

Examen du cours de M2 Géométrie différentielle et riemannienne

23/10/2020. Durée: 3h. Aucun document autorisé.

Exercice 1. Question de cours. Énoncer et démontrer le théorème de Frobenius.

Exercice 2. Soit H le groupe (de Heisenberg) des matrices 3x3 triangulaires supérieures :

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, x, y, z \in \mathbb{R} \right\}.$$

Les coordonnées (x, y, z) identifient H à \mathbb{R}^3 , et on notera un élément $h \in H$ par ces coordonnées : h = (x, y, z).

Pour $u \in H$, on considère les translations à gauche et à droite, $L_u: H \to H$ et $R_u: H \to H$, définies par

$$L_u(h) = uh$$
, $R_u(h) = hu$.

Soient A, B et C les champs de vecteurs de H définis par

$$A = \frac{\partial}{\partial x}, \quad B = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \quad C = \frac{\partial}{\partial z}.$$

Soit *g* la métrique riemannienne sur H pour laquelle (A, B, C) est une base orthonormée.

- (i) Calculer les crochets [A, B], [A, C] et [B, C].
- (ii) Montrer que pour tout $u = (a, b, c) \in H$, on a $L_u^*A = A$, $L_u^*B = B$ et $L_u^*C = C$, mais $R_u^*A = A bC$, $R_u^*B = B + aC$ et $R_u^*C = C$.
- (iii) Montrer que L_u est une isométrie pour tout $u \in H$. Est-ce le cas pour la translation à droite R_u ?
- (iv) On rappelle la formule donnant la connexion de Levi-Civita :

$$\begin{split} 2\langle \nabla_X Y, Z \rangle &= X \cdot \langle Y, Z \rangle + Y \cdot \langle Z, X \rangle - Z \cdot \langle X, Y \rangle \\ &+ \langle [X, Y], Z \rangle - \langle [X, Z], Y \rangle - \langle [Y, Z], X \rangle. \end{split}$$

Montrer que la connexion de Levi-Civita de g est donnée par les formules :

$$\begin{split} &\nabla_A A = 0, & \nabla_B A = -\frac{1}{2}C, & \nabla_C A = -\frac{1}{2}B, \\ &\nabla_A B = \frac{1}{2}C, & \nabla_B B = 0, & \nabla_C B = \frac{1}{2}A, \\ &\nabla_A C = -\frac{1}{2}B, & \nabla_B C = \frac{1}{2}A, & \nabla_C C = 0. \end{split}$$

- (v) Calculer le tenseur de courbure. Calculer les trois courbures sectionnelles $K(A \wedge B)$, $K(A \wedge C)$ et $K(B \wedge C)$.
- (vi) Montrer que les champs de vecteurs A + yC, B xC et C sont des champs de Killing.
- (vii) Calculer les géodésiques de H. Préciser leur projection sur le plan (xy).

Exercice 3. Rappel. Si $\Sigma \subset M$ est une hypersurface, alors en coordonnées normales autour de Σ , on peut écrire $g = ds^2 + g_s$, où s est la distance à Σ et g_s est une famille de métriques sur Σ . L'endomorphisme de Weingarten est $A = -\frac{1}{2}g_s^{-1}\frac{dg_s}{ds}$, et pour la courbure sectionnelle on a la formule, si Σ est tangent à Σ ,

$$K(Y \wedge \frac{\partial}{\partial s}) = \frac{\left\langle (\frac{dA}{ds} - A^2)Y, Y \right\rangle}{|Y|^2}.$$

Le but de l'exercice est de montrer le théorème suivant : $Soit(M^n, g)$ une variété riemannienne compacte, connexe, orientée, de dimension **paire**, à courbure sectionnelle strictement positive; alors toute isométrie φ de (M, g) préservant l'orientation admet un point fixe.

- (i) Soit $f: M \to \mathbb{R}$ la fonction qui à un point x associe la distance entre x et $\phi(x)$, donc $f(x) = d(x, \phi(x))$. Montrer qu'il existe
 - un point x_0 ∈ M tel que f atteint son minimum en x_0 ;
 - une géodésique $c:[0,1]\to M$ reliant x_0 à $x_1:=\varphi(x_0)$, et minimisant la distance.
- (ii) Soit $y = c(\frac{1}{2})$ le milieu de c. Montrer que le chemin obtenu en suivant c de y à x_1 , puis $\phi \circ c$ de $x_1 = \phi(x_0)$ à $\phi(y)$, minimise la distance. Déduire que $d_{x_0}\phi(\dot{c}(0)) = \dot{c}(1)$.
- (iii) Soit $\tau: T_{x_0}M \to T_{x_1}M$ le transport parallèle le long de c. On considère $A \in End(T_{x_0}M)$ défini par $A = \tau^{-1} \circ d_{x_0} \varphi$. Montrer qu'il existe un vecteur $v \in T_{x_0}M$ tel que $v \perp \dot{c}(0)$ et Av = v. On choisit v de sorte que |v| = 1.
- (iv) Soit X le champ de vecteurs le long de c obtenu par transport parallèle de v le long de c, donc $X(t) \in T_{c(t)}M$ et $\nabla_c X = 0$. Soit $c_s(t) = \exp_{c(t)}(sX(t))$. Montrer que pour tout t on a, quand $s \to 0$,

$$|\dot{c}_s(t)|^2 = |\dot{c}(t)|^2 \left(1 - \mathrm{K}(\dot{c}(t) \wedge \mathrm{X}(t)) \, s^2\right) + o(s^2).$$

(v) Déduire que ϕ admet un point fixe.