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Introduction

These are notes for an introductory course in geometric analysis. We will focus
on the analysis of ellliptic operators, whose propotype is the Laplacian of Rieman-
nian manifolds, and on geometric applications to linear problems (spectrum) and
nonlinear problems (Yamabe problem).

An important source of inspiration was the notes by Simon Donaldson [Don]| which
are a very good reference for these lectures.

The notes are not intended as self-contained: sometimes the proofs are omitted,
short or left to the reader as exercises. The reader should complete these notes by
referring to excellent textbooks like [JosI7, Li12]. A number of statements and ar-
guments are borrowed to these books, as well as to [Don|] and [LP87] on the Yamabe
problem.

A few exercises are proposed in the text, some other ones at the end of the notes.
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Chapter I

The scalar Laplacian on a
Riemannian manifold

1 The Riemannian Laplacian

Let consider R” with coordinates (x1, ..., x"). We denote the standard basis of vec-

tor fields by

d
ai = ﬁ
The scalar Laplacian on R" is the operator defined on functions of R" by

n

Af ==)13F.

1
We can also write

Af =d*df,
where the operator d* associates to a 1-form a = a;dx! on R” the function defined
by

n
d*a = —Z aiO(l'.
1

We denote by (-, -) the standard I? inner product on functions or forms on R". By
an integration by parts, one checks the following identities for compactly supported
1-form o and functions f, g:

(a.df) = (d*a, f),

(Af,8) = (df,dg) = (f,Ag).
The first identity says that d* is the formal adjoint of d, and the second identity that
A is formally selfadjoint.

Now we generalize this to any Riemannian manifold (M", g). Locally we can choose
coordinates (x') in which we write the metric and the volume form as

g = gijdx'dx’/, vol =./det(g;;)dx" A --- Adx".

7



8 CHAPTERI. THE SCALAR LAPLACIAN ON A RIEMANNIAN MANIFOLD

We claim that a formal adjoint of the differential of functions is given by the fol-
lowing operator sending 1-forms on functions:

1

det(g)

This fact is easily checked by an integration by parts. There is also a more intrinsic
way to see this: the metric gives an isomorphism # : T*M — TM, given by

d*(odxt) = —

3i(1/ det(g)ga;). (1.1)

o = glia;, (12)
and (I.1)) can be rewritten as
d(a* —vol
oo = L& =voh) (1.3)
vol

Then we can check that d* is the formal adjoint of d:

f d(fa* =vol) = f df A (a* 2vol) + fd(a¥ = vol)
M

M
= / ((df,a) — fd*a)vol.
M
In the case M has no boundary, the LHS vanishes and we have proved

(df,o) =(f,d*o). (1.4)
Now we can define the scalar Laplacian of (M, g) to be the operator A = d*d: from
(L) it is given by the explicit formula
1 .
f=- 0i(1/ det(g)g"d; f). (1.5)

V det(g)

Formula ([.4) implies, for any functions f, g with compact support:
(Af,g) = (df,dg) = (f,Ag). (1.6)

The case where M has a boundary is also of interest: let 71 be the unit exterior normal
vector, then one has af - vol = o, volgy, therefore Stokes theorem gives

/((df,a)—fd*a)vol=/ o, Volapy - (1.7)
M

oM

Applying this formula twice, we obtain the analog of ([.6) with boundary:

fAngOl:/ngvol+f ((A-f — (- f)g)volay - (1.8)
M M aM

2 Main result

We now suppose that (M, g) is a compact connected manifold (without boundary).
First observe from (L) that if Af = 0 then (Af, f) = ||df]|*> = 0 and therefore f is
constant. Therefore ker A = R.

Still from ([L.4) we have for any f the identity (1,Af) = 0 thatis f;, Af vol = 0. It
turns out that this is the only constraint:
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Theorem 2.1. If¢ € C®(M) and fy; ¢vol = 0, then there exists a solution f €
C*®(M) of the equation Af = ¢, which is unique up to an additive constant.

Example 2.2 (Torus). On a torus T" = R"/(2nZ)" we can write the Laplacian
through the decomposition in Fourier series:

f)= D) f®E>, Af(x)= ) [gPeE~. (2.1)
Eezn tezn

The theorem is then explicit: one can solve Af = ¢ if §(0) = 0. Then the solution f
- P 1,

is given by f(8) = 8(%).

Example 2.3 (Green function). We now consider the case of the flat space R”. Of

course it is not covered by the theorem since it is noncompact. There is a useful
explicit solution of Af = ¢ which is obtained in the following way.

We define the Green function G as a radial function on R” given by:

1 1
N a2’ n> 2,
G(r) = (7 PVaar (2.2)
——logr, n=2.
2n
Here V,,_; is the total volume of the sphere S*~! C R”.
Then a solution of Af = ¢ is given by

o) = f e0)G(x — Yldy". 2.3)
RrRn

Of course we need the integral to converge, for simplicity we suppose that ¢ has
compact support. Note that we do not require ¢ to have zero integral; indeed the
integration by parts (I.§) with g = 1 hasa nonzero boundary term on a large domain
of R".

Proof of (B.-3). On radial functions the Laplacian on R" writes as
Af(r) = —r~=Da,r"18, f(r)

so it is immediate to check that AG = 0 outside the origin. Applying (L.§) for a
function f with compact support, we obtain

f Af Gvol = / (G3,f — f3,G)r" L volgn-1 .
R7\B, Se

Only the term f3,G gives a nonzero limitwhen ¢ — 0, andsinced,G = —r~*"D/v,_,
we obtain exactly

f Af Gvol = £(0). (2.4)
Rn

This actually means that AG = § (the Dirac function) in the sense of distributions.
Translating (B.4) we obtain f(x) = f» Af(¥)G(x — y)|dy|", that is

Af %G = f. (2.5)

Given a smooth function ¢ with compact support, and writing the convolution as
o G(x) = [ o(x —y)G(y)|dy|", we can commute differentiation and integration to
obtain:

A(e*G)=(Ag)xG=¢

by (B.3). Therefore we can take as solution of Af = ¢ the function f := ¢+ G. O
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3 Proof of the theorem

The proof of Theorem P.1] is difficult. There will be several steps.

Weak solutions

If Af = ¢ then from ([.§) we have (df,dg) = (e, g) for any smooth function g.
Actually the converse is true: if f is smooth and (df,dg) = (¢, g) for any smooth
function g, then by integration by parts (Af, g) = (e, g) for all functions g and there-
fore Af =o.

We define the Sobolev space H! by
H'(M) = {f € Z(M),df € (M)}, (3.1)

equipped with the Hilbert norm || f||3; = |72 + [ldf]|72. Actually H'(M) can be
defined as the completion of C*® (M) for this norm.

A weak solution of the equation Af = ¢ is a function f € H}(M) such that
(df,dg) = (¢,g) forall functions g € C*(M). (3.2)
Observe that by density of C* c H! it is equivalent to require this property for all

functions g € H'(M).

From the previous considerations it follows that if f is a weak solution of the equa-
tion and f is smooth, then f is a genuine solution: Af = ¢. It turns out that the
smoothness of f is automatic:

Theorem 3.1 (Regularity). If Af = ¢ in the weak sense with ¢ € C®(M), then
f e Cc®M).

It follows that the resolution of the equation Af = ¢ is reduced to finding a weak
solution of the equation.

Theorem B1| is a difficult theorem which we will not prove now: it is a special case
of elliptic regularity, which will be explained later in these lectures, see corollary

18.2.

Variational principle

‘We consider the energy

B = [ (ISP = fo)vol. (33)
M

This gives a functional E : C*®(M) — R which extends to a well-defined functional
E : HY(M) — R. It is differentiable with differential

de(f)=f<df,df>—ef- (3.4)
M
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Comparing with (B.2), we see that d;E = 0 exactly when f is a weak solution of the
equation Af = ¢. By theorem B.J this is equivalent to having a smooth solution of
the equation.

Therefore solving the equation Af = ¢ is now reduced to finding a critical point of
the functional E on H!. We first state the following fundamental result, which will
be proved in the next section.

Theorem 3.2 (Poincaré inequality). If (M",g) is compact, then there exists ¢ > 0
such that for any function f € C®(M) with [, f vol = 0 one has

f|df|2VOIZC/ f?vol. (3.5)
M M

End of proof of theorem B_1. Actually E is unchanged if we add a constant to f, so
it is equivalent to restrict to functions with f}, f vol = 0.

Step 1. We use the Poincaré inequality and the Cauchy-Schwartz inequality fo <
%(g 7+ %92) to obtain the lower bound

E(f)Zf (CldfP - 20?)vol (3.6)
" 4 c

It follows that E has a lower bound; moreover if E is bounded then ||df|> (and
therefore || f]|g1) is bounded.

Step 2. We choose a minimizing sequence f; € H'(M) for E with Jy fivol = 0.
Since it is bounded in H!, we can extract a subsequence which converges weakly
in H! to a limit f € H!. Since the integral against any (smooth) function is a con-
tinuous linear form on H'(M), we also have at the limit fM fvol=0,and

ldflliz < liminf||df;]|;2, /gfivolefefvol.
M M

It follows that E(f) < liminf E(f;) = inf E, so E attains a minimum at f. Therefore
f is acritical point of f: this gives the required solution. O

Remark 3.3. There is a shorter proof of the Theorem applying Riesz representation
theorem to the weak equation (df,dg) = (¢, g) for all g. Poincaré inequality says
that ||df ||i2 is an equivalent scalar product on H! (restricting to functions with zero
integral). Our proof therefore more or less amounts to the proof of the Riesz the-
orem; the variational approach is very general and can be used in many situations
where Riesz theorem does not apply.

4 Poincaré inequality

We begin by the local version, that is the version in R":

Proposition 4.1. Let O C R" be convex and bounded, f a function defined on an
open set containing Q, then

f df? > (@) f T @1
Q Q
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where f = ﬁ Jo [ and V(Q) is the volume of Q.

Proof. First we prove the following estimate: there is a constant ¢;(Q) such that for
any x € Q one has

ldf )

oy (4.2)

709 -fl <@ [

Q

To prove this inequality, translating Q if necessary, we can suppose 0 € Q. The two
sides (£.2) do not change if we add a constant to f, so we can also suppose f(0) = 0.

We consider the function f in radial coordinates (r,u) where u € S"!. Then, if
R(u) = sup{r, ru € Q}, we have

R(u)

dvol®™ (w) f@r,uwyrtdr
0

1 gn-1
= — dvol u
V) Jon ( )fo

R(u)
| g R@)" — "
= — dvol u =—~ "3 ,u)dp.
v | o™ [ M= e

1
T= 9@ Jo
R(u)

(/ 3of(p, w)dp)r"~dr
()

Using R(u)" — p" < R(u)" < Diam(Q)" we obtain

Diam(Q)" ldf]
nvQ) Jo !

IfI < |dox[™

Diam(Q)"
nvQ)

which proves (f.2) with ¢;(Q) =

We can rewrite (B.2) as
If = fI<ci(QK=*g,

where g and K are functions on R” defined by

gx) = {

0, X & Q, 0, |x| > Diam Q.

1
—, |x| < Diam Q,
Aol xea {,xln_l x|
Using the general inequality ||d#|p < ||$llre|[[lL1 for functions on R”, we obtain
If = fllez < cr(DIKIILillgles < co(@)ldflIra-
O

Proof of Theorem B.2. We will actually prove the following: if ¢ is a function on M
such that f;, e vol = 0, then for any function f on M one has

'/D;fgvol

One deduces the Poincaré inequality by taking ¢ = f.

< cliellrzlldflca- (4.3)
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The idea is to reduce to the local version (B.1)) via a partition of unity. We write the
proof in the case where M is covered by two open sets: M = U; UU, with U; convex
bounded set in R" and ()3, x») a corresponding partition of unity, then we define

0 = X9 — ( f xie vol)o,
M

where o is a function on M such that Suppo C U; NU, and fy, o vol = 1. Therefore
we have ¢ = ¢; + ¢, with

Suppe; C Uy, f evol=0, el < cleliz-
M

Then it is sufficient to prove (f.3) for each g¢;, so we are back on the bounded convex
set U; C R"™. Here we distinguish the metric g of M and the standard Euclidean
metric g, of R”. Let us denote f; the mean value of f on U; for g,. We write

J

ouf vol = f el — J)vol.
U

i i

Therefore
/ eif voll < lleill2cu,gllf _f_i”LZ(Ui,g)
U;
< clleillLzqupllf — f_i”LZ(Ui,gO)
< leillizwglldfllzu,go)
< leillzcupgldf rzu,.g)
which proves ({.3). O

5 Spectral decomposition and first eigenvalue

We begin by the following compactness theorem for the Sobolev inclusion:

Theorem 5.1 (Compactness). The injection H'(M) < I12(M) is compact.

Proof. We need to prove that a bounded sequence (f;) in H! has a convergent sub-
sequence in I2.

The first step is to prove the result in the case of a torus T". Using the Fourier series
(2), the H! norm of f; is given by

Ifillfn = 25 L+ EDIfBP.

tezn

If ||f i||%11 < ¢, we can extract a subsequence, still denoted f;, such that for any
£ € 7" we have a convergence f;(§) - f,(§) wheni — oo. The limit f also
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satisfies || foo”%—[l < c. Then we write, for any R > 0,

Ifi = follfo = 2 1f® = fi®P

Eezn
<> Ifm(i)—fi(§)|2+% Y &P ® = 1O
[EI<R [E]>R

< 3 1el® = Fi®P + 25.

[E[<R

Taking i — oo, we obtain limsup | f; — f°o||i2 < % for any R > 0. Therefore
fi = feo inI2

The general case follows by localising in coordinate balls, considered as balls in
the torus: choose a covering of M by a finite number of open sets U; which are
diffeomorphic to balls of radius 1 in R”. We can consider these balls as embedded
in T" instead, and we consider a partition of unity (x;) subordinate to (U;). Then
we have an equivalence of norms

||f||i2(M,g) ~ Z ||Xjf||izqn’go), ||f||%11(M,g) ~ Z ||Xjf||%11(1rn,g0)-
J J

Therefore the result follows by applying the torus result to each y; f. O

We can now establish the spectral theory for the Laplacian. For each g with f, ¢ vol =
0, we have found a unique f := Gg such that Af = ¢ and f, f vol = 0. Moreover,

by (L.6) and (B.5):
ldfiiz. = (e, f) < llelleallfllez < C_%”9||L2”df”L2- (5.1)

1
Therefore ||df|z < ¢ z|¢|L2 which means that G is continous as an operator
I2(M) — H'(M). Composing by the compact injection H(M) < I?(M) we deduce
that the operator G : I2(M) — I2(M) is compact.

The spectral theory of compact selfadjoint operators applies: it follows that there

exist a Hilbertian basis (¢;) of I>(M) such that

Go; = widi, M — 0.

Here ; > 0 since A(u;¢;) = ¢; and therefore w;||de;[|7, = ||$;l|?.. Taking A; = 1/,
we get

A¢i = )Lid)i, }Li — +00. (52)
A priori we have restricted to functions with zero integral on M, but we can add the
constant function ¢, = \/% with Ay = 0. We can order the eigenvalues A; so that
0.

and decomposing any function on this Hilbertian basis we obtain that the optimal
constant in the Poincaré inequality (B.3) is exactly ¢ = ;.



Chapter I1

Elliptic operators and Hodge
theory

6 Definition

If E is a vector bundle over M, we denote by C*(M, E), or sometimes C*(E), the
space of smooth sections of E.

A linear operator P : C®(M,E) — C®(M, F) between sections of two bundles E
and F is a differential operator of order d if, in any local trivialisation of E and F
over a coordinate chart (x!), one has

Pux) = ¥, a*(x)dqu(x),

la|<d
where o = (ay,...,q) is a multiindex with each a; € {1...n}, |a| = k, 04 =
g, --- O, » and a*(x) is a matrix representing an element of Hom(E,, F,).

The principal symbol of P is defined for x € M and & € Ty M by taking only the
terms of order d in P:

op(x,8) = D} a*(X)kq

|ot|=d

where §, =& -+ &, if§= gdx'. It is a degree d homogeneous polynomial in the
variable £ with values in Hom(E,, F,,).

A priori, it is not clear from the formula in local coordinates that the principal sym-
bol is intrinsically defined. But it is easy to check that one has the following more
intrinsic definition: suppose f € C*(M), t € R and u € C*(M,E), then

e_tf(x)P(etf(x)u(x))

is a polynomial of degree d in the variable ¢, whose monomial of degree d is a ho-
mogeneous polynomial of degree d in df(x). It is actually

t4op(x, d f ()u(x).

The following property of the principal symbol is obvious.

15
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Lemma 6.1. op.q(x,8§) = op(x,§) 0 0g(x,§).

Examples 6.2. 1) The principal symbol of the exterior derivative d : QP(M) —
QPFL(M) is
oq(x, ) =&A. (6.1)

Indeed e~/ d(e!f &) = tdf A a + da. The same is true for the exterior derivative d"
on vector valued differential forms, see section [[1.

2) If one has a connection V : C®(E) — Q!(E) on a vector bundle E, then similarly
e tfV(etfu) = tdf ® u + Vu. Therefore

ov(x,8)=£t® : E, > T'MQ®E,. (6.2)

We now add metrics. Suppose (M", g) is an oriented Riemannian manifold, and
E — M a unitary bundle. Then on sections of E with compact support, one can
define the I? scalar product and the I? norm:

(s, ) = f (s, t)g vol, Isl? = / (s,s)g vol. (6.3)
M M
If E and F are unitary bundles and P : C*(E) — C*(F) is a linear operator, then a
formal adjoint of P is an operator P* : C*®(F) — C*(E) satisfying
(Ps, g = (s, P*0)F (6.4)
for all sections s € C°(E) and ¢t € CP(F).

Lemma 6.3. Any differential operator P : C®(E) — C*®(F) of order d has a formal
adjoint P*, whose principal symbol is

op:(x,£) = (—1)4op(x, §)*.

Exercise 6.4. Prove the lemma in the following way. In local coordinates, write
vol = v(x)dx! A --- Adx". Choose orthonormal trivialisations of E and F, and write
P = a*(x)d,. Then prove that
1
P* — _1 |0(| - [0 * .
(= 3 (D8 (v()a* (")

|| <d

Definition 6.5. A differential operator P : C®(E) — C*(F) is an elliptic operator
if for any x € M and & # 0 in Tf M, the principal symbol op(x,§) : E, — F, is
injective.

7 Main result

Here is our main theorem on elliptic operators. It will be proved in section [[9.

Theorem 7.1. Suppose (M",g) is a compact oriented Riemannian manifold, and
P : C®(E) —» C*(F) is an elliptic operator, with rank E = rank F. Then

1. ker(P) is finite dimensional;
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2. there is a 1? orthogonal sum

C®(M, F) = ker(P*) @ P(C®(M, E)).

We can apply the result to the scalar Laplacian and obtain immediately Theorem
B as a special case.

Remark that ker(P*) is also finite dimensional, since P* is elliptic if P is elliptic. The
difference dim ker P — dim ker P* is the index of P, defined by

ind(P) = dim ker P — dim coker P.

Operators with finite dimensional kernel and cokernel are called Fredholm oper-
ators, and the index is invariant under continuous deformation among Fredholm
operators. Since ellipticity depends only on the principal symbol, it follows imme-
diately that the index of P depends only on op. The fundamental index theorem of
Atiyah-Singer gives a topological formula for the index, see the book [BGV04].

A useful special case is that of a formally selfadjoint elliptic operator. Its index is
of course zero. The invariance of the index then implies that any elliptic operator
with the same symbol (or whose symbol is a deformation through elliptic symbols)
has also index zero.

8 The Hodge operator

Let V be a n-dimensional oriented Euclidean vector space (thought as a tangent

space of an oriented Riemannian n-manifold). Therefore there is a canonical volume
element vol € A"V*. The exterior product APV* A A" PV* — A"V* is a non de-

generate pairing. Therefore, for a form § € APV*, one can define 3 € A""PV* by

its wedge product with p-forms:

a A #f = (a,f)vol (8.1)

forall § € APV*. The operator * : APV* — A""PV* is called the Hodge * operator.

In more concrete terms, if (¢;);=; ., is a direct orthonormal basis of V, then (eI)IC{L. o)
is an orthonormal basis of AV*. One checks easily that

¥l =vol, xel =e?Ae3A-- A€,
*vol =1, *ei = (—]_)i_lel A AeLA---e

More generally,
el = g(I, CI)e’!, (8.2)
where ¢(1, CI) is the signature of the permutation (1, ..., n) — (I, CI).

Exercise 8.1. Suppose that in the basis (e;) the quadratic form is given by the matrix
g = (g;), and write the inverse matrix g~! = (g"). Prove that for a 1-form a = e’
one has R

s = (=1)"1glajel Ao el A A, (8.3)

Using o defined in ([.2), this can also be written

xo = ot wvol. (8.4)
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Exercise 8.2. Prove that 2 = (—1)P("=P) on APV*,

If n is even, then * : A2V* - A"2V* satisfies %2 = (—1)"/2. Therefore, if n/2 is
even, the eigenvalues of * on A"2V* are +1, and A"2V* decomposes accordingly
as

AV2VE = A2 gy A2, (8.5)

The elements of A2 are called selfdual forms, and the elements of A2 antiselfdual

forms. For example, if n = 4, then A, is generated by the forms
elAe?xe3net, elaedzelaet, elaetxe? aed (8.6)

Exercise 8.3. If n/2 is even, prove that the decomposition (8.5) is orthogonal for the
quadratic form A2V* A AY2V* - A"V* ~ R, and

aAa==xlaf*vol ifa€A,. (8.7)
Exercise 8.4. If u is an orientation-preserving isometry of V, that is u € SO(V),
prove that u preserves the Hodge operator. This means the following: u induces
an isometry of V*, and an isometry APu of APV* defined by (APu)(x! A --- A XP) =
u(x') A -+ Au(xP). Then for any p-form o« € APV* one has

*(APu)a = (A""Pu) * a.

This illustrates the fact that an orientation-preserving isometry preserves every ob-
ject canonically attached to a metric and an orientation.

9 Adjoint operator

We have already calculated the adjoint of the differential of functions, see equations
(L)~ (L3). Given (B.4) it can also be written for any 1-form o as

d*a=—xd=*a. 9.1)

This is a special case of the following general formula. Denote by QP(M) the space
of smooth differential p-forms on M, and QF(M) the version with compact support.

Lemma 9.1. The formal adjoint of the exterior derivative d : QP(M) — QPYL(M) is

d* = (1)l 5 d x . (9.2)
Proof. Fora € OF(M)and g € OF +1(M) one has the equalities:

f(da,ﬁ)volg=f du A *v
M M

=/ dluA*v) —(-1)’und=v
M
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by Stokes theorem, and using exercice B.2:

= (—1)P+1+P("—P) f UAfxd*D
M

= (=1)pr+l / (u, *d * v)vol® .
M

Remarks 9.2. 1) If n is even then the formula simplifies to d* = — * d.

2) The same formula gives an adjoint for the exterior derivative d¥ : QP(E) —
QP*L(E) associated to a unitary connection V on a bundle E.

3) By lemma .3 the principal symbol of d* is —o4(x, §)*. The adjoint of the exterior
product by £ is the internal product by &, so we obtain

o+ (x, o = —&F L. (9.3)

10 Hodge theory

Definition 10.1. Let (M", g) be an oriented Riemannian manifold. The Hodge-De
Rham Laplacian on p-forms is defined by

Aa = (dd* + d*d)a.

On functions we recover the scalar Laplacian that we have already seen.

Clearly, A is a formally selfadjoint operator. The definition is also valid for E-valued
p-forms, using the exterior derivative d", where E has a metric connection V.

Exercise 10.2. On p-forms in R” prove that A(cydx") = (Aoy)dx?.

Exercise 10.3. Prove that * commutes with A.

Lemma 10.4. The principal symbol of the Hodge-De Rham Laplacian is
oalx,§) = —[g*.

In particular A is an elliptic operator.

Proof. By (D.3)
oa(x,§) = —(F)(EN) — EA)(E ).

It is sufficient to calculate for £ = e! where (e;) is an orthonormal basis of TM, and
the result is then immediate. O

Let (M, g) be a closed Riemannian oriented manifold. Consider the De Rham
complex

d d d
00— C®°M) - QM) = -+ = Q*(M) - 0.
Remind that the De Rham cohomology in degree p is defined by

HP = {a € QP(M), da = 0}/dQP~1(M).
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Definition 10.5. A harmonic form is a C*® form such that Aa = 0.

Lemma 10.6. If a € C®(M, QP), then a is harmonic if and only if da = 0 and
d*a = 0. In particular, on a compact connected manifold, any harmonic function is
constant.

Proof. 1t is clear that if da = 0 and d*a = 0, then Ao = d*da + dd*a = 0. Con-
versely, if Ao = 0, because

(Aa,a) = (d*da, o) + (dd*a, @) = || dat]? + ||d* o] ?,
we deduce that do = 0 and d*a = 0. O

Remark 10.7. The lemma remains valid on complete manifolds, for 12 forms a such
that da and d*a are also I2. This is proved by taking cut-off functions Xj> such that
Xj‘l(l) are compact domains which exhaust M, and |d;| remains bounded by a
fixed constant C. Then

/(Aa,xja)vol :/ ((da, d(xjo)) + (d*a, d*(x;a0))) vol
M M
= f (g (dal® + |d*a|?) + (da, dy; A a) — (d*a, Vy; = a)y) vol
M

Using |dy;| < C and taking j to infinity, one obtains (Ac, @) = ||da||* + [|d*[|*.

Note HP the space of harmonic p-forms on M. Theorem [7.]] on elliptic operators
can be applied to the Hodge-De Rham Laplacian to give:

Theorem 10.8. Let (M", g) be a compact closed oriented Riemannian manifold. Then:

1. HP is finite dimensional;

2. one has a decomposition QP(M) = HP @ A(QP(M)), which is orthogonal for
the 12 scalar product.

We now derive some immediate consequences.

Corollary 10.9. Same hypothesis. One has the orthogonal decomposition
QP(M) = HP @ d(QP~1(M)) & d*(QPH (M),

where

kerd = HP @ d(QP~1(M)), (10.1)
kerd* = HP @ d*(QP*1(M)). (10.2)

Note that since harmonic forms are closed, there is a natural map H? — HP. The
equality ([0.1)) implies immediately:

Corollary 10.10. Same hypothesis. The map HP — HP is an isomorphism.

Using exercise [[0.3, we obtain:
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Corollary 10.11 (Poincaré duality). Same hypothesis. The Hodge * operator induces
an isomorphism x : HP — H""P. In particular the corresponding Betti numbers are
equal, bp = bn_p.

Remark 10.12. As an immediate consequence, if M is connected then H” = R since
H° = R. Since #1 = vol® and Jm vol® > 0, an identification with R is just given by
integration of n-forms on M.

Remark 10.13. In Kidhler geometry there is a decomposition of harmonic forms
using the (p, q) type of forms, Hf®C = GBSHP”‘_P, and corollary can then
be refined as an isomorphism = : HP9 — H™~%"~P_ where n = 2m.

Remark 10.14. Suppose that n is a multiple of 4. Then by exercises B.3 and [[0.3,
one has an orthogonal decomposition

HY2=H, ®H_. (10.3)

Under the wedge product, the decomposition is orthogonal, H, is positive and H_
is negative, therefore the signature of the manifold is (p, q) with p = dimH_ and
q=dimH_.

Exercise 10.15. Suppose again that n is a multiple of 4. Note d,. : Q"?>~1(M) —
Q. (M) the projection of d on selfdual or antiselfdual forms. Prove that on (n/2—1)-
forms, one has djd, = d*d_. Deduce that the cohomology of the complex

d d d d,
0 — C®M) - QM) — - - Q> 1(M) 3 Q, (M) - 0 (10.4)

isHO, H!, ...,H"2"1 H,.

Exercise 10.16. Using exercise [[0.2, calculate the harmonic forms and the cohomo-
logy of a flat torus R"/Z".

Exercise 10.17. Let (M, g) be a compact oriented Riemannian manifold.

1) If y is an orientation-preserving isometry of (M, g) and o a harmonic form, prove
that y*a is harmonic.

2) (requires some knowledge of Lie groups) Prove that if a connected Lie group G
acts on M, then the action of G on H'(M, R) given by o« — y*at is triviall.

3) Deduce that harmonic forms are invariant under Isom(M, g)°, the connected
component of the identity in the isometry group of M. Apply this observation to give
a proof that the cohomology of the n-sphere vanishes in degrees k = 1,...,n — 1
(prove that there is no SO(n + 1)-invariant k-form on S" using the fact that the
representation of SO(n) on QFR" is irreducible and therefore has no fixed nonzero
vector).

1f £ belongs to the Lie algebra of G and X is the associated vector field on M given by the infin-
itesimal action of G (that is defined by X (x) = %etgx|t=o), then one has %(et‘i)*altzo = Lxgoc =
ixgdoc + dixE o Deduce that if o is closed, then the infinitesimal action of G on H*(M, R) is trivial.
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Chapter III

Bochner formula and
applications

11 More on connections

We recall without proof some basic properties of connections on vector bundles.

Let E = M be a vector bundle with a connection V : C®(E) — Q!(E). In a local
trivialization of E and in local coordinates (x!) one can write locally

Vs = ds + dx! ® a;s,

where s is a section of E (seen as a map to R¥ or C¥ in the trivialization) and a; are
local maps from M to End E, that is to k X k matrices. We can evaluate on the basic
vector field 9; and write

Vis = 9;s + a;s.
We can also define the local connection 1-form a = a;dx: it is a 1-form with values

in End E; then we can write in a compact form the connection as

Vs =ds+ as.

If V is a unitary connection (that is preserves a scalar or Hermitian product 4 on
E), then in an orthonormal trivialization of E it turns out that the matrices a; are
antisymmetric (real case) or anti-Hermitian (complex case), that is take value in
the Lie algebras o(E) or u(E).

A connection on a bundle E induces a connection on all associated bundles: E*,
APE, etc. The principle is that algebraic operations are invariant under the connec-
tion, for example the connection VE® is deduced from VE by

d(s*,s) = (VE"s*,5) + (s*, VEs).
Taking a trivialization, it follows quickly that
aE* = —(aE)t_

1 1

23
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Another important case is that of the bundle End E = E* ® E. Again, invariance of
the evaluation of an endomorphism of E on a section of E gives the rule

VE(u(s)) = (VE¥Fu)(s) + u(VFs),
from which one deduces in a trivialization the equality
af™F(u) = [af, u].
The curvature of V is a 2-form with values in End E defined by
Fxy =[Vx, Vy] = Vixy)- (11.1)
A direct calculation from V = d + a gives
Fxy=X-ay—Y-ax —axy] +lax,ay] =(da+anra)xy, (11.2)

thatis F = da + a A a. In coordinates we can write F = ). _. F;;dx’ A dxJ with

i<j
Fij = aiaj - ajal' + [al-,aj]. (113)

Note that for a unitary connection this is still with values in o(E) or u(E).

12 The Bianchi identity

We denote by QP(M, E) := C®(M, APT*M ® E) the space of p-forms with values
in E. For example the curvature F is an element of Q*(End E). One can extend V
uniquely to an exterior differential on E-valued differential forms:

dv : QP(E) — QP*(E) (12.1)

satisfying the Leibniz identity, for a a differential form and ¢ an E-valued differen-
tial form:
dV(@Ao)=darc+(-D¥andVe. (12.2)

This extension can be defined by the local formula dVo = do + a A ¢ in a trivializ-
ation of E in which V = d + a as above. It is equivalent to the formula:

p

(0]

+ Z (_l)lﬂc[xi,xj],xo,...,)/(\i ..... X X" (12.3)
0<i<j<p

This extension leads to a nice interpretation of the curvature: recall that the exterior
differential satisfies d o d = 0. The curvature is precisely the defect for d¥ o dV to
vanish:

Lemma 12.1. 1° The curvature FV, seen as an operator C*(E) — Q2(E), is F¥ =
dVodV.
2° As an operator QP(E) — QP*2(E), one has F¥ = d" o dV.
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Proof. Letuschoose alocal trivialization of E, and write the connection V = d+a =
d + a;dx!, where each q; is End(E)-valued. Then, for a section s of E, we have
dVs =ds + asand

dV(dVs) = (d + a)(d + a)s
=d(as)+aAds+aAnas
=(da+aAa)s.

This proves the first statement. The proof of the second one is similar. O

The lemma implies that if (E, V) is a flat bundle (FV = 0), then we have an associ-
ated complex

dv av. dv
0—- C®(M,E) - QYE) - --- - Q*(E) - 0
and we can define the De Rham cohomology with values in E as in the usual case.

The Hodge-De Rham Laplaciand"(dV)*+(d")*d" has still symbol —|£|? and there-
fore all the results of Hodge theory extend to this situation.

We deduce from the lemma the following important identity:

Proposition 12.2 (differential Bianchi identity). The curvature of a connection sat-
isfies the identity
d'FV =o0.

Remark that F¥ € Q%(End E) so dV is the exterior derivative associated to the con-
nection V on End E, and dVFY € Q3(EndE).

Proof. We give two proofs. The first proof is abstract: let us distinguish V on E and
V on End E. Recall that, as a linear operator on E, for u € C®(End E) one has
Vu = Vou—uoV. Then the reader will check that, as operators C*(E) — Q3(E),
one has dYFY = dY o FV —FV o dV. But since F¥ = dV o dV, we obtain

d"FV =dVodVod" —dVodvodY =0.

The second proof is a calculation: in a trivialization where V = d + a we have
FV = da + a A a and therefore

d"FV =d(da+aAa)+[a,da+aAal

since the connection form acts by bracket on EndE. But d(da) = 0, [a,da] =
aAda—daAa=—d(aAa)and finally [a,a A a] = 0 by the Jacobi identity. So
d"FV =o. O

Suppose now that V is a unitary connection on E and (M, g) is a Riemannian man-
ifold. The operator dV has an adjoint (dV)* which is again given by formula (P.2).

Combining V and the Levi-Civita connection of M gives a connection on AP T*M ®
E, that is on the bundle of E-valued p-forms. This connection can be used to give
an alternative expression of (dV)*: for 1-forms one obtains the following lemma.
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Lemma 12.3. Let E be a vector bundle with unitary connection V, then the formal
adjoint of V : C®*(M,E) - Q'(M,E) is

Via = —Tr8(Vu) = = ) (V,,a)(ey).
1

Proof. Take a local orthonormal basis (e;) of TM, and consider an E-valued 1-form
o = a;el. We have sa = (=1)"la;el A --- Ael A -+ A €. One can suppose that just
at the point p one has Ve;(p) = 0, therefore de'(p) = 0 and, still at the point p,

n
dVxa=) (Vioel A Aeh.
1

Finally V*a(p) = — 1 (V;0,)(p)- -

Remark 12.4. Actually the same formula is also valid for p-forms. Indeed, dV :
QP(M) — QP+1(M) can be deduced from the covariant derivative V : QP(M) —
Q1(M, APT*M) by the formulal

dV=(p+1aoV,

where a is the antisymmetrization of a (p + 1)-tensor. Also observe that if a €
APV* C ®PV*, its norm as a p-form differs from its norm as a p-tensor by
|°‘|5\pv* = P!|a|é>pv*-

Putting together this two facts, one can calculate that (dV)* is the restriction of V*
to antisymmetric tensors in T*M ® APT*M. We get the formula

n
(@V)*a = —Z e; = V;a. (12.4)
1

13 The Ricci tensor

If R is the Riemannian curvature tensor of (M, g), the Ricci tensor Ric is defined by
the formula
Ric(X,Y) = Tr(Z — Rz xY).

In an orthonormal basis (e;) of the tangent bundle, one has
Ric(X,Y) = Y (Re, xY, e, (13.1)

which we can write Ricj, = R; jkl. From the symmetries of the curvature tensor
i_ j_ i .
Rijk =Ry =Ry that is

Ric(X,Y) = Ric(Y, X), (13.2)

so the Ricci tensor is a symmetric 2-tensor.

IThis formula is true as soon as V is a torsion free connection on M.
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The scalar curvature of the metric is the function defined by
n
Scal = Tr(g~! Ric) = Z Ric(e;, e;).
1

For example, in dimension 2, in an orthonormal basis (e;, e,), if K = R;,,! is the
(Gauss) curvature, then one obtains immediately

Ric = Kg, Scal =2K.
For the sphere S” one has Ric = (n — 1)g and Scal = n(n — 1).
For the hyperbolic space H" one has Ric = —(n — 1) and Scal = —n(n — 1).

Proposition 13.1 (differential Bianchi identity). The Riemannian curvature satis-
fies the identity
(VxR)yz + (VyR)zx + (VzR)xy = 0.

Proof. This is just a way of writing the Bianchi identity [2.2, using formula ([2.3)
with the help of the connection induced on Q? ® o(TM). O

Proposition 13.2 (Bianchi identity). One has
S Ric = —ld Scal,
2
where the divergence 8¢ of a 2-tensor ¢ is the 1-form defined by (5¢)x = — ZT(Vei d)(e;, X).

Proof. We choose an orthonormal basis (e;) of TM such that just at the point x one
has Ve;(x) = 0, and we calculate only at the point x. We can also suppose that
VX(x) = 0, then we have

n n
(dScax(x) = Lx ), R, e ej:€1) = > (VxR ¢ €50 €1)-
i,j=1 i,j=1
Then, using the differential Bianchi identity,

n n
(BRiC)x(x) = — ), V,, Ric(e;, X) = — ), Ve (Re; xeir€))
1 ij=1

n
= (Ve;Rxe,€i + VxRe, e €10 €5)
ij=1
= —(8Ric)x + (d Scal)x.
[

From the definition, if f is a function then 8(fg) = —df, so the Bianchi identity

can also be written

. Scal\ _
§( RlC—T) =0. (13.3)

An Einstein metric is a Riemannian metric g which satisfies
Ric = Ag. (13.4)

The constant A is called the cosmological constant in physics.
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14 Bochner formula

Let (E, V) be abundle equipped with a unitary connection over an oriented Rieman-
nian manifold (M",g). Then V : C®(E) — Q!(E) and we can define the rough
Laplacian V*V acting on sections of E. Using a local orthonormal basis (e;) of
TM, from lemma it follows that

n
V*Vs =) =V, Ves+ Vv, e (14.1)
1

If we calculate just at a point p and we choose a basis (e;) which is parallel at p,
then the second term vanishes.

In particular, using the Levi-Civita connection, we get a Laplacian V*V acting on
p-forms. It is not equal to the Hodge-De Rham Laplacian, as follows from:

Lemma 14.1 (Bochner formula). Let (M", g) be an oriented Riemannian manifold.
Then for any 1-form o on M one has

Ao = V*Va + Ric(a). (14.2)

Remark 14.2. There is a similar formula (Weitzenbock formula) on p-forms: the
difference Aa — V*Va is a zero-th order term involving the curvature of M.

Proof of the lemma. We have dax y = (Vxa)y — (Vya)x, therefore

n n
d*dax = _Z(Ve,- da)ei,X = Z _(Vei Veio‘)X + (Veivxa)ei7
1 1

where in the last equality we calculate only at a point p, and we have chosen the
vector fields (e;) and X parallel at p.

Similarly, d*o = — Z?(Vei a)e,» therefore

n n
dd*ay = = 3 Vx((Ve,0)e,) = = 23 (Vx Ve, De;-
1 1
Therefore, still at the point p, comparing with (14.1),
n
(A)x = (V*Va)x + D (Re, x)e, = (V*Va)x + Ric(a)x. (14.3)
1

O

Remark 14.3. There is a similar formula if the exterior derivative is coupled with
a bundle E equipped with a connection V. The formula for the Laplacian A =
dV)*dV +dV(dV)* becomes

Aa = V*Va + Ric(a) + RV (), (14.4)

where the additional last term involves the curvature of V,

RY(@)x = Y, Ry, xaley). (14.5)
1
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The proof is exactly the same as above, a difference arises just in the last equality of
([43), when one analyses the curvature term: the curvature acting on « is that of
Q' ®E,soequalsR® 1 +1 ® RY, from which:

n n
D (Re, xe; = Ric(@)x + Y Ry xaley).
1 1

Now let us see an application of the Bochner formula. Suppose M is compact. By
Hodge theory, an element of H'(M) is represented by a harmonic 1-form . By the
Bochner formula, we deduce V*Va + Ric(a) = 0. Taking the scalar product with
a, one obtains

[Va? + (Ric(a), @) = 0. (14.6)

If Ric > 0, this equality implies Va = 0 and Ric(a) = 0. If Ric > 0, then a = 0; if
Ric > 0 we get only that o is parallel, therefore the cohomology is represented by
parallel forms. Suppose that M is connected, then a parallel form is determined by
its values at one point p, so we get an injection

H! & TyM.

Therefore dim H! < n, with equality if and only if M has a basis of parallel 1-forms.
This implies that M is flat, and by Bieberbach’s theorem that M is a torus. Therefore
we deduce:

Corollary 14.4. If (M", g) is a compact connected oriented Riemannian manifold,
then:

« if Ric > 0, then b;(M) = 0;
« ifRic > 0, then b;(M) < n, with equality if and only if (M, g) is a flat torus.

This corollary is a typical example of application of Hodge theory to prove vanish-
ing theorems for the cohomology: one uses Hodge theory to represent cohomology
classes by harmonic forms, and then a Weitzenbock formula to prove that the har-
monic forms must vanish or be special under some curvature assumption.

15 Positive Ricci and the first eigenvalue

We have seen that Bochner formula ([4.2) contrains the topology when the Ricci
tensor is nonnegative. It also contrains the lowest eigenvalue, as we shall see in the
two following results.

Theorem 15.1. Suppose (M", g) is a compact connected oriented Riemannian mani-
fold with Ric > ¢ > 0. Then we have the following lower bound on the first eigenvalue

of (M, g):

0. (15.1)

The case Ric > 0 is more subtle, and the following result is rather recent (Li-Yau
1980, Zhong-Yang 1984):



30 CHAPTER III. BOCHNER FORMULA AND APPLICATIONS

Theorem 15.2. Under the same hypotheses, with only Ric > 0, one has

2

> . .
bz Diam(M, g)2 (15.2)

‘We will actually prove only a weaker inequality below.

Both results are optimal, since the lower bound is obtained:

« for theorem [[5.1], for the round sphere S" (n > 1) since 4,(S") = n;

« for theorem [[5.2, for the circle S! since A,(S!) = 1.

Proof of theorem [[5.1. By Bochner formula ([4.2), we have for any function f the
equality
Adf = V*Vdf + Ric(df).

We have Adf = (d*d + dd*)df = dd*df = dAf. Therefore when we integrate
against d f, we obtain

IAfI? = Vaf]? +f Ric(df,df)vol.

M
Since Af = —Tr(Vdf) we have |Vdf|* > %|Af|2. Injecting this in the previous
equality and using the hypothesis on Ricci, we obtain
1
(1= IASIP > pldfI* = p(Af. f).

The theorem follows by applying to an eigenfunction f for the eigenvalue A;. [

The rest of the section is now devoted to the proof of a weaker form of theorem [[5.2,
namely, under the same hypothesis, the Li-Yau estimate

7.[:2

> —_ .
bz 2 Diam(M, g)? (15.3)
We follow [Jos17, §4.6]. We need the two following ingredients:
Proposition 15.3. For any 1-form o one has
%A|oa|2 = (Ao, ) — |Va|? — Ric(a, ). (15.4)

Proof. One has §A|oc|2 = V¥a, Va) = (a, V*Va) — |Val?. The result then follows
from the Bochner formula ([[4.2). O

Proposition 15.4 (Weak maximum principle). If f is a function on a Riemannian
manifold (M, g) which attains a local maximum at a point x, then (Af)(x) > 0.

Proof. From the explicit form (.5) of the Laplacian, since df(x) = 0 we have
(ANX) = —g ()3 f(x) 2 0. 0
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Proof of (I5.3). We take an eigenfunction u for the eigenvalue A,. By multiplying u
by a constant, we can normalize so that

1=supu>infu=-k>-1

for some k > 0. We will prove the following estimate: if Ric > 0 then

2
2 M 1
|dul® < T k(l u)(k + u). (15.5)
We show how the estimate (J[5.3) can be deduced from ([[5.3): take two points x, y €
M with u(x) = —k and u(y) = 1 and choose a minimizing geodesic (y(t));[0,q]
joining x to y. The idea here is that if we have some control on |du|, then u cannot
vary too quickly along vy, so y has to be long enough:

du(y(t))dt N

1 du fd
= —_— < d.
" f_k Va-wk+u)  Jo VA -ul@O)k +uv(®) Sl

Therefore m < 4/2A;d < 4/2A; Diam(M, g), which is ([5.3).
So the proof is now reduced to proving the estimate ([[5.5), which is the most diffi-
cult part. We center u by considering

which now satisfies —1 < v < 1and Av = A(v + ¢) withc = %lz We consider the

function
d 2
N
1-—02

Then the estimate ([5.3) is equivalent to proving

F<A1+o). (15.6)

Of course F is not well defined since 1 — v? vanishes at some points: the reader can
check that the proof below applies by replacing v by v/(1 + ¢), then the result is
obtained by making € — 0, so for simplicity we will ignore this issue.

Take a point x at which F attains its maximum, so dF(x) = 0 and AF(x) > 0. Write
F = f/g, then dF = df/g — fdg/g*. Because dF(x) = 0 the formula for AF(x)

A—f—f—Azg (at the point x). ButAg = A(1-0?) = —20Av+2|dv|?,
g

simplifiesinto AF =
g
so we obtain, still at the point x:

1 5 |dv|2 2
— > —_ . .
2A|dv| e (|dv| VAD) (15.7)

On the other hand, by (5.4) and the hypothesis on Ricci we have

%A|dv|2 — (Adv, dv) — |Vdu]? — Ric(dv, dv) < Aldof? — |Vdol>.  (15.8)
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2
Since ldF — {dv.vdv) | vldvfdy vanishes at x, we obtain, still at the point x:
2 1-0v2 (1-v2)2
v|dv|?
T2 < |dv||Vdv|.

Injecting in (L5.8) gives

1 2 ,  Vdvl*
= < - )
2A|dv| < Aldy| a— o2y (15.9)
2
Comparing with ([5.7), using Av = A(v + ¢), one obtains % <Mv+catx. O

16 Negative Ricci and Killing fields

Let (M", g) be a Riemannian manifold, X a vector field on M and (¢,) the associated
flow of diffeomorphisms of M.

Lemma and Definition 16.1. We say that X is a Killing field is one of the two fol-
lowing equivalent conditions is satisfied:

1. the flow of X is a flow of isometries of (M, g);
2. the covariant derivative of X satisfies, for all tangent vectors Y and Z:

The space of Killing fields is the Lie algebra of the group of isometries of (M, g),
which is known to be a Lie group (and it is compact if M is compact).

Proof. As usual the flow (¢,) generated by X preserves g if and only if the Lie de-
rivative £Lxg := %| t=o®i g = 0. We now identify £Lxg(Y, Z) with the LHS of (L6.1]),
which will prove the lemma:

Lx8(Y,Z) =X - g(Y,Z) — g(£xY, Z) — g(Y, £xZ)
and as £LxY = [X,Y] = VxY — VyX we obtain
Lx8(Y,Z) = g(VyX,Z) + g(Y, VzX).
O

Let a be the 1-form dual to X via the metric g, that is «f = X. Then equation (6.1
says that X is a Killing field if and only if Va is an antisymmetric 2-tensor, that is a
2-form. Since the antisymmetric part of Va is just %doc, we obtain that X is a Killing
field if and only if

Va = %doc. (16.2)
This implies that d*do = 2V*Va. On the other hand, we have

d*a=—-Tr(Va) =0
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since Va is antisymmetric. Therefore, if X is a Killing field,
Ao = d*da = 2V*Va. (16.3)
Comparing with the Bochner formula ([4.2), we have proved:
Proposition 16.2. If X is a Killing field, then the dual 1-form a satisfies
V*Va = Ric(x) (16.4)
O

Remark 16.3. One can prove the more general Kostant formula which gives all the
2nd order derivatives of o in terms of the Riemannian curvature:

VVOC(Y, Z, T) = _<RX,YZ9 T>.

Corollary 16.4. If (M, g) is compact connected and Ric < 0 everywhere, and Ric < 0
at least at one point, then (M, g) does not admit any Killing field. In particular the
group of isometries of (M, g) is finite.

Proof. From ([[6.4) we deduce by integration by parts
[Val? = (Rica,a) < 0.

Therefore Va = 0 and (Ric o, o) = 0 everywhere. Since Ric < 0 at least at one point,
at this point we have a = 0 and therefore o = 0 everywhere since Va = 0. O
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Chapter IV

General theory of elliptic
operators

17 Sobolev spaces

The first step is to introduce the Sobolev space H¥(R") of tempered distributions f
on R" such that the Fourier transform satisfies

113 I=f IfEPA + [57)]dg]" < +oo. (17.1)
R

Equivalently, HS(R") is the space of functions f € I?(R") which admit s derivatives
in distribution sensel in 12, and

IFIE ~ D7 18esllfa 17.2)

|ot|<s

(But observe that the definition (I7.1) is valid also for any real s).

If M is a compact manifold and E a vector bundle over M, then one can define the
space C¥(M, E) of sections of E whose coefficients are of class C¥ in any trivialisation
of E, and H5(M, E) the space of sections of E whose coefficients in any trivialisation
and any coordinate chart are functions of class H® in R”. If M is covered by a finite
number of charts (U;) with trivialisations of E|y, by a basis of sections (€j 4 )a=1,...,r»
choose a partition of unity (x;) subordinate to (Uj), then a section u of E can be
written u = ] xju;j «€j,« With xju; o a function with compact support in U; C R",
therefore

lulcr = sup I allckmy, 1403 = 5 IXt4).lis my- (17.3)
Jx

Up to equivalence of norms, the result is independent of the choice of coordinate
charts and trivialisations of E.

!Weak derivative: g = D f if for any ¢ € CZ°(R") one has [, (Dgd)f = Jn ¢8-

35



36 CHAPTER IV. GENERAL THEORY OF ELLIPTIC OPERATORS

There is another approach to define CK and H® norms for sections of E. Suppose
that M" has a Riemannian metric, and E is equipped with a unitary connection V.
Then one can define

k

[ullck = supsup |Viu|, |ul? =Zf |Viu|?vol® . (17.4)
j<k M 0 /M

Remark 17.1. On a noncompact manifold, the definition ([7.3) does not give a well
defined class of equivalent norms when one changes the trivialisations. On the
contrary, definition (I7.4), valid only for integral s, can be useful if (M, g) is non
compact; the norms depend on the geometry at infinity of g and V.

Example 17.2. If M is a torus T", then the regularity can be seen on the Fourier
series: f € H%(T") if and only if

IfIE = 2 A+ EPFIfOP < +eo.

Eezn

From the inverse formula f(x) = ), £ f(&) exp’s*, by the Cauchy-Schwartz inequal-
ity,

I Y 1O IR +1897)" < +oo ifs> 2.
gezn §

It follows that there is a continuous inclusion H* ¢ C%is s > g Similarly it follows
that H* ¢ CKifs > k + g

Of course the same results are true on R" using Fourier transform, and one obtains
the following lemma.

Lemma 17.3 (Sobolev). If M" is compact, k € Nands > k + g then there is a

continuous and compact injection HS C ck,

The fact that the inclusion is compact follows from the following lemma (which is
obvious on a torus, and the general case follows):

Lemma 17.4 (Rellich). If M" is compact and s > t, then the inclusion HS C H! is
compact.

In particular
N=oH'(M,E) = C°(M,E),  Us<oH*(M, E) = D'(M, E), (17.5)

where D'(M, E) is the space of all E-valued distributions.

18 Introduction to pseudodifferential operators

Suppose we have a differential operator P = Zl ol<d a“(x)d, on R", then using
Fourier transform we can write, for all tempered distributions f € D(R")

PI) = —— [ 3 a0 f(©es|dg.

(27'[)” R" |x|<d
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Using the total symbol
o(x,§ = D a*(x)(i&" (18.1)

|x|<d

we see that P = Op_, where for suitable functions o(x, §) the operator Op; is defined
for f € D(R") by the formula

0, () = o3 f o, ) (Q)elEH|d (18.2)
R7

A standard class of symbols ¢ on R” is the class S¢ of smooth functions o(x, £) on
R" x (R")* which satisfy, for any o, 8 € N and any compact K C R"

1050E0(x, )| < cop k(1 +[ENIIF forallx € K, Ee R™ (18.3)

In that case formula ([[8.2) defines a function Op_ f since f is a fast decaying func-
tion: this is the definition of a pseudodifferential operator on R".

This definition extends to an operator between sections on two bundles E and F
on a manifold M. We choose a covering (U;) by open sets of trivializations of E
and F, and smooth functions x; such that (X;.) is a partition of unity. We say that a
symbol ¢ € C®(T*M, Hom(E, F)) is in the class S4(M, E, F) if it satisfies (I83) in
each trivialization. Then using formula ([[8.7) in each trivialization, we define for
a section f € C*(M, E) the pseudodifferential operator on M

Opg f = D% Op (.- (18.4)

Observe that in this definition Op_ depends not only on ¢ but also on the choice of
the trivializations and the partition of unity (X]?).

We need the following properties of pseudodifferential operators (see [[Ala23]):

1. Extension to Sobolev spaces. If o € S4(M, E, F) then Op - €xtends as a continu-
ous operator
Op, : H¥(M,E) — H*"¢(M,F). (18.5)
A special case is that of a symbol ¢ € S™°(M, E, F) = N3S%(M, E, F). In that
case Op, sends continuously D’(M, E, F) into C*(M, E, F): an operator with
this property is called a regularizing operator. The regularizing operators
are exactly the operators R given by a C* kernel K(x,y) € Hom(E,, Fy),
such that

RF)(x) = f K(x,)f ()d vol(y). (18.6)
M

One works usually on pseudodifferential operators modulo the space R of
regularizing operators, that is considering operators of the type Op_ +R with
ReR.

2. Composition. If ¢ € S4M,E,F) and o’ € S¥(M,F, G) then there exists a
symbol ¢’ ¢c € Sd+d/(M, E, G) such that

Op,, °Op, = Opg/,, mod R. (18.7)

Moreover one has 0’0o — ¢’ o 6 € S4+4'~1(M, E, G).
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3. Differential operators. We have seen that a differential operator P of order d on
R" is also a pseudodifferential operator with symbol given by (I8.1)). In that
case the total symbol is polynomial in & and the part of degree d is exactly the
principal symbol of P, up to a factor i¢. In general, a differential operator P
of order d on a manifold M is also a pseudodifferential operator, that is there
exists a symbol o € S? such that

P=0Op, modR. (18.8)

Moreover the dominant term of ¢ is given by the principal symbol of P: one
has o(x, £) — i%0p(x, £) € S4-1.

One says that Op_ is an elliptic pseudodifferential operator of order d if c €
S4(M, E, F) satisfies: for all (x, £) such that |£| > A for some A large enough, one
has

|oCx, §)ul > cfg|ful. (18.9)
In particular, if tkE = rkF this implies that o(x, §) is invertible for |§] > A. Of
course an elliptic differential operator of order d is also elliptic in the sense of
pseudodifferential operators.

Theorem 18.1 (Garding inequality). Suppose P is an elliptic pseudodifferential op-
erator of order d. If f € 12(M, E) satisfies Pf € H(M,F) then f € H*¢(M, E) and
one has the following elliptic estimate:

1f lezsva < es(IPFllgs + 1.fl1e2)- (18.10)

Sketch of proof. Limit to the case rkE = rkF. Suppose that ¢(x,£) is an elliptic
symbol: then one can define a symbol ¢'(x,£) = x(£)q(x,£)~! € S~¢, where x is a
cutoff function such that x(§) = 0for|§| < Aandx(§) = 1for || > 2A. Since ¢ (x, £)o
g(x,&) = Id for |§ > 2A, we have Op,. = Id mod R and since Op,, oOp_ =
Op.,. mod R we get

Op,, ©Op, = 1d + Op,,, pest
Inverting formally (Id + Op p)‘1 =1d—-Op ot Opf3 + .-+, we can construct a symbol
T~1—p+p% + - such that
(Id+0p,)~' = Op, mod R.

It follows that
Op.c ©Op, = Id mod R.

In summary, if P is an elliptic operator of order d, there exists a symbol ¢ € S™¢
and a regularizing operator R € R such that

Op, oP = Id +R. (18.11)
In particular f = Op_(Pf) + Rf. If Pf € H® then Op_(Pf) € H**% and Rf € C*.
So f € H**? and the estimate ([8.10) also follows. O

From the elliptic estimate and the fact that NyH® = C*, we obtain:
Corollary 18.2. If P iselliptic and Pf is C*™ then f is C*®.

Exercise 18.3. Prove ([[8.10) for operators with constant coefficients on the torus.
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19 Proof of the main theorem

We now prove theorem [7.1. Actually we prove the statement in the general setting
of elliptic pseudodifferential operators.

First let us prove the first statement: the kernel of P is finite dimensional. By the
elliptic estimate ([[8.10), for u € ker(P) one has

lulls+a < Cllull2-
Therefore the first identity map in the following diagram is continuous:
(ker P,12) —> (ker P, HS*4) — (ker P, I2).

The second inclusion is compact by lemma [[7.4. The composite map is the identity
of ker P equipped with the I? scalar product, it is therefore a compact map. This
implies that the closed unit ball of ker(P) is compact, therefore ker(P) is a finite
dimensional vector space.

Now let us prove the theorem in Sobolev spaces. We consider P as an operator

P : HS*4(M,E) — H(M, F), (19.1)
and in these spaces we want to prove

H’(M, F) = ker(P*) @ im(P). (19.2)

We claim that for any € > 0, there exists an 12 orthonormal family (vy, ..., vy) in

H5*4 such that
N

1/2
Il < elletlsa + (5 105, wI%) (19.3)
1

Suppose for the moment that the claim is true. Then combining with the elliptic

estimate ([[8.10), we deduce

N
1/2
(1= Co)|ullssa < CllPuls + C( D] (v wI?) .
1
Choose € = i, and let T be the subspace of sections in H*¢(M, E) which are I?
orthogonal to the (v;);=;.. n- Then we obtain

2lulls+a < ClPulls  foru €T,

It follows that P(T) is closed in H5(M, F). Butim(P) is the sum of P(T) and the image
of the finite dimensional space generated by the (v;);—;.. N, S0 im(P) is closed as well
in HS(M, F).

Finally the statement ([[9.1) in the Sobolev spaces H® implies the statement for
the space C*, which finishes the proof of the theorem. Indeed, suppose that v €
C*®(M, F) isI? orthogonal to ker(P*). Fixany s > 0 and apply (19.2) in H®: therefore
there exists u € H**4(M, E) such that Pu = v. Then u is C® by corollary [[8.2.

It remains to prove the claim ([[9.3). Choose a Hilbertian basis (v;) of 12, and sup-
pose that the claim is not true. Then there exists a sequence of (uy) € H*¢(M, E)
such that
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L funllz =1,

N 1/2
2. ellunllsra + (2, I(vjpun)l?) " <1

From the second condition we deduce that (uy) is bounded in HS+4(E), therefore
there is a weakly convergent subsequence in H*¢(E), and the limit satisfies

ellulls+a + llullo < 1.

By the compact inclusion H*¢ C I? this subsequence is strongly convergent in
I2(E) so by the first condition, the limit u satisfies

lullo =1,

which is a contradiction.

20 Green operator

Theorem 20.1. Suppose that E = F and P is a selfadjoint elliptic operator of order d
acting on sections of E. Denote by Ij,,p the 12-orthogonal projection on ker P. Then
there exists a pseudodifferential operator G of order —d such that on C*(M, E) one
has

Id=Po G+ Iyp = GoP+ I p. (20.1)

Proof. In the decomposition C*(M, E) = (ker P)! @ker P the operator G = P10
gives (R0.1)). There remains to prove that G is a pseudodifferential operator. We
know that there exists a pseudodifferential operator Q of order —d such that QP =
Id +R with R € R. Now

Q = Q(PG +II)
= (I1d +R)G + QIT
=G +RG + QIL

But RG and QII are regularizing operators, so it follows that G = Q mod R is a
pseudodifferential operator of order —d. O

Remark 20.2. This result implies the existence of a spectral decomposition of P as
in section [

21 Other functional spaces

Given a vector bundle (E, h) over a compact Riemannian manifold (M, g), we have
seen the Sobolev spaces H(M, E), but other functional spaces are also useful:

« Sobolev spaces WSP(M, E) for 1 < p < co: this is the space of LP sections
with k derivatives in LP, that is the completion of C*(M, E) for the norm

[ =f (IfIP + [VfIP + - +|VEfIP) vol. (21.1)
M
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« Holder spaces C%*(M, E) for some k € N and 0 < « < 1: for a function one
defines a kind of norm of the “a-derivative” of f by
(x) =)
fla= sup LI (212)
d(x,y)<p x,)
This is a priori defined for a function; for a section of a vector bundle, we
choose trivializations and take the sup over the various charts. We then define
the norms

Iflca = Iflco +1fler Ifllcke = Ifllcr + 1V fla (21.3)

The derivative V¥ f can be taken to be the standard derivative in each trivial-
ization, or we can choose a connection V on E. The various choices (charts,
trivializations, etc.) give equivalent norms.

Proposition 21.1 (Sobolev injections). One has the following continuous inclusions:
n

« Ifk—2 > k' — 2 then WP c WK'P',
p p

" > k' + athen WkP c CK'»,

. Ifk—=
fle——2

Moreover, these inclusions are compact in case the inequality is strict.

We will not prove the inclusions in general, but offer some comments. We can
reduce to the case k' = 0.

First if we are on R” rather than a compact manifold, we have the following in-

equality. Take q such that I=1_ E, then there is a constant C such that for any

qg p n
compactly supported function f on R" one has

IfllLa < CIVESle- (21.4)

The exponent q is the only possible exponent in this inequality, because of the in-
variance by homothety: if we consider f;(x) = f(ex) then the LHS is multiplied
by €74 and the RHS by ¢¥~/P: the numbers —= and k — = are the conformal

weights of these norms, and this explains why theqy enter in tlljle hypothesis of the
proposition.

From (RI.4) one deduces the first Sobolev inclusion on a compact manifold, redu-
cing to the case of R" via a partition of unity. The exponent q can then be taken
smaller than the one in (1.4).

The hypothesis for the second Sobolev inclusion can also be explained using the
conformal weights of the two norms. Again we do not give any proof, except for
the inequality WP c C° on R" if p > n which follows from

9
f(0)= Vl . f rnl_l a—{r”‘ldrvolsn-l . (21.5)
n-1 Jrn

If p > n then the dual exponent s such that 2+ 1 = 1satisfies s < Ll which is
p s n—

exactly the condition to have L er , so Holder inequality gives
rh—1

1,1
If(0)] < v, Il ldf e
e
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In the limit case p = n, the inclusion is not true, as one can see in R" with the
function
() = In [In(elx])| (21.6)

which vanishes for |x| = 1 and is extended by zero outside B;. Then df € L"* but f
is unbounded at x = 0.

. s . 1
Remark 21.2. Formula (P1.3) almost gives (R1.4): it can be rewritten as | f| < o *
|df|. One has the well-known inequality || f * gllra < [|fllLellgllLs if Til=angl

p s q

.11 1 - - . 1
To obtain - = - — — we need s = — but this is the limit exponent since — € I’
q p n ri=

only for s < -
n-1

n
Remark 21.3. The case p = 1 gives the inclusion W'! c Lr»-1 which is related to
the isoperimetric inequality in R": for a bounded domain Q C R" one has

Vol(Q)r-1 < ¢, Vol(3Q). (21.7)
See exercises.

Finally, the following theorem says basically that the elliptic theory that we have
seen on the Sobolev spaces H® extends to the spaces WXP and Ck-%,

Theorem 21.4 (Elliptic estimates). If P is an elliptic operator of order d on the com-
pact manifold M, then one has:

1. IfPf € WKP then f € WK+9P and one has the Calderon-Zygmund estimate
Ifllwsap < c(IPFfllwre + IfllLe)- (21.8)
2. IfPf € Ck% then f € Ck*9% and one has the Schauder estimate

Ifllcrerae < c(IPfllcka + Ifllco)- (21.9)

Moreover one has the 12-orthogonal decompositions
WkP = p(Wk+dP) @ ker P*, Ck+a = p(Ck+d.a) gy ker P*. (21.10)

Remark 21.5. It is important to note that this theorem is not true for C* spaces
(hence the use of CK% spaces). For example the function f(x,y) = (x>—y*}/[In |x[|
on R? isnot C2 but Af € C°.

Holder spaces are particularly useful in certain nonlinear problems, because the
Cha spaces, like the ck spaces, are algebras. It turns out that WKP is an algebra
only when one has the inclusion W*? ¢ C°.



Chapter V

The scalar curvature

22 Gauss curvature on surfaces

We consider a Riemannian surface (S, g). Aswe have seen in section [[3the curvature
tensor reduces to the Gauss curvature K& = R;,,!, and Ric® = Kg, Scal® = 2K.

The Gauss-Bonnet formula relates the curvature and the topology: if (S, g) is com-
pact connected oriented then

% fs KEvolf = %(S) = 2 — 2a(S), 22.1)

where x(S) is the Euler characteristic of S and g(S) its genus.

In particular, if (S, g) has constant curvature, which we can assume to be K = +1
or 0, then there is the following constraint on the genus:

« g=0ifK=1;
« g=1ifK=0;
« g>2ifK=-1.

Conversely we can try to construct metrics of constant curvature on any surface.
The standard metrics on S? and T? give the answers for genus 0 and 1. In higher
genus we start from (S, g,) and we are looking for a metric of the form g = e*g,.
Such a metric is said to be conformal to g, and the space {g = e“g,,u € C*®(S)}is
called the conformal class of g,.

Theorem 22.1. Let (S, gy) be a compact connected oriented surface with x(S) < 0.
Then the conformal class of g, contains a unique metric g with K8 = —1.

Remark 22.2. This theorem establishes a bijection between the two first following
spaces:

1. the space of metrics with K = —1 (hyperbolic metrics) on S, modulo Diff,,(S);

2. the space of conformal classes on S, modulo Diff,,(S);

43
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3. the space of Riemann surface structures on S, modulo Diff,(S).

These are three descriptions of the Teichmiiller space, which is diffeomorphic to
R%8=¢ and plays an important role in geometry.

We now establish the equation to solve to prove the theorem.

Lemma 22.3. Ifg = e*/ g, then
K8 = 2/ (K80 4 A80f). (22.2)

Remark 22.4. Since vol® = ¢/ vol®° this formula implies that Js K& vol® remains
constant in the conformal class of g, as follows from (2.1)).

Proof. We claim that the Levi-Civita connection of g is given by
VEY = VRY + (X - Y + (Y - )X — go(X, Y)VEo f. (22.3)

The reader can check that indeed this formula defines a connection which is torsion
free and preserves the metric g. We rewrite the formula more compactly as

V§ = VR +df(X) +df AX, (22.4)

where A A B € 30, is defined by A A B(U) = g¢(A,U)B — go(B, U)A. A metric
connection in rank 2 has the local form V = d + a with a a 30,-valued 1-form;
since 8o, is abelian, it follows that FV = da is linear in a. In particular, from (22.4)
it follows that

RE& =RE& +d(df A-).

Calculating at a point x, we can suppose that VX(x) = VY(x) = 0 and therefore
ddf A)xy =Vx(df AY) = Vy(df AX)=(Vxdf) AY = (Vydf) AX
It follows that, for a gy-orthonormal basis (e;, e,),
go(RE, ¢, €2, €1) = K80 — Ve, df(er) — Ve, df(e;) = K8 + Asodf.

The formula for K8 = g(R‘eg_ fere-Te e fe,,e Te;) follows. O
Proof of theorem P21 Now the theorem amounts to solving the equation e~/ (K80 +
Af) = —1, thatis

Af +e*f = —K8o, (22.5)

First we reduce to the case where K80 < 0 everywhere. It is sufficient to replace
g, by a metric /g, so that Ke/8 < 0. Note K, the mean value of K& on S,
then K, < 0 by (221)). From theorem PR there exists a solution f to the equation
K& + Af = K, and it follows by (£2.2) that K80 = ¢=2f K,y <0.

So we can now suppose K80 < 0 everywhere and taking the function A = —K80 > 0
we want to solve the equation

Af +e2f = (22.6)
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We first prove uniqueness. If we have two solutions f and g of (£2.6), then taking
the difference we obtain

A(f —g)+ef —e2 =0.

By the maximum principle, at a maximum of f — g we have A(f — g) > 0 and
therefore e2/ — ¢?8 < 0, which proves that f — g < 0 everywhere. Inverting the role
of f and g we obtain that f = g.

To solve (R2.6) we use a continuity method: for each t € [0, 1] we are looking for a

solution of the equation
Af+e¥ =1—t+1A (22.7)

For t = 0 we have the obvious solution f = 0, and for ¢ = 1 this is our equation

(B2.6). We consider
I ={t € [0,1], there is a solution of (22.7)}.

To prove that I = [0, 1], we prove that it is open and closed (it is not empty since
0el).

We begin by the openness: we consider the operator ©(f) = Af + ¢/, we claim
that it is a well-defined operator H> — I2. This comes from the Sobolev inclusion
H? c C° in dimension 2, so €2/ is C° if f € H2. Moreover O is differentiable (as
the reader can check), with differential

drO(f) = Af + 2% f.

So the linearization dy® : H? — I? is A + 2¢2/ which is a second order selfadjoint
elliptic operator. Moreover it has no kernel, for if d;@( f) = 0, then integrating
by parts we obtain (d;0(f), f) = [ldf]* + 2¢*/|f|> = 0 and therefore f = 0.
Therefore by theorem 7.1 d;@ : H? — 1? is invertible. By the implicit function
theorem applied to ® : H? — 12, if we have a solution of (22.7) for some ¢, then we
obtain a solution in H? for nearby values of ¢. The solution is actually C*® (see the
regularity result at the end of the proof), therefore I is open.

We now prove the closedness. Suppose f is a solution of (22.7). We first prove a
priori C° bounds on f, using the weak maximum principle (proposition [[5.4):

« ata maximum of f, by the maximum principle Af > 0soe?/ <1—t+tA <
C=1+supi

« ata minimum of f, again Af <0soe* >1—t+tA>¢e> 0sinced > 0.

Finally we obtain é lne<f< % In C, that is we have a uniform C° bound on f.

We can now finish the proof of closedness: suppose we have a sequence of solutions
fiof (2.7) for t; — 1. The uniform C° bound on f; implies a uniform C° bound on
Af; by (B2.7), in particular a uniform LP bound on Af; for any p. From the elliptic
estimate (B1.§) we deduce a uniform WP bound on f;. Taking p > 2 we have
a compact inclusion W»P c H? and therefore we can extract a sequence f; — f
converging strongly in H2. This implies that f is a solution of (22.7) for t = 7. We
need to prove additionally that f is C*.
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This is a general regularity statement: suppose we have a solution f € H? of equa-
tion (£2.7), then f is C®. Observe indeed that if f € H? then 2/ e C° and it follows
quickly that e?/ € H2. From (£2.7) we obtain that Af € H? and therefore f € H*.
Bootstrapping we obtain that f € H®, f € H8, etc. thatis f € Ng,oH* =C®. O

23 The Yamabe problem

We now consider the constant scalar curvature problem for a general Riemannian
manifold (M", g). To simplify notation we use the usual notation R for the scalar
curvature. We consider a metric § = e?/ g in the conformal class of g, and we want
to solve the equation

R = cst. (23.1)

This problem can be seen as a variational problem in the following way. We define
1) = =2 [ Ryolf (23.2)
¥ -y ), '

There is an obvious nonuniqueness for solutions of (£3.1]), since one can multiply
g by a constant. So it is natural to kill this ambiguity by imposing the constraint

Vol(9) = 1. (23.3)

Proposition 23.1. The Euler-Lagrange equation for 1(g) under the constraint (23.3)
isR = cst.

This is called the Yamabe problem.

Theorem 23.2 (Yamabe, Trudinger, Aubin, Schoen,...). In the conformal class of
g there exists a metric § which minimizes 1(g) among metrics with Vol(g) = 1. In
particular R is constant.

The aim of this chapter is to prove this difficult theorem in most cases.

Proof of proposition P3.1. We begin by setting up the problem. First we need the
formula for R: in the same way we obtained (22.2), one can prove

R=e2 (R+2(n—DAf +(n—1)(n—2)|df]?). (23.4)

The following formalism is more convenient for this problem if n > 2: write § =

4
e* g = un-2g then

R _n+2 n—lA R
— oy no (4n Sdu+ u) (23.5)
and

2n
Vol(g):/ un-2 vol®. (23.6)
M
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Finally, with an integration by parts:

n—2
1(g) = Au + ——Ru? | vol® 23.7
@ /M<u u+4(n_1) u)vo (23.7)
n—2
= |dul? + —Ru2>volg (23.8)
fM ( 4(n—-1)
to minimize under the constraint f,; u? vol® = 1, where p = % is the Sobolev

exponent which appears in the Sobolev embedding H! C LP, that is 1= % -1
14 n

Under the form (23.§) the Euler-Lagrange equation is clearly

n—2

A —_
T

Ru = AuP~! (23.9)

. n+2 . .
for some constant A. Since p— 1 = - this can be rewritten as
n—

n—2 -
4(n—1)R_

This proves proposition P3.1]. O

A (23.10)

Observe that (£3.1() implies A = I(g). Since we are looking for a minimum of I, it
is natural to define:

Definition 23.3. The Yamabe constant of the conformal class of g is
MM, g) = inf{I(8), g conformal to g, Vol(g) = 1}. (23.11)

It makes no difference to suppose a priori that Vol(g) = 1. Since p > 2 we have
lullizom,g) < llulleev,gy = 1 and therefore we see from (3.§) that 1(g) is bounded
below if Vol(g) = 1, therefore A(M, g) > —oo.

We now rewrite the Yamabe problem in the following final setup:

e p= % is the Sobolev exponent of the inclusion H! c LP; it is useful to keep

inmindthatp—l:n—)rzandp—2= S
n—

n-2’

« we define a differential operator
n—2
Lou=A ——R 23.12
U u+ =1 u ( )
so that if
§=uP%g (23.13)
then
R=a"T Ll pry (23.14)
n—2 8™ ’
« we want to solve the equation
Lgu = AuP™! (23.15)

where A = A(M, g) is the Yamabe constant; this equation implies R = 4"—_;)@
e
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« this equation has a variational formulation: itis satisfied by a minimum of the
functional I(u) defined for u > 0 by (£3.8), under the constraint ||u|;p = 1.

The operator Ly is called the conformal Laplacian because it enjoys the following
invariance property under conformal changes:

Proposition 23.4. For any positive function Q one has

n+2 n—

2
Logu=Q 2 Lg(Q 2 w). (23.16)
Proof. 1t is sufficient to prove the identity (23.16) in the case u > 0. Write g; =
4

—_— 4
uy?gand g, = (upu;)n-2g, then

n—1 —-p+1

R, =4 Uy Lg uy.

n—1 _
n_ 2(“1”2) p+1Lg(u1“2) = 4n )

Therefore Lg u, = u? +1Lg(u1u2) which proves the proposition by taking Q2 =
4

u . O

24 Non critical case

Fix p’ so that 2 < p’ < p. We consider the problem of minimizing I(u) under the
constraint ||ull;,» = 1. The derivation of the Euler-Lagrange equation is similar
to what was done in the previous section, and we find that a minimizer for this
problem should satisfy the equation

Lgu = AyupP ! (24.1)
which is the equation to solve.

Theorem 24.1. The equation always admits a smooth positive solution, which
is a minimizer of I(u) under the constraint |[u||; ,» = 1.

Proof. Observe that the functional I(u) = f, |du|* + ‘Kr:l—izDRuz is well-defined on

the Sobolev space H!. Moreover if u € H! then |u| € H! and I(u) = I(Ju|). So for
any u € H' we have that I(u) = lim._o I((e+|u|)/|le+ |ulll ) and it follows that the
infimum of I on positive functions is the same as the infimum of I on all functions
of H' such that ||ul|;,» = 1.

The natural method to prove the theorem is to take a minimizing sequence (u; > 0)
of I under the constraint |ju;]|;,» = 1, and to prove some convergence. We have

‘ f Ru? vol
M

S0 fy ldu;|* is bounded. It follows that [ju;||i1 is bounded. Since H! C ¥ is com-
pact (this is where we use p’ < p), we deduce that there exist a limit u such that

< (sup [RD[ullf, < suplR]|

. . ’
u; = uin HY, u; » uinLP.

In particular ||ul|;,» = 1sou # 0 (we will see that this fails for p” = p).
Summarizing, we obtain a function u € H! satisfying:
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e u>0

« uis a minimizer of I on H! with the constraint [lull;pr = 1: this implies that it
is a weak solution of the equation (R4.1)), that is it satisfies for any function ¢

n—2 ’
du,do) + ————Rugp)vol = A, | uP ~lovol.
‘&« ) =D ®) pﬁl ¢

Lemma 24.2. A weak solution u > 0 in H! of equation (4-1) is actually C® and
positive everywhere if u % 0.

Applying this lemma to the previous function u solves our problem: the function
u > 0 is smooth and minimizes I(x) under the constraint |ul|;,» = 1; itisin
particular a solution of equation (24.1)). O

Proof of lemma P4.3. Since L, is an elliptic operator, we shall use equation (24.1)) to
r
obtain more regularity on u. Suppose u € I, then uP’ =1 € L»’—1, so by equation

2,—— / L. . . .
(RB4d) u € W'r'-1 C II' where r' is given by the Sobolev inclusion (proposition
RLI):

1 -1 2 1 -2 2
’ p __+(p :
r r n r

Using p’ < p and supposing r > p’, we have

-2 2 p-2 2
pP-2_2_p

r n p n
so it follows that
1 1
—<=-¢
r r

for some fixed € > 0. So starting from u € L0 with r, = p’, we obtain u € L? for
1/r; < 1/r — g; iterating we obtain u € L'V with 1/r; < 1/p’ — je. So we can obtain
u € W27 for r as large as we want, which implies that u € C1% by proposition T.1.
Then uP’ ! € CH* 50 again elliptic regularity for equation (P4.1)) gives u € C>,
and iterating this we obtain u € C*®.

There remains to prove that if u # 0 then u > 0 everywhere. From (24.1) we obtain

n—2

_r—e p'-2)y, >
4(n_1)+ku Ju>0

(A+mu=(m-

for m > 0 large enough. The result is then a consequence of the strong maximum
principle below. O

Theorem 24.3 (Strong Maximum Principle). Suppose h > 0 is a smooth function
on M. Suppose u > 0 is a C? function on M satisfying the differential inequality

Au+ hu > 0.

Ifuvanishes at some point on M, then u = 0.
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Observe that the weak maximum principle in proposition gives that at a zero
of u (which is a minimum since u > 0) one has Au < 0. The strict inequality would
contradict Au + hu > 0, but this is not given by the weak maximum principle. The
strong maximum principle gives an answer in that case.

Proof. Using normal coordinates we can suppose that we are in R" with u(0) =
0. In polar coordinates we note u(r,c) with ¢ € S"~!. The metric is g = dr? +

r2(ggn-1 + O(r?)), the volume form is vol = ¢r"*~1dr A vol*" with ¢ =1+ 0(?).
‘We consider the function

I(r)=/ uvol=f u(p, 0)d(p, 0)p" dp|do|™ L.
B

r B,
It follows that

6,1:] u(r,o)¢(r,o)r"1|do|" !
S

r

r"=13,(r "13,1) = f r1(0,u + uarT¢)¢|dc|”_1.
Sr

Integrating the inequality Au + hu > 0 on B, gives
f —d,u¢r" | do|" ! + / huvol > 0.
S B,

Therefore we obtain

r”‘la,(r‘”‘larl)sf huvol+f uaer)cpr"‘lldcﬂ"‘l.
S

BV r
Using i > 0 and |3,¢/¢| = O(r) we obtain finally, for some constants a,b > 0,
r"=19,(r"-19,1) < al + brd,I.

Also from its definition, note that I = O(+"**?) and rd,1 = O(r"*?).

This kind of differential inequality is often studied by finding a suitable function
which satisfies an opposite inequality: here we choose J(r) = r"*! so that

19, "719,J = (n+ 1)r"~! > aJ + brd,J
for r < 1y small enough. Therefore, still for r < ry, one has
=19, r 19,1 — €J) < a(l — €l) + brd, (I — €J). (24.2)

Suppose I(ry) > 0. Then we can choose € > 0 small enough so that (I — €J)(#,) > 0.
But when r - 0 we have
I —eD(F) ~ —er™*1.

It follows that I —eJ has a negative maximum in the interval (0, y). This contradicts
(B4.2). Therefore one must have I(rp) = 0, which implies that u = 0 on B, . O
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25 The conformal class of the sphere

We use the description of the standard sphere S” via stereographic projection. In
these coordinates the metric of the sphere is conformal to the Euclidean metric,
and we can write it in the form (3.13) as

48rn 1

-2 .
8sn = m = 4u§) 8rn with U =

(25.1)

n-2"°

(1 +[x[?) 2>
It is known that the group of conformal diffeomorphisms of S” is generated by:

« rotations (these are isometries of S);
« translations 1,(x) = x + v in R";
« dilations 8,(x) = a~'x in R".

In particular we obtain in the conformal class of S” the following family of metrics
which are also isometric to S":
n_—2
* p—2 . a 2
ao(gsn = 4uqg 8rn with ua(x) = (m) . (252)

In R" we have the Sobolev injection H! c LP, and one defines the Sobolev constant
by

ldul?,
o = inf >
HY lullgp

(25.3)

Consider the Yamabe problem on S”: starting from the metric ggn» in the conformal
class, we see that the functional I of (23.8) reduces to

I(u)=/ |du|?|dx|" (25.4)
RrRn

and the variational formulation is to minimize [ under the constraint [[u[p(gn) = 1.
Therefore the Yamabe constant is

AMS") = inf I(u) = po. (25.5)
l[ulp=1

Of course we are not exactly in the setting of section P3 since R” is S"” minus a

point and grn is conformal to ggx» outside this point. The reader can check that the

infimum of I can be checked on H! functions of R" only.

26 The Yamabe problem on the sphere

Theorem 26.1. The infimum of the Yamabe functional in the conformal class of
(S", gsn) is realized exactly on the metrics on S" obtained from gsn by a conformal
diffeomorphism.

Moreover any metric on S" conformal to gsn and with constant scalar curvature, is
obtained from ggn by a conformal diffeomorphism.
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The first part of the theorem is difficult and will not be proved in these notes.

Remarks 26.2. 1) It follows that the functions u, realize the minimum of I. But
observe that u, — 0 when a — 0 so contrarily to the equation for p’ < p (section
P4) a minimizing sequence can converge to 0.

2) Also one has u, — oo when o — oo so there is no a priori C° bound for the
solutions of the equation.

3) Since a minimizer of the Yamabe functional has constant scalar curvature, the
second part of the theorem implies the first part, if one knows a priori the infimum
of I is realized by a metric in the conformal class.

Proof. We only prove the second statement. We need the following formula for the
Ricci tensor under a conformal change: if g = ¢%g,, then

|do/?
¢

where all operators are with respect to g. Taking the trace free part,

Ric(gy) = Ric(g) + ¢~ !((n —2)Vddp — (n — 1) g— (Ad)g) (26.1)

Rico(go) = Rico(g) + (2 — 247 (Vdd + —(¢)g). (262)

Apply this with g = ¢p?ggn with g having constant scalar curvature, we obtain

Ricy(g) = —(n — 2)¢~'(Vde + %(Acb)g). (26.3)

Therefore
/ 8] Rico(g)|? volf = / (Rico(g),~(n — 2(Vdd + ~(ag)g) vol*
sn sn

=—(n-2) / (8Ricy(g), dp) vol®
N
=0

since by the Bianchi identity & Ricy(g) = 0.

It follows that Ricy(g) = 0, that is g is an Einstein metric. The result is now a
consequence of the following:

Fact 26.3. IfRic(g) = Ag and g is conformal to gsn, then g has constant sectional
curvature, which implies that there is a diffeomorphism ® of S" such that ®*g = ggn.

Since g and ggn are conformal, ® has to be a conformal diffeomorphism. O

We will not give the proof of the fact 6.3, but here is the main idea. If n = 3 then
Ric contains the information of the whole curvature tensor, so an Einstein metric
has constant sectional curvature. If n > 4, there is a component of the Riemannian
curvature called the Weyl tensor, noted W, which detects when a metric is locally
conformal to the standard sphere S". The data of both W and Ric gives the whole
curvature tensor, see for example [Bes87]. So if g is conformal to gg» and is Einstein,
then its Weyl tensor W = 0 and Ric = A: since these determine completely the
Riemannian curvature, the sectional curvature is constant.
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27 Epsilon regularity

We have seen that in the case p’ < p a weak solution of the Yamabe equation is
controled in C° thanks to the Sobolev inequality (see the proof of lemma P4.3. The
proof fails in the case p’ = p and indeed we have seen in section P§ that a sequence
of solutions can diverge.

The following is an example of e-regularity: it says that if some energy is locally
small enough, then a solution is CO controled as if the problem was linear. Similar

statements exist in various nonlinear geometric problems. In our case the energy
is just the LP norm:

Theorem 27.1. Let h be a function on (M, g). There exist constants g, 1y, c > 0 such
that: if u > 0 is a smooth solution of the equation Au + hu = uP~!, then for any ball
B of radius r < r, one has:

1
gp
—.

if fup vol=ec<¢, then u(0)<c (27.1)
B

re
We need some tools to prove the theorem.

Proposition 27.2. Suppose (M", g) is a compact Riemannian manifold. Then there
are constants C,ry > 0 such that if we have a function f > 0 on a geodesic ball B,
(r < 1y) satisfying Af < 2nk then

f(0) < C][ f+ k|x|*. (27.2)
B

r

Proof. We have Ar? = —2n + O(r?) so for r < r, (with r, > 0 sufficiently small) we
have A(f + k(1 + €)r?) < 0. By considering f + k(1 + €)r?, and up to increasing
slightly the constant C we are reduced to the case k = 0.

Therefore we can suppose Af < 0. We use this inequality by integrating on geodesic
balls: with notations similar to that of the proof of theorem p4.3,

02/ Afvol:f —r"=143, f|do|™ L.
B

r Sr

Define m(r) = fg fé|do|™!, then we obtain

8m > f f3,8ldo!
s

> —crf féldo|*!
Sy

> —crm

It follows that m(r) > m(0)e=¢"*/2 = f(0)e="*/2 and therefore f(0) < C fs, f- The
proposition follows. O
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Remark 27.3. If we are on the flat space R” then in the proposition one can take
C =1, and the hypothesis f > 0 is not needed. This follows from the proof of the
proposition, observing that in R" we have exactly Ar> = —2n and ¢ = 1.

Actually one can see by the same technique that if f is a harmonic function in R",
then one has the well-known mean formula

f(0) = ][ f. (27.3)
B,

From this formula one can deduce the Liouville theorem: a bounded harmonic
function on R" is constant.

Proof of theorem 7.1, We simplify the proof by taking & = 0. The reader can check
that the addition of h gives additional terms which do not perturb the following
arguments.

We first limit ourselves to the special case when u has a maximum M at a point x,,
and we consider the balls centered at x,,. The equation is Au = uP~! < MP~! which
gives via (£7.2) an estimate M = u(x,) < C fBr u+MP~1r2, From Holder inequality

f u< (/ up)p Vol(Br)pT_1
B B,

r

it follows that )
n
M < c<r Pep + VZMP_1>.

Taking A = r"/PM we can rewrite this as

1
A <c(er +2P7Y). (27.4)

When r is small then A is small. Since p > 2, if € > 0 is small enough, say € < ¢,
the first zero of the function c(e/? + AP~1) — A is approximately A; ~ ce'/?, so the
inequality (27.4) imposes the restriction A < A; < 2ce'/P, which we rewrite as

1

ep
M < 2c—. (27.5)
rp
This proves the theorem for the special case of a point X, at which u attains a max-
imum.

The case of a general point is similar: we restrict to a ball B, but u can reach its
maximum at the boundary of the ball. To avoid this we introduce the distance d to
the boundary of the ball, and we take

M = rrllgax u(x)d(x)g. (27.6)

This is attained at a point x in the interior of the ball, and we take a smaller ball
B, (xp) now centered at x, so that p < éd(xo), so the ball remains at some distance
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of the boundary of B,. On B(x,) we now have u < 2"/PM. We can then proceed
as in the first case to prove the estimate (27.5) for some larger constant ¢':

1

€p
u(xy) < c’—f.

p p
But we want to estimate u(0):
n 1
p 4
u(0) < Zulx) < ¢ 5
rp rp

This proves the result. Note that the choice of the exponent = in (27.6) is used only
P
in this last step. O

Theorem reduces the C-estimate to having small L? norm of u on small balls.
Note that this typically fails in the case of the sphere S" for the functions u, defined
by (R5.2), since the LP norm is more and more concentrated near the origin as o« —
0. This case is excluded in the following proposition, which gives a simple criterion
to control local L? norms:

Proposition 27.4. If the Yamabe constant of (M, g) satisfies \(M, g) < pg = A(S"),
then for any € > O there exists r > 0 such that for any solution u of the Yamabe
equation (23.13) with |u, = 1 and any ball B, of (M, g) one has

fup<£.
B

r

Proof. Take x, € M and for simplicity assume that g is flat near x,.

Take x a cutoff function near x,. Since g is flat near x,, the Yamabe equation is
Au = AuP~! near x,. By integration by parts,

(dGPw), du) = l/xzup.
Observing that
(dOw), dOa)) = |dxlPu? + 2(xdu, udy) + x*|dul? = |dx|*u? + (d(Cw), du),
we obtain
ldGaol =2 [ 22 + [ taxPe.
We have the following Holder inequalities:

fxzup < (f(quz)p/Z)Z/p((up—Z)p/(p—Z))(p_z)/p = ||X”||;2>||”||§_2’
2/p _on(P-2)/p
/Idxlzu2 < (f(uz)p/z) (fldxlzp/(p 2) = [lullplldxl?-
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Applying these inequalities and the Sobolev inequality in R", we obtain

—2
Molxully < 1dGanll3 < Mpuliplleally™ + llull3lidxilz-

Since [|ul|, = 1 it follows that

(Mo — Mlxullp < lldxllz. (27.7)

The fact that the Sobolev embedding W C CO fails says that one can find cutoff
functions x with ||dy]|,, as small as we want. To be more specific we start from the
function f in example (R1.6) and we define a cutoff function x,, with support in B,
by

f(rx)
Xp(x) = {f(rp)

if x| > p,
1 if x| < p.

Then ||dx,ll, — 0 when p — 0, so for p small enough (27.7) implies

f uP <.
B

3

This concludes the proof in the case g is flat around x;,. In general one argues that
on a small enough ball the metric is close to the flat metric. The main difference
is the term Ru in Lyu which gives an additional term [oull3 in the integration by
parts. But this term is negligible before ||Xu||lz, on small enough balls. O

28 Resolution for Yamabe constant less than that of
the sphere

The C° estimate from theorem do not apply to general functions, but only to
solutions of the Yamabe problem. Therefore we need to use to solutions of equa-
tions. We will use a solution u,s (2 < p’ < p) of the equation (B4.1), attaining the
infin

Lou,u
Ay = inf (Lgu,u)=inf( £ )
el =1 lully:

Lemma 28.1. SupposeVol(g) = 1. Then |, |is a decreasing function of p’. Moreover:
 ifAM,g) <O0then i, <O0forall p' € [2,p);

* if MM, g) > 0 then Ay is left continuous.

Proof. We have

s (Lo, w)

)Lp” = inf

Tl Tl

If p’ < p” then [[ull}, < |[ul;, and it follows that [A,r| < [Ay|.
If (M, g) < 0 then there exists u such that (Lgu, u) < 0 and it follows that 4,y <0
for any p’ € [2, p].
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If A(M, g) > 0 then similarly A,; > 0 for any p’ € [2, p]. Given ¢ > 0 and p’ there

exists u such that (Tg‘llt,u) < Ay + & Therefore for p” < p’ close enough to p" we
u pl
have
(Lgu,u)
)kp/ < )Lp// < —< }Lp/ + 2¢.
lleellpr
This prove the left continuity of A,,. O

Theorem 28.2. If A(M,g) < A(S") a family (up )y «p of solutions of (B4.1) with
lupll,r = 1 admits a convergent subsequence to a function u > 0, smooth, which
realizes the minimum of the Yamabe functional. In particular uP~2g has constant
scalar curvature.

Proof. We have
Loty = Ayt . (28.1)

It is not difficult to check that the C° estimate resulting from theorem and
proposition extends to (28.1), and from the hypothesis A(M, g) < A(S") it is
actually uniform for p’ < p.

From equation (B8.1)) we then obtain that Lgu,, is also uniformly bounded in CO,
so by elliptic regularity u, is bounded in CL%. Bootstrapping we obtain that Uy
is bounded in C*% for any k. In particular, by Ascoli’s theorem, we can extract a
subsequence which converges strongly in C? to a limit u when p’ — p. We have
u > 0and [ull, = 1.

If (M) > 0 then limA, = A, by the previous lemma, so I(u) = A, and u is a
solution of the equation Lgu, = A,uP~'. It has no zero by the strong maximum
principle (theorem P4.3).

If (M) < 0 then A, is an increasing function of p’ so has a limit A = lim,,
Ap. Then I(u) = A > A, = infIso A = A, and the same applies.

'=p )Lp/ <

29 Non conformally flat case

Theorem provides a solution of the Yamabe problem, provided we have A(M, g) <
A(S™). The following theorem says that this is always the case:

Theorem 29.1. One has always A(M, g) < A(S™), except if (M", g) is conformal to
(S™, ggn).

With the case of the sphere (theorem P6.1)), this concludes the resolution of the
Yamabe problem.

Theorem is difficult and was proved in increasing generality. The first obser-
vation is:

Proposition 29.2 (Aubin). One has always A(M, g) < K-

Proof. We need to construct functions ¢ so that I(¢) is as close as we want to . The
idea is to use the family (£5.2) of radial functions (u) on R" which are minimizers
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on R”": they satisfy ||Vug|3 = u0||ua||§,. A small neighbourhood of a point in (M, g)
looks more and more like a small ball in R”, and when a — 0 the function u, has
its energy more and more concentrated around 0, so the idea is to graft it on (M, g)
to obtain the wanted test function ¢.

First we need to cut u, so that it has compact support. Let x = x(r) be a cuf-off

function on R" so that
1 ifr<e,

0 ifr > 2e.

x(r) = {

The function ¢ = yu, satisfies

f |dep|* = f X ldug|? + 2xuq(dyx, duy) + ud|dx|
Rn B

2¢

< / |0, uq|® + C/ Ug |0 Ug| + us. (29.1)
Rn B2¢\Be

One has d,u, = —(n — Z)L(L)"/2 therefore we have
o aZ+r?

n-2 n-2
2 2

o
» [%ugl < (n— 2);,,1—_1-

(04
ua S rn—z

Now fix € and make a — 0: the second term in (29.1) satisfies
f Uq|0,Uq| + u2 = O(a*2).
B¢ \Be

Now analyze the first term of (£9.1)):

Putting all this together, (£9.1)) finally gives for some constant C

ldell3

= < Ho + Ca"2, (29.2)
lllp

So cutting off u,, gives an error term of size controled by o*~2.

We are now ready to pass to the manifold (M, g): near a point p we consider normal
coordinates (x!) and we consider the function ¢ in these coordinates (taking ¢ small
enough). Then we still have |do|?> = |3,¢|?, but we have an error term in the volume
form:

vol® = (1 + O(r2))dx! A --- A dx™.
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We have

19) = /B

<(1+Ce?) (uollcpll,% +Ca" 2+ C f
©

n—2
(ldol? + mRCPZ)VOIg

2

uér“‘ldr|d6|”‘1> ) (29.3)
,2€) XS,

We fix € > 0 small enough, and then o > 0 small enough. By formula (29.4) below,
the last term in the RHS is O(ct) so we obtain finally

()
lelz
It follows that A(M, g) < Mo O

< (1 + Ce?)(ug + Car).

In the proof, we have used the following fact, which is left to the reader. Note f ~ g
is there is a constant C such that C~1g < f < Cg.

Fact 29.3. Fixe > 0. Let F(a) = fOE rkuZr"=1dr. Then one has when a — 0:

ok+2 n>k+4
Fla) ® {a*?|Ina| n=k+4 (29.4)
a2 n<k+4.

We can now prove the following result, which is the first step towards theorem P9.1].
We recall that (M, g) is locally conformally flat if any point in M has a neighbour-
hood which is conformally equivalent to an open set in R".

Theorem 29.4. Ifn > 6 and (M, g) is not locally conformally flat, then A\(M, g) < Wo.

The proof of the theorem relies on normal conformal coordinates. Before stating
the theorem, it is useful to recall a geometric interpretation of the scalar curvature:
in normal coordinates around a point p, there is an expansion for the determinant
of the metric given by:

1 1 -
det(gU) =1- g Ric(p)ijx‘xf - gvk Ric(p)ijx’xka + -
and in particular we obtain for the volume form:

1_. .o
|/ detl(gij) = 1 — 2 Ric(p)ijx'x! + -

Integrating on a sphere of radius r, we can compare with the volumes for the stand-
ard Euclidean metric g,:

L volg, = f (1- % Ric(p);i(x")? + O(r?)) Volg‘:

r Sy
R(p)

= n—lrn_l(l_ on

r? +0(r®)). (29.5)

Therefore the scalar curvature measures the distortion of volumes of small spheres
(or balls) for g with that for g.
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Theorem 29.5 (Glinther 1993). Given (M", g,) and a point p € M, there exists a
metric g in the conformal class of g, such that in g-normal coordinates near p one
has

det(g,J) =1.

For n > 5 one then has R(g) = O(r?) and AR(p) = %|W(p)|2.

Note that in normal conformal coordinates one has always R(p) = 0 by (29.53). The
theorem says that for dimension at least 5 one has a second order vanishing.

Proving that one can obtain det(g) = 1 up to any finite order near p is a classical
result, as is the consequence on R and AR. Proving that one can achieve det(g) = 1
near p is much more difficult. In our proof we need this to be true only to any finite
order, but the arguments become more clear with the full strength of the theorem,
so this is the point of view that we shall use.

Proof of theorem £9.4. We refine the technique of proposition P9.7. Restarting from
(£9.2), we now use normal conformal coordinates on (M, g), that is we can suppose
that the volume form is exactly that of R", that is we have exactly vol® = dx A A
dx". It follows that the estimate for the first term of I(g) in (£9.3) is now enhanced
into

f |de|? vol® < pollel + Ca™2.
B

2¢e

For the second term of I(g), we now write

f ch2|dx|”§/ Ru§|dx|"+c/ uZ|dx|".
B B By \Be

2¢€ €

The first term is

ix]
f Ru[dx|" = f (S4R(p) 5= + O()uzr"~tdr|do|"~!
B B

€ 2
= "_1/ (- AR(p)r— +0(r?))ugr"tdr
o 2n
€ }"2
=Voor [ (=W g5+ Oy
Putting everything together and using the estimate (£9.4) we obtain

(o) = /B

Since (M, g) is not locally conformally flat, we can choose p such that W(p) # 0.
Taking o small enough we obtain

ollellz — CIW(p)Pa* + o(a*), n>e,

|do|? vol® < {
Kollolly — CIW(p)|*at|Inal +o(a*), n=6.

2¢€

1(p) < Molloll?

so A(M, g) < Ho- O



30. CONFORMALLY FLAT CASE AND POSITIVE MASS 61

30 Conformally flat case and positive mass

The remaining cases are that of dimensions smaller than 6, or conformally flat met-
rics. Since we can solve the problem when A(M, g) < A(S"), we can suppose at
least A(M, g) > 0. Since A(M, g) = inf(Lgu, u)/|ul|3, this implies that ker Ly = 0.
Since A,, > 0 as well in that case, by theorem we can solve the equation
Lou = Ay uP' =1 for some p’ < p and the corresponding metric § = uP'_zg has
scalar curvature R = 422y PH Ly = 4EAp,up/_p > 0. Replacing g by g if

n—-2
necessary, we can suppose that g has positive scalar curvature.

The Green function

In stereographic coordinates on the sphere we can write

1+ |x|?)? _
8rn =#gsn = GP2ggn, G(x) =(

1+ |x| ) (30.1)

We can think of G as the conformal change from S” minus the north pole N to R".

Since coordinates on S" near the north pole are obtained by the inversion y = P

up to multiplying G by a constant we have G ~ — where r is the distance to N in
S™. Since the scalar curvature of R" is zero and p — 2 = 4/(n — 2), the function G
also satisfies L&s" G = 0. We summarize this by saying that G is a solution on S” of
the system:

Lg, G =0, .

1 30.2
G ~
r—0 rn=2"

If we fix a point p in (M, g) the problem (B0.J) still makes sense. A solution is called
a Green function of (M, g). The existence is given by:

Proposition 30.1. IfA(M,g) > 0 and p € M then a solution G to the system
exists and G > 0 everywhere. Moreover, if n = 3,4,5 or g is conformally flat near p,
then near p one has for some constant A

1

G = rn—2

(30.3)
where a = O(r) satisfies 3a = O(r' k) for k < 2.

Proof. Let us begin to prove that a solution G has to be positive. We can suppose
that R > 0. Then the strong maximum principle (theorem P4.3) implies that a
minimum of a solution of Lgu = 0 has to be positive. Therefore u > 0.
Now pass to the existence of G. In normal conformal coordinates for g the function
Gy = % satisfies
e

AGO = ARnGO =0.

Therefore
n—2 R

LgGo = 4(n—1)rn-2"
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Take a cutoff function y, the idea is now to find the solution G under the form
G=xGo+¢
where 1 is more regular than G near p and satisfies

Lgp = —Ly(xGo). (30.4)

If g is conformally flat near p, then actually L,G, = 0 near p, so —Lg(XGo) = 0
near p, so this is a smooth function on M. Since L, is a positive elliptic operator,
it follows that there exists a unique solution vV of (B0.4), this solution is smoth, and
the proposition is proved.

In the cases n = 3,4, 5, from Theorem we obtain that R cancels to order 1
(n=3,4)or 2 (n = 6). Therefore

R 01), n=3,
m=2 " |0(2), n=4,5.
r

Therefore Ly(xGo) € L"~¢ and we can solve (B0.4) with { € W»"~¢ c C* for any
a < 1. Outside p the function v is smooth, but this proves only that p = A + O(r%)
near p for any a < 1. The full result actually requires to refine the approximate
solution G, near p before solving (B0.4). The details are left to the reader. O

The small dimension or conformally flat case

Limit ourselves now to the remaining cases of the Yamabe problem, that is n =
3,4,50r n > 6 and g is conformally flat. By proposition the metric § = GP~2g
has R = 0. Geometrically, passing from (M, g) to (M \ {p}, &) looks like passing from
S™\ {N} to R". This reflects in the following proposition.

Proposition 30.2. Take coordinates (x) = yJ/|y|?) obtained by inversion from the
normal conformal coordinates (y/) on M near p. The metric § = GP~2gon M \ {p}
satisfies near p (sowhenr := |x| - )

g =7P72(0( 2 (dx))? + 0(3)) (30.5)
with )
y=1+ 2 + O( | ). (30.6)

In the conformally flat case the term O(rlz) in is not needed.
Proof. Left to the reader. O
Using this proposition, we now work with the metric g: outside a large compact

set K, we have (M \ {p}) \ K ~ R" \ Bg. The advantage of § is that R = 0, so that
the Yamabe functional reduces to ||d¢|3, as is the case on R". Consider again our

functions
a
Uy(x) = —
«(%) (oc2+r2>

n-2
2
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When a is large u, becomes almost constant on a large ball. So it is a good approx-
imation of u, on M \ {p} to extend u, outside R" \ By by a constant, defining for
large p and « the function

_ug(x) onR™\ B,

ua(p) onr<p (307

¢

Proposition 30.3. With this choice of $ we have when o — +o0, for some constant

c>0, A
1
1413 < moll$llp — ¢ + O( = )- (30.8)

In particular, if A > 0 then A(M, g) < po = A(S™).
Proof. To simplify the proof, we limit to the conformally flat case. Since |dr|*> =

Y-(P—Z) s

lds| = f (dug 27" ®=D x|
Rn\B,,

- f 18y ua 2]
Rn\B,,

=f (uocAR”uocyz _ua(arua)(arY))ldx|n +/ uoc(aruoc)yzpn_l|dcln_l~
R™\B,, Sp

(30.9)
Observe that
n_—2 r p—l
Uy =—(n—2)a 2 —————,  Apnlyg =n(n—2ug ,
(a2 +712)2
Therefore the third term in (B0.9) is O(%). The first term is controled by

f tabanti?ldx = nn=2) [ u P uyPldx
R7\B, RP\B,

Sn(n—Z)(f (uay>P|dx|">p(f u§|dx|")
R7\B, R7\B,

)
<n(n- 2)||uoc||l£p(Rn)||¢”p

< Hollbllp-

The crucial term is the second term in (B0.9), which is equal to

00 n—1
2 -1 o A 1 1
—(n—2)*V,,_,; /’: a~'r (az n r2> (rn_l + O(r_")> r=dr.

1-2

As in (£9.4) one checks that when a — +o0, for some C > 0,

® a \*! C 1
/p (o) =g + O
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so the second term in (B0.9) now becomes

A 1

—CW + O(

)

al’l—l
for some ¢ > 0. The proposition is proved. O
So the proof of the Yamabe problem is reduced to proving that the coefficient A

in the development of the corresponding Green function (B0.3) is positive. This is
true:

Theorem 30.4. Under the previous hypothesis, one has A > 0, with A = 0 if and
only if M\ {p}, 8) = R", X(dx/)?).

Remark 30.5. There is a more general statement for any ‘asymptotically flat’ metric
gon M\ {p} with R8 > 0. Here asymptotically flat of order T > 0 means

; 1
g=2 AV +g, 18| =0(—).

The result requires T > g -1

The proof of the theorem reduces to the celebrated positive mass theorem originat-
ing in physics. It was proved by Schoen and Yau using minimal surfaces, and also
by Witten in the spin case with a nice argument involving spinors and the Dirac
operator, and a Weitzenbock formula which is similar to the Bochner formula that
we used. See more details in [LP87].
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