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Abstract
Let R be a commutative ring with unit. We consider the

homotopy theory of the category of spectral sequences of R-
modules with the class of weak equivalences given by those mor-
phisms inducing a quasi-isomorphism at a certain fixed page.
We show that this admits a structure close to that of a cate-
gory of fibrant objects in the sense of Brown and in particular
the structure of a partial Brown category with fibrant objects.
We use this to compare with related structures on the categories
of multicomplexes and filtered complexes.

1. Introduction

Spectral sequences are important tools for computing homological and homotopical
invariants. Many categories of interest have associated functorial spectral sequences,
generally via an associated filtered chain complex.

The category of spectral sequences has a hierarchy of notions of weak equivalence.
For r ⩾ 0, we have Er-quasi-isomorphism, that is morphisms which are isomorphisms
from the r + 1 page onwards. In this paper we explore underlying homotopy theories
with these weak equivalences.

Various categories with associated functorial spectral sequences, such as filtered
complexes or multicomplexes, can be endowed with an r-model category structure, in
which the weak equivalences are the maps inducing an isomorphisms from the r + 1
page of the associated spectral sequence onwards [3, 4]. This motivates a study of
the corresponding homotopy theory in the category of spectral sequences itself.

After some preliminary definitions and discussion in Section 2, we introduce the
category of spectral sequences in Section 3. We study some basic properties, noting
that this category is neither complete nor cocomplete. Therefore we cannot have
model category structures and we will work with a weaker setting for homotopy
theory.

Many such settings, intermediate between a category with weak equivalences and
a model category, have appeared in the literature. Examples include Waldhausen
categories [9], Cartan-Eilenberg categories [6] and categories of fibrant objects. The
latter were introduced and studied by Brown in [1]. A summary of this theory can
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be found in [5, I.9]. That setting is the most relevant for us, but it is not precisely
what we need.

In Section 4, we introduce the notion of an almost Brown category. As the name
suggests this is a structure closely related to Brown’s notion of category of fibrant
objects. Like that setting, ours involves two distinguished classes of morphisms, weak
equivalences and fibrations, satisfying certain axioms. We explore the connections
as well as the relationship to the notion of partial Brown category in the sense of
Horel [7].

We show in Theorem 5.5 that, for each r ⩾ 0, the category of spectral sequences
admits the structure of an almost Brown category with Er-quasi-isomorphims as
weak equivalences and with fibrations characterised by surjectivity conditions. In
particular, this means that we have a partial Brown category with fibrant objects, in
the sense of Horel [7]. Indeed, we have a version with functorial path objects.

These results provide a context in which we can compare the homotopy theoretic
structure of the category of spectral sequences with previous results establishing such
structures for filtered complexes [3] and for multicomplexes [4]. We make a start on
such comparisons in Section 6.
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2. Preliminaries

In this preliminary section, we collect the main definitions that we will use. We
begin with bigraded modules and r-bigraded complexes as these are underlying defi-
nitions for spectral sequences. Then we cover filtered complexes and multicomplexes,
these being the main categories to be compared with spectral sequences later on.

Throughout this paper, we let R denote a commutative ring with unit.

2.1. Bigraded complexes

In this section we let r ⩾ 0 be an integer.

Definition 2.1. A bigraded R-module A is a collection of R-modules A = {Ap,q} with
p, q ∈ Z.

Definition 2.2. An r-bigraded complex is a bigraded R-module A = {Ap,q} together
with maps of R-modules δr : A

p,q → Ap−r,q+1−r, called differentials, such that δ2r = 0.
A morphism of r-bigraded complexes is a map of bigraded modules commuting with
the differentials.

We denote by r-bCR the category of r-bigraded complexes. The homology of an
r-bigraded complex is a bigraded R-module and the category of r-bigraded modules
has a natural class of quasi-isomorphisms, namely morphisms inducing isomorphisms
on homology.
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2.2. Filtered complexes

We consider unbounded complexes of R-modules endowed with increasing filtra-
tions indexed by the integers.

Definition 2.3. A filtered R-module (A,F ) is an R-module A together with a family
of submodules of A denoted {FpA}p∈Z indexed by the integers such that for all p ∈ Z,
Fp−1A ⊆ FpA. Amorphism of filtered modules is a morphism f : A→ B of R-modules
which is compatible with filtrations: f(FpA) ⊆ FpB for all p ∈ Z.

Definition 2.4. A filtered complex (A, d, F ) is an unbounded cochain complex (A, d)
together with a filtration F of each R-module An such that d(FpA

n) ⊆ FpA
n+1 for

all p, n ∈ Z. Note in particular that (FpA, d|Fp
) is a subcomplex of (A, d). Denote by

FCR the category of filtered complexes of R-modules. Its morphisms are given by
morphisms of complexes compatible with filtrations.

Definition 2.5. Let f, g : A→ B be two morphisms of filtered complexes. An r-
homotopy from f to g is a morphism h : A→ B of graded R-modules of degree −1,
such that dh+ hd = g − f and h(FpA) ⊆ Fp+rB for all p. We write h : f ≃

r g.

Every filtered complex A has an associated spectral sequence {Er(A), δr}r⩾0. The
r-page Er(A) is an r-bigraded complex and may be written as the quotient

Ep,q
r (A) ∼= Zp,q

r (A)/Bp,q
r (A),

where the r-cycles are given by

Zp,n+p
r (A) := FpA

n ∩ d−1(Fp−rA
n+1)

and the r-boundaries are given by Bp,n+p
0 (A) = Zp−1,n+p−1

0 (A) and

Bp,n+p
r (A) := Zp−1,n+p−1

r−1 (A) + dZp+r−1,n+p+r−2
r−1 (A) for r ⩾ 1.

Given an element a ∈ Zr(A), we denote by [a]r its image in Er(A). For [a]r ∈ Er(A),
we have δr([a]r) = [da]r.

2.3. Multicomplexes

Definition 2.6. A multicomplex or ∞-multicomplex A is a bigraded R-module A =
{Ap,q}p,q∈Z endowed with a family of maps {di : A→ A}i⩾0 of bidegree (−i, 1− i)
satisfying for all l ⩾ 0, ∑

i+j=l

(−1)ididj = 0. (1)

Let n ⩾ 1 be an integer. An n-multicomplex is a multicomplex with di = 0 for all
i ⩾ n.

For 1 ⩽ n ⩽ ∞, a (strict) morphism of n-multicomplexes is a map f of bigraded
R-modules of bidegree (0, 0) satisfying dif = fdi for all i ⩾ 0. We denote by n-mCR

the category of n-multicomplexes and strict morphisms.
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3. The category of spectral sequences

3.1. Definitions and basic properties
Definition 3.1.Aspectral sequence (A,ψ) is a family of r-bigraded complexes (Ar, dr),
for r ⩾ 0, together with a family of isomorphisms of bigraded R-modules

ψr : H∗(Ar) → Ar+1 for r ⩾ 0,

called characteristic maps.
A morphism of spectral sequences is a family of morphisms fr : Ar → Br of r-

bigraded complexes, for r ⩾ 0, which is compatible with characteristic maps. We
denote by SpSeR the category of spectral sequences.

We will often omit the characteristic maps in the notation.
Note that a morphism of spectral sequences f : (A,ψ) → (B,φ) is completely deter-

mined by the 0-page, f0 : A0 → B0, since fi+1 = φiH∗(fi)ψ
−1
i , for all i ⩾ 0. Further-

more, it is clear that the following proposition holds.

Proposition 3.2. The category of spectral sequences is an additive category.

Remark 3.3. There are various conventions for spectral sequences. We have chosen
ours to be compatible with the conventions for filtered complexes and multicomplexes
in previous work on related model category structures in [3, 4]. The differential
on the r-page has bidegree (−r, 1− r). Of course, it is straightforward to translate
our results to the standard setting of a homological spectral sequence where the
corresponding bidegree is (−r, r − 1) or that of a cohomological spectral sequence
where it is (r, 1− r).

Remark 3.4. The category of spectral sequences SpSeR is neither complete nor
cocomplete. Indeed, as in the following examples, cokernels and kernels do not exist
in general in SpSeR. Thus it is not a pre-abelian category.

We write Rp,n for the ring R in bidegree (p, n). We denote by R(p, n) the spectral
sequence with the ring R concentrated in bidegree (p, n) and all differentials zero.

Example 3.5. Let S be the spectral sequence given by S0 = R0,0 ⊕R1,0 with d0 = 0,
S1 = R0,0 ⊕R1,0 with d1 = 1R : R1,0 → R0,0 and S⩾2 = 0. The morphism of spec-

tral sequences f : R(0, 0) → S determined by f0,00 = f0,01 = 1R : R0,0 → R0,0 has no
cokernel.

Example 3.6. Let T be the spectral sequence given by T0 = R0,0 ⊕R0,1 with d0 =
1R : R0,0 → R0,1 and T⩾1 = 0. The morphism of spectral sequences π : T → R(0, 0)

such that π0,0
0 = 1R : R0,0 → R0,0 and πi = 0 for i > 0 has no kernel.

3.2. Pullback of surjections
Definition 3.7. A morphism of spectral sequences f : A→ B is called a surjection
if the morphism fr is bidegreewise surjective for every r ⩾ 0. We write Sur for the
class of surjective morphisms in SpSeR.

Lemma 3.8. The category of spectral sequences SpSeR admits pullbacks of surjec-
tions along any map and this preserves surjections. Moreover, such pullbacks are
computed pagewise.
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Proof. Let

A

p

��
U

g
// B

be a diagram of spectral sequences where p is a surjection. For m ⩾ 0, let Xm be
the pullback in the category of m-bigraded complexes of the m-page of the spectral
sequence. Since the category of m-bigraded complexes is abelian, and pm is surjective
we have a short exact sequence of m-bigraded complexes

0 // Xm
// Um ⊕Am

gm−pm // Bm
// 0

which yields a long exact sequence in homology. The map H∗(gm − pm) is isomor-
phic to the map (gm+1 − pm+1) : Um+1 ⊕Am+1 → Bm+1, hence surjective, so that
H∗(Xm) is isomorphic to Ker(gm+1 − pm+1) = Xm+1. Therefore the collection X =
(Xm)m⩾0 is a spectral sequence.

We claim that this is the pullback of the diagram in the category of spectral
sequences. For the universal property, given maps of spectral sequences Y → A,
Y → U making the diagram commute, we get a unique map of m-bigraded com-
plexes fm : Ym → Xm making the diagram of m-pages commute, because Xm is the
pullback on them-page. Noting that the forgetful functor fromm-bigraded complexes
to bigraded modules preserves pullbacks, we see that H(fm) ∼= fm+1 so that f = (fm)
is the required unique map of spectral sequences.

Note that

Xm = {(u, a) | gm(u) = pm(a), u ∈ Um, a ∈ Am},

so that the induced map X → U is a surjection.

Remark 3.9. The category SpSeR does not admit general pullbacks of epimorphisms,
as shown by the following proposition and example.

Proposition 3.10. A morphism f : A→ B of spectral sequences where f0 : A0 → B0

is surjective is an epimorphism.

Proof. Let i, j : B → X be morphisms of spectral sequences such that if = jf . In
particular, we have i0f0 = j0f0 and since f0 is surjective, we have i0 = j0. Thus
i = j.

Example 3.11. Let us consider the morphism π : T → R(0, 0) of Example 3.6. It is an
epimorphism because π0 is surjective, but the pullback of π along the map 0 → R(0, 0)
does not exist, because π does not admit a kernel.

4. Homotopy theory without model category structures

The goal of this paper is to describe the homotopy theory of spectral sequences
with respect to Er-quasi-isomorphism (see Definition 5.1). We cannot expect to have
a model category structure on the category of spectral sequences with this class of
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maps as the class of weak equivalences since we have seen that this category is neither
complete nor cocomplete.

Thus we will work with a weaker structure. Many variants are available in the
literature; we will work with something close to what is known as a Brown category.
In this section we introduce the homotopy theoretic material needed to achieve our
goal.

4.1. Almost Brown categories
In this section we assume that the reader is familiar with the language of model

categories, in particular with the notion of acyclic fibrations and fibrant objects.

Definition 4.1. An almost Brown category is a category C with finite products and a
final object e together with two distinguished classes of maps called weak equivalences
(W) and fibrations (Fib), satisfying the following axioms.

(A) Let f and g be composable morphisms. If any two of f , g and gf are weak
equivalences, then so is the third. (That is, the class of weak equivalences satisfies
the two-out-of-three property.) All isomorphisms are weak equivalences.

(B) The composite of two fibrations is a fibration. All isomorphisms are fibrations.

(C) The pullback of an acyclic fibration along any map exists and is an acyclic
fibration.

(D) Any morphism u : X → Y in C can be factored u = pi with p a fibration and i
right inverse to an acyclic fibration.

(E) Any object of C is fibrant.

In addition, if axiom (D) holds functorially, we will say that C is an almost Brown
category with functorial factorization.

Definition 4.2. A functor F : C → D between almost Brown categories is called left
exact if it preserves finite products, the class of fibrations, the class of acyclic fibrations
and pullback of acyclic fibrations.

We recall that given an object B of C, a path space for B is an object BI together
with maps

B
ι // BI

(∂−,∂+) // B ×B

where ι is a weak equivalence, (∂−, ∂+) a fibration and the composite is the diagonal
map. Note that axiom (D) of Definition 4.1 implies the existence of a path space for
any object in an almost Brown category.

We next recall the original definition of Brown in [1].

Definition 4.3. A Brown category is a category with finite products and a final
object e together with two distinguished classes of maps called weak equivalences
(W) and fibrations (Fib), satisfying the following axioms.

(A) Let f and g be composable morphisms. If any two of f , g and gf are weak
equivalences, then so is the third. All isomorphisms are weak equivalences.

(B) The composite of two fibrations is a fibration. All isomorphisms are fibrations.
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(C ′) The pullback of a fibration along any map exists and is a fibration. The pullback
of an acyclic fibration along any map exists and is an acyclic fibration.

(D′) For any object B there exists at least one path space BI .

(E) Every object is fibrant.

Remark 4.4. In a Brown category C, axiom (D′) is equivalent to axiom (D). This is
due to the factorization lemma, which is proved by using the axiom that the pullback
of a fibration along any map exists and is a fibration. Concretely, any morphism
u : A→ B factorizes as

A
(1A,ιu) //

u

44A×B BI
∂+π2 // B

where the object A×B BI is called the mapping path space of u, the first map is
a weak equivalence right inverse to an acyclic fibration and the second map is a
fibration.

The following corollary is a direct consequence of the remark above.

Corollary 4.5. A Brown category is an almost Brown category.

Remark 4.6. If C is a model category, then the subcategory Cf of fibrant objects of C
is a Brown category. If all objects of C are fibrant, then it is a Brown category, hence
an almost Brown category. A right Quillen functor between two model categories
whose objects are all fibrant is a left exact functor in the sense of Definition 4.2.

Unfortunately, in our examples we do not have all the axioms of a Brown category,
since we usually do not have pullbacks of fibrations, however we have path objects
and the factorization induced by them, that is the mapping path space of a morphism.

4.2. Comparison with partial Brown categories of fibrant objects
In [7], Horel introduced the notion of a partial Brown category of cofibrant objects

and in Remark 2.4 of loc. cit. it is noted that all the results dualize to the case of
interest for us. This gives a setting for homotopy theory closely related to the one we
have presented above and we compare the two here.

We start by making explicit the dual to Horel’s Definition 2.2. The notation C[1]

denotes the arrow category of C.

Definition 4.7. A partial Brown category of fibrant objects is a category C, with two
subcategories wC and fC whose maps are called respectively the weak equivalences
and acyclic fibrations such that the following axioms are satisfied.

1. Both wC and fC contain the isomorphisms of C and fC is contained in wC.
2. The weak equivalences satisfy the two-out-of-three property.

3. The pullback of an acyclic fibration along any map exists and is an acyclic fibra-
tion.

4. There are three functors f, w, s from wC[1] → wC[1] such that for each weak equiv-
alence g we have g = f(g) ◦ w(g), s(g) ◦ w(g) = 1 and f(g) and s(g) are in fC[1].

The following proposition is immediate.
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Proposition 4.8. If C is an almost Brown category with functorial factorization,
then C is a partial Brown category of fibrant objects.

Definition 4.9. Let C and D be partial Brown categories of fibrant objects. A functor
C → D is called left exact if it preserves weak equivalences, acyclic fibrations and
pullbacks of acyclic fibrations.

Proposition 4.10. If C and D are almost Brown categories with functorial factor-
ization, then a left exact functor F : C → D is also left exact as a functor of partial
Brown categories.

Proof. We need to check that F preserves weak equivalences. Let u be a weak equiv-
alence and factorize this as u = pi with p an acyclic fibration and i right inverse to
an acyclic fibration. Then F (u) = F (p)F (i) and since F preserves acyclic fibrations,
F (p) is an acyclic fibration and F (i) is right inverse to an acyclic fibration. This
implies that F (i) is a weak equivalence and thus so is F (u).

5. Almost Brown category structures on spectral sequences

In this section we again fix an integer r ⩾ 0.

5.1. Er-quasi-isomorphisms and r-fibrations
Definition 5.1. A morphism of spectral sequences f : A→ B is called an Er-quasi-
isomorphism if the morphism fr : Ar → Br is a quasi-isomorphism of r-bigraded com-
plexes, or equivalently if the morphisms fk are isomorphisms for k > r.

A morphism of spectral sequences f : A→ B is called an r-fibration if the mor-
phisms fk are surjective for 0 ⩽ k ⩽ r.

We denote by Er the class of Er-quasi-isomorphisms of SpSeR. This class contains
all isomorphisms of SpSeR and satisfies the two-out-of-three property.

We denote by Fibr the class of r-fibrations of SpSeR. This class contains all
isomorphisms and is stable under composition.

Note that acyclic fibrations are those maps that are surjective at the k-page of
the spectral sequence for k ⩽ r and isomorphisms for k > r. In particular the class of
acyclic fibrations coincides with the class of surjective Er-quasi-isomorphisms, that
is Er ∩ Fibr = Er ∩ ∩sFibs = Er ∩ Sur.

It is clear that we have inclusions:

Er ⊂ Er+1, Fibr+1 ⊂ Fibr and Er ∩ Fibr ⊂ Er+1 ∩ Fibr+1

for all r ⩾ 0.

5.2. Mapping path space construction for spectral sequences
In this section we define a functorial r-path and an explicit r-mapping path space

for any morphism in the category of spectral sequences.

Definition 5.2. Let Λr be the spectral sequence Re− ⊕Re+ ⊕Ru where e± are in
bidegree (0, 0) and u is in bidegree (−r, 1− r), with all differentials zero except at the
r-page of the spectral sequence where dr(e−) = −u, dr(e+) = u. The r + 1-page of
the spectral sequence is then concentrated in bidegree (0, 0) with a single R-module,
free of rank 1, generated by e+ + e−.
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Note that we can consider Λr ⊗A for any spectral sequence A and that this is
again a spectral sequence.

We next define a collection of functorial paths indexed by an integer r ⩾ 0 on the
category of spectral sequences, giving rise to the corresponding notions of r-homotopy.

Definition 5.3. The r-path of a spectral sequence A is the spectral sequence P (r;A)=
Λr ⊗A. Explicitly, the pages of the spectral sequence P (r;A) are given by

Pm(r;A)p,q :=

{
Ap,q

m ⊕Ap+r,q+r−1
m ⊕Ap,q

m , if 0 ⩽ m ⩽ r

Ap,q
m , if m > r

with the differentials Dm : Pm(r;A) → Pm(r;A) of bidegree (−m, 1−m) given by

Dm :=

dm 0 0
0 (−1)m+r+1dm 0
0 0 dm

 for m < r, Dr :=

 dr 0 0
−1 −dr 1
0 0 dr


and Dm = dm for m > r.

We have a factorisation of the diagonal map

R
ι // Λr

(∂−,∂+) // R×R

and thus morphisms of spectral sequences

A
ιA // P (r;A)

∂+
A //

∂−
A

// A ; ∂±A ◦ ιA = 1A,

given by ∂−A (x, y, z) = x, ∂+A (x, y, z) = z and ιA(x) = (x, 0, x) on the m-page of the
spectral sequence for m ⩽ r and by the identity maps for m > r. We will often omit
the subscripts of these maps when there is no danger of confusion.

The use of the term r-path is justified below. In particular, ιA is an Er-quasi-
isomorphism. Furthermore (∂+A , ∂

−
A ) : P (r;A) → A×A is an r-fibration. In addition

∂+A and ∂−A are acyclic r-fibrations.

Definition 5.4. The r-path of a morphism f : (A, dAm)→(B, dBm) of spectral sequences
is the morphism of spectral sequences P (r; f) : (P (r;A), DA

m) → (P (r;B), DB
m) given

by

P (r; f)m := (fm, (−1)mfm, fm),

for m ⩽ r and P (r; f) = fm for m > r.

The above definitions give rise to a functorial path P (r;−) : SpSeR → SpSeR in
the category of spectral sequences.

We would like to use this for the factorization of any morphism u : A→ B of
spectral sequences in the spirit of Remark 4.4. We remark that the r-mapping path
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space P (r;u) := A×B P (r;B) of u exists and takes the following form

P (r;u)p,qm :=

{
Ap,q

m ⊕Bp+r,q+r−1
m ⊕Bp,q

m , if 0 ⩽ m ⩽ r,

Ap,q
m , if m > r,

with differentials Dm : P (r;u)m → P (r;u)m of bidegree (−m,−m+ 1) given by

Dm =

dAm 0 0
0 (−1)m+r+1dBm 0
0 0 dBm

 for m < r, Dr =

 dAr 0 0
−ur −dBr 1B
0 0 dBr


and Dm is induced by dAm for m > r. The factorization of u as

A
i // P (r;u)

p // B

takes the following form

im(a) =

{
(a, 0, um(a)), if 0 ⩽ m ⩽ r,

a, if m > r
and

pm(a, b′, b) =

{
b, if 0 ⩽ m ⩽ r,

um(a), if m > r.

The map i is right inverse to an acyclic fibration, namely the projection of P (r;u)
onto A. It is clear from the formulas that p is an r-fibration and that the factorization
is functorial.

5.3. Homotopy theory of spectral sequences
Theorem 5.5. The category of spectral sequences together with the class Er of Er-
quasi-isomorphisms and the class Fibr of r-fibrations is an almost Brown category
with functorial factorization. Hence it is a partial Brown category of fibrant objects.

Proof. Axioms (A), (B) and (E) are clearly satisfied. Let us show axiom (C). Let
p : C → B be an acyclic r-fibration and let u : A→ B be a morphism in SpSeR. Any
acyclic r-fibration is surjective, and by Lemma 3.8, the pullback of p along u exists
and is the spectral sequence X whose m-page is described by

Xm = {(a, c) ∈ Am × Cm |um(a) = pm(c)}

with induced map π1 : X → A the projection to the first factor. The proof of that
lemma shows that if pr is a quasi-isomorphism so is the r-page (π1)r of π1. Axiom
(D) follows from the mapping path space construction of Section 5.2.

Notation 5.6. We write (SpSeR)r for the almost Brown category of spectral sequences
with the structure specified in Theorem 5.5.

Recall that we have inclusions:

Er ⊂ Er+1, Fibr+1 ⊂ Fibr and Er ∩ Fibr ⊂ Er+1 ∩ Fibr+1

for all r ⩾ 0. Thus, for r ⩽ s, the identity functor Id: (SpSeR)r → (SpSeR)s pre-
serves weak equivalences and acyclic fibrations, but not fibrations. Therefore it is not
left exact as a functor of almost Brown categories, but it is left exact when viewed
as a functor of the corresponding partial Brown categories.
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5.4. r-homotopies
As in classical homotopy theory, the functorial path P (r;−) : SpSeR → SpSeR

yields a natural notion of homotopy: for f, g : A→ B two morphisms of spectral
sequences, an r-homotopy from f to g is given by a morphism of spectral sequences
h : A→ P (r;B) such that ∂−B ◦ h = f and ∂+B ◦ h = g. We use the notation h : f ≃

r g.
An r-homotopy equivalence is a morphism of spectral sequences f : A→ B such that
there exists a morphism g : B → A satisfying f ◦ g ≃

r 1B and g ◦ f ≃
r 1A.

Proposition 5.7. The notion of r-homotopy defines an equivalence relation on the
set of morphisms between two given spectral sequences, which is compatible with the
composition.

Proof. Unravelling the definition we have that if f, g : (A, dAm) → (B, dBm) are two

morphisms of spectral sequences, then f ≃
r g if and only if there exists a collection

of morphisms ĥm : Am → Bm of bigraded modules, of bidegree (r, r − 1), for every
0 ⩽ m ⩽ r, satisfying{

(−1)m+r+1dBmĥm − ĥmd
A
m = 0, if 0 ⩽ m < r,

−dBr ĥr − ĥrd
A
r = fr − gr,

and H∗(ĥm) = ĥm+1 for 0 ⩽ m < r. The proposition then follows.

Denote by Sr the class of r-homotopy equivalences of SpSeR. This class is closed
under composition and contains all isomorphisms. In addition, we have Sr ⊆ Sr+1

and Sr ⊆ Er, for all r ⩾ 0.

Proposition 5.8. The localized category SpSeR[S−1
r ] is canonically isomorphic to

the quotient category SpSeR/≃r .

Proof. The proof is classical, and requires that the map from a spectral sequence A
to its path space ιA : (A, dm) −→ (P (r;A), Dm), is not only an Er-quasi-isomorphism
but also an r-homotopy equivalence. We prove this statement. Recall that (ιA)m(x) =
(x, 0, x) for m ⩽ r and (ιA)m = 1A for m > r. Since ∂−A ιA = 1A, it suffices to define

an r-homotopy from 1P (r;A) to ιA∂
−
A . Consider the morphism ĥm : P (r;A) → P (r;A)

of bidegree (r, r − 1) defined by ĥm(x, y, z) = (0, 0,−y) for 0 ⩽ m ⩽ r. It is clear that

for m < r we have (−1)m+r−1Dmĥm − ĥmDm = 0, H∗(ĥm) = ĥm+1 and

(−Drĥr − ĥrDr)(x, y, z) = (0, y, dry) + (0, 0,−dry − x+ z) = (x, y, z)− (x, 0, x).

As in the proof of Proposition 5.7 this implies that ιA is an r-homotopy equivalence.

In section 6, we will compare this notion of homotopy for spectral sequences with
notions for filtered complexes and multicomplexes.

5.5. Generation of r-fibrations and acyclic r-fibrations
This section is devoted to the description of r-fibrations and acyclic r-fibrations as

maps having the right lifting property with respect to a set of morphisms in SpSeR.
We adopt the language of model categories. For I a class of maps in SpSeR, we
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say that a morphism of spectral sequences f is I-injective if it has the right lifting
property with respect to I.

To describe the generating sets, we first introduce some basic objects.

Definition 5.9. Let p, n ∈ Z. For all r ⩾ 0, let Dr(p, n) be the spectral sequence
defined as follows:

Dr(p, n)i = Rp,n ⊕Rp−r,n+1−r, di = 0, for 0 ⩽ i < r,

Dr(p, n)r = Rp,n 1−→ Rp−r,n+1−r,

Dr(p, n)i = 0, for i > r.

For all r ⩾ 1 define

Sr(p, n) := Dr−1(p− 1, n− 1)⊕Dr−1(p+ r − 1, n+ r − 2).

For all r ⩾ 1 define a morphism of spectral sequences

φr : Dr(p, n) −→ Sr(p, n)

via the identity on R whenever it is bigradedly defined.

Definition 5.10. Let (A,φ) be a spectral sequence.

1. A sequence of elements (ap,n0 , . . . , ap,nm+1) with a
p,n
i ∈ Ap,n

i is said to be compatible
if for every 0 ⩽ i ⩽ m, dia

p,n
i = 0 and ap,ni+1 = φi([a

p,n
i ]) where [ap,ni ] is the class

of ap,ni in H∗(Ai).

2. Denote by Dp,n
r (A) the R-submodule of A×(2r+2) consisting of pairs

(ap,n0 , . . . , ap,nr ); (bp−r,n+1−r
0 , . . . , bp−r,n+1−r

r )

of compatible sequences satisfying dra
p,n
r = bp−r,n+1−r

r . This yields a functor,
denoted by Dp,n

r : SpSeR → ModR.

The following proposition is a direct consequence of the definitions.

Proposition 5.11. Let (A,φ) be a spectral sequence.

1. There is a one-to-one correspondence between infinite compatible sequences

(ap,n0 , . . . , ap,nm , . . .)

and morphisms of spectral sequences R(p, n) → A.

2. We have

Dp,n
r = HomSpSeR

(Dr(p, n),−),

that is, Dp,n
r is represented by Dr(p, n).

Definition 5.12. Let Ir and Jr be the sets of morphisms of SpSeR given by

Ir := {φr+1 : Dr+1(p, n) −→ Sr+1(p, n)}p,n∈Z and Jr := {0 −→ Dr(p, n)}p,n∈Z .

Let I ′r and J ′
r be the sets of morphisms of SpSeR given by

I ′r := ∪r−1
k=0Jk ∪ Ir and J ′

r := ∪r
k=0Jk.

Proposition 5.13. A morphism of spectral sequences is an r-fibration if and only if
it has the right lifting property with respect to J ′

r.
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Proof. Let f : (A,φ) → (B,ψ) be a morphism of spectral sequences. It is clear that if
f is Jr-injective then fr is bidegreewise surjective. It is also clear that f is J0-injective
if and only if f0 is bidegreewise surjective. Assume that for every 0 ⩽ i ⩽ r we have
that fi is bidegreewise surjective. Let (b0, . . . , br; b

′
0, . . . , b

′
r) in Dp,n

r (B). Since fr is
surjective, there exists ar ∈ Ar such that fr(ar) = br hence fr(drar) = b′r. We set
a′r = drar. Pick ur−1 a cycle in Ar−1 such that φ([ur−1]) = ar. Hence

ψ([fr−1(ur−1)]) = fr(ar) = br = ψ[br−1]

and there exists y ∈ Br−1 such that fr−1(ur−1) = br−1 + dr−1y. And y = fr−1(x)
for some x since fr−1 is surjective. Hence br−1 = fr−1(ur−1 − dr−1x) and ar−1 =
ur−1 + dr−1(x) satisfies the required conditions. By induction, we obtain that there
exists (a0, . . . , ar; a

′
0, . . . , a

′
r) in Dp,n

r (A) such that for all i we have fi(ai) = bi and
fi(a

′
i) = b′i, giving the required lift.

Note that this proposition can be stated as f : A→ B is an r-fibration if and only
if for every 0 ⩽ k ⩽ r and for every p, n ∈ Z, Dp,n

k (f) is surjective.

Proposition 5.14. A morphism of spectral sequences is an acyclic r-fibration if and
only if it has the right lifting property with respect to I ′r.

Proof. Assume first that f : A→ B is I ′r-injective. Then fk is bidegreewise sur-
jective for every 0 ⩽ k ⩽ r − 1. Let us show that fr is surjective on cycles. Let
br ∈ Bp+r,n+r−1

r be such that dr(br) = 0. One can then build a sequence

(b0, . . . , br−1, br; 0, . . . , 0)

in Dp+r,n+r−1
r (B) which yields a commutative diagram

Dr+1(p, n)

φr+1

��

0 // A

f

��
Sr+1(p, n)

br

// B

This diagram admits a lift, giving an element (a0, . . . , ar; 0, . . . , 0) in D
p+r,n+r−1
r (A)

satisfying drar = 0 and fi(ai) = bi for 0 ⩽ i ⩽ r. This proves that fr is surjective on
cycles, and thus that fr+1 is surjective.

Let us show that fr is surjective. Let br ∈ Bp+r,n+r−1
r . One can choose compatible

sequences: (b0, . . . , br; b
′
0, . . . , b

′
r) in D

p+r,n+r−1
r (B) and from the first part a lift a′ =

(a′0, . . . , a
′
r) of (b

′
0, . . . , b

′
r) since drb

′
r = drdrbr = 0, which yields again a commutative

diagram

Dr+1(p, n)

φr+1

��

a′
// A

f

��
Sr+1(p, n)

br

// B

admitting a lift. This gives an element ar ∈ Ar such that drar = a′r and fr(ar) = br.
As a consequence f is J ′

r-injective, and thus an r-fibration.



82 MURIEL LIVERNET and SARAH WHITEHOUSE

We have proved that fr+1 is surjective. Let us show that fr+1 is injective. Let
ar+1 ∈ Ar+1 be such that fr+1(ar+1) = 0 and (a0, . . . , ar+1; a

′
0, . . . , a

′
r+1) ∈ Dr+1(A)

which represents ar+1. Since fr+1(ar+1) = 0, we have fr+1(a
′
r+1) = 0 and there exist

br, cr ∈ Br such that dr(br) = fr(ar) and dr(cr) = fr(a
′
r). This induces the following

diagram denoted (∗)

Dr+1(p, n)

φr+1

��

ar+1 // A

f

��
Sr+1(p, n)

(cr,br)
// B

which admits a lift. In particular, there exists αr with drαr = ar. Hence [ar] = [0],
that is ar+1 = 0.

Conversely, assume f is an acyclic r-fibration. Consider the diagram (∗). Since
fr+1(ar+1) = 0 and fr+1 is an isomorphism we deduce that ar+1 = 0 so that ar is a
boundary, as well as a′r. We conclude that a lift exists using the fact that Dr(f) is
surjective.

6. Comparisons with filtered complexes and multicomplexes

In this section we compare (SpSeR)r with corresponding structures on filtered
complexes and multicomplexes. In previous work [3] we have established model cat-
egory structures on these categories where the weak equivalences are the Er-quasi-
isomorphisms. Thus we are able to compare the underlying almost Brown category
structures with (SpSeR)r.

6.1. Filtered complexes
Let FCR be the category of filtered complexes and let (FCR)r denote this category

with the r-model structure of [3, Theorem 3.16]. We consider it as an almost Brown
category where the weak equivalences are the Er-quasi-isomorphisms and the fibra-
tions are the maps such that Z0(f) is surjective and Ei(f) is surjective for 0 ⩽ i ⩽ r.

Proposition 6.1. The spectral sequence functor E : (FCR)r → (SpSeR)r preserves
weak equivalences and is a left exact functor of almost Brown categories.

Proof. It is clear that E preserves finite products, weak equivalences, fibrations and
acyclic fibrations. For the pullback condition, consider the diagram:

A

p

��
U

g
// B

in (FCR)r where p is an acyclic fibration. The pullback in FCR is

X = Ker(p− g : U ⊕A→ B) = {(u, a) | g(u) = p(a), u ∈ U, a ∈ A},

with d(u, a) = (du, da), since FCR is a pre-abelian category. Using the surjectivity of
Ei(p) for all i, the same proof as in Lemma 3.8 shows that the associated spectral
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sequence has

E(X)i = {(u, a) |E(g)(u) = E(p)(a), u ∈ E(U)i, a ∈ E(A)i}.

That is, it has the pagewise pullback of i-bigraded complexes as its i-page and, by
Lemma 3.8, this is the pullback in SpSeR.

Recall the notion of r-homotopy between morphisms of filtered complexes from
Definition 2.5.

Proposition 6.2. The spectral sequence functor E : (FCR)r → (SpSeR)r preserves
r-homotopy.

Proof. The notion of r-homotopy between morphisms f, g : A→ B of filtered com-
plexes can be formulated in terms of a version ΛFC

r of Λr in filtered complexes. Let
ΛFC
r = Re− ⊕Re+ ⊕Ru where e−, e+ are in degree 0 and filtration 0 and u is in

degree 1 and filtration −r. The differential is determined by d(e−) = −u, d(e+) = u.
And we have morphisms ∂−, ∂+ : ΛFC

r → R given by projection to Re− and Re+
respectively. Then giving an r-homotopy from f to g is equivalent to giving a mor-
phism of filtered complexes h : A→ ΛFC

r ⊗B such that ∂−B ◦ h = f and ∂+B ◦ h = g.

The associated spectral sequence E(ΛFC
r ) is Λr as in Definition 5.2 and more

generally E(ΛFC
r ⊗A) ∼= Λr ⊗ E(A). Thus an r-homotopy h between f and g gives

rise to an r-homotopy E(h) between E(f) and E(g).

6.2. Multicomplexes

Recall that we write n-mCR for the category of n-multicomplexes and strict mor-
phisms. Here 2 ⩽ n ⩽ ∞, where the case n = ∞ is the category of multicomplexes.
An n-multicomplex has an associated functorial spectral sequence, described explic-
itly in [8]. Indeed there is a totalization functor to filtered complexes and then we
take the associated spectral sequence. That is, we have a commutative diagram:

n-mCR SpSeR

FCR

E′

Tot
E

Note that we write E′ = E ◦ Tot for the composite functor, but we will often drop
the dash and just write Ei for the pages of the spectral sequence associated to a
multicomplex.

We write (n-mCR)r for the category of n-multicomplexes and strict morphisms
with the r-model structure of [4, Theorem 3.30]. We use the same notation for the
corresponding almost Brown category where the weak equivalences are the Er-quasi-
isomorphisms and the fibrations are the maps f such that Ei(f) is surjective for
0 ⩽ i ⩽ r.

Proposition 6.3. The spectral sequence functor E′ : (n-mCR)r→(SpSeR)r preserves
weak equivalences and is a left exact functor of almost Brown categories.
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Proof. It is clear that E′ preserves finite products, weak equivalences and fibrations.
For the pullback condition, consider the diagram:

A

p

��
U

g
// B

in n-mCR. The pullback in n-mCR exists and it is

X = Ker(p− g : U ⊕A→ B) = {(u, a) | g(u) = p(a), u ∈ U, a ∈ A},

with di(u, a) = (diu, dia) for all i ⩾ 0. Indeed, the category n-mCR has a description
as a module category given in [4, Proposition 4.4] and so it is abelian.

Let Yi denote the pullback in i-bigraded complexes of

Ei(A)

Ei(p)

��
Ei(U)

Ei(g)
// Ei(B)

and note that E0(X) ∼= Y0 as 0-bigraded complexes.
Now suppose that p is an acyclic fibration, in particular Ei(p) is surjective for all

i, and assume that En(X) ∼= Yn as n-bigraded complexes.
As in Lemma 3.8, we have Yn+1

∼= ker(En+1(p)− En+1(g)) and the argument of
that proof also shows that we have an isomorphism of underlying bigraded R-modules
En+1(X) ∼= Yn+1. It remains to check that this can be upgraded to an isomorphism
of (n+ 1)-bigraded complexes and this can be seen from the explicit description of
the differentials in the spectral sequence of a multicomplex in [8].

Then E′(X) has the pagewise pullback of i-bigraded complexes as its i-page and,
by Lemma 3.8, this is the pullback in SpSeR.

Remark 6.4. Note that the proof shows that E′ preserves pullbacks along any map
of any map p such that Ei(p) is surjective for all i.

Remark 6.5. Note that in this multicomplex case E′ also reflects the weak equiva-
lences and fibrations.

Proposition 6.6. For n = ∞, the spectral sequence functor

E′ : (n-mCR)r → (SpSeR)r

preserves the r-path.

Proof. The r-path for multicomplexes was defined in [2, Definition 3.14]. From the
explicit description of the spectral sequence of a multicomplex, it is straightforward to
see that the spectral sequence corresponding to the multicomplex Pr(A) is P (r;E(A)).
We have E(ιA) = ιE(A), E(δ−B) = δ−E(B) and E(δ+B) = δ+E(B).

Proposition 6.7. The spectral sequence functor

E′ : (n-mCR)r → (SpSeR)r

preserves r-homotopy.
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Proof. We start with the case n = ∞. Here an r-homotopy between morphisms of
multicomplexes f, g : C → D is defined in [2, Definition 3.16] as an ∞-morphism of
multicomplexes h : C → Pr(D) such that ∂−D ◦ h = f and ∂+D ◦ h = g.

We write tCR for the category of multicomplexes with ∞-morphisms. By [2, The-
orem 3.8], we have a totalisation functor Tot : tCR → FCR. We can refine the com-
mutative diagram given earlier to

n-mCR ∞-mCR tCR SpSeR

FCR

in i Ẽ

Tot
E

where in and i are inclusions of subcategories and the Tot discussed earlier can be
obtained as the composite of the inclusions and the Tot on tCR.

Thus, using Proposition 6.6, we have a morphism of spectral sequences

E(h) : E(C) → E(Pr(D)) = P (r;E(D)).

Since E(∂−D) = ∂−E(D) and E(∂+D) = ∂+E(D), it follows from Section 5.4 that E(h) is an

r-homotopy between E(f) and E(g).
For n <∞, an r-path object for n-multicomplexes was given in [4, Definition

5.5], giving rise to a notion of r-homotopy. Let us write Pn
r for the r-path in n-

multicomplexes, in order to distinguish it from Pr, the r-path in multicomplexes.
These r-paths can be expressed in the form Pn

r (C) = Λn
r ⊗ C and Pr(C) = Λr ⊗ C.

The two can be compared in the category of multicomplexes, since there is a natural
transformation Pn

r → Pr such that Pn
r (C) = Λn

r ⊗ C → Pr(C) = Λr ⊗ C is α⊗ 1C ,
where α is the identity in bidegrees where this is possible and zero otherwise.

Let h : C → Pr(D) be an r-homotopy from f to g in n-mCR. Then (α⊗ 1D) ◦ h
gives an r-homotopy from f to g in multicomplexes. In other words, the inclusion of
n-multicomplexes into multicomplexes preserves homotopy.

Remark 6.8. The inclusion in of n-multicomplexes into multicomplexes also reflects
homotopy. Indeed i(Pn

r ) gives another functorial path for multicomplexes and so gives
rise to an equivalent notion of homotopy.
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