^{AC}-algebra, with $\partial_A = 0$, then A satisfies the Adem relation.

Proof : $(dG_{n+1}^m)(x, x, x, x) = 0$ gives an Adem relation.

Prospects

- ightarrow Determine a diagonal in Lev AC
- ightarrow Operadic description of higher order cohomology operations
- \rightarrow Problem of realisability