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Introduction

These are notes for an introductory course in geometric analysis. We will focus
on the analysis of ellliptic operators, whose propotype is the Laplacian of Rieman-
nian manifolds, and on geometric applications to linear problems (spectrum) and
nonlinear problems (Yamabe problem).
An important source of inspirationwas the notes by SimonDonaldson [Don]which
are a very good reference for these lectures.
The notes are not intended as self-contained: sometimes the proofs are omitted,
short or left to the reader as exercises. The reader should complete these notes by
referring to excellent textbooks like [Jos17, Li12]. A number of statements and ar-
guments are borrowed to these books, aswell as to [Don] and [LP87] on the Yamabe
problem.
A few exercises are proposed in the text, some other ones at the end of the notes.
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Chapter I

The scalar Laplacian on a
Riemannian manifold

1 The Riemannian Laplacian
Let consider ℝ𝑛 with coordinates (𝑥1,… , 𝑥𝑛). We denote the standard basis of vec-
tor fields by

∂𝑖 =
∂
∂𝑥𝑖 .

The scalar Laplacian on ℝ𝑛 is the operator defined on functions of ℝ𝑛 by

Δ𝑓 = −
𝑛
∑
1
∂2𝑖 𝑓.

We can also write
Δ𝑓 = 𝑑∗𝑑𝑓,

where the operator 𝑑∗ associates to a 1-form α = α𝑖𝑑𝑥𝑖 on ℝ𝑛 the function defined
by

𝑑∗α = −
𝑛
∑
1
∂𝑖α𝑖.

We denote by (⋅, ⋅) the standard L2 inner product on functions or forms on ℝ𝑛. By
an integration by parts, one checks the following identities for compactly supported
1-form α and functions 𝑓, 𝑔:

(α, 𝑑𝑓) = (𝑑∗α, 𝑓),
(Δ𝑓, 𝑔) = (𝑑𝑓, 𝑑𝑔) = (𝑓, Δ𝑔).

The first identity says that 𝑑∗ is the formal adjoint of 𝑑, and the second identity that
Δ is formally selfadjoint.
Nowwegeneralize this to anyRiemannianmanifold (M𝑛, 𝑔). Locallywe can choose
coordinates (𝑥𝑖) in which we write the metric and the volume form as

𝑔 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 , vol = √det(𝑔𝑖𝑗)𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛.
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8 CHAPTER I. THE SCALAR LAPLACIAN ON A RIEMANNIANMANIFOLD

We claim that a formal adjoint of the differential of functions is given by the fol-
lowing operator sending 1-forms on functions:

𝑑∗(α𝑖𝑑𝑥𝑖) = − 1
√det(𝑔)

∂𝑖(√det(𝑔)𝑔𝑖𝑗α𝑗). (1.1)

This fact is easily checked by an integration by parts. There is also a more intrinsic
way to see this: the metric gives an isomorphism ♯ ∶ T∗M → TM, given by

α♯ = 𝑔𝑖𝑗α𝑗∂𝑖, (1.2)

and (1.1) can be rewritten as

𝑑∗α = −𝑑(α
♯ ⨼ vol)
vol . (1.3)

Then we can check that 𝑑∗ is the formal adjoint of 𝑑:

∫
M
𝑑(𝑓α♯ ⨼ vol) = ∫

M
𝑑𝑓 ∧ (α♯ ⨼ vol) + 𝑓𝑑(α♯ ⨼ vol)

= ∫
M
(⟨𝑑𝑓, α⟩ − 𝑓𝑑∗α) vol .

In the caseM has no boundary, the LHS vanishes and we have proved

(𝑑𝑓, α) = (𝑓, 𝑑∗α). (1.4)

Now we can define the scalar Laplacian of (M, 𝑔) to be the operator Δ = 𝑑∗𝑑: from
(1.1) it is given by the explicit formula

Δ𝑓 = − 1
√det(𝑔)

∂𝑖(√det(𝑔)𝑔𝑖𝑗∂𝑗𝑓). (1.5)

Formula (1.4) implies, for any functions 𝑓, 𝑔 with compact support:

(Δ𝑓, 𝑔) = (𝑑𝑓, 𝑑𝑔) = (𝑓, Δ𝑔). (1.6)

The casewhereMhas a boundary is also of interest: let ⃗𝑛 be the unit exterior normal
vector, then one has α♯ ⨼ vol = α𝑛⃗ vol∂M, therefore Stokes theorem gives

∫
M
(⟨𝑑𝑓, α⟩ − 𝑓𝑑∗α) vol = ∫

∂M
α𝑛⃗ vol∂M . (1.7)

Applying this formula twice, we obtain the analog of (1.6) with boundary:

∫
M
Δ𝑓 𝑔 vol = ∫

M
𝑓Δ𝑔 vol+∫

∂M
(( ⃗𝑛 ⋅ 𝑔)𝑓 − ( ⃗𝑛 ⋅ 𝑓)𝑔) vol∂M . (1.8)

2 Main result
We now suppose that (M, 𝑔) is a compact connected manifold (without boundary).
First observe from (1.6) that if Δ𝑓 = 0 then (Δ𝑓, 𝑓) = ‖𝑑𝑓‖2 = 0 and therefore 𝑓 is
constant. Therefore kerΔ = ℝ.
Still from (1.6) we have for any 𝑓 the identity (1, Δ𝑓) = 0 that is ∫M Δ𝑓 vol = 0. It
turns out that this is the only constraint:
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Theorem 2.1. If ϱ ∈ C∞(M) and ∫M ϱ vol = 0, then there exists a solution 𝑓 ∈
C∞(M) of the equation Δ𝑓 = ϱ, which is unique up to an additive constant.
Example 2.2 (Torus). On a torus 𝕋𝑛 = ℝ𝑛/(2πℤ)𝑛 we can write the Laplacian
through the decomposition in Fourier series:

𝑓(𝑥) = ∑
ξ∈ℤ𝑛

̂𝑓(ξ)𝑒𝑖ξ⋅𝑥, Δ𝑓(𝑥) = ∑
ξ∈ℤ𝑛

|ξ|2𝑒𝑖ξ⋅𝑥. (2.1)

The theorem is then explicit: one can solve Δ𝑓 = ϱ if ̂ϱ(0) = 0. Then the solution 𝑓
is given by ̂𝑓(ξ) = 1

|ξ|2
̂ϱ(ξ).

Example 2.3 (Green function). We now consider the case of the flat space ℝ𝑛. Of
course it is not covered by the theorem since it is noncompact. There is a useful
explicit solution of Δ𝑓 = ϱ which is obtained in the following way.
We define the Green function G as a radial function on ℝ𝑛 given by:

G(𝑟) = {
1

(𝑛−2)V𝑛−1

1
𝑟𝑛−2

, 𝑛 > 2,
− 1
2π
log 𝑟, 𝑛 = 2.

(2.2)

Here V𝑛−1 is the total volume of the sphere S𝑛−1 ⊂ ℝ𝑛.
Then a solution of Δ𝑓 = ϱ is given by

𝑓(𝑥) = ∫
ℝ𝑛

ϱ(𝑦)G(𝑥 − 𝑦)|𝑑𝑦|𝑛. (2.3)

Of course we need the integral to converge, for simplicity we suppose that ϱ has
compact support. Note that we do not require ϱ to have zero integral; indeed the
integration by parts (1.8)with 𝑔 = 1has a nonzero boundary termon a large domain
of ℝ𝑛.

Proof of (2.3). On radial functions the Laplacian on ℝ𝑛 writes as
Δ𝑓(𝑟) = −𝑟−(𝑛−1)∂𝑟𝑟𝑛−1∂𝑟𝑓(𝑟)

so it is immediate to check that ΔG = 0 outside the origin. Applying (1.8) for a
function 𝑓 with compact support, we obtain

∫
ℝ𝑛∖Bε

Δ𝑓G vol = ∫
Sε
(G∂𝑟𝑓 − 𝑓∂𝑟G)𝑟𝑛−1 volS𝑛−1 .

Only the term𝑓∂𝑟G gives a nonzero limitwhen ε → 0, and since ∂𝑟G = −𝑟−(𝑛−1)/V𝑛−1
we obtain exactly

∫
ℝ𝑛

Δ𝑓G vol = 𝑓(0). (2.4)

This actually means thatΔG = δ0 (the Dirac function) in the sense of distributions.
Translating (2.4) we obtain 𝑓(𝑥) = ∫ℝ𝑛 Δ𝑓(𝑦)G(𝑥 − 𝑦)|𝑑𝑦|𝑛, that is

Δ𝑓 ∗ G = 𝑓. (2.5)
Given a smooth function ϱ with compact support, and writing the convolution as
ϱ ∗G(𝑥) = ∫ ϱ(𝑥−𝑦)G(𝑦)|𝑑𝑦|𝑛, we can commute differentiation and integration to
obtain:

Δ(ϱ ∗ G) = (Δϱ) ∗ G = ϱ
by (2.5). Therefore we can take as solution of Δ𝑓 = ϱ the function 𝑓 ∶= ϱ ∗ G.
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3 Proof of the theorem

The proof of Theorem 2.1 is difficult. There will be several steps.

Weak solutions

If Δ𝑓 = ϱ then from (1.6) we have (𝑑𝑓, 𝑑𝑔) = (ϱ, 𝑔) for any smooth function 𝑔.
Actually the converse is true: if 𝑓 is smooth and (𝑑𝑓, 𝑑𝑔) = (ϱ, 𝑔) for any smooth
function 𝑔, then by integration by parts (Δ𝑓, 𝑔) = (ϱ, 𝑔) for all functions 𝑔 and there-
fore Δ𝑓 = ϱ.
We define the Sobolev space H1 by

H1(M) = {𝑓 ∈ L2(M), 𝑑𝑓 ∈ L2(M)}, (3.1)

equipped with the Hilbert norm ‖𝑓‖2H1 = ‖𝑓‖2L2 + ‖𝑑𝑓‖2L2 . Actually H1(M) can be
defined as the completion of C∞(M) for this norm.
A weak solution of the equation Δ𝑓 = ϱ is a function 𝑓 ∈ H1(M) such that

(𝑑𝑓, 𝑑𝑔) = (ϱ, 𝑔) for all functions 𝑔 ∈ C∞(M). (3.2)

Observe that by density of C∞ ⊂ H1 it is equivalent to require this property for all
functions 𝑔 ∈ H1(M).
From the previous considerations it follows that if 𝑓 is a weak solution of the equa-
tion and 𝑓 is smooth, then 𝑓 is a genuine solution: Δ𝑓 = ϱ. It turns out that the
smoothness of 𝑓 is automatic:

Theorem 3.1 (Regularity). If Δ𝑓 = ϱ in the weak sense with ϱ ∈ C∞(M), then
𝑓 ∈ C∞(M).

It follows that the resolution of the equation Δ𝑓 = ϱ is reduced to finding a weak
solution of the equation.
Theorem 3.1 is a difficult theorem which we will not prove now: it is a special case
of elliptic regularity, which will be explained later in these lectures, see corollary
18.2.

Variational principle

We consider the energy

E(𝑓) = ∫
M
(12 |𝑑𝑓|

2 − 𝑓ϱ) vol . (3.3)

This gives a functional E ∶ C∞(M) → ℝwhich extends to a well-defined functional
E ∶ H1(M) → ℝ. It is differentiable with differential

𝑑𝑓E( ̇𝑓) = ∫
M
⟨𝑑𝑓, 𝑑 ̇𝑓⟩ − ϱ ̇𝑓. (3.4)



4. POINCARÉ INEQUALITY 11

Comparing with (3.2), we see that 𝑑𝑓E = 0 exactly when 𝑓 is a weak solution of the
equation Δ𝑓 = ϱ. By theorem 3.1 this is equivalent to having a smooth solution of
the equation.
Therefore solving the equation Δ𝑓 = ϱ is now reduced to finding a critical point of
the functional E onH1. We first state the following fundamental result, which will
be proved in the next section.

Theorem 3.2 (Poincaré inequality). If (M𝑛, 𝑔) is compact, then there exists 𝑐 > 0
such that for any function 𝑓 ∈ C∞(M) with ∫M 𝑓 vol = 0 one has

∫
M
|𝑑𝑓|2 vol ≥ 𝑐∫

M
𝑓2 vol . (3.5)

End of proof of theorem 2.1. Actually E is unchanged if we add a constant to 𝑓, so
it is equivalent to restrict to functions with ∫M 𝑓 vol = 0.
Step 1. We use the Poincaré inequality and the Cauchy-Schwartz inequality 𝑓ϱ ≤
1
2
( 𝑐
2
𝑓2 + 2

𝑐
ϱ2) to obtain the lower bound

E(𝑓) ≥ ∫
M
( 𝑐4 |𝑑𝑓|

2 − 1
𝑐 ϱ

2) vol (3.6)

It follows that E has a lower bound; moreover if E is bounded then ‖𝑑𝑓‖L2 (and
therefore ‖𝑓‖H1) is bounded.
Step 2. We choose a minimizing sequence 𝑓𝑖 ∈ H1(M) for E with ∫M 𝑓𝑖 vol = 0.
Since it is bounded in H1, we can extract a subsequence which converges weakly
in H1 to a limit 𝑓 ∈ H1. Since the integral against any (smooth) function is a con-
tinuous linear form on H1(M), we also have at the limit ∫M 𝑓 vol = 0, and

‖𝑑𝑓‖L2 ≤ lim inf ‖𝑑𝑓𝑖‖L2 , ∫
M
ϱ𝑓𝑖 vol→∫

M
ϱ𝑓 vol .

It follows that E(𝑓) ≤ lim infE(𝑓𝑖) = infE, so E attains a minimum at 𝑓. Therefore
𝑓 is a critical point of 𝑓: this gives the required solution.

Remark 3.3. There is a shorter proof of the Theorem applying Riesz representation
theorem to the weak equation (𝑑𝑓, 𝑑𝑔) = (ϱ, 𝑔) for all 𝑔. Poincaré inequality says
that ‖𝑑𝑓‖2L2 is an equivalent scalar product onH1 (restricting to functions with zero
integral). Our proof therefore more or less amounts to the proof of the Riesz the-
orem; the variational approach is very general and can be used in many situations
where Riesz theorem does not apply.

4 Poincaré inequality
We begin by the local version, that is the version in ℝ𝑛:

Proposition 4.1. Let Ω ⊂ ℝ𝑛 be convex and bounded, 𝑓 a function defined on an
open set containingΩ, then

∫
Ω
|𝑑𝑓|2 ≥ 𝑐(Ω)∫

Ω
|𝑓 − ̄𝑓|2 (4.1)
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where ̄𝑓 = 1
V(Ω)

∫Ω 𝑓 and V(Ω) is the volume ofΩ.

Proof. First we prove the following estimate: there is a constant 𝑐1(Ω) such that for
any 𝑥 ∈ Ω one has

|𝑓(𝑥) − ̄𝑓| ≤ 𝑐1(Ω)∫
Ω

|𝑑𝑓(𝑦)|
|𝑥 − 𝑦|𝑛−1 |𝑑𝑦|

𝑛. (4.2)

To prove this inequality, translatingΩ if necessary, we can suppose 0 ∈ Ω. The two
sides (4.2) do not change if we add a constant to 𝑓, so we can also suppose 𝑓(0) = 0.
We consider the function 𝑓 in radial coordinates (𝑟, 𝑢) where 𝑢 ∈ S𝑛−1. Then, if
R(𝑢) = sup{𝑟, 𝑟𝑢 ∈ Ω}, we have

̄𝑓 = 1
V(Ω) ∫S𝑛−1

𝑑 volS
𝑛−1

(𝑢)∫
R(𝑢)

0
𝑓(𝑟, 𝑢)𝑟𝑛−1𝑑𝑟

= 1
V(Ω) ∫S𝑛−1

𝑑 volS
𝑛−1

(𝑢)∫
R(𝑢)

0
(∫

𝑟

0
∂ρ𝑓(ρ, 𝑢)𝑑ρ)𝑟𝑛−1𝑑𝑟

= 1
V(Ω) ∫S𝑛−1

𝑑 volS
𝑛−1

(𝑢)∫
R(𝑢)

0

R(𝑢)𝑛 − ρ𝑛
𝑛 ∂ρ𝑓(ρ, 𝑢)𝑑ρ.

Using R(𝑢)𝑛 − ρ𝑛 ≤ R(𝑢)𝑛 ≤ Diam(Ω)𝑛 we obtain

| ̄𝑓| ≤ Diam(Ω)𝑛
𝑛V(Ω) ∫

Ω

|𝑑𝑓|
ρ𝑛−1 |𝑑𝑥|

𝑛

which proves (4.2) with 𝑐1(Ω) =
Diam(Ω)𝑛

𝑛V(Ω)
.

We can rewrite (4.2) as
|𝑓 − ̄𝑓| ≤ 𝑐1(Ω)K ∗ 𝑔,

where 𝑔 and K are functions on ℝ𝑛 defined by

𝑔(𝑥) = {|𝑑𝑓(𝑥)|, 𝑥 ∈ Ω,
0, 𝑥 ∉ Ω,

K(𝑥) = {
1

|𝑥|𝑛−1
, |𝑥| ≤ DiamΩ,

0, |𝑥| > DiamΩ.

Using the general inequality ‖ϕ∗ψ‖L𝑝 ≤ ‖ϕ‖L𝑝‖ψ‖L1 for functions onℝ𝑛, we obtain

‖𝑓 − ̄𝑓‖L2 ≤ 𝑐1(Ω)‖K‖L1‖𝑔‖L2 ≤ 𝑐2(Ω)‖𝑑𝑓‖L2 .

Proof of Theorem 3.2. We will actually prove the following: if ϱ is a function onM
such that ∫M ϱ vol = 0, then for any function 𝑓 onM one has

|||∫M
𝑓ϱ vol||| ≤ 𝑐‖ϱ‖L2‖𝑑𝑓‖L2 . (4.3)

One deduces the Poincaré inequality by taking ϱ = 𝑓.
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The idea is to reduce to the local version (4.1) via a partition of unity. We write the
proof in the case whereM is covered by two open sets: M = U1∪U2 withU𝑖 convex
bounded set in ℝ𝑛 and (χ1, χ2) a corresponding partition of unity, then we define

ϱ𝑖 = χ𝑖ϱ − (∫
M
χ𝑖ϱ vol)σ,

where σ is a function onM such that Supp σ ⊂ U1∩U2 and∫M σ vol = 1. Therefore
we have ϱ = ϱ1 + ϱ2 with

Supp ϱ𝑖 ⊂ U𝑖, ∫
M
ϱ𝑖 vol = 0, ‖ϱ𝑖‖L2 ≤ 𝑐‖ϱ‖L2 .

Then it is sufficient to prove (4.3) for each ϱ𝑖, so we are back on the bounded convex
set U𝑖 ⊂ ℝ𝑛. Here we distinguish the metric 𝑔 of M and the standard Euclidean
metric 𝑔0 of ℝ𝑛. Let us denote ̄𝑓𝑖 the mean value of 𝑓 on U𝑖 for 𝑔0. We write

∫
U𝑖

ϱ𝑖𝑓 vol = ∫
U𝑖

ϱ𝑖(𝑓 − ̄𝑓𝑖) vol .

Therefore

||||
∫
U𝑖

ϱ𝑖𝑓 vol
||||
≤ ‖ϱ𝑖‖L2(U𝑖 ,𝑔)‖𝑓 − ̄𝑓𝑖‖L2(U𝑖 ,𝑔)

≤ 𝑐‖ϱ𝑖‖L2(U𝑖 ,𝑔)‖𝑓 − ̄𝑓𝑖‖L2(U𝑖 ,𝑔0)

≤ 𝑐′‖ϱ𝑖‖L2(U𝑖 ,𝑔)‖𝑑𝑓‖L2(U𝑖 ,𝑔0)

≤ 𝑐″‖ϱ𝑖‖L2(U𝑖 ,𝑔)‖𝑑𝑓‖L2(U𝑖 ,𝑔)

which proves (4.3).

5 Spectral decomposition and first eigenvalue

We begin by the following compactness theorem for the Sobolev inclusion:

Theorem 5.1 (Compactness). The injectionH1(M) ↪ L2(M) is compact.

Proof. We need to prove that a bounded sequence (𝑓𝑖) inH1 has a convergent sub-
sequence in L2.
The first step is to prove the result in the case of a torus 𝕋𝑛. Using the Fourier series
(2.1), the H1 norm of 𝑓𝑖 is given by

‖𝑓𝑖‖2H1 = ∑
ξ∈ℤ𝑛

(1 + |ξ|2)|𝑓𝑖(ξ)|2.

If ‖𝑓𝑖‖2H1 ≤ 𝑐, we can extract a subsequence, still denoted 𝑓𝑖, such that for any
ξ ∈ ℤ𝑛 we have a convergence 𝑓𝑖(ξ) → 𝑓∞(ξ) when 𝑖 → ∞. The limit 𝑓∞ also
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satisfies ‖𝑓∞‖2H1 ≤ 𝑐. Then we write, for any R > 0,

‖𝑓𝑖 − 𝑓∞‖2L2 = ∑
ξ∈ℤ𝑛

|𝑓∞(ξ) − 𝑓𝑖(ξ)|2

≤ ∑
|ξ|<R

|𝑓∞(ξ) − 𝑓𝑖(ξ)|2 +
1
R2 ∑

|ξ|≥R
|ξ|2|𝑓∞(ξ) − 𝑓𝑖(ξ)|2

≤ ∑
|ξ|<R

|𝑓∞(ξ) − 𝑓𝑖(ξ)|2 +
2𝑐
R2 .

Taking 𝑖 → ∞, we obtain lim sup ‖𝑓𝑖 − 𝑓∞‖2L2 ≤ 2𝑐
R2

for any R > 0. Therefore
𝑓𝑖 → 𝑓∞ in L2.
The general case follows by localising in coordinate balls, considered as balls in
the torus: choose a covering of M by a finite number of open sets U𝑗 which are
diffeomorphic to balls of radius 1 in ℝ𝑛. We can consider these balls as embedded
in 𝕋𝑛 instead, and we consider a partition of unity (χ𝑗) subordinate to (U𝑗). Then
we have an equivalence of norms

‖𝑓‖2L2(M,𝑔) ∼ ∑
𝑗
‖χ𝑗𝑓‖2L2(𝕋𝑛,𝑔0), ‖𝑓‖2H1(M,𝑔) ∼ ∑

𝑗
‖χ𝑗𝑓‖2H1(𝕋𝑛,𝑔0).

Therefore the result follows by applying the torus result to each χ𝑗𝑓.

We cannowestablish the spectral theory for theLaplacian. For each ϱwith∫M ϱ vol =
0, we have found a unique 𝑓 ∶= Gϱ such that Δ𝑓 = ϱ and ∫M 𝑓 vol = 0. Moreover,
by (1.6) and (3.5):

‖𝑑𝑓‖2L2 = (ϱ, 𝑓) ≤ ‖ϱ‖L2‖𝑓‖L2 ≤ 𝑐−
1
2 ‖ϱ‖L2‖𝑑𝑓‖L2 . (5.1)

Therefore ‖𝑑𝑓‖L2 ≤ 𝑐−
1
2 ‖ϱ‖L2 which means that G is continous as an operator

L2(M) → H1(M). Composing by the compact injection H1(M) ↪ L2(M) we deduce
that the operator G ∶ L2(M) → L2(M) is compact.
The spectral theory of compact selfadjoint operators applies: it follows that there
exist a Hilbertian basis (ϕ𝑖) of L2(M) such that

Gϕ𝑖 = μ𝑖ϕ𝑖, μ𝑖 → 0.

Here μ𝑖 > 0 since Δ(μ𝑖ϕ𝑖) = ϕ𝑖 and therefore μ𝑖‖𝑑ϕ𝑖‖2L2 = ‖ϕ𝑖‖2L2 . Taking λ𝑖 = 1/μ𝑖
we get

Δϕ𝑖 = λ𝑖ϕ𝑖, λ𝑖 → +∞. (5.2)

A priori we have restricted to functions with zero integral onM, but we can add the
constant function ϕ0 =

1
√Vol

with λ0 = 0. We can order the eigenvalues λ𝑖 so that

λ0 = 0 < λ1 ≤ λ2 ≤ ⋯ (5.3)

and decomposing any function on this Hilbertian basis we obtain that the optimal
constant in the Poincaré inequality (3.5) is exactly 𝑐 = λ1.



Chapter II

Elliptic operators and Hodge
theory

6 Definition
If E is a vector bundle over M, we denote by C∞(M, E), or sometimes C∞(E), the
space of smooth sections of E.
A linear operator P ∶ C∞(M, E) → C∞(M, F) between sections of two bundles E
and F is a differential operator of order 𝑑 if, in any local trivialisation of E and F
over a coordinate chart (𝑥𝑖), one has

P𝑢(𝑥) = ∑
|α|≤𝑑

𝑎α(𝑥)∂α𝑢(𝑥),

where α = (α1,… , α𝑘) is a multiindex with each α𝑖 ∈ {1…𝑛}, |α| = 𝑘, ∂α =
∂α1 …∂α𝑛 , and 𝑎α(𝑥) is a matrix representing an element of Hom(E𝑥, F𝑥).
The principal symbol of P is defined for 𝑥 ∈ M and ξ ∈ T∗𝑥M by taking only the
terms of order 𝑑 in P:

σP(𝑥, ξ) = ∑
|α|=𝑑

𝑎α(𝑥)ξα,

where ξα = ξα1 ⋯ξα𝑑 if ξ = ξ𝑖𝑑𝑥𝑖. It is a degree 𝑑 homogeneous polynomial in the
variable ξ with values in Hom(E𝑥, F𝑥).
A priori, it is not clear from the formula in local coordinates that the principal sym-
bol is intrinsically defined. But it is easy to check that one has the following more
intrinsic definition: suppose 𝑓 ∈ C∞(M), 𝑡 ∈ ℝ and 𝑢 ∈ C∞(M, E), then

𝑒−𝑡𝑓(𝑥)P(𝑒𝑡𝑓(𝑥)𝑢(𝑥))

is a polynomial of degree 𝑑 in the variable 𝑡, whose monomial of degree 𝑑 is a ho-
mogeneous polynomial of degree 𝑑 in 𝑑𝑓(𝑥). It is actually

𝑡𝑑σP(𝑥, 𝑑𝑓(𝑥))𝑢(𝑥).

The following property of the principal symbol is obvious.

15
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Lemma 6.1. σP∘Q(𝑥, ξ) = σP(𝑥, ξ) ∘ σQ(𝑥, ξ) .

Examples 6.2. 1) The principal symbol of the exterior derivative 𝑑 ∶ Ω𝑝(M) →
Ω𝑝+1(M) is

σ𝑑(𝑥, ξ) = ξ ∧ . (6.1)

Indeed 𝑒−𝑡𝑓𝑑(𝑒𝑡𝑓α) = 𝑡𝑑𝑓 ∧ α + 𝑑α. The same is true for the exterior derivative 𝑑∇
on vector valued differential forms, see section 11.
2) If one has a connection∇ ∶ C∞(E) → Ω1(E) on a vector bundle E, then similarly
𝑒−𝑡𝑓∇(𝑒𝑡𝑓𝑢) = 𝑡𝑑𝑓 ⊗ 𝑢 + ∇𝑢. Therefore

σ∇(𝑥, ξ) = ξ⊗ ∶ E𝑥 → T∗𝑥M⊗E𝑥. (6.2)

We now add metrics. Suppose (M𝑛, 𝑔) is an oriented Riemannian manifold, and
E → M a unitary bundle. Then on sections of E with compact support, one can
define the L2 scalar product and the L2 norm:

(𝑠, 𝑡) = ∫
M
⟨𝑠, 𝑡⟩E vol, ‖𝑠‖2 = ∫

M
⟨𝑠, 𝑠⟩E vol . (6.3)

If E and F are unitary bundles and P ∶ C∞(E) → C∞(F) is a linear operator, then a
formal adjoint of P is an operator P∗ ∶ C∞(F) → C∞(E) satisfying

(P𝑠, 𝑡)E = (𝑠, P∗𝑡)F (6.4)

for all sections 𝑠 ∈ C∞𝑐 (E) and 𝑡 ∈ C∞𝑐 (F).

Lemma 6.3. Any differential operator P ∶ C∞(E) → C∞(F) of order 𝑑 has a formal
adjoint P∗, whose principal symbol is

σP∗(𝑥, ξ) = (−1)𝑑σP(𝑥, ξ)∗.

Exercise 6.4. Prove the lemma in the following way. In local coordinates, write
vol = 𝑣(𝑥)𝑑𝑥1 ∧⋯∧𝑑𝑥𝑛. Choose orthonormal trivialisations of E and F, and write
P = ∑𝑎α(𝑥)∂α. Then prove that

P∗𝑡 = ∑
|α|≤𝑑

(−1)|α| 1
𝑣(𝑥)∂α(𝑣(𝑥)𝑎

α(𝑥)∗𝑡).

Definition 6.5. A differential operator P ∶ C∞(E) → C∞(F) is an elliptic operator
if for any 𝑥 ∈ M and ξ ≠ 0 in T∗𝑥M, the principal symbol σP(𝑥, ξ) ∶ E𝑥 → F𝑥 is
injective.

7 Main result

Here is our main theorem on elliptic operators. It will be proved in section 19.

Theorem 7.1. Suppose (M𝑛, 𝑔) is a compact oriented Riemannian manifold, and
P ∶ C∞(E) → C∞(F) is an elliptic operator, with rankE = rankF. Then

1. ker(P) is finite dimensional;
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2. there is a L2 orthogonal sum

C∞(M, F) = ker(P∗) ⊕ P(C∞(M, E)).

We can apply the result to the scalar Laplacian and obtain immediately Theorem
2.1 as a special case.
Remark that ker(P∗) is also finite dimensional, since P∗ is elliptic if P is elliptic. The
difference dimkerP − dimkerP∗ is the index of P, defined by

ind(P) = dimkerP − dim cokerP.

Operators with finite dimensional kernel and cokernel are called Fredholm oper-
ators, and the index is invariant under continuous deformation among Fredholm
operators. Since ellipticity depends only on the principal symbol, it follows imme-
diately that the index of P depends only on σP. The fundamental index theorem of
Atiyah-Singer gives a topological formula for the index, see the book [BGV04].
A useful special case is that of a formally selfadjoint elliptic operator. Its index is
of course zero. The invariance of the index then implies that any elliptic operator
with the same symbol (or whose symbol is a deformation through elliptic symbols)
has also index zero.

8 The Hodge operator
Let V be a 𝑛-dimensional oriented Euclidean vector space (thought as a tangent
space of an orientedRiemannian𝑛-manifold). Therefore there is a canonical volume
element vol ∈ Λ𝑛V∗. The exterior product Λ𝑝V∗ ∧ Λ𝑛−𝑝V∗ → Λ𝑛V∗ is a non de-
generate pairing. Therefore, for a form β ∈ Λ𝑝V∗, one can define ∗β ∈ Λ𝑛−𝑝V∗ by
its wedge product with 𝑝-forms:

α ∧ ∗β = ⟨α, β⟩ vol (8.1)

for all β ∈ Λ𝑝V∗. The operator ∗ ∶ Λ𝑝V∗ → Λ𝑛−𝑝V∗ is called theHodge ∗ operator.
Inmore concrete terms, if (𝑒𝑖)𝑖=1…𝑛 is a direct orthonormal basis ofV, then (𝑒I)I⊂{1,…,𝑛}
is an orthonormal basis of ΛV∗. One checks easily that

∗1 = vol, ∗𝑒1 = 𝑒2 ∧ 𝑒3 ∧⋯ ∧ 𝑒𝑛,
∗ vol = 1, ∗𝑒𝑖 = (−1)𝑖−1𝑒1 ∧⋯ ∧ 𝑒𝑖 ∧⋯𝑒𝑛.

More generally,
∗𝑒I = ε(I, ∁I)𝑒∁I, (8.2)

where ε(I, ∁I) is the signature of the permutation (1,… , 𝑛) → (I, ∁I).
Exercise 8.1. Suppose that in the basis (𝑒𝑖) the quadratic form is given by thematrix
𝑔 = (𝑔𝑖𝑗), and write the inverse matrix 𝑔−1 = (𝑔𝑖𝑗). Prove that for a 1-form α = α𝑖𝑒𝑖
one has

∗α = (−1)𝑖−1𝑔𝑖𝑗α𝑗𝑒1 ∧⋯ ∧ 𝑒𝑖 ∧⋯ ∧ 𝑒𝑛. (8.3)

Using α♯ defined in (1.2), this can also be written

∗α = α♯ ⨼ vol . (8.4)
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Exercise 8.2. Prove that ∗2 = (−1)𝑝(𝑛−𝑝) on Λ𝑝V∗.

If 𝑛 is even, then ∗ ∶ Λ𝑛/2V∗ → Λ𝑛/2V∗ satisfies ∗2 = (−1)𝑛/2. Therefore, if 𝑛/2 is
even, the eigenvalues of ∗ on Λ𝑛/2V∗ are ±1, and Λ𝑛/2V∗ decomposes accordingly
as

Λ𝑛/2V∗ = Λ𝑛/2
+ ⊕Λ𝑛/2

− . (8.5)

The elements ofΛ𝑛/2
+ are called selfdual forms, and the elements ofΛ𝑛/2

− antiselfdual
forms. For example, if 𝑛 = 4, then Λ± is generated by the forms

𝑒1 ∧ 𝑒2 ± 𝑒3 ∧ 𝑒4, 𝑒1 ∧ 𝑒3 ∓ 𝑒2 ∧ 𝑒4, 𝑒1 ∧ 𝑒4 ± 𝑒2 ∧ 𝑒3. (8.6)

Exercise 8.3. If 𝑛/2 is even, prove that the decomposition (8.5) is orthogonal for the
quadratic form Λ𝑛/2V∗ ∧ Λ𝑛/2V∗ → Λ𝑛V∗ ≃ ℝ, and

α ∧ α = ±|α|2 vol if α ∈ Λ±. (8.7)

Exercise 8.4. If 𝑢 is an orientation-preserving isometry of V, that is 𝑢 ∈ SO(V),
prove that 𝑢 preserves the Hodge operator. This means the following: 𝑢 induces
an isometry of V∗, and an isometry Λ𝑝𝑢 of Λ𝑝V∗ defined by (Λ𝑝𝑢)(𝑥1 ∧⋯ ∧ 𝑥𝑝) =
𝑢(𝑥1) ∧ ⋯ ∧ 𝑢(𝑥𝑝). Then for any 𝑝-form α ∈ Λ𝑝V∗ one has

∗(Λ𝑝𝑢)α = (Λ𝑛−𝑝𝑢) ∗ α.

This illustrates the fact that an orientation-preserving isometry preserves every ob-
ject canonically attached to a metric and an orientation.

9 Adjoint operator

Wehave already calculated the adjoint of the differential of functions, see equations
(1.1)– (1.3). Given (8.4) it can also be written for any 1-form α as

𝑑∗α = − ∗ 𝑑 ∗ α. (9.1)

This is a special case of the following general formula. Denote byΩ𝑝(M) the space
of smooth differential 𝑝-forms onM, andΩ𝑝

𝑐 (M) the version with compact support.

Lemma 9.1. The formal adjoint of the exterior derivative 𝑑 ∶ Ω𝑝(M) → Ω𝑝+1(M) is

𝑑∗ = (−1)𝑛𝑝+1 ∗ 𝑑 ∗ . (9.2)

Proof. For α ∈ Ω𝑝
𝑐 (M) and β ∈ Ω𝑝+1

𝑐 (M) one has the equalities:

∫
M
⟨𝑑α, β⟩ vol𝑔 = ∫

M
𝑑𝑢 ∧ ∗𝑣

= ∫
M
𝑑(𝑢 ∧ ∗𝑣) − (−1)𝑝𝑢 ∧ 𝑑 ∗ 𝑣



10. HODGE THEORY 19

by Stokes theorem, and using exercice 8.2:

= (−1)𝑝+1+𝑝(𝑛−𝑝)∫
M
𝑢 ∧ ∗ ∗ 𝑑 ∗ 𝑣

= (−1)𝑝𝑛+1∫
M
⟨𝑢, ∗𝑑 ∗ 𝑣⟩ vol𝑔 .

Remarks 9.2. 1) If 𝑛 is even then the formula simplifies to 𝑑∗ = − ∗ 𝑑∗.
2) The same formula gives an adjoint for the exterior derivative 𝑑∇ ∶ Ω𝑝(E) →
Ω𝑝+1(E) associated to a unitary connection ∇ on a bundle E.
3) By lemma 6.3 the principal symbol of 𝑑∗ is−σ𝑑(𝑥, ξ)∗. The adjoint of the exterior
product by ξ is the internal product by ξ♯, so we obtain

σ𝑑∗(𝑥, ξ)α = −ξ♯ ⨼ α. (9.3)

10 Hodge theory

Definition 10.1. Let (M𝑛, 𝑔) be an oriented Riemannian manifold. TheHodge-De
Rham Laplacian on 𝑝-forms is defined by

Δα = (𝑑𝑑∗ + 𝑑∗𝑑)α.

On functions we recover the scalar Laplacian that we have already seen.
Clearly,Δ is a formally selfadjoint operator. The definition is also valid for E-valued
𝑝-forms, using the exterior derivative 𝑑∇, where E has a metric connection ∇.
Exercise 10.2. On 𝑝-forms in ℝ𝑛 prove that Δ(αI𝑑𝑥I) = (ΔαI)𝑑𝑥I.
Exercise 10.3. Prove that ∗ commutes with Δ.

Lemma 10.4. The principal symbol of the Hodge-De Rham Laplacian is

σΔ(𝑥, ξ) = −|ξ|2.

In particular Δ is an elliptic operator.

Proof. By (9.3)
σΔ(𝑥, ξ) = −(ξ♯⨼)(ξ∧) − (ξ∧)(ξ♯⨼).

It is sufficient to calculate for ξ = 𝑒1 where (𝑒𝑖) is an orthonormal basis of TM, and
the result is then immediate.

Let (M𝑛, 𝑔) be a closed Riemannian oriented manifold. Consider the De Rham
complex

0 → C∞(M) 𝑑→ Ω1(M) 𝑑→⋯ 𝑑→ Ω𝑛(M) → 0.
Remind that the De Rham cohomology in degree 𝑝 is defined by

H𝑝 = {α ∈ Ω𝑝(M), 𝑑α = 0}/𝑑Ω𝑝−1(M).
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Definition 10.5. A harmonic form is a C∞ form such that Δα = 0.

Lemma 10.6. If α ∈ C∞𝑐 (M,Ω𝑝), then α is harmonic if and only if 𝑑α = 0 and
𝑑∗α = 0. In particular, on a compact connected manifold, any harmonic function is
constant.

Proof. It is clear that if 𝑑α = 0 and 𝑑∗α = 0, then Δα = 𝑑∗𝑑α + 𝑑𝑑∗α = 0. Con-
versely, if Δα = 0, because

(Δα, α) = (𝑑∗𝑑α, α) + (𝑑𝑑∗α, α) = ‖𝑑α‖2 + ‖𝑑∗α‖2,

we deduce that 𝑑α = 0 and 𝑑∗α = 0.

Remark 10.7. The lemma remains valid on completemanifolds, for L2 forms α such
that 𝑑α and 𝑑∗α are also L2. This is proved by taking cut-off functions χ𝑗 , such that
χ−1𝑗 (1) are compact domains which exhaust M, and |𝑑χ𝑗 | remains bounded by a
fixed constant C. Then

∫
M
⟨Δα, χ𝑗α⟩ vol = ∫

M
(⟨𝑑α, 𝑑(χ𝑗α)⟩ + ⟨𝑑∗α, 𝑑∗(χ𝑗α)⟩) vol

= ∫
M
(χ𝑗(|𝑑α|2 + |𝑑∗α|2) + ⟨𝑑α, 𝑑χ𝑗 ∧ α⟩ − ⟨𝑑∗α,∇χ𝑗 ⨼ α⟩) vol

Using |𝑑χ𝑗 | ≤ C and taking 𝑗 to infinity, one obtains (Δα, α) = ‖𝑑α‖2 + ‖𝑑∗α‖2.

Note H𝑝 the space of harmonic 𝑝-forms on M. Theorem 7.1 on elliptic operators
can be applied to the Hodge-De Rham Laplacian to give:

Theorem10.8. Let (M𝑛, 𝑔) be a compact closed orientedRiemannianmanifold. Then:

1. H𝑝 is finite dimensional;

2. one has a decomposition Ω𝑝(M) = H𝑝 ⊕ Δ(Ω𝑝(M)), which is orthogonal for
the L2 scalar product.

We now derive some immediate consequences.

Corollary 10.9. Same hypothesis. One has the orthogonal decomposition

Ω𝑝(M) = H𝑝 ⊕ 𝑑(Ω𝑝−1(M)) ⊕ 𝑑∗(Ω𝑝+1(M)),

where

ker𝑑 = H𝑝 ⊕ 𝑑(Ω𝑝−1(M)), (10.1)
ker𝑑∗ = H𝑝 ⊕ 𝑑∗(Ω𝑝+1(M)). (10.2)

Note that since harmonic forms are closed, there is a natural map H𝑝 → H𝑝. The
equality (10.1) implies immediately:

Corollary 10.10. Same hypothesis. The mapH𝑝 → H𝑝 is an isomorphism.

Using exercise 10.3, we obtain:
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Corollary 10.11 (Poincaré duality). Same hypothesis. The Hodge ∗ operator induces
an isomorphism ∗ ∶ H𝑝 → H𝑛−𝑝. In particular the corresponding Betti numbers are
equal, 𝑏𝑝 = 𝑏𝑛−𝑝.

Remark 10.12. As an immediate consequence, ifM is connected thenH𝑛 = ℝ since
H0 = ℝ. Since ∗1 = vol𝑔 and ∫M vol𝑔 > 0, an identification with ℝ is just given by
integration of 𝑛-forms onM.
Remark 10.13. In Kähler geometry there is a decomposition of harmonic forms
using the (𝑝, 𝑞) type of forms, H𝑘 ⊗ ℂ = ⊕𝑘

0H𝑝,𝑘−𝑝, and corollary 10.11 can then
be refined as an isomorphism ∗ ∶ H𝑝,𝑞 → H𝑚−𝑞,𝑚−𝑝, where 𝑛 = 2𝑚.
Remark 10.14. Suppose that 𝑛 is a multiple of 4. Then by exercises 8.3 and 10.3,
one has an orthogonal decomposition

H𝑛/2 = H+ ⊕H−. (10.3)

Under the wedge product, the decomposition is orthogonal,H+ is positive andH−
is negative, therefore the signature of the manifold is (𝑝, 𝑞) with 𝑝 = dimH+ and
𝑞 = dimH−.
Exercise 10.15. Suppose again that 𝑛 is a multiple of 4. Note 𝑑± ∶ Ω𝑛/2−1(M) →
Ω±(M) the projection of 𝑑 on selfdual or antiselfdual forms. Prove that on (𝑛/2−1)-
forms, one has 𝑑∗+𝑑+ = 𝑑∗−𝑑−. Deduce that the cohomology of the complex

0 → C∞(M) 𝑑→ Ω1(M) 𝑑→⋯ 𝑑→ Ω𝑛/2−1(M)
𝑑+→ Ω+(M) → 0 (10.4)

isH0,H1, …,H𝑛/2−1,H+.
Exercise 10.16. Using exercise 10.2, calculate the harmonic forms and the cohomo-
logy of a flat torus ℝ𝑛/ℤ𝑛.
Exercise 10.17. Let (M, 𝑔) be a compact oriented Riemannian manifold.
1) If γ is an orientation-preserving isometry of (M, 𝑔) and α a harmonic form, prove
that γ∗α is harmonic.
2) (requires some knowledge of Lie groups) Prove that if a connected Lie group G
acts onM, then the action of G on H•(M,ℝ) given by α → γ∗α is trivial1.
3) Deduce that harmonic forms are invariant under Isom(M, 𝑔)𝑜, the connected
component of the identity in the isometry group ofM. Apply this observation to give
a proof that the cohomology of the 𝑛-sphere vanishes in degrees 𝑘 = 1,… , 𝑛 − 1
(prove that there is no SO(𝑛 + 1)-invariant 𝑘-form on S𝑛 using the fact that the
representation of SO(𝑛) onΩ𝑘ℝ𝑛 is irreducible and therefore has no fixed nonzero
vector).

1If ξ belongs to the Lie algebra of G and Xξ is the associated vector field onM given by the infin-
itesimal action of G (that is defined by Xξ(𝑥) =

𝑑
𝑑𝑡
𝑒𝑡ξ𝑥|𝑡=0), then one has

𝑑
𝑑𝑡
(𝑒𝑡ξ)∗α|𝑡=0 = ℒXξα =

𝑖Xξ𝑑α + 𝑑𝑖Xξα. Deduce that if α is closed, then the infinitesimal action ofG onH•(M,ℝ) is trivial.
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Chapter III

Bochner formula and
applications

11 More on connections

We recall without proof some basic properties of connections on vector bundles.
Let E → M be a vector bundle with a connection ∇ ∶ C∞(E) → Ω1(E). In a local
trivialization of E and in local coordinates (𝑥𝑖) one can write locally

∇𝑠 = 𝑑𝑠 + 𝑑𝑥𝑖 ⊗ 𝑎𝑖𝑠,

where 𝑠 is a section of E (seen as a map to ℝ𝑘 or ℂ𝑘 in the trivialization) and 𝑎𝑖 are
local maps fromM to EndE, that is to 𝑘×𝑘matrices. We can evaluate on the basic
vector field ∂𝑖 and write

∇𝑖𝑠 = ∂𝑖𝑠 + 𝑎𝑖𝑠.
We can also define the local connection 1-form 𝑎 = 𝑎𝑖𝑑𝑥𝑖: it is a 1-formwith values
in EndE; then we can write in a compact form the connection as

∇𝑠 = 𝑑𝑠 + 𝑎𝑠.

If ∇ is a unitary connection (that is preserves a scalar or Hermitian product ℎ on
E), then in an orthonormal trivialization of E it turns out that the matrices 𝑎𝑖 are
antisymmetric (real case) or anti-Hermitian (complex case), that is take value in
the Lie algebras 𝔬(E) or 𝔲(E).
A connection on a bundle E induces a connection on all associated bundles: E∗,
Λ𝑝E, etc. The principle is that algebraic operations are invariant under the connec-
tion, for example the connection ∇E∗ is deduced from ∇E by

𝑑⟨𝑠∗, 𝑠⟩ = ⟨∇E∗𝑠∗, 𝑠⟩ + ⟨𝑠∗, ∇E𝑠⟩.

Taking a trivialization, it follows quickly that

𝑎E∗𝑖 = −(𝑎E𝑖 )𝑡.

23
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Another important case is that of the bundle EndE = E∗⊗E. Again, invariance of
the evaluation of an endomorphism of E on a section of E gives the rule

∇E(𝑢(𝑠)) = (∇EndE𝑢)(𝑠) + 𝑢(∇E𝑠),

from which one deduces in a trivialization the equality

𝑎EndE𝑖 (𝑢) = [𝑎E𝑖 , 𝑢].

The curvature of ∇ is a 2-form with values in EndE defined by

FX,Y = [∇X, ∇Y] − ∇[X,Y]. (11.1)

A direct calculation from ∇ = 𝑑 + 𝑎 gives

FX,Y = X ⋅ 𝑎Y − Y ⋅ 𝑎X − 𝑎[X,Y] + [𝑎X, 𝑎Y] = (𝑑𝑎 + 𝑎 ∧ 𝑎)X,Y, (11.2)

that is F = 𝑑𝑎 + 𝑎 ∧ 𝑎. In coordinates we can write F = ∑𝑖<𝑗 F𝑖𝑗𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 with

F𝑖𝑗 = ∂𝑖𝑎𝑗 − ∂𝑗𝑎𝑖 + [𝑎𝑖, 𝑎𝑗]. (11.3)

Note that for a unitary connection this is still with values in 𝔬(E) or 𝔲(E).

12 The Bianchi identity

We denote by Ω𝑝(M, E) ∶= C∞(M,Λ𝑝T∗M⊗ E) the space of 𝑝-forms with values
in E. For example the curvature F is an element of Ω2(EndE). One can extend ∇
uniquely to an exterior differential on E-valued differential forms:

𝑑∇ ∶ Ω𝑝(E)⟶ Ω𝑝+1(E) (12.1)

satisfying the Leibniz identity, for α a differential form and σ an E-valued differen-
tial form:

𝑑∇(α ∧ σ) = 𝑑α ∧ σ + (−1)|α|α ∧ 𝑑∇σ. (12.2)

This extension can be defined by the local formula 𝑑∇σ = 𝑑σ + 𝑎 ∧ σ in a trivializ-
ation of E in which ∇ = 𝑑 + 𝑎 as above. It is equivalent to the formula:

(𝑑∇σ)X0,…,X𝑝 =
𝑝
∑
0
(−1)𝑖∇X𝑖 (σX0,…,X̂𝑖 ,…,X𝑘

)

+ ∑
0≤𝑖<𝑗≤𝑝

(−1)𝑖+𝑗σ[X𝑖 ,X𝑗],X0,…,X̂𝑖 ,…,X̂𝑗 ,…,X𝑘
. (12.3)

This extension leads to a nice interpretation of the curvature: recall that the exterior
differential satisfies 𝑑 ∘ 𝑑 = 0. The curvature is precisely the defect for 𝑑∇ ∘ 𝑑∇ to
vanish:

Lemma 12.1. 1° The curvature F∇, seen as an operator C∞(E) → Ω2(E), is F∇ =
𝑑∇ ∘ 𝑑∇.
2° As an operatorΩ𝑝(E) → Ω𝑝+2(E), one has F∇ = 𝑑∇ ∘ 𝑑∇.
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Proof. Let us choose a local trivialization ofE, andwrite the connection∇ = 𝑑+𝑎 =
𝑑 + 𝑎𝑖𝑑𝑥𝑖, where each 𝑎𝑖 is End(E)-valued. Then, for a section 𝑠 of E, we have
𝑑∇𝑠 = 𝑑𝑠 + 𝑎𝑠 and

𝑑∇(𝑑∇𝑠) = (𝑑 + 𝑎)(𝑑 + 𝑎)𝑠
= 𝑑(𝑎𝑠) + 𝑎 ∧ 𝑑𝑠 + 𝑎 ∧ 𝑎𝑠
= (𝑑𝑎 + 𝑎 ∧ 𝑎)𝑠.

This proves the first statement. The proof of the second one is similar.

The lemma implies that if (E,∇) is a flat bundle (F∇ = 0), then we have an associ-
ated complex

0 → C∞(M, E) 𝑑
∇
→ Ω1(E) 𝑑

∇
→⋯ 𝑑∇→ Ω𝑛(E) → 0

and we can define the De Rham cohomology with values in E as in the usual case.
TheHodge-DeRhamLaplacian 𝑑∇(𝑑∇)∗+(𝑑∇)∗𝑑∇ has still symbol−|ξ|2 and there-
fore all the results of Hodge theory extend to this situation.
We deduce from the lemma the following important identity:

Proposition 12.2 (differential Bianchi identity). The curvature of a connection sat-
isfies the identity

𝑑∇F∇ = 0.

Remark that F∇ ∈ Ω2(EndE) so 𝑑∇ is the exterior derivative associated to the con-
nection ∇ on EndE, and 𝑑∇F∇ ∈ Ω3(EndE).

Proof. We give two proofs. The first proof is abstract: let us distinguish∇ on E and
∇̄ on EndE. Recall that, as a linear operator on E, for 𝑢 ∈ C∞(EndE) one has
∇̄𝑢 = ∇ ∘ 𝑢 − 𝑢 ∘ ∇. Then the reader will check that, as operators C∞(E) → Ω3(E),
one has 𝑑∇̄F∇ = 𝑑∇ ∘ F∇ − F∇ ∘ 𝑑∇. But since F∇ = 𝑑∇ ∘ 𝑑∇, we obtain

𝑑∇̄F∇ = 𝑑∇ ∘ 𝑑∇ ∘ 𝑑∇ − 𝑑∇ ∘ 𝑑∇ ∘ 𝑑∇ = 0.

The second proof is a calculation: in a trivialization where ∇ = 𝑑 + 𝑎 we have
F∇ = 𝑑𝑎 + 𝑎 ∧ 𝑎 and therefore

𝑑∇F∇ = 𝑑(𝑑𝑎 + 𝑎 ∧ 𝑎) + [𝑎, 𝑑𝑎 + 𝑎 ∧ 𝑎]

since the connection form acts by bracket on EndE. But 𝑑(𝑑𝑎) = 0, [𝑎, 𝑑𝑎] =
𝑎 ∧ 𝑑𝑎 − 𝑑𝑎 ∧ 𝑎 = −𝑑(𝑎 ∧ 𝑎) and finally [𝑎, 𝑎 ∧ 𝑎] = 0 by the Jacobi identity. So
𝑑∇F∇ = 0.

Suppose now that∇ is a unitary connection on E and (M, 𝑔) is a Riemannian man-
ifold. The operator 𝑑∇ has an adjoint (𝑑∇)∗ which is again given by formula (9.2).
Combining∇ and the Levi-Civita connection ofM gives a connection onΛ𝑝T∗M⊗
E, that is on the bundle of E-valued 𝑝-forms. This connection can be used to give
an alternative expression of (𝑑∇)∗: for 1-forms one obtains the following lemma.
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Lemma 12.3. Let E be a vector bundle with unitary connection ∇, then the formal
adjoint of ∇ ∶ C∞(M, E) → Ω1(M, E) is

∇∗α = −Tr𝑔(∇𝑢) = −
𝑛
∑
1
(∇𝑒𝑖α)(𝑒𝑖).

Proof. Take a local orthonormal basis (𝑒𝑖) of TM, and consider an E-valued 1-form
α = α𝑖𝑒𝑖. We have ∗α = (−1)𝑖−1α𝑖𝑒1 ∧⋯ ∧ 𝑒𝑖 ∧⋯ ∧ 𝑒𝑛. One can suppose that just
at the point 𝑝 one has ∇𝑒𝑖(𝑝) = 0, therefore 𝑑𝑒𝑖(𝑝) = 0 and, still at the point 𝑝,

𝑑∇ ∗ α =
𝑛
∑
1
(∇𝑖α𝑖)𝑒1 ∧⋯ ∧ 𝑒𝑛.

Finally ∇∗α(𝑝) = −∑𝑛
1 (∇𝑖α𝑖)(𝑝).

Remark 12.4. Actually the same formula is also valid for 𝑝-forms. Indeed, 𝑑∇ ∶
Ω𝑝(M) → Ω𝑝+1(M) can be deduced from the covariant derivative ∇ ∶ Ω𝑝(M) →
Ω1(M,Λ𝑝T∗M) by the formula1

𝑑∇ = (𝑝 + 1)a ∘ ∇,

where a is the antisymmetrization of a (𝑝 + 1)-tensor. Also observe that if α ∈
Λ𝑝V∗ ⊂ ⊗𝑝V∗, its norm as a 𝑝-form differs from its norm as a 𝑝-tensor by

|α|2Λ𝑝V∗ = 𝑝!|α|2⊗𝑝V∗ .

Putting together this two facts, one can calculate that (𝑑∇)∗ is the restriction of ∇∗

to antisymmetric tensors in T∗M⊗Λ𝑝T∗M. We get the formula

(𝑑∇)∗α = −
𝑛
∑
1
𝑒𝑖 ⨼ ∇𝑖α. (12.4)

13 The Ricci tensor

If R is the Riemannian curvature tensor of (M, 𝑔), the Ricci tensor Ric is defined by
the formula

Ric(X, Y) = Tr(Z → RZ,XY).
In an orthonormal basis (𝑒𝑖) of the tangent bundle, one has

Ric(X, Y) = ∑⟨R𝑒𝑖 ,XY, 𝑒𝑖⟩, (13.1)

which we can write Ric𝑗𝑘 = R 𝑖
𝑖𝑗𝑘 . From the symmetries of the curvature tensor

R 𝑖
𝑖𝑗𝑘 = R 𝑗

𝑘𝑖𝑖 = R 𝑖
𝑖𝑘𝑗 that is

Ric(X, Y) = Ric(Y, X), (13.2)

so the Ricci tensor is a symmetric 2-tensor.
1This formula is true as soon as ∇ is a torsion free connection onM.
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The scalar curvature of the metric is the function defined by

Scal = Tr(𝑔−1 Ric) =
𝑛
∑
1
Ric(𝑒𝑖, 𝑒𝑖).

For example, in dimension 2, in an orthonormal basis (𝑒1, 𝑒2), if K = R 1
122 is the

(Gauss) curvature, then one obtains immediately

Ric = K𝑔, Scal = 2K.

For the sphere S𝑛 one has Ric = (𝑛 − 1)𝑔 and Scal = 𝑛(𝑛 − 1).
For the hyperbolic space H𝑛 one has Ric = −(𝑛 − 1) and Scal = −𝑛(𝑛 − 1).
Proposition 13.1 (differential Bianchi identity). The Riemannian curvature satis-
fies the identity

(∇XR)Y,Z + (∇YR)Z,X + (∇ZR)X,Y = 0.

Proof. This is just a way of writing the Bianchi identity 12.2, using formula (12.3)
with the help of the connection induced on Ω2 ⊗ 𝔬(TM).

Proposition 13.2 (Bianchi identity). One has

δRic = −12𝑑 Scal,

where the divergence δϕ of a 2-tensorϕ is the 1-formdefined by (δϕ)X = −∑𝑛
1 (∇𝑒𝑖ϕ)(𝑒𝑖, X).

Proof. We choose an orthonormal basis (𝑒𝑖) of TM such that just at the point 𝑥 one
has ∇𝑒𝑖(𝑥) = 0, and we calculate only at the point 𝑥. We can also suppose that
∇X(𝑥) = 0, then we have

(𝑑 Scal)X(𝑥) = ℒX

𝑛
∑
𝑖,𝑗=1

⟨R𝑒𝑖 ,𝑒𝑗 𝑒𝑗 , 𝑒𝑖⟩ =
𝑛
∑
𝑖,𝑗=1

⟨∇XR𝑒𝑖 ,𝑒𝑗 𝑒𝑗 , 𝑒𝑖⟩.

Then, using the differential Bianchi identity,

(δRic)X(𝑥) = −
𝑛
∑
1
∇𝑒𝑖 Ric(𝑒𝑖, X) = −

𝑛
∑
𝑖,𝑗=1

∇𝑒𝑖 ⟨R𝑒𝑗 ,X𝑒𝑖, 𝑒𝑗⟩

=
𝑛
∑
𝑖,𝑗=1

⟨∇𝑒𝑗RX,𝑒𝑖𝑒𝑖 + ∇XR𝑒𝑖 ,𝑒𝑗 𝑒𝑖, 𝑒𝑗⟩

= −(δRic)X + (𝑑 Scal)X.

From the definition, if 𝑓 is a function then δ(𝑓𝑔) = −𝑑𝑓, so the Bianchi identity
can also be written

δ(Ric−Scal2 ) = 0. (13.3)

An Einstein metric is a Riemannian metric 𝑔 which satisfies

Ric = Λ𝑔. (13.4)

The constant Λ is called the cosmological constant in physics.
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14 Bochner formula
Let (E,∇) be a bundle equippedwith aunitary connection over an orientedRieman-
nian manifold (M𝑛, 𝑔). Then ∇ ∶ C∞(E) → Ω1(E) and we can define the rough
Laplacian ∇∗∇ acting on sections of E. Using a local orthonormal basis (𝑒𝑖) of
TM, from lemma 12.3 it follows that

∇∗∇𝑠 =
𝑛
∑
1
−∇𝑒𝑖∇𝑒𝑖 𝑠 + ∇∇𝑒𝑖 𝑒𝑖

𝑠. (14.1)

If we calculate just at a point 𝑝 and we choose a basis (𝑒𝑖) which is parallel at 𝑝,
then the second term vanishes.
In particular, using the Levi-Civita connection, we get a Laplacian ∇∗∇ acting on
𝑝-forms. It is not equal to the Hodge-De Rham Laplacian, as follows from:

Lemma 14.1 (Bochner formula). Let (M𝑛, 𝑔) be an oriented Riemannian manifold.
Then for any 1-form α onM one has

Δα = ∇∗∇α + Ric(α). (14.2)

Remark 14.2. There is a similar formula (Weitzenböck formula) on 𝑝-forms: the
difference Δα − ∇∗∇α is a zero-th order term involving the curvature ofM.

Proof of the lemma. We have 𝑑αX,Y = (∇Xα)Y − (∇Yα)X, therefore

𝑑∗𝑑αX = −
𝑛
∑
1
(∇𝑒𝑖𝑑α)𝑒𝑖 ,X =

𝑛
∑
1
−(∇𝑒𝑖∇𝑒𝑖α)X + (∇𝑒𝑖∇Xα)𝑒𝑖 ,

where in the last equality we calculate only at a point 𝑝, and we have chosen the
vector fields (𝑒𝑖) and X parallel at 𝑝.
Similarly, 𝑑∗α = −∑𝑛

1 (∇𝑒𝑖α)𝑒𝑖 , therefore

𝑑𝑑∗αX = −
𝑛
∑
1
∇X((∇𝑒𝑖α)𝑒𝑖 ) = −

𝑛
∑
1
(∇X∇𝑒𝑖α)𝑒𝑖 .

Therefore, still at the point 𝑝, comparing with (14.1),

(Δα)X = (∇∗∇α)X +
𝑛
∑
1
(R𝑒𝑖 ,Xα)𝑒𝑖 = (∇∗∇α)X + Ric(α)X. (14.3)

Remark 14.3. There is a similar formula if the exterior derivative is coupled with
a bundle E equipped with a connection ∇. The formula for the Laplacian Δ =
(𝑑∇)∗𝑑∇ + 𝑑∇(𝑑∇)∗ becomes

Δα = ∇∗∇α + Ric(α) + ℛ∇(α), (14.4)

where the additional last term involves the curvature of ∇,

ℛ∇(α)X =
𝑛
∑
1
R∇𝑒𝑖 ,Xα(𝑒𝑖). (14.5)
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The proof is exactly the same as above, a difference arises just in the last equality of
(14.3), when one analyses the curvature term: the curvature acting on α is that of
Ω1 ⊗E, so equals R⊗ 1 + 1 ⊗ R∇, from which:

𝑛
∑
1
(R𝑒𝑖 ,Xα)𝑒𝑖 = Ric(α)X +

𝑛
∑
1
R∇𝑒𝑖 ,Xα(𝑒𝑖).

Now let us see an application of the Bochner formula. SupposeM is compact. By
Hodge theory, an element of H1(M) is represented by a harmonic 1-form α. By the
Bochner formula, we deduce ∇∗∇α + Ric(α) = 0. Taking the scalar product with
α, one obtains

‖∇α‖2 + (Ric(α), α) = 0. (14.6)

If Ric ≥ 0, this equality implies ∇α = 0 and Ric(α) = 0. If Ric > 0, then α = 0; if
Ric ≥ 0 we get only that α is parallel, therefore the cohomology is represented by
parallel forms. Suppose thatM is connected, then a parallel form is determined by
its values at one point 𝑝, so we get an injection

H1 ↪ T∗𝑝M.

Therefore dimH1 ≤ 𝑛, with equality if and only ifM has a basis of parallel 1-forms.
This implies thatM is flat, and by Bieberbach’s theorem thatM is a torus. Therefore
we deduce:

Corollary 14.4. If (M𝑛, 𝑔) is a compact connected oriented Riemannian manifold,
then:

• if Ric > 0, then 𝑏1(M) = 0;

• if Ric ≥ 0, then 𝑏1(M) ≤ 𝑛, with equality if and only if (M, 𝑔) is a flat torus.

This corollary is a typical example of application of Hodge theory to prove vanish-
ing theorems for the cohomology: one uses Hodge theory to represent cohomology
classes by harmonic forms, and then a Weitzenböck formula to prove that the har-
monic forms must vanish or be special under some curvature assumption.

15 Positive Ricci and the first eigenvalue

We have seen that Bochner formula (14.2) contrains the topology when the Ricci
tensor is nonnegative. It also contrains the lowest eigenvalue, as we shall see in the
two following results.

Theorem 15.1. Suppose (M𝑛, 𝑔) is a compact connected oriented Riemannianmani-
fold withRic ≥ ϱ > 0. Then we have the following lower bound on the first eigenvalue
of (M, 𝑔):

λ1 ≥
𝑛

𝑛 − 1ϱ. (15.1)

The case Ric ≥ 0 is more subtle, and the following result is rather recent (Li-Yau
1980, Zhong-Yang 1984):
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Theorem 15.2. Under the same hypotheses, with only Ric ≥ 0, one has

λ1 ≥
π2

Diam(M, 𝑔)2 . (15.2)

We will actually prove only a weaker inequality below.
Both results are optimal, since the lower bound is obtained:

• for theorem 15.1, for the round sphere S𝑛 (𝑛 > 1) since λ1(S𝑛) = 𝑛;

• for theorem 15.2, for the circle S1 since λ1(S1) = 1.

Proof of theorem 15.1. By Bochner formula (14.2), we have for any function 𝑓 the
equality

Δ𝑑𝑓 = ∇∗∇𝑑𝑓 + Ric(𝑑𝑓).

We have Δ𝑑𝑓 = (𝑑∗𝑑 + 𝑑𝑑∗)𝑑𝑓 = 𝑑𝑑∗𝑑𝑓 = 𝑑Δ𝑓. Therefore when we integrate
against 𝑑𝑓, we obtain

‖Δ𝑓‖2 = ‖∇𝑑𝑓‖2 +∫
M
Ric(𝑑𝑓, 𝑑𝑓) vol .

Since Δ𝑓 = −Tr(∇𝑑𝑓) we have |∇𝑑𝑓|2 ≥ 1
𝑛
|Δ𝑓|2. Injecting this in the previous

equality and using the hypothesis on Ricci, we obtain

(1 − 1
𝑛)‖Δ𝑓‖

2 ≥ ρ‖𝑑𝑓‖2 = ρ(Δ𝑓, 𝑓).

The theorem follows by applying to an eigenfunction 𝑓 for the eigenvalue λ1.

The rest of the section is now devoted to the proof of a weaker form of theorem 15.2,
namely, under the same hypothesis, the Li-Yau estimate

λ1 ≥
π2

2Diam(M, 𝑔)2 . (15.3)

We follow [Jos17, §4.6]. We need the two following ingredients:

Proposition 15.3. For any 1-form α one has

1
2Δ|α|

2 = ⟨Δα, α⟩ − |∇α|2 − Ric(α, α). (15.4)

Proof. One has 1
2
Δ|α|2 = ∇∗⟨α, ∇α⟩ = ⟨α,∇∗∇α⟩ − |∇α|2. The result then follows

from the Bochner formula (14.2).

Proposition 15.4 (Weak maximum principle). If 𝑓 is a function on a Riemannian
manifold (M, 𝑔) which attains a local maximum at a point 𝑥, then (Δ𝑓)(𝑥) ≥ 0.

Proof. From the explicit form (1.5) of the Laplacian, since 𝑑𝑓(𝑥) = 0 we have
(Δ𝑓)(𝑥) = −𝑔𝑖𝑗(𝑥)∂2𝑖𝑗𝑓(𝑥) ≥ 0.
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Proof of (15.3). We take an eigenfunction 𝑢 for the eigenvalue λ1. By multiplying 𝑢
by a constant, we can normalize so that

1 = sup𝑢 > inf𝑢 = −𝑘 ≥ −1

for some 𝑘 > 0. We will prove the following estimate: if Ric ≥ 0 then

|𝑑𝑢|2 ≤ 2λ1
1 + 𝑘(1 − 𝑢)(𝑘 + 𝑢). (15.5)

We showhow the estimate (15.3) can be deduced from (15.5): take two points 𝑥, 𝑦 ∈
M with 𝑢(𝑥) = −𝑘 and 𝑢(𝑦) = 1 and choose a minimizing geodesic (γ(𝑡))𝑡∈[0,𝑑]
joining 𝑥 to 𝑦. The idea here is that if we have some control on |𝑑𝑢|, then 𝑢 cannot
vary too quickly along γ, so γ has to be long enough:

π = ∫
1

−𝑘

𝑑𝑢
√(1 − 𝑢)(𝑘 + 𝑢)

= ∫
𝑑

0

𝑑𝑢( ̇γ(𝑡))𝑑𝑡
√(1 − 𝑢(γ(𝑡)))(𝑘 + 𝑢(γ(𝑡)))

≤ √
2λ1
1 + 𝑘𝑑.

Therefore π ≤ √2λ1𝑑 ≤ √2λ1Diam(M, 𝑔), which is (15.3).
So the proof is now reduced to proving the estimate (15.5), which is the most diffi-
cult part. We center 𝑢 by considering

𝑣 =
𝑢 − 1−𝑘

2
1+𝑘
2

which now satisfies −1 ≤ 𝑣 ≤ 1 and Δ𝑣 = λ(𝑣 + 𝑐) with 𝑐 = 1−𝑘
1+𝑘

. We consider the
function

F = |𝑑𝑣|2
1 − 𝑣2 .

Then the estimate (15.5) is equivalent to proving

F ≤ λ(1 + 𝑐). (15.6)

Of course F is not well defined since 1− 𝑣2 vanishes at some points: the reader can
check that the proof below applies by replacing 𝑣 by 𝑣/(1 + ε), then the result is
obtained by making ε → 0, so for simplicity we will ignore this issue.
Take a point 𝑥 at which F attains its maximum, so 𝑑F(𝑥) = 0 and ΔF(𝑥) ≥ 0. Write
F = 𝑓/𝑔, then 𝑑F = 𝑑𝑓/𝑔 − 𝑓𝑑𝑔/𝑔2. Because 𝑑F(𝑥) = 0 the formula for ΔF(𝑥)
simplifies intoΔF = Δ𝑓

𝑔
−𝑓Δ𝑔

𝑔2
(at the point𝑥). ButΔ𝑔 = Δ(1−𝑣2) = −2𝑣Δ𝑣+2|𝑑𝑣|2,

so we obtain, still at the point 𝑥:

1
2Δ|𝑑𝑣|

2 ≥ |𝑑𝑣|2
1 − 𝑣2 (|𝑑𝑣|

2 − 𝑣Δ𝑣). (15.7)

On the other hand, by (15.4) and the hypothesis on Ricci we have

1
2Δ|𝑑𝑣|

2 = ⟨Δ𝑑𝑣, 𝑑𝑣⟩ − |∇𝑑𝑣|2 − Ric(𝑑𝑣, 𝑑𝑣) ≤ λ|𝑑𝑣|2 − |∇𝑑𝑣|2. (15.8)
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Since 1
2
𝑑F = ⟨𝑑𝑣,∇𝑑𝑣⟩

1−𝑣2
+ 𝑣|𝑑𝑣|2𝑑𝑣

(1−𝑣2)2
vanishes at 𝑥, we obtain, still at the point 𝑥:

𝑣|𝑑𝑣|3
1 − 𝑣2 ≤ |𝑑𝑣||∇𝑑𝑣|.

Injecting in (15.8) gives

1
2Δ|𝑑𝑣|

2 ≤ λ|𝑑𝑣|2 − 𝑣2|𝑑𝑣|4
(1 − 𝑣2)2 . (15.9)

Comparing with (15.7), using Δ𝑣 = λ(𝑣 + 𝑐), one obtains |𝑑𝑣|2

1−𝑣2
≤ λ(𝑣 + 𝑐) at 𝑥.

16 Negative Ricci and Killing fields

Let (M𝑛, 𝑔) be a Riemannianmanifold,X a vector field onM and (ϕ𝑡) the associated
flow of diffeomorphisms ofM.

Lemma and Definition 16.1. We say that X is a Killing field is one of the two fol-
lowing equivalent conditions is satisfied:

1. the flow of X is a flow of isometries of (M, 𝑔);

2. the covariant derivative of X satisfies, for all tangent vectors Y and Z:

⟨∇YX, Z⟩ + ⟨∇ZX, Y⟩ = 0. (16.1)

The space of Killing fields is the Lie algebra of the group of isometries of (M, 𝑔),
which is known to be a Lie group (and it is compact ifM is compact).

Proof. As usual the flow (ϕ𝑡) generated by X preserves 𝑔 if and only if the Lie de-
rivative ℒX𝑔 ∶=

𝑑
𝑑𝑡
|𝑡=0ϕ∗𝑡 𝑔 = 0. We now identify ℒX𝑔(Y, Z) with the LHS of (16.1),

which will prove the lemma:

ℒX𝑔(Y, Z) = X ⋅ 𝑔(Y, Z) − 𝑔(ℒXY, Z) − 𝑔(Y, ℒXZ)

and as ℒXY = [X, Y] = ∇XY − ∇YX we obtain

ℒX𝑔(Y, Z) = 𝑔(∇YX, Z) + 𝑔(Y,∇ZX).

Let α be the 1-form dual to X via the metric 𝑔, that is α♯ = X. Then equation (16.1)
says that X is a Killing field if and only if ∇α is an antisymmetric 2-tensor, that is a
2-form. Since the antisymmetric part of∇α is just 1

2
𝑑α, we obtain thatX is a Killing

field if and only if
∇α = 1

2𝑑α. (16.2)

This implies that 𝑑∗𝑑α = 2∇∗∇α. On the other hand, we have

𝑑∗α = −Tr(∇α) = 0
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since ∇α is antisymmetric. Therefore, if X is a Killing field,

Δα = 𝑑∗𝑑α = 2∇∗∇α. (16.3)

Comparing with the Bochner formula (14.2), we have proved:

Proposition 16.2. If X is a Killing field, then the dual 1-form α satisfies

∇∗∇α = Ric(α) (16.4)

Remark 16.3. One can prove the more general Kostant formula which gives all the
2nd order derivatives of α in terms of the Riemannian curvature:

∇∇α(Y, Z, T) = −⟨RX,YZ, T⟩.

Corollary 16.4. If (M, 𝑔) is compact connected and Ric ≤ 0 everywhere, and Ric < 0
at least at one point, then (M, 𝑔) does not admit any Killing field. In particular the
group of isometries of (M, 𝑔) is finite.

Proof. From (16.4) we deduce by integration by parts

‖∇α‖2 = (Ricα, α) ≤ 0.

Therefore∇α = 0 and ⟨Ricα, α⟩ = 0 everywhere. Since Ric < 0 at least at one point,
at this point we have α = 0 and therefore α = 0 everywhere since ∇α = 0.
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Chapter IV

General theory of elliptic
operators

17 Sobolev spaces

The first step is to introduce the Sobolev space H𝑠(ℝ𝑛) of tempered distributions 𝑓
on ℝ𝑛 such that the Fourier transform satisfies

‖𝑓‖2𝑠 ∶= ∫
ℝ𝑛

| ̂𝑓(ξ)|2(1 + |ξ|2)𝑠|𝑑ξ|𝑛 < +∞. (17.1)

Equivalently,H𝑠(ℝ𝑛) is the space of functions 𝑓 ∈ L2(ℝ𝑛)which admit 𝑠 derivatives
in distribution sense1 in L2, and

‖𝑓‖2𝑠 ∼ ∑
|α|≤𝑠

‖∂α𝑠‖2L2 . (17.2)

(But observe that the definition (17.1) is valid also for any real 𝑠).
IfM is a compact manifold and E a vector bundle overM, then one can define the
spaceC𝑘(M, E) of sections ofEwhose coefficients are of classC𝑘 in any trivialisation
of E, andH𝑠(M, E) the space of sections of Ewhose coefficients in any trivialisation
and any coordinate chart are functions of classH𝑠 in ℝ𝑛. IfM is covered by a finite
number of charts (U𝑗)with trivialisations ofE|U𝑗 by a basis of sections (𝑒𝑗,𝑎)𝑎=1,…,𝑟,
choose a partition of unity (χ𝑗) subordinate to (U𝑗), then a section 𝑢 of E can be
written 𝑢 = ∑χ𝑗𝑢𝑗,α𝑒𝑗,α with χ𝑗𝑢𝑗,α a function with compact support in U𝑗 ⊂ ℝ𝑛,
therefore

‖𝑢‖C𝑘 = sup
𝑗,α

‖χ𝑗𝑢𝑗,α‖C𝑘(ℝ𝑛), ‖𝑢‖2𝑠 = ∑‖χ𝑗𝑢𝑗,α‖2H𝑠(ℝ𝑛). (17.3)

Up to equivalence of norms, the result is independent of the choice of coordinate
charts and trivialisations of E.

1Weak derivative: 𝑔 = Dα𝑓 if for any ϕ ∈ C∞𝑐 (ℝ𝑛) one has ∫ℝ𝑛(Dαϕ)𝑓 = ∫ℝ𝑛 ϕ𝑔.

35
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There is another approach to define C𝑘 and H𝑠 norms for sections of E. Suppose
thatM𝑛 has a Riemannian metric, and E is equipped with a unitary connection ∇.
Then one can define

‖𝑢‖C𝑘 = sup
𝑗≤𝑘

sup
M

|∇𝑗𝑢|, ‖𝑢‖2𝑠 =
𝑘
∑
0
∫
M
|∇𝑗𝑢|2 vol𝑔 . (17.4)

Remark 17.1. On a noncompact manifold, the definition (17.3) does not give a well
defined class of equivalent norms when one changes the trivialisations. On the
contrary, definition (17.4), valid only for integral 𝑠, can be useful if (M, 𝑔) is non
compact; the norms depend on the geometry at infinity of 𝑔 and ∇.
Example 17.2. If M is a torus 𝕋𝑛, then the regularity can be seen on the Fourier
series: 𝑓 ∈ H𝑠(𝕋𝑛) if and only if

‖𝑓‖2𝑠 = ∑
ξ∈ℤ𝑛

(1 + |ξ|2)𝑠| ̂𝑓(ξ)|2 < +∞.

From the inverse formula 𝑓(𝑥) = ∑ξ
̂𝑓(ξ) exp𝑖ξ⋅𝑥, by the Cauchy-Schwartz inequal-

ity,
|𝑓(𝑥)| ≤ ∑

ξ∈ℤ𝑛
| ̂𝑓(ξ)| ≤ ‖𝑓‖𝑠(∑

ξ
(1 + |ξ|2)−𝑠)1/2 < +∞ if 𝑠 > 𝑛

2 .

It follows that there is a continuous inclusionH𝑠 ⊂ C0 is 𝑠 > 𝑛
2
. Similarly it follows

that H𝑠 ⊂ C𝑘 if 𝑠 > 𝑘 + 𝑛
2
.

Of course the same results are true onℝ𝑛 using Fourier transform, and one obtains
the following lemma.

Lemma 17.3 (Sobolev). If M𝑛 is compact, 𝑘 ∈ ℕ and 𝑠 > 𝑘 + 𝑛
2
, then there is a

continuous and compact injectionH𝑠 ⊂ C𝑘.

The fact that the inclusion is compact follows from the following lemma (which is
obvious on a torus, and the general case follows):

Lemma 17.4 (Rellich). IfM𝑛 is compact and 𝑠 > 𝑡, then the inclusion H𝑠 ⊂ H𝑡 is
compact.

In particular

∩𝑠≥0H𝑠(M, E) = C∞(M, E), ∪𝑠≤0H𝑠(M, E) = 𝒟′(M, E), (17.5)

where𝒟′(M, E) is the space of all E-valued distributions.

18 Introduction to pseudodifferential operators

Suppose we have a differential operator P = ∑|α|≤𝑑 𝑎α(𝑥)∂α on ℝ𝑛, then using
Fourier transform we can write, for all tempered distributions 𝑓 ∈ 𝒟(ℝ𝑛)

P𝑓(𝑥) = 1
(2π)𝑛 ∫ℝ𝑛

∑
|α|≤𝑑

𝑎α(𝑥)(𝑖ξ)α ̂𝑓(ξ)𝑒𝑖ξ⋅𝑥|𝑑ξ|𝑛.
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Using the total symbol
σ(𝑥, ξ) = ∑

|α|≤𝑑
𝑎α(𝑥)(𝑖ξ)α (18.1)

we see thatP = Opσ, where for suitable functionsσ(𝑥, ξ) the operatorOpσ is defined
for 𝑓 ∈ 𝒟(ℝ𝑛) by the formula

Opσ 𝑓(𝑥) =
1

(2π)𝑛 ∫ℝ𝑛
σ(𝑥, ξ) ̂𝑓(ξ)𝑒𝑖ξ⋅𝑥|𝑑ξ|𝑛. (18.2)

A standard class of symbols σ on ℝ𝑛 is the class S𝑑 of smooth functions σ(𝑥, ξ) on
ℝ𝑛 × (ℝ𝑛)∗ which satisfy, for any α, β ∈ ℕ and any compact K ⊂ ℝ𝑛

|∂α𝑥∂βξ σ(𝑥, ξ)| ≤ 𝑐α,β,K(1 + |ξ|)𝑑−|β| for all 𝑥 ∈ K, ξ ∈ ℝ𝑛. (18.3)

In that case formula (18.2) defines a function Opσ 𝑓 since ̂𝑓 is a fast decaying func-
tion: this is the definition of a pseudodifferential operator on ℝ𝑛.
This definition extends to an operator between sections on two bundles E and F
on a manifold M. We choose a covering (U𝑗) by open sets of trivializations of E
and F, and smooth functions χ𝑗 such that (χ2𝑗 ) is a partition of unity. We say that a
symbol σ ∈ C∞(T∗M,Hom(E, F)) is in the class S𝑑(M, E, F) if it satisfies (18.3) in
each trivialization. Then using formula (18.2) in each trivialization, we define for
a section 𝑓 ∈ C∞(M, E) the pseudodifferential operator onM

Opσ 𝑓 = ∑χ𝑗 Opσ(χ𝑗𝑓). (18.4)

Observe that in this definition Opσ depends not only on σ but also on the choice of
the trivializations and the partition of unity (χ2𝑗 ).
We need the following properties of pseudodifferential operators (see [Ala23]):

1. Extension to Sobolev spaces. If σ ∈ S𝑑(M, E, F) then Opσ extends as a continu-
ous operator

Opσ ∶ H𝑠(M, E)⟶ H𝑠−𝑑(M, F). (18.5)
A special case is that of a symbol σ ∈ S−∞(M, E, F) = ∩𝑑S𝑑(M, E, F). In that
case Opσ sends continuously𝒟′(M, E, F) into C∞(M, E, F): an operator with
this property is called a regularizing operator. The regularizing operators
are exactly the operators R given by a C∞ kernel K(𝑥, 𝑦) ∈ Hom(E𝑦, F𝑥),
such that

(R𝑓)(𝑥) = ∫
M
K(𝑥, 𝑦)𝑓(𝑦)𝑑 vol(𝑦). (18.6)

One works usually on pseudodifferential operators modulo the space ℛ of
regularizing operators, that is considering operators of the type Opσ +Rwith
R ∈ ℛ.

2. Composition. If σ ∈ S𝑑(M, E, F) and σ′ ∈ S𝑑′(M, F, G) then there exists a
symbol σ′♢σ ∈ S𝑑+𝑑′(M, E, G) such that

Opσ′ ∘Opσ = Opσ′♢σ mod ℛ. (18.7)

Moreover one has σ′♢σ − σ′ ∘ σ ∈ S𝑑+𝑑′−1(M, E, G).
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3. Differential operators. Wehave seen that a differential operatorP of order𝑑 on
ℝ𝑛 is also a pseudodifferential operator with symbol given by (18.1). In that
case the total symbol is polynomial in ξ, and the part of degree 𝑑 is exactly the
principal symbol of P, up to a factor 𝑖𝑑. In general, a differential operator P
of order 𝑑 on a manifoldM is also a pseudodifferential operator, that is there
exists a symbol σ ∈ S𝑑 such that

P = Opσ mod ℛ. (18.8)

Moreover the dominant term of σ is given by the principal symbol of P: one
has σ(𝑥, ξ) − 𝑖𝑑σP(𝑥, ξ) ∈ S𝑑−1.

One says that Opσ is an elliptic pseudodifferential operator of order 𝑑 if σ ∈
S𝑑(M, E, F) satisfies: for all (𝑥, ξ) such that |ξ| > A for some A large enough, one
has

|σ(𝑥, ξ)𝑢| ≥ 𝑐|ξ|𝑑|𝑢|. (18.9)
In particular, if rkE = rkF this implies that σ(𝑥, ξ) is invertible for |ξ| > A. Of
course an elliptic differential operator of order 𝑑 is also elliptic in the sense of
pseudodifferential operators.
Theorem 18.1 (Gårding inequality). Suppose P is an elliptic pseudodifferential op-
erator of order 𝑑. If 𝑓 ∈ L2(M, E) satisfies P𝑓 ∈ H𝑠(M, F) then 𝑓 ∈ H𝑠+𝑑(M, E) and
one has the following elliptic estimate:

‖𝑓‖H𝑠+𝑑 ≤ 𝑐𝑠(‖P𝑓‖H𝑠 + ‖𝑓‖L2). (18.10)

Sketch of proof. Limit to the case rkE = rkF. Suppose that ς(𝑥, ξ) is an elliptic
symbol: then one can define a symbol ς′(𝑥, ξ) = χ(ξ)ς(𝑥, ξ)−1 ∈ S−𝑑, where χ is a
cutoff function such that χ(ξ) = 0 for |ξ| < A and χ(ξ) = 1 for |ξ| > 2A. Since ς′(𝑥, ξ)∘
ς(𝑥, ξ) = Id for |ξ| > 2A, we have Opς′∘ς = Id mod ℛ and since Opς′ ∘Opς =
Opς′♢ς mod ℛ we get

Opς′ ∘Opς = Id+Opρ, ρ ∈ S−1.

Inverting formally (Id+Opρ)−1 = Id−Opρ +Op
2
ρ +⋯, we can construct a symbol

τ ∼ 1 − ρ + ρ♢2 +⋯ such that

(Id+Opρ)−1 = Opτ mod ℛ.
It follows that

Opτ♢ς′ ∘Opς = Id mod ℛ.

In summary, if P is an elliptic operator of order 𝑑, there exists a symbol σ ∈ S−𝑑
and a regularizing operator R ∈ ℛ such that

Opσ ∘P = Id+R. (18.11)

In particular 𝑓 = Opσ(P𝑓) + R𝑓. If P𝑓 ∈ H𝑠 then Opσ(P𝑓) ∈ H𝑠+𝑑 and R𝑓 ∈ C∞.
So 𝑓 ∈ H𝑠+𝑑 and the estimate (18.10) also follows.

From the elliptic estimate and the fact that ∩𝑠H𝑠 = C∞, we obtain:
Corollary 18.2. If P is elliptic and P𝑓 is C∞ then 𝑓 is C∞.
Exercise 18.3. Prove (18.10) for operators with constant coefficients on the torus.
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19 Proof of the main theorem
We now prove theorem 7.1. Actually we prove the statement in the general setting
of elliptic pseudodifferential operators.
First let us prove the first statement: the kernel of P is finite dimensional. By the
elliptic estimate (18.10), for 𝑢 ∈ ker(P) one has

‖𝑢‖𝑠+𝑑 ≤ C‖𝑢‖L2 .

Therefore the first identity map in the following diagram is continuous:

(kerP, L2)⟶ (kerP,H𝑠+𝑑)⟶ (kerP, L2).

The second inclusion is compact by lemma 17.4. The composite map is the identity
of kerP equipped with the L2 scalar product, it is therefore a compact map. This
implies that the closed unit ball of ker(P) is compact, therefore ker(P) is a finite
dimensional vector space.
Now let us prove the theorem in Sobolev spaces. We consider P as an operator

P ∶ H𝑠+𝑑(M, E)⟶ H𝑠(M, F), (19.1)

and in these spaces we want to prove

H𝑠(M, F) = ker(P∗) ⊕ im(P). (19.2)

We claim that for any ϵ > 0, there exists an L2 orthonormal family (𝑣1,… , 𝑣N) in
H𝑠+𝑑, such that

‖𝑢‖L2 ≤ ϵ‖𝑢‖𝑠+𝑑 + (
N
∑
1
|(𝑣𝑗 , 𝑢)|2)

1/2. (19.3)

Suppose for the moment that the claim is true. Then combining with the elliptic
estimate (18.10), we deduce

(1 − Cϵ)‖𝑢‖𝑠+𝑑 ≤ C‖P𝑢‖𝑠 + C(
N
∑
1
|(𝑣𝑗 , 𝑢)|2)

1/2.

Choose ϵ = 1
2C
, and let T be the subspace of sections in H𝑠+𝑑(M, E) which are L2

orthogonal to the (𝑣𝑖)𝑖=1…N. Then we obtain

2‖𝑢‖𝑠+𝑑 ≤ C‖P𝑢‖𝑠 for 𝑢 ∈ T.

It follows that P(T) is closed inH𝑠(M, F). But im(P) is the sumof P(T) and the image
of the finite dimensional space generated by the (𝑣𝑖)𝑖=1…N, so im(P) is closed aswell
in H𝑠(M, F).
Finally the statement (19.1) in the Sobolev spaces H𝑠 implies the statement for
the space C∞, which finishes the proof of the theorem. Indeed, suppose that 𝑣 ∈
C∞(M, F) isL2 orthogonal to ker(P∗). Fix any 𝑠 ≥ 0 and apply (19.2) inH𝑠: therefore
there exists 𝑢 ∈ H𝑠+𝑑(M, E) such that P𝑢 = 𝑣. Then 𝑢 is C∞ by corollary 18.2.
It remains to prove the claim (19.3). Choose a Hilbertian basis (𝑣𝑗) of L2, and sup-
pose that the claim is not true. Then there exists a sequence of (𝑢N) ∈ H𝑠+𝑑(M, E)
such that
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1. ‖𝑢N‖L2 = 1,

2. ϵ‖𝑢N‖𝑠+𝑑 + (∑N
1 |(𝑣𝑗 , 𝑢N)|2)

1/2 < 1.

From the second condition we deduce that (𝑢N) is bounded in H𝑠+𝑑(E), therefore
there is a weakly convergent subsequence in H𝑠+𝑑(E), and the limit satisfies

ϵ‖𝑢‖𝑠+𝑑 + ‖𝑢‖0 ≤ 1.

By the compact inclusion H𝑠+𝑑 ⊂ L2 this subsequence is strongly convergent in
L2(E) so by the first condition, the limit 𝑢 satisfies

‖𝑢‖0 = 1,

which is a contradiction.

20 Green operator
Theorem 20.1. Suppose that E = F and P is a selfadjoint elliptic operator of order 𝑑
acting on sections of E. Denote by Π𝑘𝑒𝑟P the L2-orthogonal projection on kerP. Then
there exists a pseudodifferential operator G of order −𝑑 such that on C∞(M, E) one
has

Id = P ∘ G + ΠkerP = G ∘ P + ΠkerP. (20.1)

Proof. In the decompositionC∞(M, E) = (kerP)⟂⊕kerP the operatorG = P−1⊕0
gives (20.1). There remains to prove that G is a pseudodifferential operator. We
know that there exists a pseudodifferential operator Q of order −𝑑 such that QP =
Id+R with R ∈ ℛ. Now

Q = Q(PG + Π)
= (Id+R)G + QΠ
= G + RG + QΠ.

But RG and QΠ are regularizing operators, so it follows that G = Q mod ℛ is a
pseudodifferential operator of order −𝑑.

Remark 20.2. This result implies the existence of a spectral decomposition of P as
in section 5.

21 Other functional spaces
Given a vector bundle (E, ℎ) over a compact Riemannian manifold (M, 𝑔), we have
seen the Sobolev spaces H𝑠(M, E), but other functional spaces are also useful:

• Sobolev spaces W𝑘,𝑝(M, E) for 1 ≤ 𝑝 < ∞: this is the space of L𝑝 sections
with 𝑘 derivatives in L𝑝, that is the completion of C∞(M, E) for the norm

‖𝑓‖𝑝W𝑘,𝑝 = ∫
M
(|𝑓|𝑝 + |∇𝑓|𝑝 +⋯+ |∇𝑘𝑓|𝑝) vol . (21.1)
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• Hölder spaces C𝑘,α(M, E) for some 𝑘 ∈ ℕ and 0 < α < 1: for a function one
defines a kind of norm of the “α-derivative” of 𝑓 by

|𝑓|α = sup
𝑑(𝑥,𝑦)<ρ

|𝑓(𝑥) − 𝑓(𝑦)|
𝑑(𝑥, 𝑦)α . (21.2)

This is a priori defined for a function; for a section of a vector bundle, we
choose trivializations and take the sup over the various charts. We thendefine
the norms

‖𝑓‖Cα = ‖𝑓‖C0 + |𝑓|α, ‖𝑓‖C𝑘,α = ‖𝑓‖C𝑘 + |∇𝑘𝑓|α. (21.3)

The derivative∇𝑘𝑓 can be taken to be the standard derivative in each trivial-
ization, or we can choose a connection ∇ on E. The various choices (charts,
trivializations, etc.) give equivalent norms.

Proposition 21.1 (Sobolev injections). One has the following continuous inclusions:

• If 𝑘 − 𝑛
𝑝
≥ 𝑘′ − 𝑛

𝑝′
thenW𝑘,𝑝 ⊂ W𝑘′,𝑝′ .

• If 𝑘 − 𝑛
𝑝
≥ 𝑘′ + α thenW𝑘,𝑝 ⊂ C𝑘′,α.

Moreover, these inclusions are compact in case the inequality is strict.

We will not prove the inclusions in general, but offer some comments. We can
reduce to the case 𝑘′ = 0.
First if we are on ℝ𝑛 rather than a compact manifold, we have the following in-
equality. Take 𝑞 such that 1

𝑞
= 1

𝑝
− 𝑘

𝑛
, then there is a constant C such that for any

compactly supported function 𝑓 on ℝ𝑛 one has

‖𝑓‖L𝑞 ≤ C‖∇𝑘𝑓‖L𝑝 . (21.4)

The exponent 𝑞 is the only possible exponent in this inequality, because of the in-
variance by homothety: if we consider 𝑓ε(𝑥) = 𝑓(ε𝑥) then the LHS is multiplied
by ε−𝑛/𝑞 and the RHS by ε𝑘−𝑛/𝑝: the numbers −𝑛

𝑞
and 𝑘 − 𝑛

𝑝
are the conformal

weights of these norms, and this explains why they enter in the hypothesis of the
proposition.
From (21.4) one deduces the first Sobolev inclusion on a compact manifold, redu-
cing to the case of ℝ𝑛 via a partition of unity. The exponent 𝑞 can then be taken
smaller than the one in (21.4).
The hypothesis for the second Sobolev inclusion can also be explained using the
conformal weights of the two norms. Again we do not give any proof, except for
the inequalityW1,𝑝 ⊂ C0 on ℝ𝑛 if 𝑝 > 𝑛 which follows from

𝑓(0) = 1
V𝑛−1

∫
ℝ𝑛

1
𝑟𝑛−1

∂𝑓
∂𝑟 𝑟

𝑛−1𝑑𝑟 volS𝑛−1 . (21.5)

If 𝑝 > 𝑛 then the dual exponent 𝑠 such that 1
𝑝
+ 1

𝑠
= 1 satisfies 𝑠 < 𝑛

𝑛−1
which is

exactly the condition to have 1
𝑟𝑛−1

∈ L𝑠, so Hölder inequality gives

|𝑓(0)| ≤ 1
V𝑛−1

‖ 1
𝑟𝑛−1 ‖L𝑠‖𝑑𝑓‖L𝑝 .
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In the limit case 𝑝 = 𝑛, the inclusion is not true, as one can see in ℝ𝑛 with the
function

𝑓(𝑥) = ln |ln(𝑒|𝑥|)| (21.6)

which vanishes for |𝑥| = 1 and is extended by zero outside B1. Then 𝑑𝑓 ∈ L𝑛 but 𝑓
is unbounded at 𝑥 = 0.
Remark 21.2. Formula (21.5) almost gives (21.4): it can be rewritten as |𝑓| ≤ 1

𝑟𝑛−1
∗

|𝑑𝑓|. One has the well-known inequality ‖𝑓 ∗ 𝑔‖L𝑞 ≤ ‖𝑓‖L𝑝‖𝑔‖L𝑠 if
1
𝑝
+ 1

𝑠
= 1 + 1

𝑞
.

To obtain 1
𝑞
= 1

𝑝
− 1

𝑛
we need 𝑠 = 𝑛

𝑛−1
but this is the limit exponent since 1

𝑟𝑛−1
∈ L𝑠

only for 𝑠 < 𝑛
𝑛−1

.

Remark 21.3. The case 𝑝 = 1 gives the inclusionW1,1 ⊂ L
𝑛

𝑛−1 which is related to
the isoperimetric inequality in ℝ𝑛: for a bounded domain Ω ⊂ ℝ𝑛 one has

Vol(Ω)
𝑛

𝑛−1 ≤ 𝑐𝑛 Vol(∂Ω). (21.7)

See exercises.

Finally, the following theorem says basically that the elliptic theory that we have
seen on the Sobolev spaces H𝑠 extends to the spacesW𝑘,𝑝 and C𝑘,α.

Theorem 21.4 (Elliptic estimates). If P is an elliptic operator of order 𝑑 on the com-
pact manifoldM, then one has:

1. If P𝑓 ∈ W𝑘,𝑝 then 𝑓 ∈ W𝑘+𝑑,𝑝 and one has the Calderon-Zygmund estimate

‖𝑓‖W𝑘+𝑑,𝑝 ≤ 𝑐(‖P𝑓‖W𝑘,𝑝 + ‖𝑓‖L𝑝). (21.8)

2. If P𝑓 ∈ C𝑘,α then 𝑓 ∈ C𝑘+𝑑,α and one has the Schauder estimate

‖𝑓‖C𝑘+𝑑,α ≤ 𝑐(‖P𝑓‖C𝑘,α + ‖𝑓‖C0). (21.9)

Moreover one has the L2-orthogonal decompositions

W𝑘,𝑝 = P(W𝑘+𝑑,𝑝) ⊕ kerP∗, C𝑘+α = P(C𝑘+𝑑,α) ⊕ kerP∗. (21.10)

Remark 21.5. It is important to note that this theorem is not true for C𝑘 spaces
(hence the use ofC𝑘,α spaces). For example the function𝑓(𝑥, 𝑦) = (𝑥2−𝑦2)√| ln |𝑥||
on ℝ2 is not C2 but Δ𝑓 ∈ C0.

Hölder spaces are particularly useful in certain nonlinear problems, because the
C𝑘,α spaces, like the C𝑘 spaces, are algebras. It turns out that W𝑘,𝑝 is an algebra
only when one has the inclusionW𝑘,𝑝 ⊂ C0.



Chapter V

The scalar curvature

22 Gauss curvature on surfaces

Weconsider aRiemannian surface (S, 𝑔). Aswehave seen in section 13 the curvature
tensor reduces to the Gauss curvature K𝑔 = R 1

122 , and Ric
𝑔 = K𝑔, Scal𝑔 = 2K.

TheGauss-Bonnet formula relates the curvature and the topology: if (S, 𝑔) is com-
pact connected oriented then

1
2π ∫S

K𝑔 vol𝑔 = χ(S) = 2 − 2𝑔(S), (22.1)

where χ(S) is the Euler characteristic of S and 𝑔(S) its genus.
In particular, if (S, 𝑔) has constant curvature, which we can assume to be K = ±1
or 0, then there is the following constraint on the genus:

• 𝑔 = 0 if K = 1;

• 𝑔 = 1 if K = 0;

• 𝑔 ≥ 2 if K = −1.

Conversely we can try to construct metrics of constant curvature on any surface.
The standard metrics on S2 and 𝕋2 give the answers for genus 0 and 1. In higher
genus we start from (S, 𝑔0) and we are looking for a metric of the form 𝑔 = 𝑒𝑢𝑔0.
Such a metric is said to be conformal to 𝑔0 and the space {𝑔 = 𝑒𝑢𝑔0, 𝑢 ∈ C∞(S)} is
called the conformal class of 𝑔0.

Theorem 22.1. Let (S, 𝑔0) be a compact connected oriented surface with χ(S) < 0.
Then the conformal class of 𝑔0 contains a unique metric 𝑔 with K𝑔 ≡ −1.

Remark 22.2. This theorem establishes a bijection between the two first following
spaces:

1. the space of metrics withK ≡ −1 (hyperbolic metrics) on S, modulo Diff0(S);

2. the space of conformal classes on S, modulo Diff0(S);

43
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3. the space of Riemann surface structures on S, modulo Diff0(S).

These are three descriptions of the Teichmüller space, which is diffeomorphic to
ℝ6𝑔−6 and plays an important role in geometry.

We now establish the equation to solve to prove the theorem.

Lemma 22.3. If 𝑔 = 𝑒2𝑓𝑔0 then

K𝑔 = 𝑒−2𝑓(K𝑔0 + Δ𝑔0𝑓). (22.2)

Remark 22.4. Since vol𝑔 = 𝑒2𝑓 vol𝑔0 this formula implies that ∫S K𝑔 vol𝑔 remains
constant in the conformal class of 𝑔0, as follows from (22.1).

Proof. We claim that the Levi-Civita connection of 𝑔 is given by

∇𝑔
XY = ∇𝑔0

X Y + (X ⋅ 𝑓)Y + (Y ⋅ 𝑓)X − 𝑔0(X, Y)∇𝑔0𝑓. (22.3)

The reader can check that indeed this formula defines a connectionwhich is torsion
free and preserves the metric 𝑔. We rewrite the formula more compactly as

∇𝑔
X = ∇𝑔0

X + 𝑑𝑓(X) + 𝑑𝑓 ∧ X, (22.4)

where A ∧ B ∈ 𝔰𝔬2 is defined by A ∧ B(U) = 𝑔0(A,U)B − 𝑔0(B,U)A. A metric
connection in rank 2 has the local form ∇ = 𝑑 + 𝑎 with 𝑎 a 𝔰𝔬2-valued 1-form;
since 𝔰𝔬2 is abelian, it follows that F∇ = 𝑑𝑎 is linear in 𝑎. In particular, from (22.4)
it follows that

R𝑔 = R𝑔0 + 𝑑(𝑑𝑓 ∧ ⋅).
Calculating at a point 𝑥, we can suppose that ∇X(𝑥) = ∇Y(𝑥) = 0 and therefore

𝑑(𝑑𝑓 ∧ ⋅)X,Y = ∇X(𝑑𝑓 ∧ Y) − ∇Y(𝑑𝑓 ∧ X) = (∇X𝑑𝑓) ∧ Y − (∇Y𝑑𝑓) ∧ X.

It follows that, for a 𝑔0-orthonormal basis (𝑒1, 𝑒2),

𝑔0(R𝑔𝑒1,𝑒2𝑒2, 𝑒1) = K𝑔0 − ∇𝑒1𝑑𝑓(𝑒1) − ∇𝑒2𝑑𝑓(𝑒2) = K𝑔0 + Δ𝑔0𝑑𝑓.

The formula for K𝑔 = 𝑔(R𝑔𝑒−𝑓𝑒1,𝑒−𝑓𝑒2𝑒
−𝑓𝑒2, 𝑒−𝑓𝑒1) follows.

Proof of theorem 22.1. Now the theoremamounts to solving the equation 𝑒−2𝑓(K𝑔0+
Δ𝑓) = −1, that is

Δ𝑓 + 𝑒2𝑓 = −K𝑔0 . (22.5)

First we reduce to the case where K𝑔0 < 0 everywhere. It is sufficient to replace
𝑔0 by a metric 𝑒2𝑓𝑔0 so that K𝑒2𝑓𝑔0 < 0. Note K̄0 the mean value of K𝑔0 on S,
then K̄0 < 0 by (22.1). From theorem 2.1 there exists a solution 𝑓 to the equation
K𝑔0 + Δ𝑓 = K̄0, and it follows by (22.2) that K𝑒2𝑓𝑔0 = 𝑒−2𝑓K̄0 < 0.
So we can now supposeK𝑔0 < 0 everywhere and taking the function λ = −K𝑔0 > 0
we want to solve the equation

Δ𝑓 + 𝑒2𝑓 = λ. (22.6)
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We first prove uniqueness. If we have two solutions 𝑓 and 𝑔 of (22.6), then taking
the difference we obtain

Δ(𝑓 − 𝑔) + 𝑒2𝑓 − 𝑒2𝑔 = 0.

By the maximum principle, at a maximum of 𝑓 − 𝑔 we have Δ(𝑓 − 𝑔) ≥ 0 and
therefore 𝑒2𝑓 −𝑒2𝑔 ≤ 0, which proves that 𝑓−𝑔 ≤ 0 everywhere. Inverting the role
of 𝑓 and 𝑔 we obtain that 𝑓 = 𝑔.
To solve (22.6) we use a continuity method: for each 𝑡 ∈ [0, 1] we are looking for a
solution of the equation

Δ𝑓 + 𝑒2𝑓 = 1 − 𝑡 + 𝑡λ. (22.7)

For 𝑡 = 0 we have the obvious solution 𝑓 = 0, and for 𝑡 = 1 this is our equation
(22.6). We consider

I = {𝑡 ∈ [0, 1], there is a solution of (22.7)}.

To prove that I = [0, 1], we prove that it is open and closed (it is not empty since
0 ∈ I).
We begin by the openness: we consider the operator Θ(𝑓) = Δ𝑓 + 𝑒2𝑓, we claim
that it is a well-defined operator H2 → L2. This comes from the Sobolev inclusion
H2 ⊂ C0 in dimension 2, so 𝑒2𝑓 is C0 if 𝑓 ∈ H2. Moreover Θ is differentiable (as
the reader can check), with differential

𝑑𝑓Θ( ̇𝑓) = Δ ̇𝑓 + 2𝑒2𝑓 ̇𝑓.

So the linearization 𝑑𝑓Θ ∶ H2 → L2 is Δ + 2𝑒2𝑓 which is a second order selfadjoint
elliptic operator. Moreover it has no kernel, for if 𝑑𝑓Θ( ̇𝑓) = 0, then integrating
by parts we obtain (𝑑𝑓Θ( ̇𝑓), ̇𝑓) = ∫ |𝑑 ̇𝑓|2 + 2𝑒2𝑓| ̇𝑓|2 = 0 and therefore ̇𝑓 = 0.
Therefore by theorem 7.1 𝑑𝑓Θ ∶ H2 → L2 is invertible. By the implicit function
theorem applied toΘ ∶ H2 → L2, if we have a solution of (22.7) for some 𝑡, then we
obtain a solution in H2 for nearby values of 𝑡. The solution is actually C∞ (see the
regularity result at the end of the proof), therefore I is open.
We now prove the closedness. Suppose 𝑓 is a solution of (22.7). We first prove a
priori C0 bounds on 𝑓, using the weak maximum principle (proposition 15.4):

• at a maximum of 𝑓, by the maximum principle Δ𝑓 ≥ 0 so 𝑒2𝑓 ≤ 1 − 𝑡 + 𝑡λ ≤
C = 1 + sup λ;

• at a minimum of 𝑓, again Δ𝑓 ≤ 0 so 𝑒2𝑓 ≥ 1 − 𝑡 + 𝑡λ ≥ ε > 0 since λ > 0.

Finally we obtain 1
2
ln ε ≤ 𝑓 ≤ 1

2
lnC, that is we have a uniform C0 bound on 𝑓.

We can now finish the proof of closedness: supposewe have a sequence of solutions
𝑓𝑖 of (22.7) for 𝑡𝑖 → τ. The uniform C0 bound on 𝑓𝑖 implies a uniform C0 bound on
Δ𝑓𝑖 by (22.7), in particular a uniform L𝑝 bound on Δ𝑓𝑖 for any 𝑝. From the elliptic
estimate (21.8) we deduce a uniform W2,𝑝 bound on 𝑓𝑖. Taking 𝑝 > 2 we have
a compact inclusion W2,𝑝 ⊂ H2 and therefore we can extract a sequence 𝑓𝑖 → 𝑓
converging strongly in H2. This implies that 𝑓 is a solution of (22.7) for 𝑡 = τ. We
need to prove additionally that 𝑓 is C∞.
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This is a general regularity statement: suppose we have a solution 𝑓 ∈ H2 of equa-
tion (22.7), then𝑓 isC∞. Observe indeed that if𝑓 ∈ H2 then 𝑒2𝑓 ∈ C0 and it follows
quickly that 𝑒2𝑓 ∈ H2. From (22.7) we obtain that Δ𝑓 ∈ H2 and therefore 𝑓 ∈ H4.
Bootstrapping we obtain that 𝑓 ∈ H6, 𝑓 ∈ H8, etc. that is 𝑓 ∈ ∩𝑠>0H𝑠 = C∞.

23 The Yamabe problem

We now consider the constant scalar curvature problem for a general Riemannian
manifold (M𝑛, 𝑔). To simplify notation we use the usual notation R for the scalar
curvature. We consider a metric ̃𝑔 = 𝑒2𝑓𝑔 in the conformal class of 𝑔, and we want
to solve the equation

R̃ = cst. (23.1)

This problem can be seen as a variational problem in the following way. We define

I( ̃𝑔) = 𝑛 − 2
4(𝑛 − 1) ∫M

R̃ vol𝑔̃ . (23.2)

There is an obvious nonuniqueness for solutions of (23.1), since one can multiply
̃𝑔 by a constant. So it is natural to kill this ambiguity by imposing the constraint

Vol( ̃𝑔) = 1. (23.3)

Proposition 23.1. The Euler-Lagrange equation for I( ̃𝑔) under the constraint (23.3)
is R̃ ≡ cst.

This is called the Yamabe problem.

Theorem 23.2 (Yamabe, Trudinger, Aubin, Schoen,...). In the conformal class of
𝑔 there exists a metric ̃𝑔 which minimizes I( ̃𝑔) among metrics with Vol( ̃𝑔) = 1. In
particular R̃ is constant.

The aim of this chapter is to prove this difficult theorem in most cases.

Proof of proposition 23.1. We begin by setting up the problem. First we need the
formula for R̃: in the same way we obtained (22.2), one can prove

R̃ = 𝑒−2𝑓 (R + 2(𝑛 − 1)Δ𝑓 + (𝑛 − 1)(𝑛 − 2)|𝑑𝑓|2) . (23.4)

The following formalism is more convenient for this problem if 𝑛 > 2: write ̃𝑔 =
𝑒2𝑓𝑔 = 𝑢

4
𝑛−2 𝑔 then

R̃ = 𝑢−
𝑛+2
𝑛−2 (4𝑛 − 1

𝑛 − 2Δ𝑢 + R𝑢) (23.5)

and
Vol( ̃𝑔) = ∫

M
𝑢

2𝑛
𝑛−2 vol𝑔 . (23.6)
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Finally, with an integration by parts:

I( ̃𝑔) = ∫
M
(𝑢Δ𝑢 + 𝑛 − 2

4(𝑛 − 1)R𝑢
2) vol𝑔 (23.7)

= ∫
M
(|𝑑𝑢|2 + 𝑛 − 2

4(𝑛 − 1)R𝑢
2) vol𝑔 (23.8)

to minimize under the constraint ∫M 𝑢𝑝 vol𝑔 = 1, where 𝑝 = 2𝑛
𝑛−2

is the Sobolev
exponent which appears in the Sobolev embedding H1 ⊂ L𝑝, that is 1

𝑝
= 1

2
− 1

𝑛
.

Under the form (23.8) the Euler-Lagrange equation is clearly

Δ𝑢 + 𝑛 − 2
4(𝑛 − 1)R𝑢 = λ𝑢𝑝−1 (23.9)

for some constant λ. Since 𝑝 − 1 = 𝑛+2
𝑛−2

this can be rewritten as

𝑛 − 2
4(𝑛 − 1) R̃ = λ. (23.10)

This proves proposition 23.1.

Observe that (23.10) implies λ = I( ̃𝑔). Since we are looking for a minimum of I, it
is natural to define:

Definition 23.3. The Yamabe constant of the conformal class of 𝑔 is

λ(M, 𝑔) = inf {I( ̃𝑔), ̃𝑔 conformal to 𝑔,Vol( ̃𝑔) = 1}. (23.11)

It makes no difference to suppose a priori that Vol(𝑔) = 1. Since 𝑝 > 2 we have
‖𝑢‖L2(M,𝑔) ≤ ‖𝑢‖L𝑝(M,𝑔) = 1 and therefore we see from (23.8) that I( ̃𝑔) is bounded
below if Vol( ̃𝑔) = 1, therefore λ(M, 𝑔) > −∞.
We now rewrite the Yamabe problem in the following final setup:

• 𝑝 = 2𝑛
𝑛−2

is the Sobolev exponent of the inclusionH1 ⊂ L𝑝; it is useful to keep
in mind that 𝑝 − 1 = 𝑛+2

𝑛−2
and 𝑝 − 2 = 4

𝑛−2
;

• we define a differential operator

L𝑔𝑢 = Δ𝑢 + 𝑛 − 2
4(𝑛 − 1)R𝑢 (23.12)

so that if
̃𝑔 = 𝑢𝑝−2𝑔 (23.13)

then
R̃ = 4𝑛 − 1

𝑛 − 2𝑢
−𝑝+1L𝑔𝑢; (23.14)

• we want to solve the equation

L𝑔𝑢 = λ𝑢𝑝−1 (23.15)

where λ = λ(M, 𝑔) is the Yamabe constant; this equation implies R̃ = 4𝑛−1
𝑛−2

λ;
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• this equation has a variational formulation: it is satisfied by aminimumof the
functional I(𝑢) defined for 𝑢 > 0 by (23.8), under the constraint ‖𝑢‖L𝑝 = 1.

The operator L𝑔 is called the conformal Laplacian because it enjoys the following
invariance property under conformal changes:

Proposition 23.4. For any positive functionΩ one has

LΩ2𝑔𝑢 = Ω− 𝑛+2
2 L𝑔(Ω

𝑛−2
2 𝑢). (23.16)

Proof. It is sufficient to prove the identity (23.16) in the case 𝑢 > 0. Write 𝑔1 =

𝑢
4

𝑛−2
1 𝑔 and 𝑔2 = (𝑢2𝑢1)

4
𝑛−2 𝑔, then

R2 = 4𝑛 − 1
𝑛 − 2(𝑢1𝑢2)

−𝑝+1L𝑔(𝑢1𝑢2) = 4𝑛 − 1
𝑛 − 2𝑢

−𝑝+1
2 L𝑔1𝑢2.

Therefore L𝑔1𝑢2 = 𝑢−𝑝+11 L𝑔(𝑢1𝑢2) which proves the proposition by taking Ω2 =

𝑢
4

𝑛−2
1 .

24 Non critical case
Fix 𝑝′ so that 2 ≤ 𝑝′ < 𝑝. We consider the problem of minimizing I(𝑢) under the
constraint ‖𝑢‖L𝑝′ = 1. The derivation of the Euler-Lagrange equation is similar
to what was done in the previous section, and we find that a minimizer for this
problem should satisfy the equation

L𝑔𝑢 = λ𝑝′𝑢𝑝
′−1 (24.1)

which is the equation to solve.

Theorem 24.1. The equation (24.1) always admits a smooth positive solution, which
is a minimizer of I(𝑢) under the constraint ‖𝑢‖L𝑝′ = 1.

Proof. Observe that the functional I(𝑢) = ∫M |𝑑𝑢|2 + 𝑛−2
4(𝑛−1)

R𝑢2 is well-defined on
the Sobolev space H1. Moreover if 𝑢 ∈ H1 then |𝑢| ∈ H1 and I(𝑢) = I(|𝑢|). So for
any 𝑢 ∈ H1 we have that I(𝑢) = limε→0 I((ε+|𝑢|)/‖ε+|𝑢|‖L𝑝′ ) and it follows that the
infimum of I on positive functions is the same as the infimum of I on all functions
of H1 such that ‖𝑢‖L𝑝′ = 1.
The natural method to prove the theorem is to take aminimizing sequence (𝑢𝑖 > 0)
of I under the constraint ‖𝑢𝑖‖L𝑝′ = 1, and to prove some convergence. We have

|||∫M
R𝑢2 vol||| ≤ (sup |R|)‖𝑢‖2L𝑝′ ≤ sup |R|

so ∫M |𝑑𝑢𝑖|2 is bounded. It follows that ‖𝑢𝑖‖H1 is bounded. Since H1 ⊂ L𝑝′ is com-
pact (this is where we use 𝑝′ < 𝑝), we deduce that there exist a limit 𝑢 such that

𝑢𝑖 ⇀ 𝑢 in H1, 𝑢𝑖 → 𝑢 in L𝑝′ .

In particular ‖𝑢‖L𝑝′ = 1 so 𝑢 ≠ 0 (we will see that this fails for 𝑝′ = 𝑝).
Summarizing, we obtain a function 𝑢 ∈ H1 satisfying:
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• 𝑢 ≥ 0

• 𝑢 is a minimizer of I onH1 with the constraint ‖𝑢‖L𝑝′ = 1: this implies that it
is a weak solution of the equation (24.1), that is it satisfies for any function φ

∫
M
(⟨𝑑𝑢, 𝑑φ⟩ + 𝑛 − 2

4(𝑛 − 1)R𝑢φ) vol = λ𝑝′ ∫
M
𝑢𝑝′−1φ vol .

Lemma 24.2. A weak solution 𝑢 ≥ 0 in H1 of equation (24.1) is actually C∞ and
positive everywhere if 𝑢 ≢ 0.

Applying this lemma to the previous function 𝑢 solves our problem: the function
𝑢 > 0 is smooth and minimizes I(𝑢) under the constraint ‖𝑢‖L𝑝′ = 1 ; it is in
particular a solution of equation (24.1).

Proof of lemma 24.2. Since L𝑔 is an elliptic operator, we shall use equation (24.1) to
obtain more regularity on 𝑢. Suppose 𝑢 ∈ L𝑟, then 𝑢𝑝′−1 ∈ L

𝑟
𝑝′−1 , so by equation

(24.1) 𝑢 ∈ W2, 𝑟
𝑝′−1 ⊂ L𝑟′ where 𝑟′ is given by the Sobolev inclusion (proposition

21.1):
1
𝑟′ =

𝑝′ − 1
𝑟 − 2

𝑛 = 1
𝑟 + (𝑝

′ − 2
𝑟 − 2

𝑛).

Using 𝑝′ < 𝑝 and supposing 𝑟 ≥ 𝑝′, we have

𝑝′ − 2
𝑟 − 2

𝑛 < 𝑝 − 2
𝑝 − 2

𝑛 = 0

so it follows that
1
𝑟′ <

1
𝑟 − ε

for some fixed ε > 0. So starting from 𝑢 ∈ L𝑟0 with 𝑟0 = 𝑝′, we obtain 𝑢 ∈ L𝑟1 for
1/𝑟1 < 1/𝑟0 − ε; iterating we obtain 𝑢 ∈ L𝑟𝑗 with 1/𝑟𝑗 < 1/𝑝′ − 𝑗ε. So we can obtain
𝑢 ∈ W2,𝑟 for 𝑟 as large as we want, which implies that 𝑢 ∈ C1,α by proposition 21.1.
Then 𝑢𝑝′−1 ∈ C1,α so again elliptic regularity for equation (24.1) gives 𝑢 ∈ C3,α,
and iterating this we obtain 𝑢 ∈ C∞.
There remains to prove that if 𝑢 ≢ 0 then 𝑢 > 0 everywhere. From (24.1) we obtain

(Δ + 𝑚)𝑢 = (𝑚 − 𝑛 − 2
4(𝑛 − 1) + λ𝑢𝑝′−2)𝑢 ≥ 0

for𝑚 > 0 large enough. The result is then a consequence of the strong maximum
principle below.

Theorem 24.3 (Strong Maximum Principle). Suppose ℎ ≥ 0 is a smooth function
onM. Suppose 𝑢 ≥ 0 is a C2 function onM satisfying the differential inequality

Δ𝑢 + ℎ𝑢 ≥ 0.

If 𝑢 vanishes at some point onM, then 𝑢 ≡ 0.
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Observe that the weak maximum principle in proposition 15.4 gives that at a zero
of 𝑢 (which is a minimum since 𝑢 ≥ 0) one has Δ𝑢 ≤ 0. The strict inequality would
contradict Δ𝑢+ℎ𝑢 ≥ 0, but this is not given by the weak maximum principle. The
strong maximum principle gives an answer in that case.

Proof. Using normal coordinates we can suppose that we are in ℝ𝑛 with 𝑢(0) =
0. In polar coordinates we note 𝑢(𝑟, σ) with σ ∈ S𝑛−1. The metric is 𝑔 = 𝑑𝑟2 +
𝑟2(𝑔S𝑛−1 + O(𝑟2)), the volume form is vol = ϕ𝑟𝑛−1𝑑𝑟 ∧ volS

𝑛−1
with ϕ = 1 + O(𝑟2).

We consider the function

I(𝑟) = ∫
B𝑟
𝑢 vol = ∫

B𝑟
𝑢(ρ, σ)ϕ(ρ, σ)ρ𝑛−1𝑑ρ|𝑑σ|𝑛−1.

It follows that

∂𝑟I = ∫
S𝑟
𝑢(𝑟, σ)ϕ(𝑟, σ)𝑟𝑛−1|𝑑σ|𝑛−1

𝑟𝑛−1∂𝑟(𝑟−𝑛−1∂𝑟I) = ∫
S𝑟
𝑟𝑛−1(∂𝑟𝑢 + 𝑢∂𝑟ϕϕ )ϕ|𝑑σ|𝑛−1.

Integrating the inequality Δ𝑢 + ℎ𝑢 ≥ 0 on B𝑟 gives

∫
S𝑟
−∂𝑟𝑢ϕ𝑟𝑛−1|𝑑σ|𝑛−1 +∫

B𝑟
ℎ𝑢 vol ≥ 0.

Therefore we obtain

𝑟𝑛−1∂𝑟(𝑟−𝑛−1∂𝑟I) ≤ ∫
B𝑟
ℎ𝑢 vol+∫

S𝑟
𝑢∂𝑟ϕϕ ϕ𝑟𝑛−1|𝑑σ|𝑛−1.

Using ℎ ≥ 0 and |∂𝑟ϕ/ϕ| = O(𝑟) we obtain finally, for some constants 𝑎, 𝑏 > 0,

𝑟𝑛−1∂𝑟(𝑟−𝑛−1∂𝑟I) ≤ 𝑎I + 𝑏𝑟∂𝑟I.

Also from its definition, note that I = O(𝑟𝑛+2) and 𝑟∂𝑟I = O(𝑟𝑛+2).
This kind of differential inequality is often studied by finding a suitable function
which satisfies an opposite inequality: here we choose J(𝑟) = 𝑟𝑛+1 so that

𝑟𝑛−1∂𝑟𝑟−𝑛−1∂𝑟J = (𝑛 + 1)𝑟𝑛−1 ≥ 𝑎J + 𝑏𝑟∂𝑟J

for 𝑟 ≤ 𝑟0 small enough. Therefore, still for 𝑟 ≤ 𝑟0, one has

𝑟𝑛−1∂𝑟𝑟−𝑛−1∂𝑟(I − ϵJ) ≤ 𝑎(I − ϵJ) + 𝑏𝑟∂𝑟(I − ϵJ). (24.2)

Suppose I(𝑟0) > 0. Then we can choose ϵ > 0 small enough so that (I − ϵJ)(𝑟0) ≥ 0.
But when 𝑟 → 0 we have

(I − ϵJ)(𝑟) ∼ −ϵ𝑟𝑛+1.

It follows that I−ϵJ has a negativemaximum in the interval (0, 𝑟0). This contradicts
(24.2). Therefore one must have I(𝑟0) = 0, which implies that 𝑢 ≡ 0 on B𝑟0 .
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25 The conformal class of the sphere
We use the description of the standard sphere S𝑛 via stereographic projection. In
these coordinates the metric of the sphere is conformal to the Euclidean metric,
and we can write it in the form (23.13) as

𝑔S𝑛 =
4𝑔ℝ𝑛

(1 + |𝑥|2)2 = 4𝑢𝑝−21 𝑔ℝ𝑛 with 𝑢1 =
1

(1 + |𝑥|2)
𝑛−2
2

. (25.1)

It is known that the group of conformal diffeomorphisms of S𝑛 is generated by:

• rotations (these are isometries of S𝑛);

• translations τ𝑣(𝑥) = 𝑥 + 𝑣 in ℝ𝑛;

• dilations δα(𝑥) = α−1𝑥 in ℝ𝑛.

In particular we obtain in the conformal class of S𝑛 the following family of metrics
which are also isometric to S𝑛:

δ∗α𝑔S𝑛 = 4𝑢𝑝−2α 𝑔ℝ𝑛 with 𝑢α(𝑥) = ( α
α2 + |𝑥|2 )

𝑛−2
2 . (25.2)

Inℝ𝑛 we have the Sobolev injectionH1 ⊂ L𝑝, and one defines the Sobolev constant
by

μ0 = inf
H1

‖𝑑𝑢‖2L2
‖𝑢‖2L𝑝

. (25.3)

Consider the Yamabe problem on S𝑛: starting from themetric 𝑔ℝ𝑛 in the conformal
class, we see that the functional I of (23.8) reduces to

I(𝑢) = ∫
ℝ𝑛

|𝑑𝑢|2|𝑑𝑥|𝑛 (25.4)

and the variational formulation is tominimize I under the constraint ‖𝑢‖L𝑝(ℝ𝑛) = 1.
Therefore the Yamabe constant is

λ(S𝑛) = inf
‖𝑢‖L𝑝=1

I(𝑢) = μ0. (25.5)

Of course we are not exactly in the setting of section 23 since ℝ𝑛 is S𝑛 minus a
point and 𝑔ℝ𝑛 is conformal to 𝑔S𝑛 outside this point. The reader can check that the
infimum of I can be checked on H1 functions of ℝ𝑛 only.

26 The Yamabe problem on the sphere
Theorem 26.1. The infimum of the Yamabe functional in the conformal class of
(S𝑛, 𝑔S𝑛) is realized exactly on the metrics on S𝑛 obtained from 𝑔S𝑛 by a conformal
diffeomorphism.
Moreover any metric on S𝑛 conformal to 𝑔S𝑛 and with constant scalar curvature, is
obtained from 𝑔S𝑛 by a conformal diffeomorphism.
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The first part of the theorem is difficult and will not be proved in these notes.
Remarks 26.2. 1) It follows that the functions 𝑢α realize the minimum of I. But
observe that 𝑢α → 0 when α → 0 so contrarily to the equation for 𝑝′ < 𝑝 (section
24) a minimizing sequence can converge to 0.
2) Also one has 𝑢α → ∞ when α → ∞ so there is no a priori C0 bound for the
solutions of the equation.
3) Since a minimizer of the Yamabe functional has constant scalar curvature, the
second part of the theorem implies the first part, if one knows a priori the infimum
of I is realized by a metric in the conformal class.

Proof. We only prove the second statement. We need the following formula for the
Ricci tensor under a conformal change: if 𝑔 = ϕ2𝑔0 then

Ric(𝑔0) = Ric(𝑔) + ϕ−1((𝑛 − 2)∇𝑑ϕ − (𝑛 − 1) |𝑑ϕ|
2

ϕ 𝑔 − (Δϕ)𝑔) (26.1)

where all operators are with respect to 𝑔. Taking the trace free part,

Ric0(𝑔0) = Ric0(𝑔) + (𝑛 − 2)ϕ−1(∇𝑑ϕ + 1
𝑛(Δϕ)𝑔). (26.2)

Apply this with 𝑔 = ϕ2𝑔S𝑛 with 𝑔 having constant scalar curvature, we obtain

Ric0(𝑔) = −(𝑛 − 2)ϕ−1(∇𝑑ϕ + 1
𝑛(Δϕ)𝑔). (26.3)

Therefore

∫
S𝑛
ϕ|Ric0(𝑔)|2 vol𝑔 = ∫

S𝑛
⟨Ric0(𝑔), −(𝑛 − 2)(∇𝑑ϕ + 1

𝑛(Δϕ)𝑔⟩ vol
𝑔

= −(𝑛 − 2)∫
S𝑛
⟨δRic0(𝑔), 𝑑ϕ⟩ vol𝑔

= 0

since by the Bianchi identity δRic0(𝑔) = 0.
It follows that Ric0(𝑔) = 0, that is 𝑔 is an Einstein metric. The result is now a
consequence of the following:

Fact 26.3. If Ric(𝑔) = Λ𝑔 and 𝑔 is conformal to 𝑔S𝑛 , then 𝑔 has constant sectional
curvature, which implies that there is a diffeomorphismΦ of S𝑛 such thatΦ∗𝑔 = 𝑔S𝑛 .

Since 𝑔 and 𝑔S𝑛 are conformal, Φ has to be a conformal diffeomorphism.

We will not give the proof of the fact 26.3, but here is the main idea. If 𝑛 = 3 then
Ric contains the information of the whole curvature tensor, so an Einstein metric
has constant sectional curvature. If 𝑛 ≥ 4, there is a component of the Riemannian
curvature called theWeyl tensor, notedW, which detects when a metric is locally
conformal to the standard sphere S𝑛. The data of bothW and Ric gives the whole
curvature tensor, see for example [Bes87]. So if 𝑔 is conformal to 𝑔S𝑛 and is Einstein,
then its Weyl tensor W = 0 and Ric = Λ: since these determine completely the
Riemannian curvature, the sectional curvature is constant.
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27 Epsilon regularity

We have seen that in the case 𝑝′ < 𝑝 a weak solution of the Yamabe equation is
controled in C0 thanks to the Sobolev inequality (see the proof of lemma 24.2. The
proof fails in the case 𝑝′ = 𝑝 and indeed we have seen in section 26 that a sequence
of solutions can diverge.
The following is an example of ε-regularity: it says that if some energy is locally
small enough, then a solution is C0 controled as if the problem was linear. Similar
statements exist in various nonlinear geometric problems. In our case the energy
is just the L𝑝 norm:

Theorem 27.1. Let ℎ be a function on (M, 𝑔). There exist constants ε0, 𝑟0, 𝑐 > 0 such
that: if 𝑢 > 0 is a smooth solution of the equation Δ𝑢 + ℎ𝑢 = 𝑢𝑝−1, then for any ball
B of radius 𝑟 ≤ 𝑟0 one has:

if ∫
B
𝑢𝑝 vol = ε < ε0 then 𝑢(0) ≤ 𝑐 ε

1
𝑝

𝑟
𝑛
𝑝
. (27.1)

We need some tools to prove the theorem.

Proposition 27.2. Suppose (M𝑛, 𝑔) is a compact Riemannian manifold. Then there
are constants C, 𝑟0 > 0 such that if we have a function 𝑓 ≥ 0 on a geodesic ball B𝑟
(𝑟 ≤ 𝑟0) satisfying Δ𝑓 ≤ 2𝑛𝑘 then

𝑓(0) ≤ C⨍
B𝑟
𝑓 + 𝑘|𝑥|2. (27.2)

Proof. We have Δ𝑟2 = −2𝑛 + O(𝑟2) so for 𝑟 ≤ 𝑟0 (with 𝑟0 > 0 sufficiently small) we
have Δ(𝑓 + 𝑘(1 + ϵ)𝑟2) ≤ 0. By considering 𝑓 + 𝑘(1 + ϵ)𝑟2, and up to increasing
slightly the constant C we are reduced to the case 𝑘 = 0.
Thereforewe can supposeΔ𝑓 ≤ 0. Weuse this inequality by integrating on geodesic
balls: with notations similar to that of the proof of theorem 24.3,

0 ≥ ∫
B𝑟
Δ𝑓 vol = ∫

S𝑟
−𝑟𝑛−1ϕ∂𝑟𝑓|𝑑σ|𝑛−1.

Define𝑚(𝑟) = ∫S𝑟 𝑓ϕ|𝑑σ|
𝑛−1, then we obtain

∂𝑟𝑚 ≥ ∫
S𝑟
𝑓∂𝑟ϕ|𝑑σ|𝑛−1

≥ −𝑐𝑟∫
S𝑟
𝑓ϕ|𝑑σ|𝑛−1

≥ −𝑐𝑟𝑚

It follows that𝑚(𝑟) ≥ 𝑚(0)𝑒−𝑐𝑟2/2 = 𝑓(0)𝑒−𝑐𝑟2/2 and therefore 𝑓(0) ≤ C⨍S𝑟 𝑓. The
proposition follows.
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Remark 27.3. If we are on the flat space ℝ𝑛 then in the proposition one can take
C = 1, and the hypothesis 𝑓 ≥ 0 is not needed. This follows from the proof of the
proposition, observing that in ℝ𝑛 we have exactly Δ𝑟2 = −2𝑛 and ϕ = 1.
Actually one can see by the same technique that if 𝑓 is a harmonic function in ℝ𝑛,
then one has the well-knownmean formula

𝑓(0) = ⨍
B𝑟
𝑓. (27.3)

From this formula one can deduce the Liouville theorem: a bounded harmonic
function on ℝ𝑛 is constant.

Proof of theorem 27.1. We simplify the proof by taking ℎ = 0. The reader can check
that the addition of ℎ gives additional terms which do not perturb the following
arguments.
We first limit ourselves to the special case when 𝑢 has a maximumM at a point 𝑥0,
and we consider the balls centered at 𝑥0. The equation isΔ𝑢 = 𝑢𝑝−1 ≤ M𝑝−1 which
gives via (27.2) an estimateM = 𝑢(𝑥0) ≤ C⨍B𝑟 𝑢+M

𝑝−1𝑟2. FromHölder inequality

∫
B𝑟
𝑢 ≤ (∫

B𝑟
𝑢𝑝)

1
𝑝
Vol(B𝑟)

𝑝−1
𝑝

it follows that
M ≤ 𝑐 (𝑟−

𝑛
𝑝 ε

1
𝑝 + 𝑟2M𝑝−1) .

Taking λ = 𝑟𝑛/𝑝M we can rewrite this as

λ ≤ 𝑐(ε
1
𝑝 + λ𝑝−1). (27.4)

When 𝑟 is small then λ is small. Since 𝑝 > 2, if ε > 0 is small enough, say ε < ε0,
the first zero of the function 𝑐(ε1/𝑝 + λ𝑝−1) − λ is approximately λ1 ∼ 𝑐ε1/𝑝, so the
inequality (27.4) imposes the restriction λ ≤ λ1 ≤ 2𝑐ε1/𝑝, which we rewrite as

M ≤ 2𝑐 ε
1
𝑝

𝑟
𝑛
𝑝
. (27.5)

This proves the theorem for the special case of a point 𝑥0 at which 𝑢 attains a max-
imum.
The case of a general point is similar: we restrict to a ball B𝑟 but 𝑢 can reach its
maximum at the boundary of the ball. To avoid this we introduce the distance 𝑑 to
the boundary of the ball, and we take

M = max
B𝑟

𝑢(𝑥)𝑑(𝑥)
𝑛
𝑝 . (27.6)

This is attained at a point 𝑥0 in the interior of the ball, and we take a smaller ball
Bρ(𝑥0) now centered at 𝑥0 so that ρ <

1
2
𝑑(𝑥0), so the ball remains at some distance
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of the boundary of B𝑟. On Bρ(𝑥0) we now have 𝑢 ≤ 2𝑛/𝑝M. We can then proceed
as in the first case to prove the estimate (27.5) for some larger constant 𝑐′:

𝑢(𝑥0) ≤ 𝑐′ ε
1
𝑝

ρ
𝑛
𝑝
.

But we want to estimate 𝑢(0):

𝑢(0) ≤ ρ
𝑛
𝑝

𝑟
𝑛
𝑝
𝑢(𝑥0) ≤ 𝑐′ ε

1
𝑝

𝑟
𝑛
𝑝
.

This proves the result. Note that the choice of the exponent 𝑛
𝑝
in (27.6) is used only

in this last step.

Theorem 27.1 reduces the C0-estimate to having small L𝑝 norm of 𝑢 on small balls.
Note that this typically fails in the case of the sphere S𝑛 for the functions 𝑢α defined
by (25.2), since the L𝑝 norm is more and more concentrated near the origin as α →
0. This case is excluded in the following proposition, which gives a simple criterion
to control local L𝑝 norms:

Proposition 27.4. If the Yamabe constant of (M, 𝑔) satisfies λ(M, 𝑔) < μ0 = λ(S𝑛),
then for any ε > 0 there exists 𝑟 > 0 such that for any solution 𝑢 of the Yamabe
equation (23.15) with ‖𝑢‖𝑝 = 1 and any ball B𝑟 of (M, 𝑔) one has

∫
B𝑟
𝑢𝑝 < ε.

Proof. Take 𝑥0 ∈ M and for simplicity assume that 𝑔 is flat near 𝑥0.
Take χ a cutoff function near 𝑥0. Since 𝑔 is flat near 𝑥0, the Yamabe equation is
Δ𝑢 = λ𝑢𝑝−1 near 𝑥0. By integration by parts,

(𝑑(χ2𝑢), 𝑑𝑢) = λ∫χ2𝑢𝑝.

Observing that

⟨𝑑(χ𝑢), 𝑑(χ𝑢)⟩ = |𝑑χ|2𝑢2 + 2⟨χ𝑑𝑢, 𝑢𝑑χ⟩ + χ2|𝑑𝑢|2 = |𝑑χ|2𝑢2 + ⟨𝑑(χ2𝑢), 𝑑𝑢⟩,

we obtain
‖𝑑(χ𝑢)‖22 = λ∫χ2𝑢𝑝 +∫|𝑑χ|2𝑢2.

We have the following Hölder inequalities:

∫χ2𝑢𝑝 ≤ (∫(χ2𝑢2)𝑝/2)2/𝑝((𝑢𝑝−2)𝑝/(𝑝−2))(𝑝−2)/𝑝 = ‖χ𝑢‖2𝑝‖𝑢‖𝑝−2𝑝 ,

∫ |𝑑χ|2𝑢2 ≤ (∫(𝑢2)𝑝/2)2/𝑝(∫ |𝑑χ|2𝑝/(𝑝−2))(𝑝−2)/𝑝 = ‖𝑢‖2𝑝‖𝑑χ‖2𝑛.
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Applying these inequalities and the Sobolev inequality in ℝ𝑛, we obtain

μ0‖χ𝑢‖2𝑝 ≤ ‖𝑑(χ𝑢)‖22 ≤ λ‖χ𝑢‖2𝑝‖𝑢‖𝑝−2𝑝 + ‖𝑢‖2𝑝‖𝑑χ‖2𝑛.

Since ‖𝑢‖𝑝 = 1 it follows that

(μ0 − λ)‖χ𝑢‖2𝑝 ≤ ‖𝑑χ‖2𝑛. (27.7)

The fact that the Sobolev embeddingW1,𝑛 ⊂ C0 fails says that one can find cutoff
functions χ with ‖𝑑χ‖𝑛 as small as we want. To be more specific we start from the
function 𝑓 in example (21.6) and we define a cutoff function χρ with support in B𝑟
by

χρ(𝑥) = {
𝑓(𝑟𝑥)
𝑓(𝑟ρ)

if |𝑥| ≥ ρ,
1 if |𝑥| ≤ ρ.

Then ‖𝑑χρ‖𝑛 → 0 when ρ → 0, so for ρ small enough (27.7) implies

∫
Bρ
𝑢𝑝 < ε.

This concludes the proof in the case 𝑔 is flat around 𝑥0. In general one argues that
on a small enough ball the metric is close to the flat metric. The main difference
is the term R𝑢 in L𝑔𝑢 which gives an additional term ‖χ𝑢‖22 in the integration by
parts. But this term is negligible before ‖χ𝑢‖2𝑝 on small enough balls.

28 Resolution for Yamabe constant less than that of
the sphere

The C0 estimate from theorem 27.1 do not apply to general functions, but only to
solutions of the Yamabe problem. Therefore we need to use to solutions of equa-
tions. We will use a solution 𝑢𝑝′ (2 ≤ 𝑝′ < 𝑝) of the equation (24.1), attaining the
inf in

λ𝑝′ = inf
‖𝑢‖𝑝′=1

(L𝑔𝑢, 𝑢) = inf
(L𝑔𝑢, 𝑢)
‖𝑢‖2𝑝′

.

Lemma28.1. SupposeVol(𝑔) = 1. Then |λ𝑝′ | is a decreasing function of𝑝′. Moreover:

• if λ(M, 𝑔) < 0 then λ𝑝′ < 0 for all 𝑝′ ∈ [2, 𝑝);

• if λ(M, 𝑔) ≥ 0 then λ𝑝′ is left continuous.

Proof. We have

λ𝑝″ = inf
‖𝑢‖2𝑝′
‖𝑢‖2𝑝″

(L𝑔𝑢, 𝑢)
‖𝑢‖2𝑝′

.

If 𝑝′ ≤ 𝑝″ then ‖𝑢‖2𝑝′ ≤ ‖𝑢‖2𝑝″ and it follows that |λ𝑝″ | ≤ |λ𝑝′ |.
If λ(M, 𝑔) < 0 then there exists 𝑢 such that (L𝑔𝑢, 𝑢) < 0 and it follows that λ𝑝′ < 0
for any 𝑝′ ∈ [2, 𝑝].



29. NON CONFORMALLY FLAT CASE 57

If λ(M, 𝑔) ≥ 0 then similarly λ𝑝′ ≥ 0 for any 𝑝′ ∈ [2, 𝑝]. Given ε > 0 and 𝑝′ there
exists 𝑢 such that (L𝑔𝑢,𝑢)

‖𝑢‖𝑝′
< λ𝑝′ + ε. Therefore for 𝑝″ < 𝑝′ close enough to 𝑝′ we

have
λ𝑝′ ≤ λ𝑝″ ≤

(L𝑔𝑢, 𝑢)
‖𝑢‖𝑝″

< λ𝑝′ + 2ε.

This prove the left continuity of λ𝑝′ .

Theorem 28.2. If λ(M, 𝑔) < λ(S𝑛) a family (𝑢𝑝′)𝑝′<𝑝 of solutions of (24.1) with
‖𝑢𝑝′‖𝑝′ = 1 admits a convergent subsequence to a function 𝑢 > 0, smooth, which
realizes the minimum of the Yamabe functional. In particular 𝑢𝑝−2𝑔 has constant
scalar curvature.

Proof. We have
L𝑔𝑢𝑝′ = λ𝑝′𝑢𝑝

′−1
𝑝′ . (28.1)

It is not difficult to check that the C0 estimate resulting from theorem 27.1 and
proposition 27.4 extends to (28.1), and from the hypothesis λ(M, 𝑔) < λ(S𝑛) it is
actually uniform for 𝑝′ < 𝑝.
From equation (28.1) we then obtain that L𝑔𝑢𝑝′ is also uniformly bounded in C0,
so by elliptic regularity 𝑢𝑝′ is bounded in C1,α. Bootstrapping we obtain that 𝑢𝑝′
is bounded in C𝑘,α for any 𝑘. In particular, by Ascoli’s theorem, we can extract a
subsequence which converges strongly in C2 to a limit 𝑢 when 𝑝′ → 𝑝. We have
𝑢 ≥ 0 and ‖𝑢‖𝑝 = 1.
If λ(M) ≥ 0 then lim λ𝑝′ = λ𝑝 by the previous lemma, so I(𝑢) = λ𝑝 and 𝑢 is a
solution of the equation L𝑔𝑢𝑝 = λ𝑝𝑢𝑝−1. It has no zero by the strong maximum
principle (theorem 24.3).
If λ(M) < 0 then λ𝑝′ is an increasing function of 𝑝′ so has a limit λ = lim𝑝′→𝑝 λ𝑝′ ≤
λ𝑝. Then I(𝑢) = λ ≥ λ𝑝 = inf I so λ = λ𝑝 and the same applies.

29 Non conformally flat case

Theorem28.2 provides a solution of theYamabeproblem, providedwehave λ(M, 𝑔) <
λ(S𝑛). The following theorem says that this is always the case:

Theorem 29.1. One has always λ(M, 𝑔) < λ(S𝑛), except if (M𝑛, 𝑔) is conformal to
(S𝑛, 𝑔S𝑛).

With the case of the sphere (theorem 26.1), this concludes the resolution of the
Yamabe problem.
Theorem 29.1 is difficult and was proved in increasing generality. The first obser-
vation is:

Proposition 29.2 (Aubin). One has always λ(M, 𝑔) ≤ μ0.

Proof. Weneed to construct functionsφ so that I(φ) is as close aswewant to μ0. The
idea is to use the family (25.2) of radial functions (𝑢α) onℝ𝑛 which are minimizers
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on ℝ𝑛: they satisfy ‖∇𝑢α‖22 = μ0‖𝑢α‖2𝑝. A small neighbourhood of a point in (M, 𝑔)
looks more and more like a small ball in ℝ𝑛, and when α → 0 the function 𝑢α has
its energy more and more concentrated around 0, so the idea is to graft it on (M, 𝑔)
to obtain the wanted test function φ.
First we need to cut 𝑢α so that it has compact support. Let χ = χ(𝑟) be a cuf-off
function on ℝ𝑛 so that

χ(𝑟) = {1 if 𝑟 ≤ ε,
0 if 𝑟 ≥ 2ε.

The function φ = χ𝑢α satisfies

∫
ℝ𝑛

|𝑑φ|2 = ∫
B2ε

χ2|𝑑𝑢α|2 + 2χ𝑢α⟨𝑑χ, 𝑑𝑢α⟩ + 𝑢2α|𝑑χ|2

≤ ∫
ℝ𝑛

|∂𝑟𝑢α|2 + C∫
B2ε∖Bε

𝑢α|∂𝑟𝑢α| + 𝑢2α. (29.1)

One has ∂𝑟𝑢α = −(𝑛 − 2) 𝑟
α
( α
α2+𝑟2

)𝑛/2 therefore we have

𝑢α ≤
α

𝑛−2
2

𝑟𝑛−2 , |∂𝑟𝑢α| ≤ (𝑛 − 2)α
𝑛−2
2

𝑟𝑛−1 .

Now fix ε and make α → 0: the second term in (29.1) satisfies

∫
B2ε∖Bε

𝑢α|∂𝑟𝑢α| + 𝑢2α = O(α𝑛−2).

Now analyze the first term of (29.1):

∫
ℝ𝑛

|∂𝑟𝑢α|2 = μ0 (∫
Bε
𝑢𝑝α +∫

ℝ𝑛∖Bε
𝑢𝑝α)

2
𝑝

≤ μ0 (∫
B2ε

φ𝑝 +∫
ℝ𝑛∖Bε

α𝑛
𝑟2𝑛 )

2
𝑝

≤ μ0 (∫
B2ε

φ𝑝)
2
𝑝
+ O(α𝑛).

Putting all this together, (29.1) finally gives for some constant C

‖𝑑φ‖22
‖φ‖2𝑝

≤ μ0 + Cα𝑛−2. (29.2)

So cutting off 𝑢α gives an error term of size controled by α𝑛−2.
We are now ready to pass to themanifold (M, 𝑔): near a point 𝑝we consider normal
coordinates (𝑥𝑖) andwe consider the function φ in these coordinates (taking ε small
enough). Thenwe still have |𝑑φ|2 = |∂𝑟φ|2, but we have an error term in the volume
form:

vol𝑔 = (1 + O(𝑟2))𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛.
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We have

I(φ) = ∫
B2ε

(|𝑑φ|2 + 𝑛 − 2
4(𝑛 − 1)Rφ

2) vol𝑔

≤ (1 + Cε2) (μ0‖φ‖2𝑝 + Cα𝑛−2 + C∫
(0,2ε)×S𝑟

𝑢2α𝑟𝑛−1𝑑𝑟|𝑑σ|𝑛−1) . (29.3)

We fix ε > 0 small enough, and then α > 0 small enough. By formula (29.4) below,
the last term in the RHS is O(α) so we obtain finally

I(φ)
‖φ‖2𝑝

≤ (1 + Cε2)(μ0 + Cα).

It follows that λ(M, 𝑔) ≤ μ0.

In the proof, we have used the following fact, which is left to the reader. Note 𝑓 ≊ 𝑔
is there is a constant C such that C−1𝑔 ≤ 𝑓 ≤ C𝑔.

Fact 29.3. Fix ε > 0. Let F(α) = ∫ε
0 𝑟𝑘𝑢2α𝑟𝑛−1𝑑𝑟. Then one has when α → 0:

F(α) ≊
⎧
⎨
⎩

α𝑘+2 𝑛 > 𝑘 + 4
α𝑘+2| lnα| 𝑛 = 𝑘 + 4
α𝑛−2 𝑛 < 𝑘 + 4.

(29.4)

We can now prove the following result, which is the first step towards theorem 29.1.
We recall that (M, 𝑔) is locally conformally flat if any point inM has a neighbour-
hood which is conformally equivalent to an open set in ℝ𝑛.

Theorem 29.4. If 𝑛 ≥ 6 and (M, 𝑔) is not locally conformally flat, then λ(M, 𝑔) < μ0.

The proof of the theorem relies on normal conformal coordinates. Before stating
the theorem, it is useful to recall a geometric interpretation of the scalar curvature:
in normal coordinates around a point 𝑝, there is an expansion for the determinant
of the metric given by:

det(𝑔𝑖𝑗) = 1 − 1
3 Ric(𝑝)𝑖𝑗𝑥

𝑖𝑥𝑗 − 1
6∇𝑘 Ric(𝑝)𝑖𝑗𝑥𝑖𝑥𝑗𝑥𝑘 +⋯

and in particular we obtain for the volume form:

√det(𝑔𝑖𝑗) = 1 − 1
6 Ric(𝑝)𝑖𝑗𝑥

𝑖𝑥𝑗 +⋯

Integrating on a sphere of radius 𝑟, we can compare with the volumes for the stand-
ard Euclidean metric 𝑔0:

∫
S𝑟
vol𝑔S𝑟 = ∫

S𝑟
(1 − 1

6 Ric(𝑝)𝑖𝑖(𝑥
𝑖)2 + O(𝑟3)) vol𝑔0S𝑟

= V𝑛−1𝑟𝑛−1(1 −
R(𝑝)
6𝑛 𝑟2 + O(𝑟3)). (29.5)

Therefore the scalar curvature measures the distortion of volumes of small spheres
(or balls) for 𝑔 with that for 𝑔0.
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Theorem 29.5 (Günther 1993). Given (M𝑛, 𝑔0) and a point 𝑝 ∈ M, there exists a
metric 𝑔 in the conformal class of 𝑔0 such that in 𝑔-normal coordinates near 𝑝 one
has

det(𝑔𝑖𝑗) = 1.

For 𝑛 ≥ 5 one then has R(𝑔) = O(𝑟2) and ΔR(𝑝) = 1
6
|W(𝑝)|2.

Note that in normal conformal coordinates one has always R(𝑝) = 0 by (29.5). The
theorem says that for dimension at least 5 one has a second order vanishing.
Proving that one can obtain det(𝑔) = 1 up to any finite order near 𝑝 is a classical
result, as is the consequence on R and ΔR. Proving that one can achieve det(𝑔) ≡ 1
near 𝑝 is muchmore difficult. In our proof we need this to be true only to any finite
order, but the arguments become more clear with the full strength of the theorem,
so this is the point of view that we shall use.

Proof of theorem 29.4. We refine the technique of proposition 29.2. Restarting from
(29.2), we now use normal conformal coordinates on (M, 𝑔), that is we can suppose
that the volume form is exactly that ofℝ𝑛, that is we have exactly vol𝑔 = 𝑑𝑥1 ∧⋯∧
𝑑𝑥𝑛. It follows that the estimate for the first term of I(𝑔) in (29.3) is now enhanced
into

∫
B2ε

|𝑑φ|2 vol𝑔 ≤ μ0‖φ‖2𝑝 + Cα𝑛−2.

For the second term of I(𝑔), we now write

∫
B2ε

Rφ2|𝑑𝑥|𝑛 ≤ ∫
Bε
R𝑢2α|𝑑𝑥|𝑛 + 𝑐∫

B2ε∖Bε
𝑢2α|𝑑𝑥|𝑛.

The first term is

∫
Bε
R𝑢2α|𝑑𝑥|𝑛 = ∫

Bε
(∂2𝑖𝑗R(𝑝)

𝑥𝑖𝑥𝑗
2 + O(𝑟3))𝑢2α𝑟𝑛−1𝑑𝑟|𝑑σ|𝑛−1

= V𝑛−1∫
ε

0
( − ΔR(𝑝) 𝑟

2

2𝑛 + O(𝑟3))𝑢2α𝑟𝑛−1𝑑𝑟

= V𝑛−1∫
ε

0
( − |W(𝑝)|2 𝑟2

12𝑛 + O(𝑟3))𝑢2α𝑟𝑛−1𝑑𝑟.

Putting everything together and using the estimate (29.4) we obtain

I(φ) = ∫
B2ε

|𝑑φ|2 vol𝑔 ≤ {μ0‖φ‖
2
𝑝 − C|W(𝑝)|2α4 + 𝑜(α4), 𝑛 > 6,

μ0‖φ‖2𝑝 − C|W(𝑝)|2α4| lnα| + 𝑜(α4), 𝑛 = 6.

Since (M, 𝑔) is not locally conformally flat, we can choose 𝑝 such that W(𝑝) ≠ 0.
Taking α small enough we obtain

I(φ) < μ0‖φ‖2𝑝

so λ(M, 𝑔) < μ0.
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30 Conformally flat case and positive mass

The remaining cases are that of dimensions smaller than 6, or conformally flat met-
rics. Since we can solve the problem when λ(M, 𝑔) < λ(S𝑛), we can suppose at
least λ(M, 𝑔) > 0. Since λ(M, 𝑔) = inf(L𝑔𝑢, 𝑢)/‖𝑢‖2𝑝, this implies that kerL𝑔 = 0.
Since λ𝑝′ > 0 as well in that case, by theorem 24.1 we can solve the equation
L𝑔𝑢 = λ𝑝′𝑢𝑝

′−1 for some 𝑝′ < 𝑝 and the corresponding metric ̃𝑔 = 𝑢𝑝′−2𝑔 has
scalar curvature R̃ = 4𝑛−1

𝑛−2
𝑢−𝑝+1L𝑔𝑢 = 4𝑛−1

𝑛−2
λ𝑝′𝑢𝑝

′−𝑝 > 0. Replacing 𝑔 by ̃𝑔 if
necessary, we can suppose that 𝑔 has positive scalar curvature.

The Green function

In stereographic coordinates on the sphere we can write

𝑔ℝ𝑛 = (1 + |𝑥|2)2
4 𝑔S𝑛 = G𝑝−2𝑔S𝑛 , G(𝑥) = (1 + |𝑥|2

2 )
2

𝑝−2 . (30.1)

We can think of G as the conformal change from S𝑛 minus the north pole N to ℝ𝑛.
Since coordinates on S𝑛 near the north pole are obtained by the inversion 𝑦 = 𝑥

|𝑥|2
,

up to multiplying G by a constant we have G ∼ 1
𝑟𝑛−2

where 𝑟 is the distance to N in
S𝑛. Since the scalar curvature of ℝ𝑛 is zero and 𝑝 − 2 = 4/(𝑛 − 2), the function G
also satisfies L𝑔S𝑛G = 0. We summarize this by saying that G is a solution on S𝑛 of
the system:

L𝑔S𝑛G = 0,

G ∼
𝑟→0

1
𝑟𝑛−2 .

(30.2)

If we fix a point 𝑝 in (M, 𝑔) the problem (30.2) still makes sense. A solution is called
a Green function of (M, 𝑔). The existence is given by:

Proposition 30.1. If λ(M, 𝑔) > 0 and 𝑝 ∈ M then a solution G to the system (30.2)
exists and G > 0 everywhere. Moreover, if 𝑛 = 3, 4, 5 or 𝑔 is conformally flat near 𝑝,
then near 𝑝 one has for some constant A

G = 1
𝑟𝑛−2 + A + 𝑎 (30.3)

where 𝑎 = O(𝑟) satisfies ∂𝑘𝑎 = O(𝑟1−𝑘) for 𝑘 ≤ 2.

Proof. Let us begin to prove that a solution G has to be positive. We can suppose
that R > 0. Then the strong maximum principle (theorem 24.3) implies that a
minimum of a solution of L𝑔𝑢 = 0 has to be positive. Therefore 𝑢 > 0.
Now pass to the existence ofG. In normal conformal coordinates for 𝑔 the function
G0 =

1
𝑟𝑛−2

satisfies
ΔG0 = Δℝ𝑛G0 = 0.

Therefore
L𝑔G0 =

𝑛 − 2
4(𝑛 − 1)

R
𝑟𝑛−2 .
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Take a cutoff function χ, the idea is now to find the solution G under the form

G = χG0 + ψ

where ψ is more regular than G near 𝑝 and satisfies

L𝑔ψ = −L𝑔(χG0). (30.4)

If 𝑔 is conformally flat near 𝑝, then actually L𝑔G0 = 0 near 𝑝, so −L𝑔(χG0) = 0
near 𝑝, so this is a smooth function on M. Since L𝑔 is a positive elliptic operator,
it follows that there exists a unique solution ψ of (30.4), this solution is smoth, and
the proposition is proved.
In the cases 𝑛 = 3, 4, 5, from Theorem 29.5 we obtain that R cancels to order 1
(𝑛 = 3, 4) or 2 (𝑛 = 6). Therefore

R
𝑟𝑛−2 = {

O(1), 𝑛 = 3,
O( 1

𝑟
), 𝑛 = 4, 5.

Therefore L𝑔(χG0) ∈ L𝑛−ε and we can solve (30.4) with ψ ∈ W2,𝑛−ε ⊂ Cα for any
α < 1. Outside 𝑝 the function ψ is smooth, but this proves only that ψ = A+O(𝑟α)
near 𝑝 for any α < 1. The full result actually requires to refine the approximate
solution G0 near 𝑝 before solving (30.4). The details are left to the reader.

The small dimension or conformally flat case

Limit ourselves now to the remaining cases of the Yamabe problem, that is 𝑛 =
3, 4, 5 or 𝑛 ≥ 6 and 𝑔 is conformally flat. By proposition 30.1 the metric ̂𝑔 = G𝑝−2𝑔
has R̂ = 0. Geometrically, passing from (M, 𝑔) to (M∖{𝑝}, ̂𝑔) looks like passing from
S𝑛 ∖ {N} to ℝ𝑛. This reflects in the following proposition.

Proposition 30.2. Take coordinates (𝑥𝑗 = 𝑦𝑗/|𝑦|2) obtained by inversion from the
normal conformal coordinates (𝑦𝑗) onM near 𝑝. The metric ̂𝑔 = G𝑝−2𝑔 onM ∖ {𝑝}
satisfies near 𝑝 (so when 𝑟 ∶= |𝑥| → ∞)

̂𝑔 = γ𝑝−2(𝑥)(∑(𝑑𝑥𝑗)2 + O( 1
𝑟2
)) (30.5)

with
γ = 1 + A

𝑟𝑛−2 + O( 1
𝑟𝑛−1 ). (30.6)

In the conformally flat case the term O( 1
𝑟2
) in (30.5) is not needed.

Proof. Left to the reader.

Using this proposition, we now work with the metric ̂𝑔: outside a large compact
set K, we have (M ∖ {𝑝}) ∖ K ≈ ℝ𝑛 ∖ BR. The advantage of ̂𝑔 is that R̂ = 0, so that
the Yamabe functional reduces to ‖𝑑ϕ‖22, as is the case on ℝ𝑛. Consider again our
functions

𝑢α(𝑥) = ( α
α2 + 𝑟2 )

𝑛−2
2 .
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When α is large 𝑢α becomes almost constant on a large ball. So it is a good approx-
imation of 𝑢α onM ∖ {𝑝} to extend 𝑢α outside ℝ𝑛 ∖ BR by a constant, defining for
large ρ and α the function

ϕ = {𝑢α(𝑥) on ℝ𝑛 ∖ Bρ
𝑢α(ρ) on 𝑟 ≤ ρ

(30.7)

Proposition 30.3. With this choice of ϕ we have when α → +∞, for some constant
𝑐 > 0,

‖𝑑ϕ‖22 ≤ μ0‖ϕ‖2𝑝 − 𝑐 A
α𝑛−2 + O( 1

α𝑛−1 ). (30.8)

In particular, if A > 0 then λ(M, 𝑔) < μ0 = λ(S𝑛).

Proof. To simplify the proof, we limit to the conformally flat case. Since |𝑑𝑟|2 =
γ−(𝑝−2),

‖𝑑ϕ‖22 = ∫
ℝ𝑛∖Bρ

|𝑑𝑢α|2γ𝑛(𝑝−2)|𝑑𝑥|𝑛

= ∫
ℝ𝑛∖Bρ

|∂𝑟𝑢α|2γ2|𝑑𝑥|𝑛

= ∫
ℝ𝑛∖Bρ

(𝑢αΔℝ𝑛𝑢αγ2 − 𝑢α(∂𝑟𝑢α)(∂𝑟γ))|𝑑𝑥|𝑛 +∫
Sρ
𝑢α(∂𝑟𝑢α)γ2ρ𝑛−1|𝑑σ|𝑛−1.

(30.9)

Observe that

∂𝑟𝑢α = −(𝑛 − 2)α
𝑛−2
2

𝑟
(α2 + 𝑟2)

𝑛
2
, Δℝ𝑛𝑢α = 𝑛(𝑛 − 2)𝑢𝑝−1α ,

Therefore the third term in (30.9) is O( 1
α𝑛
). The first term is controled by

∫
ℝ𝑛∖Bρ

𝑢αΔℝ𝑛𝑢αγ2|𝑑𝑥|𝑛 = 𝑛(𝑛 − 2)∫
ℝ𝑛∖Bρ

𝑢𝑝−2α (𝑢αγ)2|𝑑𝑥|𝑛

≤ 𝑛(𝑛 − 2) (∫
ℝ𝑛∖Bρ

(𝑢αγ)𝑝|𝑑𝑥|𝑛)

2
𝑝

(∫
ℝ𝑛∖Bρ

𝑢𝑝α|𝑑𝑥|𝑛)
1− 2

𝑝

≤ 𝑛(𝑛 − 2)‖𝑢α‖𝑝−2L𝑝(ℝ𝑛)‖ϕ‖𝑝
≤ μ0‖ϕ‖2𝑝.

The crucial term is the second term in (30.9), which is equal to

−(𝑛 − 2)2V𝑛−1∫
∞

ρ
α−1𝑟 ( α

α2 + 𝑟2 )
𝑛−1

( A
𝑟𝑛−1 + O( 1𝑟𝑛 )) 𝑟

𝑛−1𝑑𝑟.

As in (29.4) one checks that when α → +∞, for some C > 0,

∫
∞

ρ
( α
α2 + 𝑟2 )

𝑛−1
𝑟𝑑𝑟 = C

α𝑛−3 + O( 1
α𝑛−2 ),
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so the second term in (30.9) now becomes

−𝑐 A
α𝑛−2 + O( 1

α𝑛−1 )

for some 𝑐 > 0. The proposition is proved.

So the proof of the Yamabe problem is reduced to proving that the coefficient A
in the development of the corresponding Green function (30.3) is positive. This is
true:

Theorem 30.4. Under the previous hypothesis, one has A ≥ 0, with A = 0 if and
only if (M ∖ {𝑝}, ̂𝑔) = (ℝ𝑛,∑(𝑑𝑥𝑗)2).

Remark 30.5. There is a more general statement for any ‘asymptotically flat’ metric
𝑔 onM ∖ {𝑝} with R𝑔 ≥ 0. Here asymptotically flat of order τ > 0means

𝑔 = ∑(𝑑𝑥𝑗)2 + 𝑔1, |∂𝑘𝑔1| = O( 1
𝑟τ+𝑘 ).

The result requires τ > 𝑛
2
− 1.

The proof of the theorem reduces to the celebrated positive mass theorem originat-
ing in physics. It was proved by Schoen and Yau using minimal surfaces, and also
by Witten in the spin case with a nice argument involving spinors and the Dirac
operator, and a Weitzenböck formula which is similar to the Bochner formula that
we used. See more details in [LP87].



Bibliography

[Ala23] Thomas Alazard. Analyse et équations aux dérivées partielles. Savoirs
Actuels. Les Ulis: EDP Sciences; Paris: CNRS Éditions, 2023.

[Bes87] Arthur L. Besse. Einstein manifolds. Springer-Verlag, Berlin, 1987.

[BGV04] Nicole Berline, Ezra Getzler, andMichèle Vergne. Heat kernels and Dirac
operators. Grundlehren Text Editions. Springer-Verlag, Berlin, 2004. Cor-
rected reprint of the 1992 original.

[Don] Simon Donaldson. Geometric Analysis.
https://www.ma.imperial.ac.uk/ skdona/GEOMETRICANALYSIS.PDF.

[Jos17] Jürgen Jost. Riemannian geometry and geometric analysis. Universitext.
Cham: Springer, 7th edition edition, 2017.

[Li12] Peter Li. Geometric analysis, volume 134 ofCamb. Stud. Adv.Math. Cam-
bridge: Cambridge University Press, 2012.

[LP87] John M. Lee and Thomas H. Parker. The Yamabe problem. Bull. Am.
Math. Soc., New Ser., 17:37–91, 1987.

65



Index

Bianchi identity, 26

conformal class, 43
conformal Laplacian, 48
continuity method, 45
cosmological constant, 27

differential Bianchi identity, 24, 26
differential operator of order 𝑑, 15

Einstein metric, 27
elliptic estimate, 38
elliptic operator, 16
elliptic pseudodifferential operator, 38

Fredholm operators, 17

Gauss-Bonnet formula, 43
Green function, 58

harmonic form, 20
Hodge ∗ operator, 17
Hodge-De Rham Laplacian, 19
Hölder spaces, 41

index, 17

Killing field, 32

mean formula, 54

normal conformal coordinates, 57

principal symbol, 15
pseudodifferential operator, 37

regularizing operator, 37
Ricci tensor, 26
rough Laplacian, 27

scalar curvature, 26
scalar Laplacian, 7

Sobolev constant, 51
Sobolev spaces, 40

Teichmüller space, 44
total symbol, 37

weak solution, 10
Weyl tensor, 52

Yamabe constant, 47
Yamabe problem, 46

66


	The scalar Laplacian on a Riemannian manifold
	The Riemannian Laplacian
	Main result
	Proof of the theorem
	Poincaré inequality
	Spectral decomposition and first eigenvalue

	Elliptic operators and Hodge theory
	Definition
	Main result
	The Hodge operator
	Adjoint operator
	Hodge theory

	Bochner formula and applications
	More on connections
	The Bianchi identity
	The Ricci tensor
	Bochner formula
	Positive Ricci and the first eigenvalue
	Negative Ricci and Killing fields

	General theory of elliptic operators
	Sobolev spaces
	Introduction to pseudodifferential operators
	Proof of the main theorem
	Green operator
	Other functional spaces

	The scalar curvature
	Gauss curvature on surfaces
	The Yamabe problem
	Non critical case
	The conformal class of the sphere
	The Yamabe problem on the sphere
	Epsilon regularity
	Resolution for Yamabe constant less than that of the sphere
	Non conformally flat case
	Conformally flat case and positive mass

	Bibliography
	Index

