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Introduction

This paper is an attempt to understand growth of Monge-Amp`ere masses along
pseudoconcave ends in a complex manifold.

This problem arises in differential geometry when studying compactification
of complete Kähler manifolds under certain curvature conditions (seee.g.arti-
cles of Mok-Zhong [23], Nadel-Tsuji [24], Siu-Yau [32]). In complex analysis,
bounds on Monge-Amp`ere masses of a closed positive current near a pluripolar
set implies an extension of this current through the set (seee.g.works of El Mir
[22], Sibony [30], Skoda [34]). In this direction, theL2−Riemann-Roch inequal-
ity of Nadel-Tsuji (see [24]) implies that a complete K¨ahler Hodge metric on a
pseudoconcave manifold is of finite volume.

Our first result is obtained in the framework of pluripotential theory. Let
M be a complex manifold, dimM = n ≥ 2, and letω be a closed positive
(1,1)−current. Assume thatω admits local locally bounded potentials. To each
open subsetU of M is associated an extremal admissible functionϕ∗, which is
defined on a suitable pseudoconvex hullU1 of U . It satisfies the Monge-Amp`ere
equation(ω+ddcϕ∗)n = 0 onU1\Ū , as(n, n)-current of order zero. Identifying
a (n, n)-current of order zero with the Borel measure it defines, we deduce the
following estimate (we work in the relative topology ofU1).

Theorem. In the above situation, letX be a connected component ofU1 \ Ū

which has a compact boundary. Assume that{ϕ∗ ≤ ϕ∗(p)} ∩ X is relatively
compact inU1 for anyp ∈ X. Then∫

X̄

ωn ≤
∫
∂X

(
ω + ddcϕ∗)n < +∞ .
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Here, to check the hypothesis we restrict ourself to domains on projective
manifolds. It allows us to obtain a complex analytic treatment of the problem.
Related methods appear already in [11,25]. For a more differential-geometric
point of view, we refer to papers cited above.

We obtain the following applications. LetV be a projective manifold, dimV =
n ≥ 2, and letH be a complex hypersurface inV such thatV \ H is pseu-
doconcave in the sense of Andreotti (see Definition 11). LetX ⊂⊂ M open
neighbourhoods ofH . The following Hartogs’ theorem for currents holds.

Theorem. Let ω be a closed positive(1,1)−current defined onM \ H which
admits local locally bounded potentials. Then∫

X̄\H
ωn < +∞ ,

andωk extends throughH as a closed positive currents,k = 1, . . . , n.

If X = V andω is a smooth complete Hodge K¨ahler metric onV \H , then the
above result is a variation of theL2−Riemann-Roch inequality of Nadel-Tsuji
(see [24]). In general, the difficulty in establishing the above finiteness estimate
is that neither pseudoconcavity nor completeness assumptions are made onM

itself.
Next, we try to derive similar estimate for more singular closed positive

currents. We work with currents (on spread domainsW overV ) such as pullback
ψ∗ωFS , whereψ : W → PN is a meromorphic map fromW to a projective
space andωFS is a Fubiny-Study form on it.

Our technique is to produce, by mean of theL2 theory of ideals (see Skoda
[33]), positive currentsωk linked toψ∗ωFS but with Lelong number globally
shifted by−k (see Demailly [12] for other methods in the compact case). These
currents are pluricomplete (see Def. 10). This is a convexity condition onωk and
Ak, the non-smooth locus ofωk, which allows to work onM = W \ Ak.
The case of a current defined by a divisor is noteworthy:

Theorem.LetZ be an hypersurface in a pseudoconvex spread domainW over
a projective manifoldV = (V ,O(1)). There existsl1 ∈ N (which depends only
of the canonical bundle ofV ) such thatO(kl1) ⊗ [Z] is spanned by its global
sections away of{p ∈ W : νp(Z) ≥ k + 1}, whereνp(Z) is the multiplicity of
Z at p.

As an application, we deduce that global Hartogs’ extension phenomena occur
in projective manifolds for meromorphic maps.

Theorem.LetU be an open subset of the projective manifoldV such thatV \ Ū
is a pseudoconcave domain in the sense of Andreotti. Assume

◦
Ū = U . Then any
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meromorphic mapψ : W(∂U) → PN define on a neighbourhood of∂U extends
as a meromorphic map toU .

These results give some understanding of global and compact singularities for
meromorphic maps or currents. Note that there exists hypersurfacesH as above
which may not be blow down. Hence, even for meromorphic maps, the situation
may not be reduced to local extension results of Ivashkovich [20]. Moreover, note
that non compact complex singularities of strict positive dimension are already
local essential singularities for Monge-Amp`ere currents (see [31]).

The starting point of this paper is the classical result that a hull of holomorphy
in the trivial bundle over a domain inCn is a geometric counterpart of a complex
Monge-Ampère equation in that domain (see Bremermann [9]).

Part of this paper was written during a stay financed by a European grant at
the mathematical department of Chalmers University. This is my great pleasure
to thank the complex analysis team of Chalmers university and Professor Bo
Berndtsson for discussions about this subject.

1. Quasi-continuous functions and the classG(M)

We recall some definitions which appear in [6,8].

Definition 1 LetΩ be an open subset ofCn. If E is a subset ofΩ, letC(E,Ω)

denote the relative capacity ofE in Ω.

(1) A functionf : Ω → {−∞,+∞} is said to be quasi-continuous if, for any
ε > 0, there exists an open subsetO of Ω with C(O,Ω) < ε s.t. f is
continuous onΩ \ O.

(2) A sequence{fj }j∈N of Borel functions onΩ is said to converge quasi-
uniformly tof , if it is uniformly bounded, it converges almost everywhere
to f , and, for anyε > 0, there exits an open subsetO of Ω such that
C(O,Ω) ≤ ε andfj → f uniformly onΩ \ O.

The notions of quasi-continuous function and local quasi-uniform convergence
are define accordingly on a manifold through holomorphic coordinate charts.

Quasi-continuous functions form an algebra which contains plurisub-
harmonic functions (see [5], Theorem 3.5). Note that iff is quasi-continuous on
M, then for any continuous functionχ : R → R, χ(f ) is quasi-continuous on
M.

Lemma 1 ([5]) Let {ϕj }j∈N be a sequence of plurisubharmonic functions which
converge monotonically almost everywhere to a plurisubharmonic functionϕ.
Then the convergence is locally quasi-uniform.

Definition 2 We denote byG(M) the class of currents onM which locally are
represented by currents in the exterior algebra generated by
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– smooth forms,
– locally bounded plurisubharmonic functions,
– du, dcu, ddcu whereu is a locally bounded plurisubharmonic function.

We refer to Bedford-Taylor’s articles [8,7] for a precise definition of these cur-
rents for non smooth functions. We state in a weak form Theorem 2.6 of [8].

Theorem 1 LetTj , j ∈ N andT∞ be currents inG(M) which are locally of the
form

σ
(j)

0 δσ
(j)

1 ∧ . . . ∧ δσ (j)
q ∧ ddcσ

(j)

q+1 ∧ . . . ∧ ddcσ (j)
r (1.1)

where, each occurrence ofδ denotes either the operatord or the operatordc,
σ
(j)

k = u
(j)

k − v
(j)

k , theu
(j)

k andv(j)k , j ∈ N ∪ {∞}, are locally bounded pluri-
subharmonic functions such that

u
(j)

k −→
k→+∞

u(j)∞ , (1.2)

v
(j)

k −→
k→+∞

v(j)∞ , (1.3)

and where the convergence is monotone ink. If {ϕj }j∈N is a sequence of quasi-
continuous functions which converges locally quasi-uniformly to the quasi-con-
tinuous functionϕ then

lim
j→+∞ϕjTj = ϕT∞

as currents of order0.

2. The classPω(M)

Let M be a complex manifold, dimM = n, and letω be a closed positive
(1,1)−current onM. It is known (see [18], p.387) thatω admits local potentials.
In this paper, we make the following assumption.

The currentω admits local potentials which are locally bounded. (2.1)

Hence we assume that, for any open subsetX biholomorphic to an open Eu-
clidean ball inCn, there existsa ∈ PSH(X)∩L∞(X, loc) such thatddca = ω|X.
Note that two local potentials forω differ (on their common definition set) by a
pluriharmonic function. This fact is used in the following definitions.

Definition 3 A measurable functionϕ : M → R ∪ {−∞} belongs toPω(M)

if there exists an open coveringW = {Wi}i∈I by subsets biholomorphic to
Euclidean balls inCn, and local potentialsai ∈ PSH(Wi) ∩ L∞(Wi, loc), such
thatai + ϕ is plurisubharmonic.

Note that a function which belong toPω(M) is quasi-continuous.
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Definition 4

(1) A functionϕ : M → [−∞,+∞[ will be said upper semicontinuous with
respect toω, if, for anyp ∈ M, there exists an open neighbourhoodW ofp,
a local locally bounded potentiala ∈ PSH(W) ∩ L∞(W, loc) for ω, such
that a + ϕ is upper semicontinuous onW . A functionh onM will be said
lower semicontinuous with respect toω if −h is upper semicontinuous with
respect toω.

(2) Let ϕ : M → [−∞, +∞[ be a function which is locally bounded from
above. Defineϕ∗, the upper regularization ofϕ with respect toω, as follow.
If a is a local locally bounded potential forω on an open subsetW , then

ϕ∗ = (a + ϕ)∗ − a (2.2)

where(a + ϕ)∗ stands for the usual upper regularization ofa + ϕ onW in the
classical topology(a + ϕ)∗(p) = lim sup

z→p

(a + ϕ)(z).

Let a functionh ∈ L1(M, loc) satisfiesω + ddch ≥ 0 in the sense of currents.
Thenh∗, the upper regularization ofh with respect toω, belongs toPω(M).

With this notion of upper regularization w.r.tω, we will have classical stability
properties ofPω(M) with respect to upper envelope (see Lemma 6). Note that
Choquet’s lemma is valid.

Lemma 2 Let{uα}α∈A bea familyof real valued functionsonacomplexmanifold
M. Assume thata + uα is upper semicontinuous for any local potentiala of ω
and anyα ∈ A. Assume this family is locally bounded from above onM. Then
there exist a countable subsetB ⊂ A such that(supα∈A uα)∗ = (supα∈B uα)∗
(upper regularization w.r.t.ω).

Let ωi , 1 ≤ i ≤ r, be closed positive(1,1)−currents which satisfy condition
(2.1). From Theorem 1, ifϕi ∈ Pωi (M) ∩ L∞(M, loc) then expression of the
form

T = δϕ1 ∧ . . . ∧ δϕk ∧ (ωk+1 + ddcϕk+1) ∧ . . . ∧ (ωr + ddcϕr), (2.3)

whereδ is eitherd or dc, defined a current which belongs to the classG(M). T
is the unique current which is locally equal to

T = δ ((a1 + ϕ1) − a1) ∧ . . . ∧ δ ((ak + ϕk) − ak)∧
ddc(ak+1 + ϕk+1) ∧ . . . ∧ ddc(ar + ϕr), (2.4)

whereai denotes a local locally bounded potential forωi , 1 ≤ i ≤ r.
For these currents, usual calculus rules are satisfied. In particular,
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Lemma 3 Let ϕ ∈ Pω(M) ∩ L∞(M, loc), χ ∈ C∞(R,R). Then for anyθ ∈
C∞

0 (M), the following algebraic identity holds∫
θχ(ϕ)

(
ω + ddcϕ

)n =
∫

θχ(ϕ)ωn

−
∫
(dθ)χ(ϕ)dcϕP (ϕ) −

∫
θχ ′(ϕ)dϕ ∧ dcϕP (ϕ), (2.5)

where

P(ϕ) =
∑

α+β=n−1

(
ω + ddcϕ

)α
ωβ. (2.6)

Proof. It is enough to check the above formula locally. LetB be the Euclidean
unit ball in Cn. Assume, suppθ ⊂⊂ B, ω = ddca, with a ∈ PSH(B) ∩ L∞(B,

loc), so thata + ϕ ∈ PSH(B) ∩ L∞(B, loc). Let (a + ϕ)ε , aε , 1 > ε > 0, be
family of smooth plurisubharmonic functions defined onB, which decrease, as
ε → 0, to a + ϕ anda respectively on an open neighbourhoodW ⊂⊂ B of
suppθ .
LetM = ‖(a + ϕ)1‖W,∞ + ‖a1‖W,∞ + ‖a + ϕ‖W,∞ + ‖a‖W,∞ < +∞.

From [5], Theorem 7.2, for anyη > 0, there existsΩ, an open subset ofW ,
such thatC(W,Ω) < η, and the above convergences are uniform onW \ Ω.
Defineψε = (a + ϕ)ε − aε , then

‖χ(ψε) − χ(ϕ)‖W\Ω,∞ ≤ ( max[−M,M] |χ
′|)‖ψε − ϕ‖W\Ω,∞ −→

ε→0
0 . (2.7)

Since theψε andϕ are uniformly bounded onW , for anyχ ∈ C∞(R,R), χ(ψε)

converge quasi-uniformly onW toχ(ϕ). But for smooth functions, an integration
by parts gives∫

θχ(ψε)
(
ddc(aε + ψε)

)n =
∫

θχ(ψε)
(
ddcaε

)n
−
∫
(dθ)χ(ψε)d

cψεP (ψε) −
∫

θχ ′(ψε)dψεd
cψεP (ψε). (2.8)

where

P(ψε) =
∑

α+β=n−1

(
ddc(aε + ψε)

)α (
ddcaε

)β
. (2.9)

As ε → 0, χ(ψε) andχ ′(ψε) converge quasi-uniformly toχ(ϕ) andχ ′(ϕ) re-
spectively, onW . Moreover,dcψεP (ψε)converges todcϕP (ϕ), (ddc(aε + ψε))

n

converges to(ω + ddcϕ)n and(ddcaε)
n converges toωn. From Theorem 1, we

obtain formula (2.5) above. ��
We state next a basic lemma.
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Lemma 4 LetM be a complex manifold, and letX be an open subset ofM with
compact boundary. Letω be a closed positive(1,1)−current which admits local
locally bounded potentials.
Letϕ ∈ Pω(X) ∩ L∞(X, loc) such that

(1) there exists a neighbourhoodW of ∂X, withϕ|W∩X ≥ 0,
(2) lim supz→∂X ϕ = 0,
(3) ∀p ∈ X, {ϕ ≤ ϕ(p)} ⊂⊂ M.

Letχ : R → R+ be a positive smooth decreasing function. Then

+∞ ≥
∫
X̄

χ(ϕ̃)(ω + ddcϕ̃)n ≥
∫
X̄

χ(ϕ̃)ωn

whereϕ̃ denotes the extension by 0 ofϕ toM.

Proof. Note thatϕ̃ belongs toPω(M) ∩ L∞(M, loc). For

ϕ̃ =
ϕ z ∈ X \ W

max(ϕ,0) = ϕ z ∈ X ∩ W

0 z ∈ M \ X
.

Hence, for any local locally bounded potentiala for ω on an open chartsW ′,

a + ϕ̃ =
a + ϕ z ∈ (X \ W) ∩ W ′

max(a + ϕ, a) = a + ϕ z ∈ (X ∩ W) ∩ W ′
a z ∈ (M \ X) ∩ W ′

which is a plurisubharmonic function inW ′ (see [21], p.69).
Hence, we will assume thatϕ ∈ Pω(M) ∩ L∞(M, loc) and that it vanishes on
M \ X. Let W1 be a relatively compact open neighbourhood of∂X. Let θ be
a smooth positive function with suppθ ⊂ X ∪ W1, θ ≡ 1 on a neighbourhood
of X̄. Note that it’s enough to prove the lemma under the following technical
assumption.

(3’) There exists an increasing sequence{χk}k∈N of smooth positive decreasing
functions such that suppχk(ϕ)∩X is a relatively compact subset inM and
lim

k→+∞χk(ϕ) = χ(ϕ) onM.

Then, since suppθχk(ϕ) is a compact set inM, Lemma 3 gives∫
θχk(ϕ)

(
ω + ddcϕ

)n =
∫

θχk(ϕ)ω
n

−
∫
(dθ)χk(ϕ)d

cϕP (ϕ) −
∫

θχ ′
k(ϕ)dϕ ∧ dcϕP (ϕ) , (2.10)
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where

P(ϕ) =
∑

α+β=n−1

(
ω + ddcϕ

)α
ωβ. (2.11)

Note thatdϕ ∧ dcϕP (ϕ) is a positive current onM. But χ ′
k is negative, hence

−
∫

θχ ′
k(ϕ)dϕ ∧ dcϕP (ϕ) ≥ 0. Sinceϕ is vanishing on a neighbourhood of

suppdθ , the second term of the right hand side vanishes. Hence∫
θχk(ϕ)(ω + ddcϕ)n ≥

∫
θχk(ϕ)ω

n . (2.12)

The above integrals being finite, letting firstθ decreasing to the characteristic
function ofX̄; and thenk → +∞, since(χk)k∈N is increasing, we get the result.

��
Example 1Let M = Cn, X = B(1), whereB(1) is the unit ball, and let
ω = ddc‖z‖2 the standard K¨ahler metric. Then 1− ‖z‖2 belongs toPω(X) and

satisfies the conditions of the above lemma. Its extension by zero is̃(1 − ‖z‖2) =
max(0,1−‖z‖2)so that‖z‖2+ ˜(1 − ‖z‖2) = max(‖z‖2,1). Lemma 4, forχ = 1,
gives ∫

∂B(1)
(ddc max(1, ‖z‖2))n ≥

∫
B(1)

(ddc‖z‖2)n ,

which is in fact an equality.

3. Pseudoconvex hulls

Let M be a complex manifold, dimCM = n ≥ 2, and letM1 be an open subset
of M.
We recall thatM1 is said to belocally pseudoconvex inM, if there exists an open
coverW of M by Stein open subsetsW such thatM1 ∩ W is a Stein manifold,
for anyW ∈ W.
Note that any connected component of the interior of an intersection of a family
of locally pseudoconvex open subsets ofM is a locally pseudoconvex open subset
of M.

Definition 5 LetU be an open subset ofM. Then there existŝU , the smallest
locally pseudoconvex open set inM which containsU . We says that̂U is the
pseudoconvex hull ofU inM.

Lemma 5 Let (W ′, (z)) be a holomorphic charts, withW ′ a relatively compact
Stein open set ofM \ Ū . Then, for any open relatively compact subsetW inW ′,
and any polynomialP in the complex coordinates(z),

max
W̄∩∂Û

|P | = max
∂W∩∂Û

|P | .
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Proof. We argue by contradiction, and prove that if the above condition is not
satisfied, we may push a hypersurface inÛ which is disjoint fromU . Denote
K = ∂Û . Assume there exists a polynomialP such that||P ||K∩W̄ = P(z0) = 1
for somez0 ∈ K ∩ W and||P ||K∩∂W < 1.

K ∩ ∂W being compact, there exists 0< ε < 3−1d(z0, ∂W) s.t. |P | < 1 on
Sε = {z ∈ W̄ , d(z,K ∩ ∂W) < ε}. LetW2−1ε = {z ∈ W, d(z, ∂W) > 2−1ε},
and letAk = {z ∈ W, P (z) = 1 + 1

k
}, k ∈ N∗. Ak is an algebraic hypersurface

in W \ K ∪ Sε , and
⋃

k∈N∗ Ak ∩ ∂W2−1ε ⊂⊂ W \ K ∪ Sε . There existsα0 >

0 s.t.
⋃

k∈N∗(Ak + BCn(0, α0)) ∩ ∂Wε ⊂⊂ W \ K ∪ Sε . SinceW ′ ∩ Û is a
Stein open set and since

⋃
k∈N∗ Ak ! z0, there exists a sequence of integers

k1, k2, . . . , and irreducible componentCki of Aki such thatCki ∩ W̄ε ⊂ W̄ε \ ¯̂
U

and lim
i→+∞ d(z0, Cki ) = 0. Hence(Cki + BCn(0, α0)) ∩ ∂Wε ⊂ ∂Wε \ Û . Since⋃

k∈N∗ Ak ∩ Wε is a compact subset ofWε \ Sε , there existsα0 > α1 > 0
such that

⋃
i∈N∗(Cki + BCn(0, α)) ∩ Wε ⊂⊂ W \ Sε .

Takei big enough such thatd(z0, Cki ) < 2−1α1, takez1 ∈ Cki ∩ B(z0,2−1α1),
z2 ∈ Û ∩ B(z0,2−1α1). Then(Cki + −→z1z2) ∩ Wε ∩ Û is non empty and
(Cki + −→z1z2) ∩ ∂(Wε ∩ Û ) ⊂ ∂Û ∩ Wε , since

∂(Wε ∩Û ) ⊂ (∂Wε ∩ ¯̂
U)∪(∂Û ∩W̄ε) and∂Û ∩W̄ε = (∂Û ∩Wε)∪(∂Û ∩∂Wε).

In particular,H = (Cki + −→z1z2) ∩ Wε ∩ Û is a hypersurface in̂U which
does not intersectU . HoweverÛ \ H is locally pseudoconvex, containsU and
is strictly smaller thanÛ , which is a contradiction. ��
Remark 1The proof of the above lemma shows that, if dimM = 2, then, for any
open Stein subset ofM \ Ū , W \ ∂Û is Stein. Hence∂Û is a pseudoconcave set
in the sense of Oka inM \ Ū (see [29], p. 88).

Other kinds of pseudoconvex hulls (w.r.t.ω) are constructed as follow.

Lemma 6 Let {ϕα}α∈Λ ⊂ Pω(M). Then the open set

X = {p ∈ M : ϕ = sup
α∈Λ

ϕα is locally bounded from above atp}

is locally pseudoconvex inM. Further, onX, ϕ∗ the upper regularization ofϕ
w.r.t.ω belongs toPω(X).

Lemma 7 LetM be a complex manifold, and letω be a closed positive
(1,1)−current inM. Assume there exists an analytic subsetB inM such thatω
admits local locally bounded potentials onM \ B. Let {ϕα}α∈Λ ⊂ Pω(M \ B).
LetX denote the open set inM \ B where this family is locally bounded from
above. Then, the interior ofX ∪ B inM is a locally pseudoconvex open subset
inM.



220 P. Dingoyan

Proof. The lemma is local, hence we assumeM is the unit ball and that{ϕα}α∈Λ is
a set of plurisubharmonic functions onM \B. LetU be the maximal open subset
of M \ B for which this family is locally uniformly bounded from above. Letϕ

be the upper envelope of this family, and letϕ∗ denote its upper regularization,
which is a plurisubharmonic function inU .

WriteB = B1∪B2, with codimB1 = 1 and codimB2 ≥ 2. First, we prove that,
in M \B1, the interiorU ′ of U ∪B2 is locally pseudoconvex. Leth : (H,∆n) →
M\B1 be a Hartogs’figure (see [28] p.49) such thath(H) ⊂⊂ U ′ andh(∆n) ⊂⊂
M \B1. Since codimB2 ≥ 2, each plurisubharmonic functionϕ′ inM \B admits
a plurisubharmonic extension, which we denoteϕ̃′, to M \ B1. ϕ̃′ satisfies that
for any relatively compact open subsetX in M \ B1, supX ϕ̃ = supX\B2

ϕ′. This
fact applies toϕ∗. Hence for anyα, maxh(H) ϕ̃

∗ ≥ suph(H) ϕ̃α ≥ suph(∆n) ϕ̃α. In
particular, any point ofh(∆n) \ B2 belongs toU , soh(∆n) ⊂ U ′.

Next, by using the disc characterisation of pseudoconvexity, it is classical
that ifX is an open pseudoconvex subset inM \ B1, then the interior ofX ∪ B1

is pseudoconvex, whenB1 is a complex hypersurface. ��
Remark 2In particular, this setX is invariant under bimeromorphic maps.

Lemma 8 Let W be an open subset ofM biholomorphic to the unit ball in
Cn. LetD ⊂⊂ W be a strongly pseudoconvex open subset ofW . Then, for
anyψ ∈ Pω(M), there exists a unique functionTD(ψ) ∈ Pω(M) such that
TD(ψ) = ψ onM \ D and(ω + ddcTD(ψ))

n = 0 onD. FurtherTD(ψ) ≥ ψ .

Proof. Let a ∈ PSH(W) ∩ L∞(W, loc) be a potential forω on W . From [5],

Proposition 9.1, a unique plurisubharmonic functioña + ψ exists such that

(ddc(ã + ψ))n = 0 onD, ã + ψ = a + ψ onW \ D, andã + ψ ≥ a + ψ on
W . Note thatã + ψ − a = ψ onW \ D and we define

TD(ψ) =
{

max(ψ, ã + ψ − a) = ã + ψ − a z ∈ W

ψ z ∈ M \ W
��

Lemma 9 LetU be an open subset ofM. LetΛ ⊂ Pω(M) be a family which is
stable with respect to themaxoperation.
Assume that any pointp ∈ M \ Ū admits a pair of open neighbourhoods

(W,D) as in Lemma 8, withW ⊂ M \ Ū , such that, for allu ∈ Λ, the function
TD(u), belongs toΛ.
Assume thatX, the open subset whereΛ is locally bounded from above,

containsU . Denoteϕ∗ = (supψ∈Λ ψ)∗ ∈ Pω(X), the upper regularization (w.r.t.
ω) of the upper envelope of this family.
Then the positive measure(ω + ddcϕ∗)n has support inŪ .
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Proof. SinceΛ is stable by the max operation, from Choquet’s Lemma 2, we
get an increasing sequence{uj }j∈N ⊂ Λ with (limj→+∞ uj )

∗ = ϕ∗. From the
hypothesis, let(W,D) open neighbourhoods ofx ∈ X \ U such that∀u ∈
Λ, TD(u) ∈ Λ. Replacing eachuj by ũj = TD(uj ) ∈ Λ, then

the sequence{ũj }j∈N is increasing, sincẽuj may be obtained by a Perron method,
it increases toϕ∗ outside a pluripolar set, sinceϕ∗ = ( lim

j→+∞ ũj )
∗ and the negli-

gible set{( lim
j→+∞ ũj ) < ( lim

j→+∞ ũj )
∗} is pluripolar.

Hence, from [5],Theorem 7.4, lim
n→+∞(ω + ddcũj )

n = (ω + ddcϕ∗)n is vanishing

onD. Since this property is valid for any such pair(W,D), with W ∩ Ū = ∅,
the assertion is proved. ��

3.1. Some extremal functions

Let ω be a closed positive(1,1)−current on the complex manifoldM. Assume
thatω admits local locally bounded potentials near every point inM (see (2.1)).

Definition 6 LetU be a domain inM, and leth be a function onU which is
locally bounded and lower semicontinuous w.r.t.ω. Define

X(h, ω) ={p ∈ M : ϕ = supψψ∈Pω(M,U,h) is locally bounded from above at p},
wherePω(M,U, h) = {ψ ∈ Pω(M) such thatψ|U ≤ h}.

Let ϕ∗ be the upper regularization ofϕ (w.r.t. ω) in X(h, ω) and call it the
extremal function associated toU , ω andh. DefineU(h, ω) to be the connected
component ofX(h, ω) which containsU .

By assumption,Pω(M,U, h) is locally bounded from above onU , henceX(h, ω)

containsU . Whenh = 0, andM is a pseudoconvex domain inCn, we obtain the
usual hull of holomorphy ofU with respect toM. ForM a projective manifold,
h = 0, this hull is similar to hull introduced in [19]. We refer to this article
for further properties when this hull is assumed to be compact in some locally
pseudoconvex domain.
From Lemma 9, the extremal functionϕ∗ satisfies (ω + ddcϕ∗)n = 0 on
U(h, ω) \ U . Moreover, inU , we have(ω + ddcϕ∗)n = 0 on the open subset
{ϕ∗ < h} (see [5], Corollary 9.2).

Definition 7 Let U be a domain inM and ψ ∈ Pω(M). Fix D = {Di}i∈N

an open cover ofM \ Ū by open strongly pseudoconvex subsetsDi , which are
relatively compact in complex holomorphic chartsfi : Wi → BCn(0,1). Assume
that eachDi is repeated infinitely often in the sequenceD. Define by induction,
ψ−1 = ψ , andψi = TDi

(ψi−1), for i ∈ N. LetX(ψ) denote the open subset
where the family{ψi}i∈N is locally bounded from above, and letU(ψ) be the
connected component ofX(ψ) which containsU . DefineB(ψ) = (supi∈N ψi)

∗,
which belongs toPω(U(ψ)).
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Note that this family is an increasing sequence w.r.t.i ∈ N. Hypothesis of Lemma
9 are satisfy, hence(ω + ddcB(ψ))n = 0 onU(ψ) \ Ū . Moreover,B(ψ) ≥ ψ

onU(ψ). AlthoughB(ψ) depends in general of the cover chosen, we will not
indicate this dependence.

Remark 3

i. Notice that the balayage procedure in Definition 7 when applied to a function
(e.g. the zero function), gives a function which is strictly greater than the
original one in points whereω is a strictly positive current.

ii. Let X be a relatively compact domain inM with smooth boundary. Assume
for simplicity thatω is smooth and strictly positive. Then applying the Green
formula for X̄ with respect to the K¨ahler metricω (see [4]), we see that a
family F ⊂ Pω(M) is locally bounded from above inX if it is bounded
for theL1 norm induced on∂X. In particular, the above balayage procedure
applied toM \ X̄ is always locally bounded.

3.2. The case of a Chern class

In this section, we interpret the above results whenω is a Chern current of a line
bundle. Note that a closed positive(1,1)−currentω is the Chern current of a
hermitian line bundleL over a complex manifoldM if it lies in H 2(M,Z) via
the De-Rham isomorphism.
Let (E, h) → M be a complex hermitian line bundle with positive (singular)
metric curvature. Denoteπ : E∗ → M the bundle map fromE∗ toM, the dual
line bundle ofE, and denote|ζ |2 the norm ofζ ∈ E∗ induced byh.
Let A be a subset ofM. DenoteTA(α) = {ζ ∈ E∗

|A, |ζ | < α}, and denote
TA = TA(1). Let T̂U be the pseudoconvex hull ofTU in the complex manifold
E∗.

Lemma 10 T̂U is a disqued pseudoconvex subset ofE∗.

Proof. Consider the action ofC∗, in the fibre ofE, (λ, ζ ) → λ.ζ . Let λ ∈ C∗,
thenλTU ⊂ λT̂U , hencêλTU ⊂ λT̂U . ButTU ⊂ λ−1̂λTU , henceλT̂U ⊂ λ̂TU . So
λT̂U = λ̂TU . This is a classical result that ifW is a pseudoconvex domain inCn,
H an irreducible hypersurface inW andK a compact subset inW , with H ∩K

non void, then the pseudoconvex hull of(W \H)∪K isW . HencêTU contains
0.T̂U since it contains 0.TU . ��
SinceT̂U ⊂ π−1(Û) and 0.T̂U # Û , from the above lemma, we see that̂TU is a
twisted pseudoconvex Hartogs’domain overÛ . Moreover̂TU ⊂ TM(1). Assume
that iC(E) admits local locally bounded potentials, then there exists an u.s.c
(w.r.t. iC(E)) functionϕ ∈ PiC(E)(Û ) such that̂TU = {ζ ∈ E∗, ln |ζ |2 + ϕ <

0}. Indeed, lettW : E∗
|W # W × C be a local trivialization ofE∗ over the open
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subsetW biholomorphic to an open ball inCn. SincetW is a morphism of vec-
tor bundle,tW (T̂U |W) is a Hartogs’ locally pseudoconvex domain with baseW .
HencetW (T̂U |W) = {(p, z) ∈ W×C, ln |z|2+ψW(P ) < 0} withψW a plurisub-
harmonic function inW . In the local trivializationtW : E∗

|W # W×C, assume that
|t−1
W (p, z)|2 = aW,tW (p)|z|2 whereaW,tW is a logarithmic plurisubharmonic func-

tion inW , with ddc ln(aW,t ) = iC(E, h). Defineϕ = ψW − ln aW,tW . One check
that this functionϕ does not depends on the choosen trivialisation, hence define
an elementϕ ∈ PiC(E)(Û ) such that̂TU = {ζ ∈ E∗, log |ζ |2 + ϕ(π(ζ )) < 0}.

Note thatϕ is maximal in the following sense.

LetW be an open set in̂U \ Ū , and letψ ∈ PiC(E)(W). If W ′ is a relatively
compact open subset ofW and if lim inf

z→∂W ′ ϕ(z) − ψ(z) ≥ 0 thenϕ ≥ ψ in G.

For the function

ϕ′ =
{

max(ϕ, ψ) z ∈ W ′
ϕ z ∈ W \ W ′

belongs toPiC(E)(Û )and is zero onU . Hence{ ζ ∈ E∗
Û

: ln |ζ |2+ϕ′◦π(ζ ) < 0}
is pseudoconvex, containsTU , hence containŝTU . Soϕ′ = ϕ.

Lemma 11 Assume thatiC(E) admits local locally bounded potentials, then
the positive measure(iC(E)+ ddcϕ)n has support inŪ , the closure ofU in Û .

Proof. Let D, W be domains as in Lemma 8 withW ∩ Ū = ∅. Sinceϕ is
maximal,TD(ϕ) = ϕ. However,(ω + TD(ϕ))

n vanishes onD, by construction.
��

Lemma 12 Let TU(0,0) denote the hull ofTU with respect to globally defined
plurisubharmonic functions onE∗ (see Sect. 3.1). ThenTU(0,0) is a disqued
subset overU(0, ω) which contains the image ofU(0, ω) by the null section.
MoreoverTU(0,0) = {ζ ∈ E∗, ln |ζ |2 + ϕ∗(π(ζ )) < 0}, whereϕ∗ is the
extremal function associated withU andω (see Sect. 3.1).

Proof. By definition TU(0,0) ⊂ {ζ ∈ E∗, ln |ζ |2 + ϕ∗(π(ζ )) < 0} = A.
To prove the equality, we argue by contradiction. Letζ0 ∈ A \ TU(0,0). A
being open, there exists a neighbourhoodW of ζ0 in A, a non constant pluri-
subharmonic functionψ on E∗, such that{ψ < 0} containsTU but does not
containsW . ψ being plurisubharmonic,{ψ ≥ 0} is the closure of{ψ > 0}.
Hence there existsζ1 ∈ W ∩ {ψ > 0}. Let us replaceψ byψ ′ = log |ζ |2 +Nψ .
Then{ψ ′ < 0} containsTU and forN large enough, still not containsζ1. That
is TU ⊂ {ψ ′ < 0} ∩ A %= A. Hence,TU ⊂

⋂
θ∈[ 0, 2π ]

eiθ {ψ ′ < 0} ∩ A %= A. How-

ever
⋂

θ∈[ 0, 2π ]
eiθ {ψ ′ < 0} is a twisted Hartogs’ pseudoconvex domain overM. It

containsTU , hence, it is defined by a functionϕ′ ∈ PiC(E)(M,U,0). ��
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4. Bounds of Monge-Ampère masses

Recall that ifM is a complex manifold, a non relatively compact connected
component ofM \K whereK is a compact set inM, is called an end ofM. Let
ω be a closed positive(1,1)−current onM, which admits local locally bounded
potentials. LetF ⊂ Pω(M), and letX(F) denote the open subset inM where
this family is locally bounded from above.

Definition 8 An end ofX(F) will be called a pseudoconcave end with respect
toF .
Consider the following situation. LetM be a complex manifold, letU be an
open subset ofM, and letF = Pω(M,U,0). LetU(0, ω) as defined in Sect. 3.1.
Working in the relative topology ofU(0, ω), assume thatU(0, ω) \ Ū admits a
connected componentX with compact boundary (henceX is a pseudoconcave
end with respect toPω(U,M,0), if it is non relatively compact).
Let ϕ∗ be the extremal function associated withU(0, ω). Recall thatϕ∗ is ev-
erywhere positive and restricted toU is identically vanishing. Assume that

∀p ∈ X, {ϕ∗ ≤ ϕ(p)∗} ∩ X̄ is a relatively compact subset ofU(0, ω).

LetM1 = U ∪ X̄. We have∂M1X = ∂U(0,ω)X. LetXε = {z ∈ M1 : d(z,X) <

ε}. For ε small enough, this open subset has a relatively compact boundary in
M1, andϕ∗ satisfies hypothesis of Lemma 4. Hence,

+∞ >

∫
X̄ε

χ(ϕ∗)(ω + ddcϕ∗)n ≥
∫
X̄ε

χ(ϕ∗) ωn

for any positive smooth decreasing functionχ : R → R+.

The integrals are finite since on̄Xε , the positive measure(ω + ddcϕ∗)n has
support onX̄ε ∩ Ū , which is a compact set. Lettingε going to zero, we obtain
the following Proposition (we work in the topology ofU(0, ω)).

Proposition 1 LetU(0, ω) be as above and letX be a connected component of
U(0, ω) \ Ū with compact boundary. Letϕ∗ be the extremal function associated
with U(0, ω). Assume that{ϕ∗ ≤ ϕ(p)∗} ∩ X̄ is a relatively compact subset of
U(0, ω) for everyp ∈ X. Then, for any positive decreasing smooth function
χ : R → R+, we have∫

X̄

χ(ϕ∗)ωn ≤
∫
∂X

χ(ϕ∗)(ω + ddcϕ∗)n < +∞ . (4.1)

Remark 4LetM be a complex manifold and letω be a closed positive(1,1)−
current which satisfies condition (2.1).Assume thatϕ ∈ Pω(M) is exhaustive and
satisfies the Monge-Amp`ere equation(ω + ddcϕ)n = 0. Then Lemma 3 implies
thatωn = 0.
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For compact singularities in the unit ball, we obtain the following well known
fact (seee.g.[30]).

Corollary 1 Let u ∈ PSH(B(1)), such that its polar setL = {u = −∞} is a
compact subset ofB(1

2), andu is locally bounded onB \ L.
Then

∫
B( 1

2 )\L
(ddcu)n < +∞.

Proof. We work inM = B(1) \L. The pseudoconvex hull ofU = B(1) \ B̄(1
2)

is M. Now, −u ∈ Pω(M), whereω = ddcu, and this function satisfies that
{−u < c} ∩ B̄(1

2) is relatively compact inM for anyc ∈ R. So does−u − C

for some constant, chosen such that−u − C is negative on a neighbourhood of
∂B(1

2). Letϕ∗ be the extremal function associated toω andU . Butϕ∗ ≥ −u−C,
hence from Proposition 1,∫

B̄( 1
2 )\L

ωn ≤
∫
∂B( 1

2 )

(ω + ddcϕ∗)n < +∞ . ��

5. Pluricomplete currents

In this section, we consider a currentω on a manifoldM which admits local
locally bounded potentials (see 2.1) onM \ B, whereB is an analytic subset in
M. If B may be written as intersection of hypersurfaces (e.g.an indeterminacy
set of a meromorphic map with value in a projective manifold), we construct
a functionϕ ∈ Pω(M \ B) which goes to+∞ nearB. Hence, under suitable
pseudoconcavity conditions, we will be able to bound Monge-Amp`ere masses
of ω|M\B . To avoid numerous hypothesis, we will restrict ourself to spread
manifolds over a projective manifold.

5.1. Spread spaces and distance to the boundary

Definition 9 LetM be a manifold. A complex manifoldπ : U → M is spread
overM if the mapπ is a local biholomorphism. We say thatπ : U → M is
locally pseudoconvex overM (with respect toπ ), if there exists an open covering
W ofM by Stein open subsetsW ∈ W such thatπ−1(W) is a Stein manifold for
anyW ∈ W.

We say thatπ : U → M is a domain overM, if U is connected. Examples of
spreading are a canonical injectioni : U ↪→ M of an open subsetU of M, a
restrictionπ|U ′ : U ′ → M of a covering mapπ : U → M to an open subset. In
the first case,i : U ↪→ M is locally pseudoconvex overM if and only ifU is a
locally pseudoconvex open subset ofM.
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We recall notion of boundary distance for a spread space. Letπ : U → (M,ω0)

be a spread space over a K¨ahler manifold. We still denoteω0 the pullback byπ of
ω0. ForQ ∈ U , let d∂U(Q) = sup{r > 0, s.t. expQ : B(0, r) → U is defined}.
This function is either identically∞ or Lipschitzian.

Theorem 2 ([26,35])Let(M,ω0) be aKählermanifold andK a compact subset
in M. Then, there exists real constantsδ > 0 andα, such that, for any locally
pseudoconvex spread domainπ : U → M, subject to the conditionπ(U) ⊂ K,
the function− logd∂U (if U admits someboundary points overM) satisfiesddc−
logd∂U ≥ −αω0 for any pointp in U such thatd∂U(p) < δ.

5.2. A spannedness property for divisors

We fix notations. LetV be a projective manifold of dimensionn ≥ 2. Denote
O(1) the line bundle overV which gives the projective embedding ofV and let
ω0 be a Kähler metric onV . If π : U → V is a spreading, we still denoteO(l)

andω0 the pullbacks byπ of O(l) andω0. If s is a section of some line bundle on
a manifoldM, we denote ordps its vanishing order at a pointp, if Y is a complex
hypersurface inM, we denote multpY its multiplicity atp. For a divisorD on
M, denoteνp(D) its multiplicity at p. If s is a meromorphic section of a line
bundle overM, we denote(s) its divisor andZs its zero set.

Theorem 3 Let (V ,O(1)) be a projective manifold. Then there existsl1 ∈ N,
such that for anyl ≥ l1, for any locally pseudoconvex domainπ : U → V over
V , any hypersurfaceY ↪→ U , and anyp ∈ U , there exists añs ∈ H 0(U,O(l)⊗
[Y ]) of minimal growth such thatordps̃ ≤ multpY − 1.

Proof. We give the main arguments of the proof, since similar methods appears
in [3,27] for the univalent case and in [16] in the above case.
SinceV is compact andO(1) is strictly positive, there exists a real numberβ

such thatiRicci(ω0) ≥ −iβC(O(1)). Let l0 = Ent(1+n+β)+1, where Ent(r)
denotes the integer part of a real numberr.

Letδ andα denote the real constants which appear inTheorem 2. Let1
4 ≥ ε0 >

0 such that 4αε0 < 1. Letl1 = Ent(max(4αε0 +1+n−1+β,1+n))+1 ≥ l0.
Let l ≥ l0.

First, note that there exists a finite number of square integrable holomorphic
sections ofO(l) overU which give an immersion ofU in some projective space,
see [17]. Hence, ifp /∈ Y , one of those sections satisfies our requirements.

Assumep ∈ Y . Let t1, ..., tn be sections ofO(1)which give local coordinates
centred inπ(p) and denote by the same letter their pullback byπ . LetW be some
small open neighbourhood ofp in U , biholomorphic byπ to some coordinate
open set. Lets1 be a smooth section ofO(l + 1) with compact support inW ,
holomorphic and non zero in a neighbourhood ofp.
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Let k = ε + n − 1, with 0< ε ≤ ε0. For l ≥ l0 , we solve thē∂−equation
∂̄s1 = ∂̄s2 with weight exp−(k + 1) log‖t‖2 byL2 methods (see [10]).

Hence the holomorphic sections3 = s1 − s2 on U , is non-vanishing atp.
Moreover, from theL2 estimates, we deduce

I =
∫
U

|s1 − s2|2
‖t‖2(k+1)

e−(−4ε log min(δ,d∂U\Y ))dVω0 < +∞ ,

since‖t‖2(p) = (|t1|2 + ... + |tn|2)(p) ≥ C1d
2
∂U\Y (p) in a neighbourhood ofp.

Hence forl ≥ l1, from Skoda [33], there exitsh1, ..., hn ∈ H 0(U \Y,O(l)) such
that

s3 =
i=n∑
i=1

hiti (5.1)

I =
∫
U

‖h‖2

‖t‖2k
e−(−4ε log min(δ,d∂U\Y ))dVω0 < +∞ . (5.2)

From the growth condition, the sectionsh1, . . . , hn define sections̃si of
H 0(U,O(l) ⊗ [Y ]). Let f be a minimal local equation ofY at p and write

hi = gi
f

. Then,f s3 =
i=n∑
i=1

giti . Hence,s3(p) %= 0, one of thegi ’s has a vanishing

order lower than ordpf − 1 = multpY − 1. Next the sectionsgi globalize as
sectionss̃i of H 0(U,O(l) ⊗ [Y ]), and one of them satisfies our requirements.

��
Remark 5SinceV is compact, max

V
‖t‖2k exists, hence∫

U\Y
‖h‖2e−(−4ε log min(δ,d∂U\Y ))dVω0 ≤ max

V
‖t‖2kI (5.3)

So, rescaling the sectionshi by a linear factor, we may assume that the right hand
side is lower than one.

Corollary 2 Under the hypothesis of Theorem 3, letl ≥ l1. LetE → U be a
line bundle, and lets ∈ H 0(U,E) \ {0}. Then, for anyk ∈ N and anyp ∈ U ,
there existšs ∈ H 0(U,E ⊗ O(kl)) such thatνp((š = 0)) ≤ (νp(s = 0) − k)+.

Proof. First, we prove the corollary fork = 1. If the pointp does not belong
to Zs , sinceO(l) is very ample, the corollary is true. Assumep ∈ Zs and let
Y1, . . . , Yr be its global irreducible (reduced) components which containp.Write
Y ′ = Y1 ∪ . . .∪Yr . Let t1, . . . , tr be minimal local equations atp for Y1, . . . , Yr
respectively, so that multpY

′ = ordpt1+. . .+ordptr . Let s̃ ′ ∈ H 0(U,O(l)⊗[Y ′])
a section as in Theorem 3 and denote bys ′ the corresponding meromorphic
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section ofO(l)overU .We may assume that the polar divisor ofs ′ isY1+. . .+Yr ′ ,
with r ′ ≤ r. By hypothesis, there exists strictly positive integersn1, . . . , nr , such
that s = t

n1
1 . . . tnrr e wheree ∈ Ep is a local non vanishing germ atp. In the

same way,s ′ = g

t1 . . . tr
e′ wheree′ ∈ O(l)p is a local non vanishing germ atp,

and ordpg ≤ multpY ′ − 1. Hence,̌s = s ′ ⊗ s ∈ H 0(U,E ⊗ O(l)) ands ′ ⊗ s =
gt

n1−1
1 . . . tnr−1

r e′ ⊗ e. So ordps ′ ⊗ s ≤ multp(Y ′)− 1 + ordp(t
n1−1
1 . . . tnr−1

r ) =
ordps − 1.

Next, assume the corollary is true for some integerk ≥ 1. Let šk denote the
corresponding section ofE ⊗ O(kl). We apply the stepk = 1 toE ⊗ O(kl) and
šk to conclude. ��
Remark 6If we apply this corollary to the line bundle[D], whereD is an ef-
fective divisor, and to its canonical section, we see thatO(kl1)⊗ [D] is globally
generated outside the analytic subset{p ∈ U ; νp(D) > k}.

5.3. Pluricomplete currents

Definition 10 A closed positive(1,1)−currentω on a complex manifoldM is
said to be pluricomplete if there exists a closed setL onM such thatω admits
local locally bounded potentials onM \ L and a functionϕ ∈ Pω(M \ L) with
lim inf

M\L!p′→L
ϕ = +∞.

If Pk is a projective space, we will denoteωFS its Fubiny-Study form without
indication of the dimension.

Lemma 13 LetE → M be a line bundle, with smooth hermitian metric and
positive Chern curvatureω0. Let s0, . . . , sk ∈ H 0(M,E) \ {0} be holomor-
phic sections ofE. Let A denote their common zeros locus inM. Let ψ be
the associated meromorphic map fromM to Pk, given in homogeneous coordi-
nate byp → [si(p)]0≤i≤k . Then, the functionp → − log‖s‖2(p) belongs to
Pψ∗ωFS+ω0(M \ A) and satisfies lim inf

M\A!p′→A
ψ = +∞.

Proposition 2 Let U → V be a locally pseudoconvex domain overV and
let E → U be a line bundle overU . Let s0, . . . , sN ∈ H 0(U,E) \ {0} and
denoteB =

⋂
0≤i≤N

Zsi their common zero locus. Leteα, 0 ≤ α ≤ N ′, be global

sections ofO(l), l ≥ l1, without common zeros. Letψ : U → P(N+1)(N ′+1)−1 be
the meromorphic map given in homogeneous coordinate byp (→ [eαsi]α,i(p),
which is holomorphic onU \ B. Considers the closed positive(1,1)−current
ω = ψ∗ωFS . Then, there existsϕ ∈ Pω(U \ B) with lim inf

U\B!z→B
ϕ(z) = +∞.
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Proof. DenoteB2 the indeterminacy ofψ . HenceB = B1 ∪ B2 with B1 an
hypersurface and codimB2 ≥ 2. ψ is holomorphic onU \ B2. The associated
bundle morphismU × C(N+1)(N ′+1) → O(l) ⊗ E gives an induced hermitian
singular metric onO(l) ⊗ E whose curvatureω = ψ∗ωFS is smooth onU \ B.
To prove the proposition, it’s enough to prove the following claim.

For anyz0 ∈ U \ B, there exists real strictly positive constantsCz0 andεz0 such
that, for anyp ∈ B, there existsϕp ∈ Pω(U \ B), with

lim inf
U\B!z→p

ϕp(z) = +∞ (5.4)

∀ p ∈ B, sup
B(z0,εz0)

ϕp ≤ Cz0, (5.5)

whereB(z0,2εz0) is a ball in a complex analytic chart centred atz0 and disjoint
fromB.

Indeed, if this claim is proved then,ϕ = (sup
p∈B

ϕp)
∗ will be well defined onU \B

due to (5.5). It belongs toPω(U \ B) and satisfies lim inf
U\B!z→B

ϕ = +∞.

First, we construct the functionϕp ∈ Pω(U \ B), p ∈ B. Let Yi = (si = 0),
i = 0, . . . , N . Recall that for each integer 0≤ i ≤ N , p belongs toYi . From
Theorem 3 and Remark 5, we may construct sectionβ̃k

i ∈ H 0(U,O(l) ⊗ [Yi]),
k = 1, . . . , n, subject to the following conditions

sp =
n∑

k=1

βk
i tk (5.6)∫

U\Yi
‖βi‖2e

−(−4ε log min(δ,d∂U\Yi ))dVω0 ≤ 1 (5.7)

where,sp ∈ H 0(U,O(l1 + 1)) is non vanishing atp, andt1, . . . , tn ∈ H 0(U,

O(1)) give local coordinates centred atp. Moreover, we consider̃βk
i as mero-

morphic sectionsβk
i of O(l)overU , and‖βi‖2 = ∑n

k=1 |βk
i |2. Note thatβk

i ⊗si ∈
H 0(U,O(l) ⊗ E). Working in the induce norm, define

ϕp = log

 ∑
1≤k≤n
0≤i≤N

|βk
i ⊗ si |2

 ∈ Pω(U \ B). (5.8)

Away ofB, we have∑
k, i

|βk
i ⊗ si |2 =

∑
k, i |βk

i ⊗ si |2 . ∑k |tk|2∑
k |tk|2 (5.9)

≥
∑

i |
∑

k β
k
i tksi |2∑

k |tk|2 =
∑

i |sp ⊗ si |2∑
k |tk|2 (5.10)
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where the sum is over 1≤ k ≤ n and 0≤ i ≤ N . Line (5.10) is due to (5.6).
Assumee0(p) %= 0. Recall thatsp ∈ H 0(U,O(l + 1)), hence write locally
sp = s ′

p ⊗ e0. Next, in each chartse0si %= 0, 0≤ i ≤ N , sayse0s0 %= 0, we have

∑
0≤i≤N

|sp ⊗ si |2 = |s ′
p|2

∑
i | e0si

e0s0
|2∑

α, i | eαsie0s0
|2 (5.11)

= |s ′
p|2

∑
i | sis0 |2∑

α | eα
e0

|2 . ∑i | sis0 |2
= |s ′

p|2∑
α | eα

e0
|2 (5.12)

The last expression is strictly positive atP , says greater than equal to 2c > 0,
does not depend oni, so

ϕp ≥ − log(‖t‖2) + logc (5.13)

in a neighbourhood ofp.
Next, we prove the uniform bound in theϕp. Let z0 ∈ U \ B, and letW be

an open chart centered atz0. DenoteB(z0, ε1), ε1 > 0, the induced ball inW ,
and assumeB(z0,1) ⊂⊂ W . Let 1

2 > ε1 > 0, such thatB(z0,2ε1) ⊂⊂ U \ B
and such that, says,e0 is non vanishing on̄B(z0,2ε1). Let t be a holomorphic
section ofE, onB(z0,1), non vanishing there. Then

∑
k,i

|βk
i si |2 =

∑
i,k

∣∣∣βki sie0t

∣∣∣2∑
α,i

∣∣∣ eαsie0t

∣∣∣2 (5.14)

Here, only theβk
i , 1 ≤ k ≤ n, 0 ≤ i ≤ N , depend onp ∈ B. In the

left hand side, the norm symbol represents the induced hermitian metric, in the
right hand side it represents a modulus of a holomorphic function. Letm =
maxB̄(z0,ε1)

∑
k,i |βk

i si |2(< +∞), 0 < m1 = minB̄(z0,ε1)

∑
α,i | eαsie0t

|2, and 0<
m2 = minB̄(z0,2ε1)

|e0|2. Then

m ≤ 1

m1
max

B̄(z0,ε1)

∑
i,k

∣∣∣∣βk
i si

e0t

∣∣∣∣2 (5.15)

≤ C(ε1, n)

m1

∑
i

∫
B(z0,2ε1)\Yi

(∑
k

∣∣∣∣βk
i

e0

∣∣∣∣2
) ∣∣∣si

t

∣∣∣2 dVωe (5.16)

≤ C(ε1, n)

m1

∑
i

∫
B(z0,2ε)\Yi

‖βi‖2

|e0|2 γi ×
∣∣∣si
t

∣∣∣2 1

γi
dVωe (5.17)
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with γi = min(δ, d∂U\Yi )
4ε andωe is the usual K¨ahler metric onCn. Next, there

exists a constantA such that
∣∣∣si
t

∣∣∣2 1

γi
≤ A onB(z,2ε1) \ Yi for anyi, since| si

t
|2

is lipchitzian and vanishes onYi . Hence

m ≤ C(ε1, n)

m1.m2
C ′(ε1)A × (N + 1) (5.18)

whereC ′(ε1) bounds the ratio of the Euclidean volume form and the K¨ahler
one andN + 1 appears since the vector(β1

i , . . . , β
n
i ) belongs to the unit ball of

L2(U \ Yi, γidVω0) by (5.7). ��
Corollary 3 LetU → V be a locally pseudoconvex domain over the projective
manifoldV , dimV ≥ 2. LetY be an effective divisor onU . Then[Y ] ⊗ O(kl1)

is spanned by its global sections outsideEk+1(Y ) = {p ∈ U : νp(Y ) ≥ k+ 1}.
If k ≥ 1, it admits a singular hermitian metric of positive curvature, which is
smooth away fromEk(Y ) and is a pluricomplete positive current inU .

Proof. The first assertion is the content of Corollary 2 (in particular[Y ]⊗O(kl1)

admits a singular hermitian metric with a positive Chern current which are smooth
away fromEk+1(Y )). Let k ≥ 1. By a Baire argument, selectN + 1 ≥ n + 1
sections inH 0(U, [Y ] ⊗ O((k− 1)l1)), which together span[Y ] ⊗ O((k− 1)l1)
away fromB ⊂ Ek(Y ). Proposition 2 applied to this set of sections gives a
singular metric on[Y ] ⊗ O(kl1), which is smooth away fromB, and is pluri-
complete. ��

Remark 7

i. In the construction of Proposition 2, we may select the sectionseα such that
the holomorphic map given by them is biholomorphic onto its image (see
[17]). In particular, the currentψ∗ωFS obtained is strictly positive. Moreover,
adding some pullback byπ of elements inH 0(V ,O(l1)), we may always
assume thatψ∗ωFS ≥ Cω0, whereC is a strictly positive constant.

ii. Let ω be a closed positive(1,1)−current on a complex manifoldM.Assume
that it admits local locally bounded potentials onM \ B, whereB is an
analytic subset ofM. Assume that for anyp ∈ B, there exists a function
ϕp ∈ Pω(M \ B) such that lim inf

M\B!z→p∈B ϕp = +∞. For any relatively compact

open subsetU in M \ B, let U1 denote the interior ofU(0, ω) ∪ B, which
is locally pseudoconvex inM (see Sect. 3). Then by definition ofU(0, ω),
there existsϕ ∈ Pω(U1 \ B) such that lim inf

U1\B!z→p∈B ϕ = +∞.

LetE → U be a line bundle which admits a singular metric with a positive current
curvature. LetI denote its Nadel multiplier ideal sheaf (see [13] for a definition).
Using standardL2 methods (see [14], prop. 4.2.1 in the compact case), we see
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thatE ⊗ O(l0)⊗ I is spanned by its global sections. Hence, assume thatE ⊗ I
is spanned by its global sections. Lets ∈ H 0(U,E ⊗ I). To eachp ∈ Zs , we
may associate the meromorphic sectionsβk of O(l1), which are holomorphic on
U \Zs (i.e.associated to sections̃βk ∈ H 0(U,O(l1)⊗[Zs]) and which satisfies
the usual ideal relation (5.6)).We obtain then sectionsβk⊗s ∈ H 0(U,O(l1)⊗E).
Doing this procedure for anys ∈ H 0(U,E ⊗ I) and anyp ∈ Zs , we obtain a
set of global sectionG1 of O(l1) ⊗ E. Let I1 denote the coherent ideal sheaf
it generates. ThenI = I0 ⊂ I1. Working with G1 as before, we obtain a
setG2 of global section ofO(2l1) ⊗ E which defines an ideal sheafI2, and
so on. Then, one get a sequence of coherent ideal sheafsI0 ⊂ I1 ⊂ I2 . . . .
By Notherian properties, this sequence become locally stationary equal to the
structure sheafO (as was shown). For a pointp ∈ U , definem(p) to be the
least integer such that(Ik)p = Op for anyk ≥ m(p). By construction the set
Ml = {p ∈ U : m(p) > l} are analytic subsets inU .

Corollary 4 Under the above hypothesis, the line bundleE ⊗ O(kl1) admits a
singular hermitian metric with a positive Chern current which are smooth away
fromMk. If k ≥ 1, the line bundleE⊗O(kl1) admits a singular hermitianmetric,
with a Chern currentωk, which are smooth onU \Mk−1 andωk is pluricomplete.
There existsϕ ∈ Pωk(U \ Mk−1) with lim inf

U\Mk−1!z→p∈Mk−1
ϕ = +∞.

6. Some Hartogs’ phenomenon in projective manifolds

Definition 11 ([2]) Let X be a normal complex space of pure dimensionn ≥ 2.
ForW ′ ⊂ W open subsets ofX, we define the hull ofW ′ inW by

Ŵ ′
W =

{
x ∈ W : |f (x)| ≤ sup

W ′
|f |,∀f ∈ O(W)

}
.

An open subsetY ⊂ X is said to be pseudoconcave at the boundary point
P ∈ ∂XY if there exists{Wα}α, an open basis ofP in X, s.t.P is an interior
point ofŴα ∩ YWα

. X is said to be pseudoconcave in the sense of Andreotti, if
there existsY , an open relatively compact subset ofX, which is pseudoconcave
in each of its boundary point.

Remark 8No boundary condition onX is assumed.

Proposition 3 ([15]) LetΩ be an open subset of the projective manifoldV . As-
sume thatΩ is pseudoconcave in the senseofAndreotti and locally pseudoconvex
in V , then∂VΩ, the topological boundary ofΩ in V , is a compact hypersur-
face. Hence, ifX is a pseudoconcave open subset of the projective manifoldV ,
thenV \X contains a maximal compact hypersurfaceH (which may be empty).
Moreover, ifdimCV = 2, then each irreducible componant ofH may be blow
down onto a point.
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Notice that for dimV ≥ 3, there exists example of hypersurfaceH such that
V \ H is a pseudoconcave domain in the sense of Andreotti, but no irreducible
component ofH may be blow down. Indeed, letV be a projective manifold
of dimensionn ≥ 2, and let(L, h) → V be a hermitian line bundle with
curvature formω. Assumeω has one strictly positive eigenvalue and another
one strictly negative. Then, the real hypersurface, inL ↪→ P(L ⊕ C), given as
{ζ ∈ L : h(ζ ) = 1} is pseudoconcave, but the zero section (or the hyperplan to
infinity) does not contract to a lower dimensional analytic set in general.
We prove an extension theorem for currents which implies, in the projective case,
a result of Nadel-Tsuji [24].

Theorem 4 LetV = (V ,O(1)) be a projective manifold,dimV ≥ 2. LetH be
a hypersurface inV such thatV \H is pseudoconcave in the sense of Andreotti.
LetU be an open neighbourhood ofH in V . Letω be a(1,1)−closed positive
current onU \ H which admits local locally bounded potentials. Then∫

K\H
ωn < +∞ , (6.1)

for any compact setK in U . Moreover, if1 ≤ k ≤ n thenωk extends as a closed
positive currents throughH .

Proof. We may assume thatU does not intersectY , the subset which gives
the pseudoconcavity condition onV \ H (see Definition 11). LetU1 be a rel-
atively compact subset inU which containsH ∪ K. From proposition 3, let
H ′ = H ∪ H1 the maximal compact hypersurface contained inU1. We may
assume thatK is a compact subset inU1 which contains a neighbourhood
of H ′ and that

◦̄
K=K. Let ω0 be the Chern curvature of the line bundleO(1),

and denoteω1 = ω + ω0. Let X0 = X(0, ω1) be the open subset ofU \ H ′
where the familyPω1(U \ H ′, U1 \ K,0) is locally bounded from above (see
3.1). From Lemma 6,X0 is locally pseudoconvex inU \ H ′ and contains
U1 \ K. Note that(V \ K) ∪ X0 is locally pseudoconvex inV . Since it con-
tains Y , it is pseudoconcave in the sense of Andreotti. From proposition 3,
(V \ K) ∪ X0 = V \ H ′, for H ′ is the maximal compact hypersurface inK.
From Takeuchi’s theorem 2, there existsδ, ε > 0 and a constantC, such that
ψ1 = −ε log(min(δ, d∂V \H ′)) − C ∈ Pω1(U \ H ′, U1 \ K,0), sinceω1 ≥ ω0.
Denoteϕ∗ the extremal function associated toPω1(U \ H ′, U1 \ K,0). Then
{ϕ∗ ≤ c} ∩ K ⊂⊂ K \ H ′ for anyc ∈ R, sinceϕ∗ ≥ ψ1. From Proposition 1,

+∞ >

∫
∂K

(ω1 + ddcϕ∗)n ≥
∫
K\H ′

(ω + ω0)
n . (6.2)

We deduce that the closed positive currentsωk, k = 1, . . . , n, have finite trace
measure nearH . Hence they extend as closed positive currents throughH (see
e.g.[30,34]). ��
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Corollary 5 Let H be a hypersurface in a projective manifoldV , dimV ≥
2. Assume thatV \ H is pseudoconcave in the sense of Andreotti. LetU be
a neighbourhood ofH . Let f : U \ H → M be a holomorphic map into
the compact K¨ahler manifold(M,ω1). Thenf extends as a meromorphic map
throughH .

Proof. Theorem 4 applied toω = f ∗ω1 + ω0, implies that the graph ofh is of
finite volume nearH × M. Hence it extends through it. ��
Theorem 5 Let V be a projective manifold,dimV ≥ 2. LetH be a compact
complex hypersurface inV . Assume thatV \ H is pseudoconcave in the sense
of Andreotti. LetU be an open subset ofV which containsH . Letπ : W1 → V

be a locally pseudoconvex spread domain overV which containsU \ H . Then
any complex hypersurfaceZ ofW1 extends throughH .

Proof. DenoteO(1) the line bundle which gives the projective embedding ofV .
We denote by the same symbols pullbacks byπ of the line bundleO(l), l ∈ N,
and ofω0, the Chern curvature ofO(1). In the following, we assume thatH is
not a subset ofW1. LetY ⊂⊂ V \H open subset with pseudoconcave boundary
(see definition 11).

ShrinkingU if necessary, we may assume thatH is the maximal compact
hypersurface inU (see Proposition 3), that∂U the topological boundary ofU
in W1 is relatively compact inW1 and thatU does not intersectY . Let X be a
relatively compact open neighbourhood of∂U in W1. We may assume thatX
has smooth boundary.

LetZ a complex hypersurface inW1. Letm = maxp∈X̄ multpZ. From Corol-
lary 3 (see the proof of the second assertion), sectionss0, . . . , sr ∈ H 0(W1,

O((m + 1)l1) ⊗ [Z]) exist such that

– the meromorphic mapψ , fromW1 to Pr , given byz → [si(z)]0≤i≤r has base
pointsB contained inEm+1(Z) = {z ∈ W1, multzZ ≥ m + 1},

– the currentω = ψ∗(ωFS) is strictly positive, and pluricomplete inW1.

Moreover, by adding a non trivial section ofO((m + 1)l1) # O((m + 1)l1) ⊗
[Z] ⊗ [−Z], we may assumes0 is vanishing onZ.

Let X̂ denote the pseudoconvex hull ofX inW1. ThenX̂ containsU \H . For,
(V \ U) ∪ (X ∩ U) is a locally pseudoconvex domain which is pseudoconcave
andH is the maximal compact hypersurface inU , see Proposition 3.

Let X(0, ω + ω0) the pseudoconvex hull ofX in W1 \ B with respect to
ω + ω0 (see Sect. 3.1). We claim thatX(0, ω + ω0) ∩ U = U \ (H ∪ B).
Indeed, by Lemma 7,X′ the interior ofX(0, ω + ω0) ∪ B is a pseudoconvex
subset inW1 which containsX. HenceX′ containsX̂. From the description of
X̂, we deduceX(0, ω+ω0)∩U = U \ (H ∪B). In particular, those connected
components ofX̂ \ X̄ which meetU are pseudoconcave ends (with respect to
Pω+ω0(W1 \ B,X,0)).
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Denoteϕ∗ ∈ Pω+ω0(W1 \B,X,0) the extremal function associated toPω+ω0

(W1\B,X,0). We claim thatU ∩{ϕ∗ < t} ⊂⊂ Ū \(H ∪B), for all t ∈ R. Since
ω + ω0 ≥ ω0, from Takeuchi’s theorem 2, there existsδ > 0, ε > 0, andC,
such thatϕ1 = (−ε log min(δ, d∂V \H) − C)+ belongs toPω+ω0(W1 \ B,X,0).
Recall that to show thatω is pluricomplete onW1, we have constructed a func-
tion ϕ′

2 ∈ Pω(W1 \ B) in Proposition 2, which satisfies lim inf
W1\B!z→B

ϕ′
2(z) = +∞.

Denoteϕ2 = (ϕ′
2 − max

X̄

ϕ′
2)

+ ∈ Pω(W1 \ B,X,0). Then lim inf
W1\B!p→B

ϕ2 = +∞,

sinceEm+1(Z) ∩ X̄ = ∅. Hence max(ϕ1, ϕ2) ∈ Pω+ω0(W1 \ B,X,0) satisfies
the exhausting condition required above. So doesϕ∗. From Proposition 1, we
obtain ∫

U\(X∪B∪H)

(ω + ω0)
n ≤

∫
∂X∩U

(ω + ω0 + ddcϕ)n < +∞ . (6.3)

In particular, all the Chern numbers
∫
U\(X∪B∪H)

ωkωn−k
0 are finite. Hence the

graph of the meromorphic mapψ is of finite volume nearH ×P1. Soψ extends
throughH andZ ⊂ Zs0 extends throughH . ��
We obtain an Hartogs’ Theorem type which strengthened results in [15].

Corollary 6 (Hartogs’ Kugelsatz)Let U be an open subset of the projective
manifoldV , dimV ≥ 2. Assume thatV \ Ū is a connected pseudoconcave

open subset ofV , and assume
◦
Ū = U . LetH denote the maximal compact

hypersurface inU , and letF → V be a holomorphic vector bundle overV . Then
any meromorphic sections of F defined on a neighbourhood of the boundary
ofU extends to a meromorphic section ofF onU . Moreover, any holomorphic
sections of F extends to a meromorphic section onU which is holomorphic on
U \ H .
Proof. From [15], we may assumeU connected with connected topological
boundary. LetW be a connected neighbourhood of the topological boundary
of U . LetW1 denote the domain of holomorphic existence of any holomorphic
section onW of any holomorphic vector bundle overV . Since over open ball in
V , any holomorphic vector bundle is trivial,W1 → V is locally pseudoconvex.
From [16],W1 → V is the domain of holomorphic existence of the algebra⊕

n∈N
H 0(W,O(n)). LetW2 denote the hull of meromorphy ofW with respect

to any meromorphic section onW of any holomorphic vector bundle overV (see
[16]). Any meromorphic section ofF onW defines a meromorphic map fromW
toP(F

⊕
C). Since for any suchF ,P(F

⊕
C) is a projective manifold,W2 → V

is the meromorphic hull ofW . Then, from [15], we haveW ∪(U \H) ↪→ W1 ↪→
W2 .
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If H is the empty set the corollary is proved.
AssumeH is non void. It is enough to prove that, ifπ : W1 → V is a

locally pseudoconvex domain overV , which admits a section alongU \ H ,
then any meromorphic function inW1 extends meromorphically throughH . We
will prove that its graph, inW1 × P1 extends throughH × P1 (see also remark
below). First, note thatH × P1 is a hypersurface inV × P1 s.t. (V \ H) × P1

is pseudoconcave in the sense of Andreotti. Indeed letY denote the open subset
in V \ Ū which gives the pseudoconcavity condition (see Definition 11). Then
Y ×P1 has a pseudoconcave boundary in the sense of Andreotti. Next, we notice
thatW1 × P1 → V × P1 is a locally pseudoconvex domain overV × P1 and that
it contains(U \ H) × P1. From Theorem 5, we conclude the proof. ��

Remark 9
i. Another way of proving the corollary goes as follow. In the above situation,

any hypersurface ofW1 extends throughH . Hence, any meromorphic func-
tion f on W1 satisfies that any of its level set extends throughH . So we
may find a pointp ∈ H , which admits a neighbourhoodWp in V such that
W1\H does not meet the polar set, the zero set off nor its level set{f = 1}.
ShrinkingWp if necessary, in suitable coordinates onWp, we may write,
Wp = (H ∩Wp)×∆, where∆ is the unit disc inC. The restrictions off|Wp

on each slice{p′} × (∆ \ {0}), p′ ∈ H ∩Wp, are holomorphic functions on
∆\{0}, which omit two values. From the big Picard’s theorem (see [1]), they
extend to∆ . By Hartogs-Levi theorem, our meromorphic function extends
to (U \ H) ∪ Wp. From the Thullen extension theorem, it extends through
each irreducible component ofH which meetWp.

ii. Since pseudoconvex hulls behave functorialy under fibre product, the last
corollary still holds under the technical assumption that the pseudoconvex
hull of a neighbourhood of∂U containsU \ H .

iii. We know, using results of S. Ivashkovich [20] and result from [16] that,
in the above situation, iff : W(∂U) → M is a meromorphic map from a
neighbourhoodW(∂U)ofU to a complex compact K¨ahler manifold(M,ω1),
thenf extends meromorphically toU \H . However, we do not know at that
time if ω0 + f ∗ω1 is a pluricomplete current.
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