EXERCISE CLASSES
INTRODUCTION TO GEOMETRIC ANALYSIS

In all the exercises, unless stated explicitly, (M, g) is a closed (i.e. compact without
boundar) Riemannian manifold of dimension n and Ay > 0 is the nonnegative Laplacian
acting on functions.

1. LAPLACE EIGENVALUES AND EIGENFUNCTIONS
1.1. Examples.

Exercise 1.1 (Laplace spectrum on the sphere). The purpose of this exercise is to compute

the Laplace eigenvalues on the sphere (S", gcan) equipped with the round metric. Let
P,,(R"™!) be the space of homogeneous polynomials of degree m > 0 on R"™! and

H,,(R") := {u € P,,(R"™), | Au =0},

the space of harmonic homogeneous polynomials.
We introduce the operator

0: P (R™) = Diff", () caz®) = Y cadf..05
|a|=m la|=m
and define the scalar product
(1.1) (P,Q)=0(P)Q, VP.QeP,R").

(1) Compute Ho(R"™), H; (R").

(2) Verify that (1.1) defines indeed a Hermitian scalar product (or Euclidean scalar
product in restriction to real-valued polynomials).

(3) Compute the dimension of P,,(R"*1).

(4) Let R € Pi(R™!) and define

mp : P (R = P, (R, mp(P) := PR.

Show that m% : P p(R™1) — P, (R™1) is given by m%(P) = 9(R)P. What do
you get for R := |z|*?
(5) Show that for m > 2,
Pm(Rn—H) — Hm(Rn—H) D |.’E|2Pm_2(Rn+1).

Deduce that P,,(R"1) = @y0|z|**H,, _or (R™!) (with the convention that H,, o =
{0} for m — 2k < 0).
(6) Let f € C°(R™!). Show that

Agn(flsn) = (Af + 00, f + 02 f)]gn.
1
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(7) Show that if f € H,,(R"™!), then P := f|sn+1 satisfies Agn P =m(m +n —1)P.
(8) Deduce the Laplace spectrum of (S”, gean ).

Exercise 1.2 (Zonal harmonics and irreducible representations). The group SO(n + 1)
acts on P,,,(R"™) by pullback, that is if f € P,,(R""!), A € SO(n + 1), then

A f(x) == f(Ax).

The purpose of this exercise is to prove that this action preserves H,,(R"™!) and that this
representation of SO(n + 1) is érreducible, that is it does not preserve any vector subspace
of H,,(R"™) except {0} and H,,(R™™!) itself.

(1) Show that SO(n + 1) preserves H,,(R"*1).

(2) Show that S™ = SO(n+1)/SO(n) (where SO(n) is seen as a subgroup of SO(n+1)

by the diagonal embedding).
The group SO(n + 1) acts on C*°(S™) by pullback, that is A*f(x) := f(Azx) for all

f e C®(S"),z € S". A function f € C*(S™) is said to be zonal if it is invariant by
SO(n). If V.C C*(S™) is a subspace, we shall denote by Z(V') its subspace of zonal
functions. We write x = (o, ..., x,) € R"™! for the coordinates on R"!.

(1) Show that Z(V') is a vector space.
(2) Show that the restriction to S™ of the polynomials

w2l a2 e P (R

are zonal.

(3) Show that f € C°°(S™) is zonal if and only if it only depends on the zg-variable.

(4) Deduce that Z(P,,(R"™)) is given precisely by the span of the above list.

(5) Show that if V' C C*°(S™) is a non-zero finite-dimensional subspace invariant by
SO(n + 1), then dim Z (V) > 1. Hint: Fiz zo € S™ and consider ¢ : V — C, f
(o).

(6) Show that if dim Z(V') = 1, then V is irreducible.

(7) Deduce that H,,(R™"!) is an irreducible representation of SO(n + 1).

Exercise 1.3 (Laplace spectrum on the torus). Let A be a lattice in R™ and set T" :=
R™/A. Define A* the dual lattice, as the set of vectors A\* € R" such that (\*;\) € Z for
all A € A.

(1) Show that fy-(z) := ¥ is a well-defined function on T" and a Laplace eigen-

function for the eigenvalue 472 \*|2.
(2) Show that it forms a basis of L*(T").
On a closed Riemannian manifold (M, g), Weyl’s law describes the asymptotic growth

of Laplace eigenvalues. It was proved by Weyl [Wey11] in 1911. It shows that

#{u < T, i eigenvalue of A} ~ (27) " T ?w,, vol, (M),

where w, is the volume of the unit ball in R™ (and the eigenvalues are counted with
multiplicities).
(3) Prove Weyl’s law on the torus.
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Exercise 1.4 (Laplace spectrum on U(n)). The purpose of this exercise is to characterize
Laplace eigenfunctions on the group U(n) with constant modulus.
(1) Show that the map % : SU(n) x U(1) — U(n) given by (w,z) — 27w is a Z,
bundle map. What is the Z,, action here?

Let gsu(n) be a bi-invariant metric on SU(n), and let gua) = dé? be the standard metric
on U(1l) =R/27Z.
(2) Show that the product metric gsu@m) ® gua) on the product SU(n) x U(1) descends
to a bi-invariant metric gy, on U(n), and that ¢ is a local isometry.
(3) Let f € C*(U(n)) such that Ay, f = pf for some p > 0. Show that

Asumyxu ™ f = " f.

(4) We now further assume that |f| = 1 on U(n). Show that ¢*f(w,0) = a(w)e*?,
where a € C*°(SU(n)) is an eigenfunction of Agy,) associated to the eigenvalue
A>0,kcZandk*+\=p.

(5) Show that |Val is constant. Hint: Compute Agylal®.

(6) Show that Va = 0. Deduce that a is constant and A = 0. Hint: Use that SU(n) is
simply connected.

(7) Show that det : U(n) — U(1) is a submersion with fibers diffeomorphic to SU(n).

(8) Deduce from the previous questions that the function f is of the form f = det™u
for some function v € C*°(U(1)). Show that u is an eigenfunction of the Laplacian
on the circle.

1.2. General results. Let (M™, g) be a closed Riemannian manifold of dimension n > 1.
We recall that any smooth function f € C°°(M) can be uniquely decomposed as

+o00
(1.2) F=> fieir  fi={fedeon €C,
=0

where ¢; € C*°(M) is a Laplace eigenfunction associated to \; such that ||¢;| L2 = 1.
Furthermore, the eigenvalues A\g = 0 < Ay < ... are counted with multiplicities and sorted
in increasing order.

Exercise 1.5. Let 0 € R. Express the spectrum of A2, in terms of that of A,.

Exercise 1.6 (Products of Riemannian manifolds). Let (M, g) and (N, h) be two closed
Riemannian manifolds. Compute the eigenfunctions and eigenvalues of the Laplacian on
(M X N,g@® h).

Exercise 1.7 (Rayleigh Theorem. Max-min Theorem). (1) Show that for f € H'(M), f #
0 such that (f,¢;)r2n) =0 forall 0 < j <k —1, one has

M < fM|Vf|2volg
B fM‘f|2 VOIg’

with equality if and only if f is an eigenfunction of Aj.
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(2) Let v, ...,v5—1 € L*(M) and set H := {f € H'(M) | (f,vi)r2(ar) = 0}. Show that

fM |V f]?vol,

remf#o [ f[? voly T b

Exercise 1.8 (Manifolds with boundary). Let (M, g) be a smooth connected manifold with
boundary. Let v be the outward pointing unit vector field on the boundary OM. Recall that
if X is a vector field on M, its divergence div(X) is defined such that £y vol, = div(X) vol,.

(1) Show that for all vector fields X € C°(M,TM),

/ div(X) vol, :/ X - vvoly,,, -
M oM

(2) More generally, show that for all w € C>*(M), X € C*(M,TM),

/ udiV(X)volg:—/ Vu-Xvolg+/ u X -vvolg,,,
M M oM

(3) Deduce that for all u,v € C*°(M),

/uAvvolg:/ Vu~Vvvolg—/ u Vv - vvolg,,, -
M M oM

(4) The space Hg(M) is defined as the completion of C (M) with respect to the

comp

H'-norm. Show that for all u € H}(M), X € C*(M,TM),

/udiv(X)volg:—/ Vu - X vol,.
M M

The double of M is the manifold M9 obtained by gluing two copies of M along a
cylinder OM x [—1,1]. More precisely,

Mdouble = M X {_1} LI OM x [—1, 1} LM x {1}/ ~

where (2, £1)arxqx1y ~ (2, £1)onx(-1,1) for all x € OM. We will admit that Mdouble Jhag
the structure of a nice smooth closed manifold. Observe that there is a natural embedding
M < M9ouwPle We extend the metric g to a smooth metric g4 such that gi°"™'* = g on
M x {£1} and g°"P'e is arbitrary on OM x [—1,1].

(5) Draw a picture of Mdouble,

(6) In this doubling process, it is key to guarantee that g4 = g on M x {41}. Why
do we need to glue a cylinder then?

(7) Given f € H}(M), we define Ef as the function on M9 such that Ef = f on
Mx{=1}and Ef =0on OM x[-1,1] and Ef = —f on M x {1}. Compute VEf
and show that F : H} (M) — H'(M) is continuous.

(8) Using the Poincaré inequality on M9°"°  deduce that there exists C' > 0 such that
for all f € Hy(M), |[fllr2ar) < ClUIV fllz2qany.

(9) Show that the inclusion Hj (M) < L?(M) is compact.

(10) Given p € C®(M), solve Af = p with f € H}(M) in the weak sense (that is, when
applied to ¢ € O, (M?)).

(11) Show that the solution is unique.
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(12) Show that p — A~'p is defined on L?(M) and compact.

Exercise 1.9. For s € R, we introduce the Sobolev space H*(M) as the completion of
C*(M) for the norm

/]

freon = )
j=1
(1) Show that for all € > 0, there exists a constant C. > 0 such that:
loillze < CXE, vz 0.
(2) Let f € C*(M). Show that for all N > 0, there exists Cy > 0 such that:
] <OnNY, W0,

(3) Let u € D'(M) be a distribution. Show that (1.2) still holds for a distribution.
Bound the coefficients (f;);>o-
(4) Show that the heat equation
(O + Ay)u(t) =0, u(t) = up € D'(M)

admits a unique solution u € C*°((0,00),C*(M)) and that R(t) : ug — u(t) is a
smoothing operator for ¢ > 0.

2. ELLIPTIC OPERATORS
2.1. Examples. General results.

Exercise 2.1 (Total symbol vs. principal symbol). Let A := —(92 4 ;) be the Laplacian
in the standard coordinates (x,y) of R?. Let
[0,00) x (R/27Z) 3 (r,0) s re € R?,
be the polar coordinates.
ow that, 1n polar coordinates, the expression o 1s given
(1) Show that, i 1 di h ion of A is given by
1 1
A=—(0+ ;& +3 7).

(2) What is the full symbol of A in the standard coordinates?
(3) What is the full symbol of A in the polar coordinates?
(4)

Is the full symbol invariant by this change of coordinates?
(5) Show that the principal symbol of A is invariant by this change of coordinates.

Exercise 2.2 (Laplacian and isometries). Let (M, g) be a complete Riemannian manifold,
and ¢ : M — M a smooth diffeomorphism. Show that A, commutes with ¢ if and only if
¢ is an isometry.

Exercise 2.3 (Examples of (non-)elliptic operators). Compute the principal symbol of the
following operators and explain if they are elliptic or not.

(1) P :=X:C®(M) — C>®°(M), where X € C>®°(M,TM) is a vector field on M (seen
as a differential operator of order 1);
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(2) Po:=a:C>®(M,E) — C>®(M, E), where a is a fiberwise endomorphism of £ (i.e.
a(x) € End(FE,) for all x € M);

(3) Py :=d,d" and d + d* acting on forms;

(4) Py ==V : C*(M,E) — C*(M,T*M ® E), where E — M is a complex vector
bundle and V a connection on E;

(5) Ps:=PoQ: C®M,E) — C®°(M,G), where P : C*(M,E) — C>*(M, F) and
Q:C®(M,F)— C®(M,G).

Exercise 2.4 (Basic properties of elliptic operators). Let P : C®°(M, E) — C*(M, F) be
an elliptic differential operator of order m.

(1) Show that for all s € R, there exists C' > 0 such that:
||f|H§+"L SCf||‘Pf|Hs7 \V/fEHS-HTL(M,E)m(keI‘P)L’

where (ker P)* is defined with respect to the L? inner product on sections of E.

We now aim to show that for all f € C°(M, E), there exists a unique pair (u,v) such
that u € C*(M, F) and uLl ker P, v € C*(M, F') and v € ker P*, and

(2.1) f=Pu+w.
(2) Show that P*P : C*®(M, E) — C*(M, E) is elliptic.
(3) Show that for all s € R,
P*P: H*™™(M, E) N (ker P)* — H*(M, E) N (ker P)*
is an isomorphism. Prove that it also holds for C* sections.
(4) Deduce (2.1).

2.2. Isometries. Killing vector fields.

Exercise 2.5 (Killing vector fields). Let (M, g) be a closed Riemannian manifold. We
introduce the operator
Dy : C®(M, T*M) — C*(M, S*T*M), D,a = 8(V,a),

where V, is the Levi-Civita connection and S : T*M®? — S?T*M is the orthogonal
projector onto symmetric 2-tensors given by

Sl ®ag) == (g @ as + as ® ay) /2.

(1) Let X € C°°(M,TM) be a vector field. Show that Lxg = 2D, X*, where f : TM —
T*M is the musical isomorphism.

(2) Show that D, is elliptic.

(3) Let ¢ : (M, g) — (M, g) be an isometry. Show that it is determined by the pair
(¢(p),d¢,) where p € M is arbitrary (i.e. there exists at most one isometry ¢ such
that ¢(p) and d¢, are given).

(4) Let A:=1—S8. For p € M, show that the map

ker D, — T,M ® A*T, M, X — (X(p), AVX(p))

is injective.
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(5) Deduce that dimker D, < n(n+1)/2.
(6) Give an example that saturates this bound.

By working more, one could show that the group of isometries is a compact Lie group
G of dimension < n(n + 1)/2. This was proved by Myers and Steenrod [MS39] in 1939.
A geometric structure (such as a metric) with finite-dimensional automorphism group is
called a rigid structure; this was introduced and studied by Gromov [Gro88] in the 1980s.
The theory of rigid structure is very rich and has deep interactions with dynamical systems,
see the classification of contact Anosov flows with smooth subbundles by Benoist, Foulon
and Labourie for instance [BFLI0].

Exercise 2.6 (Isometries and geodesic flow dynamics). Let (M, g) be a closed Riemannian
manifold, SM := {v € TM, | |v|, = 1} the unit tangent bundle. For v € SM, denote by
t — 7,(t) the unit-speed geodesic generated by v. The geodesic flow is defined on SM by

(2.2) i (v) = (1 (), 1 (t)).
Let X € C*°(SM,T(SM)) be the generator of (y;)icr.

(1) Verify that (2.2) defines indeed a flow.

(2) Compute X for (M, g) = (R”, geuc)-

(3) For m > 0, define 7%, : C*(M,S™T*M) — C*(SM) by 7}, f(v) := frw)(v,...,v).
Show that 7, D, = X, . Hint: use normal coordinates.

(4) Deduce that, if the geodesic flow is transitive on SM, then the space of Killing
vector fields is trivial.

Exercise 2.7. Let (M, g) be a closed Riemannian manifold. For f € C*(M,S?*T*M),
show that there exists a unique pair (p,h) such that h € C(M, S*T*M), Dih = 0 and
p e C®(M, T*M) and pL ker D, such that

f=Dgyp+ h.

This statement is an infinitesimal version of Ebin’s slice theorem which will be proved in
Exercise 4.1.

2.3. Operator theory.

Exercise 2.8 (Compact operators). Let E be a Banach space. Denote by L(F) the space
of bounded linear operators on E and IC(E) the set of compact operators, that is A € K(E)
iff for all bounded sequences (x,), >o in F, the sequence (A(z,)),>0 admits a converging
subsequence.

(1) Show that IC(E) is closed (for the operator norm on L(F)).

(2) Show that IC(F) is a two-sided ideal of L(FE).

(3) Given K € K(F), A € C\ {0}, show that ker(K + \) finite-dimensional and
ran(K + \) is closed with finite codimension.

(4) For K € K(F), show that the spectrum o(K) C C of K is discrete on C\{0}. Prove
that each non-zero eigenvalue is associated to a finite-dimensional eigenspace.

(5) Prove that K € KC(E) is compact iff K* € K(E*) is compact (Schauder’s theorem).
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(6) Assume that F is a Hilbert space now. Show that all compact operators are limits
of finite rank operators.

Exercise 2.9 (Fredholm operators. Index of elliptic operators). The purpose of this ex-
ercise is to study Fredholm operators. Let E be a Banach space. Let F(FE) be the set
of Fredholm operators i.e. bounded linear operators with finite dimensional kernel, and
closed image of finite codimension (finite cokernel), and define the index as

ind: F(E) — Z, ind(A) := dim ker A — dim cokerA.

(1) Let A € L(F). Show that dim coker A = dim ker A*.
(2) Let K € K(E). Show that 1+ K € F(F) and ind(1 + K) = 0.
(3) Show that for A € F(F), there exists B € L(F) such that

BA=1— errA7 AB = HranAa

where Iy, 4 is a finite rank projection onto ker A, II,,, o a projection on ran A with
finite cokernel.

(4) Show that A € F(F) if and only if there exists B € L(E) and K;, Ky € K(E) such
that

AB=1+4K,  BA=1+K,
(5) Let A, B € F(E). Show that AB € F(E) and
ind(AB) = ind(A) + ind(B).

(6) Let A € F(E). Show that there exists ¢ > 0 such that for all P € L(F) with
|P|| <&, A+ P € F(F) with ind(A + P) = ind(A).

(7) Let A € F(F). Show that for all K € K(F), A+ K € F(E) and ind(A) =
ind(A + K).

3. ESTIMATES ON )\

Exercise 3.1 (Coarea formula). Let (M, g) be a closed manifold. For f € C°°(M) show
that:

(1) If f is positive, then:

/vaolg:/+oovol(f—1(t, o0))dt.

0
(2) If f is a Morse function, then:

o0
(3.1) /M|Vf| volg:/ vol,_1(f~1(t))dt.

0

Formula (3.1) is called the coarea formula. It is actually valid for all f € C*(M) (admit-
ted).
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Exercise 3.2 (Isoperimetric inequality and sharp Sobolev inequalities). Let (M, g) be a
complete Riemannian manifold. We say that C' > 0 is an isoperimetric constant in (M, g)
if for all relatively compact domain 2 C M with smooth boundary,

vol,—1(00)"
< VPR
Cs vol, ()=t

We say that the Sobolev embedding W' (M) < L™= (M) is satisfied with constant
C>0ifforallue C (M),

comp
[ull prsn-vary < ClIVullpran.-

The purpose of this exercise is to investigate the relationship between these two constants.

(1) Let (N, g) be a smooth Riemannian manifold with boundary, and v be the inward
pointing unit vector field on dN. Show that

¢:[0,e) x ON — N, (t,x) — exp,(tv(x))

is a diffeomorphism to a local neighborhood of N for £ > 0 small enough.

(2) Show that g = dt* + hy, where h; is a smooth metric on ON.

(3) Show that the Sobolev inequality with constant C' implies the isoperimetric inequal-
ity with constant C'"™".

Conversely, we want to show that the isoperimetric inequality with constant C' implies
the Soblev inequality with constant C~/".
(4) Show that it suffices to show the Sobolev inequality for f € Cg, (R™) with f > 0.
(5) Assume f >0, and f € Cg,(M). Show that

n +oo 1
/ f|n-Tde = — / vol,(f > t)tn-1dt,
M 0

n—1

n

+oo 1
/ |V fldz > C/ vol,(f > t) n dt.
M 0

(6) Deduce the Sobolev inequality.

It is a classical theorem that the isoperimetric inequality is saturated in R" for {2 being
the unit ball, see Exercise 3.3. However, proving similar isoperimetric inequalities in general
Riemannian manifolds is still an open question.

Exercise 3.3 (Isoperimetric inequality in R™). The purpose of this exercise is to prove the
isoperimetric inequality in R™, namely for all relatively compact domain 2 with smooth
boundary 0f2,

VOln_l (6B1 )n < VOln_l (89)”

2
(3:2) vol,(By)*~1 — wvol,(Q)» 1"’

with equality if and only if 2 = B is the open unit ball. We will follow closely the proof
by Cabre [Cab17].
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(1) Let ¢ : Q — By be a smooth surjective map preserving orientation. Show that

vol(B;) < / det dy(x) dz.
Q

(2) Let A be a real symmetric nonnegative matrix. Show that det(A)Y™ < Tr(A)/n.
Consider the following Neumann problem in €:

(3.3) Au = vol,,_1(09)/ vol,,(22), dyu=1,
where 0, is the exterior normal derivative on 0€). Define
I:={zecQ, uly)>ulx)+Vu(z)-(y—2),Vy € Q}.

We aim to show that the map Vu : 8 — R" is surjective onto the unit ball. More precisely,
B; € Vu(TI'). Let v € By and consider x € ), a minimum of the function

Q >y—uly) —v-yeR.
(This is the Legendre transform of u.)

(3) First, show that (3.3) admits a unique solution.

(4) Explain geometrically what I" is for w.

(5) Show that x cannot lie on the boundary 0f2.

(6) Deduce that v = Vu(x). Conclude on the surjectivity of Vu : I' — By.
(7) Show that det dVu(z) > 0 for all z € I'.

(8) Show that

vol,(B;) < /det dVu(z) dz.
r

(9) Show that
det dVu(z) < (Au(z)/n)", Vrel.
(10) Deduce that
vol,_1(092)\"
< | ——= .
vol,(By) < < 2 vol,(©) > vol,, (£2)

(11) Finally, prove the isoperimetric inequality (3.2).
(12) Show that equality (3.2) holds if and only if  is a ball.

Exercise 3.4 (Cheeger’s inequality). The purpose of this exercise is to establish Cheeger’s
inequality, proved by Cheeger [Che70] in 1970. Set

himinf ——VOea(2) :
> min(vol, (M), vol, (Ms)
where ¥ runs over all codimension 1 submanifolds disconnecting M, that is M \ ¥ =
M1 L MQ. Then:
(3.4) M (M, g) > h* /4.

Let f be a real-valued eigenfunction for the eigenvalue Ay, and further assume that 0 is
a regular value of f. Set My := {£f > 0}, My = {f = 0}. Up to switching the role of f
and — f, we further assume vol(M,) < vol(M_).
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(1) First, give a heuristic argument to explain why it is reasonable that h is a good
measure of ;.

(2) Show that
/ IV f2vol, = M\ f?vol,, .
My My

(3) Deduce that

AL >

B~ =

Jor, IV (£2)]vol, | *
fM+ f2vol, '

(4) Using the coarea formula, show that
[ v, zn [,
My My
and conclude.
(5) Treat the general case where 0 is not necessarily a regular value.

Cheeger’s inequality is known to be sharp in some cases. An upper bound for A\; involving
h was also proved by Buser [Bus82| in 1982. The Cheeger constant also plays an important
role in graph theory.

Exercise 3.5 (Hersch’s theorem). The purpose of this exercise is to prove Hersch’s theorem
[Her70]. In the following, S? = {2% +y* + 2% = 1} C R? and g.., denotes the restriction of
the Euclidean metric to S2.

Theorem (Hersch, 1970). Let g be a metric on S* such that vol,(S?) = voly,,.(S?). Then:

)\1 (g) S >\1 (.gcan)'

(1) What is the value A\i(gean)?

(2) Let g be a metric on S?. Show that there exists a conformal map ¢ : (52, g) —
(52, gean) (i-e. such that ¢.g = €27 gean for some o € C(S5?).)

(3) Let f € C>(S?). Show that:

V9 f|2vol, = |V6209f|§zag voleze, .

The previous equality shows that |V e |Z vol, is a conformal invariant in dimension
2. Is it still true in higher dimensions?

We now further assume that vol,(S?) = vol,,, (5%). Let c1,c9,c3 be the coordinate
functions on S?, that is ¢;(x) := ggs(z, €;), where (ey, e, €3) is an orthonormal basis of R3.

(4) Show that there exists i € {1, 2,3} such that
sz \Vggb*ciﬁ vol,
Jgo |d¥ ;]2 vol,

Have we proved the theorem?
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It remains to show that ¢ can be Chosen such that [ ¢; voly,, = 0. Given a (smooth)
measure i on S2, define its barycenter b(u) € By, the unit ball in R3, as:

</ clu,/ 62u/03u>631
S2 S2 S2

We also introduce the stereographic projection

T+ 1y . 2R(2)  23(z) 1— |z
eC =
’ p(2) <1+|z|2’1+|z]2’1+|z]2 ’

p(z,y,2) =

and the conformal transformation ¢ : z — Az on CP! = C U {occo} for A > 0.

(5) What is the group of conformal transformations on (52, gean)?
(6) Show that for all A € SO(3),

A(b(p)) = b(Awpa).

(7) Compute b(¢y, ). Deduce limy_,o b(¢x,pt) and limy o0 b(Px,pt)-
(8) Given an arbitrary v € S%, choose A € SO(3) such that Av = 3., and define

Pur=A""0 ¢y 0 A

Show that ¢, is independent of the choice of matrix A € SO(3) satisfying Av = 0,.

(9) What are limy_,0 b(¢y 2, pt) and limy_, o0 b(dya, 1t)?
(10) For A > 0 fixed, define

Sy = {b(pur,p) | v E S2,

Compute Sy, S; and S,,. Conclude.
(11) Finally, prove Hersch’s theorem.

Hersch’s theorem can be refined and similar results can be obtained for higher eigenval-
ues.

4. NON-LINEAR PROBLEMS

Exercise 4.1 (Local structure of the space of metrics, Ebin 1968). If G is a compact Lie
group and N a smooth closed manifold, the slice theorem describes the local structure
of the orbits of points on N under the action of G. The purpose of this exercise is to
generalize this description to an infinite-dimensional setting.

Let M be a smooth closed manifold, gy an arbitrary metric of regularity C** for
k € Zsp,a € (0,1). We aim to describe locally the space of metrics near gy.

Orbit under the diffeomorphism group. The group of diffeomorphisms Diff*™* (A1)
of regularity (k + 1, ) acts on C*“-regular metrics by pullback, namely (¢, g) — ¢*g.

(1) Show that the action Diff*™*(A1) x Ck(M, S?°T*M) — C**(M, S*T*M) given

by (¢, g) — ¢*g is indeed well-defined and continuous. Is it better than continuous?
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(2) Show that, for fixed ¢ € Diff*™*(M), the map
CP (M, S*T*M) — CH*(M, S*T*M), g~ ¢'g

is smooth.
(3) Show that, if gy € C°°(M, S*T*M) is smooth, then the map

Diff*th (M) — C*(M, S*T*M), ¢~ ¢*go

is smooth.
(4) Compute the tangent space (at go) of the orbit of gy under the action of Diff** 4 (M),
and express it using the operator Dy, (Exercise 2.5).

Slice theorem. In what follows, we will always assume that gq is smooth. Our aim is to
show the following slice theorem, due to Ebin in 1968 [Ebi68§].

Theorem (Slice theorem (Ebin, 1968)). Assume that ker D,y = {0} (no Killing vector
fields, or, equivalently, the isometry group is finite). Then, there exists € > 0 such that for

all metrics g such that ||g — gol|cre < €, there exists a unique ¢ € Diff* (M) close to
the identity such that Dj (¢*g) =0

(5) Is the map
Diff" (M) x C**(M, S*T*M) — C*Y*(M,T*M), (¢,g) — D: (¢*g)

90

smooth?

(6) Explain quickly why (gb*l)*D’gkOgb* = D{j-1)eg,-

(7) Define F(¢,g) := Dab—l)*go' Compute the derivative of F' with respect to ¢ at the
point (1, go).

(8) Show that 9, F(1, go) : C*V*(M, TM) — C*=1(M, T*M) is an isomorphism.

(9) Conclude.

Exercise 4.2 (Prescribing the scalar curvature). Let (M, g) be a smooth closed Riemann-
ian manifold and denote by s, the scalar curvature. Assume that L, := (n—1)A, — s, has
trivial kernel.

Show that the following holds: for all m > 0 and 0 < a < 1, there exists C, e such that
for all h € C"™*(M) with ||h||cm.e < €, there exists f € C™+%%(M) such that s.2;, = s4+h
on M, and || f||gm+2.e < C||h]cm.a.

5. MISCELLANEOUS

Exercise 5.1 (Reminders on connections). Let M be a closed oriented manifold, L — M
be a complex line bundle equipped with a connection V, and Fy € C°°(M, A*T*M) be its
curvature. Let X C M be a closed surface.

(1) Show that [, Fy is independent of V and only depends on [¥] € Hy(M,Z).

(2) Show that [ Fy € 2miZ.
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Exercise 5.2 (Gauss-Bonnet formula). The purpose of this exercise is to prove the Gauss-
Bonnet formula on closed surfaces: if (M, g) is a Riemannian surface of genus g, then

(5.1) /MKg vol, = 27(2 — 2g).

(1) Show that K, vol, = iFy for some appropriate connection V on a line bundle.

(2) Deduce that
/ K, vol,
M

is independent of the metric g.

(3) A pair of pants S is a surface with 3 boundary components and no hole. There exists
(many) hyperbolic metrics (constant curvature —1) on S. Compute the volume of
(S, g) where g is hyperbolic.

(4) Deduce the Gauss-Bonnet formula (5.1).
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