Metrics on the Phase Space and Non-Selfadjoint Pseudodifferential Operators

Nicolas Lerner

September 14, 2009

Contents

Pı	reface			12
1	Basi	ic Notic	ons of Phase Space Analysis	
	1.1		duction to pseudodifferential operators	
		1.1.1	Prolegomena	
		1.1.2	Quantization formulas	
		1.1.3	The $S_{1,0}^m$ class of symbols	1
		1.1.4	The semi-classical calculus	2
		1.1.5	Other classes of symbols	2
	1.2	Pseud	lodifferential operators on an open subset of \mathbb{R}^n	2
		1.2.1	Introduction	2
		1.2.2	Inversion of (micro)elliptic operators	3
		1.2.3	Propagation of singularities	3
		1.2.4	Local solvability	4
	1.3	Pseud	lodifferential operators in harmonic analysis	5
		1.3.1	Singular integrals, examples	5
		1.3.2	Remarks on the Calderón-Zygmund theory	5
2	Met	rics on	the Phase Space	5
	2.1	The s	tructure of the phase space	5
		2.1.1	Symplectic algebra	5
		2.1.2	Wigner function	5
		2.1.3	Quantization formulas	5
		2.1.4	The metaplectic group	6
		2.1.5	Composition formula	6
	2.2	Admis	ssible metrics	6
		2.2.1	A short review of examples of pseudodifferential calculi	6
		2.2.2	Slowly varying metrics on \mathbb{R}^{2n}	6
		2.2.3	The uncertainty principle for metrics	7
		2.2.4	Temperate metrics	7
		2.2.5	Admissible metric and weights	7
		2.2.6	The main distance function	8

vi

	2.3		al principles of pseudodifferential calculus		84
		2.3.1	Confinement estimates		84
		2.3.2	Biconfinement estimates		85
		2.3.3	Symbolic calculus		91
		2.3.4	Additional remarks		94
		2.3.5	Changing the quantization		100
	2.4	The W	Vick calculus of pseudodifferential operators		101
		2.4.1	Wick quantization		101
		2.4.2	Fock-Bargmann spaces		105
		2.4.3	On the composition formula for the Wick quantization		106
	2.5	Basic e	estimates for pseudodifferential operators		111
		2.5.1	L^2 estimates		111
		2.5.2	The Gårding inequality with gain of one derivative		114
		2.5.3	The Fefferman-Phong inequality		115
		2.5.4	Analytic functional calculus		134
	2.6	Sobole	ev spaces attached to a pseudodifferential calculus		138
		2.6.1	Introduction		138
		2.6.2	Definition of the Sobolev spaces		139
		2.6.3	Characterization of pseudodifferential operators		141
		2.6.4	One-parameter group of elliptic operators		146
		2.6.5	Geodesic temperance for the Wiener lemma		152
3	Esti	mates fo	or Non-Selfadjoint Operators		163
	3.1		uction		163
		3.1.1	Examples		163
		3.1.2	First bracket analysis		173
		3.1.3	Heuristics on condition (Ψ)		176
	3.2	The ge	eometry of condition (Ψ)		179
		3.2.1	Definitions and examples		179
		3.2.2	Condition (P)		181
		3.2.3	Condition (Ψ) for semi-classical families of functions		183
		3.2.4	Some lemmas on C^3 functions		192
		3.2.5	Inequalities for symbols		197
		3.2.6	Quasi-convexity		203
	3.3		ecessity of condition (Ψ)		205
	3.4		ates with loss of $k/k+1$ derivative		208
		3.4.1	Introduction		208
		-	The main result on subellipticity		209
		3.4.3	A more stringent condition on the symbol		210
	3.5		ates with loss of one derivative		212
		3.5.1	Local solvability under condition (P)		212
		3.5.2	The two-dimensional case, the oblique derivative problem		219
		3.5.3	Transversal sign changes		$\frac{210}{222}$
		3.5.4	Semi-global solvability under condition (P)		228
		J.J. I	Seem Seem Services and Condition (1)	•	

Contents vii

	3.6	(Ψ) de	oes not imply solvability with loss of one derivative	228
		3.6.1	Introduction	228
		3.6.2	Construction of the counterexample	235
		3.6.3	More on the structure of the counterexample	248
	3.7	(Ψ) in	mplies solvability with loss of 3/2 derivatives	252
		3.7.1	Introduction	252
		3.7.2	Energy estimates	254
		3.7.3	From semi-classical to local estimates	266
	3.8	Concl	uding remarks	285
		3.8.1	A short historical account of solvability questions	285
		3.8.2	Open problems	286
		3.8.3	Pseudospectrum and solvability	287
			•	
4	$\mathbf{A}\mathbf{p}$	pendix		289
	4.1	Some	elements of Fourier analysis	289
		4.1.1	Basics	289
		4.1.2	The logarithm of a nonsingular symmetric matrix	291
		4.1.3	Fourier transform of Gaussian functions	293
		4.1.4	Some standard examples of Fourier transform	297
		4.1.5	The Hardy Operator	301
	4.2	Some	remarks of algebra	302
		4.2.1	On simultaneous diagonalization of quadratic forms	302
		4.2.2	Some remarks of commutative algebra	303
	4.3	Lemm	nas of classical analysis	305
		4.3.1	On the Faà di Bruno formula	305
		4.3.2	On Leibniz formulas	307
		4.3.3	On Sobolev norms	308
		4.3.4	On partitions of unity	310
		4.3.5	On nonnegative functions	312
		4.3.6	From discrete sums to finite sums	320
		4.3.7	On families of rapidly decreasing functions	321
		4.3.8	Abstract lemma for the propagation of singularities	324
	4.4	On th	e symplectic and metaplectic groups	326
		4.4.1	The symplectic structure of the phase space	326
		4.4.2	The metaplectic group	337
		4.4.3	A remark on the Feynman quantization	340
		4.4.4	Positive quadratic forms in a symplectic vector space	341
	4.5	Symp	lectic geometry	347
		4.5.1	Symplectic manifolds	347
		4.5.2	Normal forms of functions	348
	4.6	Comp	osing a large number of symbols	349
	4.7		elements of operator theory	359
		4.7.1	A selfadjoint operator	359
		472	Cotlar's lemma	360

viii		Contents

	4.7.3	Semi-classical Fourier integral operators
4.8	On Sjö	istrand algebra
4.9	More of	on symbolic calculus
	4.9.1	Properties of some metrics
	4.9.2	Proof of Lemma 3.2.12 on the proper class
	4.9.3	More elements of Wick calculus
	4.9.4	Some lemmas on symbolic calculus
	4.9.5	The Beals-Fefferman reduction
	4.9.6	On tensor products of homogeneous functions
	4.9.7	On the composition of some symbols

Preface

This is a three-chapter-book on the topic of pseudodifferential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space.

The first chapter, Basic Notions of Phase Space Analysis, is introductory and gives a presentation of very classical classes of pseudodifferential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using a priori estimates, and not Fourier integral operators), and we introduce the reader to local solvability problems. That chapter will be hopefully useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudodifferential operators.

The second chapter, *Metrics on the Phase Space* begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. Hörmander (Chapter 18 in the book [73]) on this topic. We use the notion of confinement, introduced by J.-M. Bony and the author and we follow the initial part of the paper [20] on these topics. We expose as well some elements of the so-called Wick calculus. We present some key examples related to the Calderón-Zygmund decompositions such that the Fefferman-Phong inequality and we prove that the analytic functional calculus works for admissible metrics. We give a description of the construction of Sobolev spaces attached to a pseudo-differential calculus, following the paper by J.-M. Bony and J.-Y. Chemin [19]; this construction of Sobolev spaces has been discussed in the aforementioned paper and also in several articles of R. Beals such as [6] (see also the paper [7] for a key lemma of characterization of pseudodifferential operators).

The third and last chapter, Estimates for Non-Selfadjoint Operators, is devoted to the more difficult and less classical topic of non-selfadjoint pseudodifferential operators. We discuss the details of the various types of estimates that can be proved or disproved, depending on the geometry of the symbols. We start with a rather elementary section containing examples and various classical models such as the Hans Lewy example. Next, we move forward with a quite easy discussion on the analysis of the first Poisson bracket of the imaginary and real part. The following sections are more involved; in particular we start a discussion on the geometry of condition (Ψ) , with some known facts on flow-invariant sets, but we expose also the contribution of N. Dencker in the understanding of that geometric condition, with various inequalities satisfied by symbols. The next two sections are concerned respectively with the proof of the necessity of condition (Ψ) for local solvability and also with subelliptic estimates: on these two topics, we refer essentially to the existing literature, but we mention the results to hopefully provide the reader with some continuous overview of the subject. Then we enter into the discussion of estimates with loss of one derivative; we start with a detailed x Preface

proof of the Beals-Fefferman result on local solvability with loss of one derivative under condition (P). Although this proof is classical, it seems useful to review its main arguments based on Calderón-Zygmund decompositions to understand how this type of cutting and stopping procedure works in a rather simple setting (at any rate simpler than in the section devoted to condition (Ψ)). We show, following the author's counterexample, that an estimate with loss of one derivative is not a consequence of condition (Ψ) . Finally, we give a proof of an estimate with loss of 3/2 derivatives under condition (Ψ) , following the articles of N. Dencker [35] and the author's [98]. We end that chapter with a short historical account of solvability questions and also with a list of open questions.

There is also a lengthy appendix to this book. Some topics of this appendix are simply very classical material whose re-exposition might benefit to the reader by providing an immediate access to a reference for some calculations or formulas: it is the case of the first two sections of that appendix *Some elements of Fourier analysis, Some remarks of algebra* and also of the fourth one *On the symplectic and metaplectic groups*. Other parts of the appendix are devoted to technical questions, which would have impeded the reader in his progression: this is the case in particular of the very last section *More on symbolic calculus*.

It is our hope that the first two parts of the book are accessible to graduate students with a decent background in Analysis. The third chapter is directed more to researchers but should also be accessible to the readers able to get some good familiarity with the first two chapters, in which the main tools for the proofs of Chapter 3 are provided.

Acknowledgements. I wish to express my thanks to Jean-Michel Bony for numerous discussions on Sobolev spaces attached to a pseudodifferential calculus given by a metric on the phase space and also for many helpful indications on related matters; the entry [18] refers to these private discussions and files. For several months, the author had the privilege of exchanging several letters and files with Lars Hörmander on the topic of solvability. The author is most grateful for the help generously provided. These personal communications are referred to in the text as [78] and are important in all subsections of the section 3.7. It is my pleasure to thank the editors of this Birkhäuser series, Luigi Rodino and Man Wah Wong, for inviting me to write this book. Finally I wish to acknowledge gratefully the authorization of the Annals of Mathematics and of the Publications of RIMS to reproduce some parts of the articles [92] and [100].