Théorie des groupes, Licence LM325 contrôle du 13/12/2004

Les exercices suivants sont indépendants

I Soit σ la permutation de \mathfrak{S}_7 définie par :

décomposer σ en produit de cycles de support disjoints et donner son ordre. Combien y-a-til d'élements de \mathfrak{S}_7 conjugués à σ ? Quel est le ppcm des ordres des éléments de \mathfrak{S}_7 ?

II Soit G un groupe de cardinal 1,68. Combien y a-t-il d'éléments de G d'ordre exactement 7?

III Soit G un groupe de cardinal $n=p^am$, avec p premier et (p,m)=1. Soient P,Q deux p-sous-groupes de Sylow distincts de G; montrer que $P\cap Q=Q\cap N_G(P)$, où $N_G(P)$ est le normalisateur de P dans G.

On suppose maintenant que l'ensemble X des p-sous-groupes de Sylow de G est de cardinal exactement p+1. Montrer que P agit sur X par conjugaison. Déterminer l'orbite de P (vu comme élément de X), son stabilisateur. Déterminer de même l'orbite de Q et son stabilisateur.

Montrer que $|P \cap Q| = p^{a-1}$.

IV Soit G un groupe fini dont tous les éléments sont d'ordre au plus 2.

- a) Montrer que G est commutatif.
- b) On suppose que G n'est pas réduit à $\{e\}$; montrer que le cardinal de G est pair.
- d) Soit $a \neq e$ un élément de G, et $H = \langle a \rangle$. Montrer que H est distingué dans G et que tout élément de G/H est d'ordre au plus deux.
- e) Montrer que |G| est une puissance de 2.

Théorie des groupes, Licence LM325 examen du 25/01/2005

Les exercices suivants sont indépendants

- I. On rappelle que 401 est un nombre premier. Soit G un groupe de cardinal 2005.
- a) Combien peut-il y avoir de 5-Sylow de G?
- b) Même question pour les 401-Sylow de G.

On suppose maintenant qu'il existe un unique 5-Sylow dans G, noté H_5 et un unique 401-Sylow noté H_{401} .

- c) Montrer que ces deux sous-groupes sont cycliques. On notera x un générateur de H_5 et y un générateur de H_{401} .
- d) Montrer que $yxy^{-1}=x^i$, avec $i\in\mathbb{Z}$. Montrer que $x\longmapsto yxy^{-1}$ permet de définir un automorphisme φ de H_5 . En déduire en particulier que $5\nmid i$.
- e) Montrer que $\varphi^{401} = \text{Id.}$ Montrer que $i^{400} \equiv 1 \mod (5)$ puis que $i^{401} \equiv i \mod (5)$, puis que $\varphi = \text{Id.}$
- e') Alternativement, on pourra montrer $y(xy^{-1}x^{-1}) = (yxy^{-1})x^{-1}$ puis que G est abélien [choisir l'une des méthodes e) ou e')].
- f) En déduire que $G \simeq \mathbb{Z}/2005\mathbb{Z}$.

On suppose maintenant qu'il existe 401 5-Sylow dans G, et un unique 401-Sylow noté H_{401} .

- g) Montrer que G n'est pas abélien.
- h) Montrer que $\operatorname{Aut}(H_{401}) \simeq (\mathbb{Z}/401\mathbb{Z})^*$. En déduire que $\operatorname{Aut}(H_{401})$ est cyclique.
- i) Montrer que $Aut(H_{401})$ possède un unique sous-groupe N d'ordre 5.
- j) Soit $H = \langle z \rangle$ un 5-Sylow de G et soit φ l'application de $H \longrightarrow \operatorname{Aut}(H_{401})$ induite par l'application $z \longmapsto \psi_z$, où $\psi_z(u) = zuz^{-1}$ pour $u \in H_{401}$. Montrer que φ est un morphisme de groupe d'image N.
- k) On pose $G' = H \times G_{401}$ (en tant qu'ensemble) que l'on munit de la loi *

$$(h,k) \star (h',k') = (hh',k.\psi_h(k'))$$
.

Montrer que G' muni de la loi * est un groupe isomorphe à G.

- l) Montrer également que tout homomorphisme de $\mathbb{Z}/5\mathbb{Z}$ dans $\operatorname{Aut}(H_{401})$ d'image N permet de définir de la même manière un groupe G' non abélien de cardinal 2005. En déduire qu'il existe au moins un groupe non abélien de cardinal 2005.
- m) Montrer que tous les groupes construits par le procédé décrit en l) sont isomorphes. En déduire qu'il existe un unique groupe non abélien (à isomorphisme près) de cardinal 2005.

II. Soit G un groupe, et G' le sous-groupe des commutateurs. Montrer que le nombre de représentations (irréductibles) de degré 1 de G est le même que le nombre de représentations (irréductibles) de G/G'.

III. Soit \mathbb{H} le groupe des quaternions, $\mathbb{H} = \{\pm 1, \pm x, \pm y \pm z\}$, avec $x^2 = y^2 = z^2 = -1$, et xy = -yx, xz = -zx, yz = -zy.

- a) Montrer que $\mathbb H$ a 5 classes de conjugaisons. Soit $A=\{\pm 1\}$. Montrer que A est un sous-groupe distingué de $\mathbb H$.
- b) Montrer que $B = \mathbb{H}/A$ est un groupe de type (2,2). Combien y-a-til de représentations irréductibles de B? Quel est leur degré?
- c) Montrer que H admet 4 représentations irréductibles de degré 1 et une représentation irréductible de degré 2.
- d) Soit ρ une application de \mathbb{H} dans $\mathrm{Gl}_2(\mathbb{C})$ telle que

$$\rho(x) = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right), \ \rho(y) = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \ \rho(z) = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right) \ .$$

Montrer que si ρ est une représentation linéaire de \mathbb{H} , elle est définie de manière unique. Montrer que cette représentation est irréductible.

Licence, troisème année, LM325 Épreuve de Mathématiques du 5 septembre 2005 Durée 2 heures

L'usage des documents et des calculatrices n'est pas autorisé.

Exercice 1-

1) Soit φ un homomorphisme de $\mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/9\mathbb{Z}$. Montrer que $\varphi = 0$. Est-ce encore le cas si $\varphi : \mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z}$?

EXERCICE 2— Soit G un groupe fini d'ordre 21 opérant sur un ensemble fini E ayant n éléments.

- a) On suppose n = 19. On suppose aussi qu'il n'existe pas de point fixe dans E sous l'action de G. Combien y a-t-il d'orbites dans E? Quel est le nombre d'éléments dans chacune de ces orbites?
- b) On suppose n = 11. Montrer qu'il existe au moins un point fixe dans E sous l'action de G.
- c) Soit n un entier > 11. Montrer qu'il existe un ensemble ayant n éléments sur lequel G opère sans point fixe.

EXERCICE 3—Soit $p \geq 5$ un nombre premier, et $H \subsetneq \mathfrak{S}_p$ un sous-groupe tel que $[\mathfrak{S}_p : H] < p$.

- a) Montrer que tout cycle d'ordre p est contenu dans H.
- b) Montrer que tout cycle d'ordre 3 est produit de deux cycles d'ordre p.
- c) Montrer que $H = \mathfrak{A}_p$.
- d) Montrer que \mathfrak{S}_5 ne contient aucun sous-groupe de cardinal 30, 40.

EXERCICE 4- Soit G un groupe fini et ρ une représentation complexe de degré n. On note δ l'application de G vers $Gl_1(\mathbb{C})$ définie par $\delta(g) = \det(\rho(g))$.

- a) Montrer que δ est une représentation de G.
- b) Montrer que $G/\ker(\delta)$ est cyclique (on montrera que tout sous-groupe fini de \mathbb{C}^* est cyclique).
- c) On suppose qu'il existe une élément $g \in G$ pour lequel $\delta(g)$ est la multiplication par -1. Montrer que G contient un sous-groupe d'indice 2.
- d) Si G est simple, montrer qu'une représentation non triviale est fidèle.
- e) On admet que le degré d'une représentation irréductible divise |G|, et l'on suppose que G est simple, non abélien, de cardinal pair. On suppose enfin que ρ est irréductible de degré 2. Montrer que pour tout $g \in G$, $\delta(g) = 1$.
- f) Montrer que G possède un élément γ d'ordre 2 et en déduire que $\rho(\gamma) = \pm \mathrm{Id}$ (on vérifiera préalablement que $\rho(\gamma)$ est diagonalisable).
- g) Montrer que $\rho(\gamma) \neq \text{Id}$ (montrer que sinon G possède un sous-groupe distingué non trivial).
- h) Calculer $\rho(\gamma.g.\gamma^{-1}.g^{-1})$ pour un élément g quelconque de G et en déduire que γ est dans le centre de G. En conclure que toute représentation irréductible non triviale est de degré ≥ 3 .

Théorie des groupes, Licence LM325 contrôle du 21/11/2005

Durée, 1h30-Les exercices suivants sont indépendants

I On note $Gl_2(\mathbb{F}_2)$ l'ensemble des matrices 2×2 inversibles, à coefficients dans $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ muni du produit usuel de matrices..

- a) Calculer le cardinal de $Gl_2(\mathbb{F}_2)$,
- b) Déterminer l'ordre de chacun des éléments de $Gl_2(\mathbb{F}_2)$.
- c) Montrer que $Gl_2(\mathbb{F}_2)$ n'est pas abélien.

II Soit G un groupe fini de cardinal n, non commutatif. Soit Z(G) le centre de G et k l'ordre de Z(G) (on rappelle que Z(G) est l'ensmble des $x \in G$ commutant avec tout $y \in G$ et que Z(G) est distingué dans G). Le groupe G opère sur lui même par conjugaison. On note r le nombre d'orbites.

- a) Montrer que $k \leq n/4$.
- b) Montrer que $r \leqslant \frac{5n}{8}$.

III Soit G un groupe fini et H un sous-groupe distingué de G tel que

$$\operatorname{pgcd}(|H|, |G:H|) = 1.$$

Montrer que H est le seul sous-groupe de G de cardinal |H|.

IV Soit P un p-sous groupe de Sylow de G et M un sous-groupe de G tel que M contienne le normalisateur de P dans G:

$$\{x \in G, xPx^{-1} = P\} \subset M.$$

Montrer que $|G:M| \equiv 1 \mod (p)$.

Théorie des groupes, Licence LM325 examen du 16/01/2006

Durée, 2h-Les exercices suivants sont indépendants

- I) Combien d'éléments d'ordre 20 y-a-t-il dans \mathfrak{S}_{10} ? Combien parmi ces derniers sont dans \mathfrak{A}_{10} ?
- II) a) Calculer $a=2006 \mod (30)$. En déduire l'image de a par l'isomorphisme canonique $\mathbb{Z}/30\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

b) soit $\gamma=\begin{pmatrix}1&2&3&4&5&6&7&8&9&10\\7&6&4&9&3&8&1&2&10&5\\$ de cycles de support disjoints et calculer γ^{2006} .

- III) a) Combien y-a-t-il d'élements dans \mathfrak{S}_4 ? Combien parmi ces derniers sont des éléments de \mathfrak{A}_4 ?
- b) En déduire que \mathfrak{A}_4 possède un unique sous-groupe distingué H d'ordre 4.
- c) Montrer que le quotient \mathfrak{A}_4/H est cyclique et donner son cardinal. Montrer que \mathfrak{A}_4 possède au moins trois représentations irréductibles de degré 1.
- d) Soit ρ la représentation de \mathfrak{A}_4 dans $Gl(\mathbb{C}^1)$ 4 muni de sa base canonique $\{e_1, \ldots, e_4\}$ définie par $\rho(\sigma)(e_i) = e_{\sigma(i)}$. Montrer que \mathbb{C}^4 possède une droite D stable par l'action de ρ et exhiber un supplémentaire V de D stable par ρ .
- e) Montrer que les restrictions de ρ à D et V sont irréductibles.
- f) En déduire le nombre de représentations irréductibles de 214 ainsi que leur degré.
 - IV) Soit G un groupe d'ordre n ayant exactement 3 classes de conjugaison.
- b) Trouver toutes les solutions de l'équation (E): $1 = \frac{1}{n} + \frac{1}{a} + \frac{1}{b}$, où n, a, b sont des entiers tels que $n \ge a \ge b > 0$ et $a \mid n, b \mid n$. On commencera par montrer que $b \le 3$. On cherchera ensuite les solutions avec b = 3, puis b = 2.
- c) Déterminer le nombre de classes de conjugaisons de $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$ et \mathfrak{S}_3 .
- d) En faisont opérer G sur lui même par conjugaison, montrer qu'il existe des entiers a, b tels que (n, a, b) soit une solution de (E).
- e) En déduire la liste des groupes à ismorphisme près ayant exactement 3 classes de conjugaison.

Théorie des groupes, Licence LM325 examen du 6/09/2006

Durée, 2h-Les exercices suivants sont indépendants

I On pose $G_1 = \mathbb{Z}/54\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/72\mathbb{Z}$ et $G_2 = \mathbb{Z}/48\mathbb{Z} \times \mathbb{Z}/27\mathbb{Z} \times \mathbb{Z}/36\mathbb{Z}$. Ces groupes sont-ils isomorphes (si oui, on en donnera une preuve, dans le cas contraire, on montrera pourquoi)?

II Soit G un groupe de cardinal 143 opérant sur un ensemble X de cardinal 108. Montrer que l'opération admet au moins un point fixe $x \in X$.

III Soient G_1, G_2 deux groupes finis.

- a) On suppose que $pgcd(|G_1|, |G_2|) = 1$. Montrer que tout morphisme de groupe de G_1 vers G_2 est trivial (c'est-à-dire d'image réduite au neutre).
- b) Combien y-a-t'il de sous-groupes d'ordre 2 dans \mathfrak{S}_3 ? Ces sous-groupes sont-ils distingués?
- c) Calculer $\operatorname{pgcd}(\mathfrak{S}_3, |\mathbb{Z}/3\mathbb{Z}|)$.
- d) montrer que tout morphisme de \mathfrak{S}_3 vers $\mathbb{Z}/3\mathbb{Z}$ est trivial.

IV Soit G fini possédant un automorphisme σ d'ordre 2 tel que $\sigma(g) \neq g$ pour tout $g \neq e$.

- a) Montrer que tout élément $x \in G$ peut s'écrire sous la forme $g\sigma(g)^{-1}$.
- b) Montrer que G est abélien.

V Soit G un groupe opérant sur un ensemble $\mathcal{B} = \{e_1, \dots, e_n\}$. On décompose \mathcal{B} en une union disjointe $\mathcal{B}_1, \dots, \mathcal{B}_t$ d'orbites pour l'action de G. On considère enfin le \mathbb{C} -espace vectoriel V de base \mathcal{B} et la représentation linéaire ρ de G dans Gl(V) définie par permutation des éléments de la base (par l'action donnée).

- a) Montrer que V est somme directe de V_1, \ldots, V_t (en tant que G-module) où les V_i sont les espaces vectoriels de base \mathcal{B}_i).
- b) pour i = 1, ..., t, on pose $v_i = \sum_{e_j \in \mathcal{B}_i} e_j$. Montrer que $\mathbb{C}.v_i$ est un sous-module de V_i (et même de V). Quelle est l'action de G sur $\mathbb{C}.v_i$?
- c) Montrer que tout vecteur de V_i laissé invariant par l'action de G est un multiple de v_i .
- d) Soit $W = \{v \in V, \forall g \in G, \rho(g)(v) = v\}$; montrer que W est une sous-G-module de V de dimension t.