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Introduction

This paper is an attempt to understand growth of Monge-dmmmiasses along
pseudoconcave ends in a complex manifold.

This problem arises in differential geometry when studying compactification
of complete Kihler manifolds under certain curvature conditions (seearti-
cles of Mok-Zhong [23], Nadel-Tsuji [24], Siu-Yau [32]). In complex analysis,
bounds on Monge-Anmgre masses of a closed positive current near a pluripolar
set implies an extension of this current through the setésg®orks of EI Mir
[22], Sibony [30], Skoda [34]). In this direction, t&—Riemann-Roch inequal-
ity of Nadel-Tsuji (see [24]) implies that a completaltdér Hodge metric on a
pseudoconcave manifold is of finite volume.

Our first result is obtained in the framework of pluripotential theory. Let
M be a complex manifold, did = n > 2, and letw be a closed positive
(1, 1)—current. Assume thab admits local locally bounded potentials. To each
open subsel/ of M is associated an extremal admissible functiénwhich is
defined on a suitable pseudoconvex figllof U. It satisfies the Monge-Angre
equationw+dd ¢*)" = 0onU;\ U, as(n, n)-current of order zero. ldentifying
a (n, n)-current of order zero with the Borel measure it defines, we deduce the
following estimate (we work in the relative topology Gi).

Theorem. In the above situation, leX be a connected component©@f \ U
which has a compact boundary. Assume that < ¢*(p)} N X is relatively
compact inU; forany p € X. Then

/_ 0" < / (a)+ddc<p*)" < +00.
X e
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Here, to check the hypothesis we restrict ourself to domains on projective
manifolds. It allows us to obtain a complex analytic treatment of the problem.
Related methods appear already in [11,25]. For a more differential-geometric
point of view, we refer to papers cited above.

We obtain the following applications. L&tbe a projective manifold, did =
n > 2, and letH be a complex hypersurface ¥ such thatV \ H is pseu-
doconcave in the sense of Andreotti (see Definition 11). Xet C M open
neighbourhoods off. The following Hartogs’ theorem for currents holds.

Theorem. Let w be a closed positivél, 1)—current defined oM \ H which
admits local locally bounded potentials. Then

/ " < 400,
X\H

andw* extends througlff as a closed positive currente =1, ... , n.

If X = V andw is a smooth complete Hodgealler metric orV \ H, thenthe
above result is a variation of the?—Riemann-Roch inequality of Nadel-Tsuiji
(see [24]). In general, the difficulty in establishing the above finiteness estimate
is that neither pseudoconcavity nor completeness assumptions are matie on
itself.

Next, we try to derive similar estimate for more singular closed positive
currents. We work with currents (on spread domadheverV) such as pullback
Y*wrs, Wherey : W — PV is a meromorphic map from# to a projective
space anaprs is a Fubiny-Study form on it.

Our technique is to produce, by mean of ttretheory of ideals (see Skoda
[33]), positive currentsy; linked to ¥ *wrg but with Lelong number globally
shifted by—k (see Demailly [12] for other methods in the compact case). These
currents are pluricomplete (see Def. 10). This is a convexity conditias), @md
Ay, the non-smooth locus afy, which allows to work ol = W \ A,.

The case of a current defined by a divisor is noteworthy:

Theorem. Let Z be an hypersurface in a pseudoconvex spread dorvaover
a projective manifold/ = (V, O(1)). There exist$; € N (which depends only
of the canonical bundle df) such thatO(kl1) ® [Z] is spanned by its global
sections away ofp € W :v,(Z) > k + 1}, wherev,(Z) is the multiplicity of
Z at p.

As an application, we deduce that global Hartogs’ extension phenomena occur
in projective manifolds for meromorphic maps.

Theorem.LetU be an open subset of the projective maniflduch thatV \ U

is a pseudoconcave domain in the sense of Andreotti. AsSusmé/. Then any
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meromorphic map : W(dU) — PV define on a neighbourhood &t/ extends
as a meromorphic map .

These results give some understanding of global and compact singularities for
meromorphic maps or currents. Note that there exists hypersuifaessabove
which may not be blow down. Hence, even for meromorphic maps, the situation
may not be reduced to local extension results of lvashkovich [20]. Moreover, note
that non compact complex singularities of strict positive dimension are already
local essential singularities for Monge-Arme currents (see [31]).

The starting point of this paper is the classical result that a hull of holomorphy
in the trivial bundle over a domain i@¥* is a geometric counterpart of a complex
Monge-Amgere equation in that domain (see Bremermann [9]).

Part of this paper was written during a stay financed by a European grant at
the mathematical department of Chalmers University. This is my great pleasure
to thank the complex analysis team of Chalmers university and Professor Bo
Berndtsson for discussions about this subject.

1. Quasi-continuous functions and the clas§ (M)

We recall some definitions which appear in [6, 8].

Definition 1 Let$2 be an open subset @F'. If E is a subset of2, let C(E, §2)
denote the relative capacity &f in £2.

(1) Afunctionf : 2 — {—o0, 400} is said to be quasi-continuous if, for any
€ > 0, there exists an open subgBtof 2 with C(O, 2) < e s.t. f is
continuous o2 \ O.

(2) A sequencd f;};cny of Borel functions on2 is said to converge quasi-
uniformly to f, if it is uniformly bounded, it converges almost everywhere
to f, and, for anye > O, there exits an open subsét of £2 such that
C(0O, 2) <eandf; — f uniformly ons2 \ O.

The notions of quasi-continuous function and local quasi-uniform convergence
are define accordingly on a manifold through holomorphic coordinate charts.

Quasi-continuous functions form an algebra which contains plurisub-
harmonic functions (see [5], Theorem 3.5). Note thati$ quasi-continuous on
M, then for any continuous function : R — R, x(f) is quasi-continuous on
M.

Lemma 1 ([5]) Let {¢;};cn be a sequence of plurisubharmonic functions which
converge monotonically almost everywhere to a plurisubharmonic fungtion
Then the convergence is locally quasi-uniform.

Definition 2 We denote by (M) the class of currents om which locally are
represented by currents in the exterior algebra generated by
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— smooth forms,
— locally bounded plurisubharmonic functions,
— du, du, dd°u whereu is a locally bounded plurisubharmonic function.

We refer to Bedford-Taylor’s articles [8,7] for a precise definition of these cur-
rents for non smooth functions. We state in a weak form Theorem 2.6 of [8].

Theorem 1 LetT7;, j € N and Ty be currents inG (M) which are locally of the
form

o8 AL A SU;j) A ddcaq(i)l A...Addc (1.1)
where, each occurrence éfdenotes either the operatar or the operatord©,
o) =u — v, theu? andv!”, j € N U {oo}, are locally bounded pluri-
subharmonic functions such that

)

) 1.2
e T e (12)
v,ﬁ‘j) — véé) , (1.3)

k—+00

and where the convergence is monotong.iff {¢;};cn is a sequence of quasi-
continuous functions which converges locally quasi-uniformly to the quasi-con-
tinuous functionp then

lim ¢;Tj = ¢Tw

Jj—+oo

as currents of orde®.

2. The classP,(M)

Let M be a complex manifold, di?¥ = n, and letw be a closed positive
(1, 1)—currentonM. Itis known (see [18], p.387) thatadmits local potentials.
In this paper, we make the following assumption.

The currentw admits local potentials which are locally bounded (2.1)

Hence we assume that, for any open subgddiholomorphic to an open Eu-
clidean ball inC", there exista € PSHX) N L*(X, loc) such that/d‘a = w|x.
Note that two local potentials fas differ (on their common definition set) by a
pluriharmonic function. This fact is used in the following definitions.

Definition 3 A measurable functiop : M — R U {—oc} belongs toP,, (M)

if there exists an open covering’ = {W,;};c; by subsets biholomorphic to
Euclidean balls inC", and local potentiale; € PSHW;) N L*°(W;, loc), such
thata; + ¢ is plurisubharmonic.

Note that a function which belong t8,(M) is quasi-continuous.
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Definition 4

(1) A functionyp : M — [—o0, +oo[ will be said upper semicontinuous with
respect taw, if, for any p € M, there exists an open neighbourho@dof p,
a local locally bounded potential € PSHW) N L*(W, loc) for w, such
thata + ¢ is upper semicontinuous di. A functionz on M will be said
lower semicontinuous with respectadf —4 is upper semicontinuous with
respect tav.

(2) Letp : M — [—o0, 4o0o[ be a function which is locally bounded from
above. Defing*, the upper regularization a with respect tav, as follow.
If a is a local locally bounded potential fas on an open subsév, then

p*=@+e)F—a (2.2)

where(a + ¢)* stands for the usual upper regularizationo# ¢ on W in the
classical topologya + ¢)*(p) = limsupla + ¢)(z).

z—p

Let a functionz € L1(M, loc) satisfiesw + dd°h > 0 in the sense of currents.
Thenh*, the upper regularization @f with respect taw, belongs toP,,(M).

With this notion of upper regularization w.et we will have classical stability
properties ofP,, (M) with respect to upper envelope (see Lemma 6). Note that
Choquet’s lemma is valid.

Lemma 2 Let{u,}q.c4 be afamily of real valued functions on a complex manifold
M. Assume that + u, is upper semicontinuous for any local potentiabf w
and anya € A. Assume this family is locally bounded from aboveMdnThen
there exist a countable subsBt C A such that(Sup,.4 uo)* = (SUR,cp Ua)*
(upper regularization w.r.tw).

Letw;, 1 < i < r, be closed positiv€l, 1)—currents which satisfy condition
(2.1). From Theorem 1, ip; € P,, (M) N L*>(M, loc) then expression of the
form

T =801 A... N8 A (g1 +ddori) A ... A (o, +ddCe,), (2.3)

wheres is eitherd or d¢, defined a current which belongs to the clgsa?). T
is the unique current which is locally equal to

T=6(ar+¢1) —a)) A... NS ((ar + @) —ap) A
dd(ars1+ @) A ... Add (a, + @), (2.4)

whereq; denotes a local locally bounded potential égr 1 < i < r.
For these currents, usual calculus rules are satisfied. In particular,
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Lemma3 Letyp € P,(M) N L*®(M,loc), x € C*(R,R). Then for any
Cg° (M), the following algebraic identity holds

/ 0x(¢) (w+ddp)" = / 0x(p)o"

—/(dQ)x(w)d“<pP(¢) —/QX/(ﬁﬂ)dﬁﬂ/\dC(PP(@), (2.5)
where
Pp)= Y (0+dd¢)" o (2.6)
a+p=n—-1

Proof. It is enough to check the above formula locally. lB2be the Euclidean
unit ball inC". Assume, supgp CC B, w = dd‘a, witha € PSHB) N L*(B,
loc), so thata + ¢ € PSHB) N L*>°(B, loc). Let (a + ¢)c, a., 1 > € > 0, be
family of smooth plurisubharmonic functions defined ®nwhich decrease, as
€ — 0, toa + ¢ anda respectively on an open neighbourhodd cc B of
supp.
LetM = [[(a + )1llw,oc + llasllw,c + lla + ¢llw,co + lallw,c < +00.

From [5], Theorem 7.2, for any > 0, there exist$2, an open subset d¥,
such thatC (W, £2) < n, and the above convergences are uniformiion 2.
Definey. = (a + ¢) — ac, then

Ix(We) = x(@llwg.co = (MAX IXDIVe = pllmg.co — 0. (27

Since they, andg are uniformly bounded oW, for anyy € C*(R, R), x (¥)
converge quasi-uniformly oW to x (¢). But for smooth functions, an integration
by parts gives

/9)((1#6) (dd (ac + o))" = f@x(l/&) (dd‘a.)"

- / (d0) X () d W P () — / Ox' WAV d Y PO, (2.8)
where

P = Y. (dd*(ac+ o) (ddac)’. (2.9)

a+p=n—1

Ase — 0, x(¥e) andx’(¥.) converge quasi-uniformly t@ (¢) and x'(¢) re-
spectively, oW . Moreoverd v, P (y.) convergestd“o P (@), (dd (ac + ¥e))"
converges tdw + ddp)" and(dda.)" converges ta". From Theorem 1, we
obtain formula (2.5) above. o

We state next a basic lemma.
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Lemma 4 LetM be a complex manifold, and I&tbe an open subset 8f with
compact boundary. Let be a closed positivél, 1) —current which admits local
locally bounded potentials.

Lety € P,(X) N L*(X, loc) such that

(1) there exists a neighbourhodd of 9.X, with ¢;wnx > 0,
(2) limsup._,,x ¢ =0,
B) VpeX, {p <ep(p)}ccM.

Letx : R — R* be a positive smooth decreasing function. Then

oo > / £(@) (@ + ddPY" = [ X&)
X

X

whereg denotes the extension by Ogofo M.

Proof. Note thatg belongs toP, (M) N L>*(M, loc). For

®© ze X\W
¢g=1maxeg,0)=¢pzeXNW.
0 zeM\ X

Hence, for any local locally bounded potentidior w on an open chart®’,

a+ ¢ ze(X\W)nw
at+g={maxa+g¢,a)=at+pze XNW)NW
a zeM\X)NW

which is a plurisubharmonic function W’ (see [21], p.69).

Hence, we will assume that € P,(M) N L°°(M,loc) and that it vanishes on
M \ X. Let W, be a relatively compact open neighbourhood &f. Let 6 be

a smooth positive function with suppc X U Wy, 6 = 1 on a neighbourhood

of X. Note that it's enough to prove the lemma under the following technical
assumption.

(3) There exists an increasing sequeligeln of smooth positive decreasing
functions such that supp(¢) N X is a relatively compact subset M and

lim xi(¢) = x(p) onM.
k— 400

Then, since supp xi(¢) is a compact set i, Lemma 3 gives

/9xk(¢>) (0 +ddp)" 2/GXk(<p)w"

- / (d6) 1 (@)d° 9 P () — / Oxl(p)dp AdpP(g) . (2.10)
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where
Pie)= Y (o+ddp)" o’ (2.11)
a+B=n—1
Note thatde A d°p P (p) is a positive current oM. But x; is negative, hence
— | Oxi(p)de Ad°pP(p) > 0. Sinceyp is vanishing on a neighbourhood of
suppd®@, the second term of the right hand side vanishes. Hence

/9mwxw+df@”2/9mwwf- (2.12)

The above integrals being finite, letting fitstdecreasing to the characteristic
function of X; and therk — +o0, since(x:)ren iS iNCreasing, we get the result.
O

Example 1Let M = C", X = B(1), where B(1) is the unit ball, and let
w = dd°||z||? the standard KRler metric. Then % ||z belongs toP, (X) and
satisfies the conditions of the above lemma. Its extension by z&reig/z||2) =

max(0, 1—z||%) so that|z||*+(1 — |1z]|?) = max(||z||?, 1). Lemma4, for = 1,
gives

f wmeLMﬁYZ/ dd° |22 |
IB(1)

B(1)
which is in fact an equality.

3. Pseudoconvex hulls

Let M be a complex manifold, dig/ = n > 2, and letM; be an open subset
of M.

We recall thatV, is said to bdocally pseudoconvex i, if there exists an open
cover)V of M by Stein open subsei® such thatM; N W is a Stein manifold,
foranyw e W.

Note that any connected component of the interior of an intersection of a family
of locally pseudoconvex open subsetdbis a locally pseudoconvex open subset
of M.

Definition 5 Let U be an open subset @f. Then there existéf, the §mallest
locally pseudoconvex open setih which containsU/. We says that is the
pseudoconvex hull @ in M.

Lemma 5 Let(W’, (z)) be a holomorphic charts, witi’ a relatively compact
Stein open set d¥/ \ U. Then, for any open relatively compact subgein W’,
and any polynomiaP in the complex coordinategs),

max |P| = max |P| .
wnaU AWNAU
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Proof. We argue by contradiction, and prove that if the above condition is not
satisfied, we may push a hypersurfacelinvhich is disjoint fromtU. Denote
K = 3U. Assume there exists a polynomilsuch that| P||xnw = P(z0) =1
for somezg € K N W and||P||xnow < 1.

K N W being compact, there existsde < 371d(zg, W) s.t.|P| < 1 on
Se={zeW,dz, KNaW) < e}. Let Wy, = {z € W, d(z, W) > 27 %€},

andletA;, ={ze W, P(z) =1+ %}, k € N*. A, is an algebraic hypersurface
in W\ KUS., and{J,cn+ Ak N 0Wp1, CC W\ K U S.. There existsy >

0 s.t. Ui+ (Ak + Ben (0, 00)) N W, CcC W\ K US.. SinceW' NU is a
Stein open set and sindg, .. Ax > zo, there exists a sequence of integers
ki, ko, ..., and irreducible componeut;, of A, such thaiCy, N W, C W, \ l}
and lim d(zo, Ci,) = 0. Hence(Cy, + B (0, a)) N dW, C 8W, \ 0. Since

i—+00
Uken Ak N W, is @ compact subset oF, \ S, there existsyg > a1 > 0
such that J; .. (Cx, + B (0, ) N We CC W\ Se.
Takei big enough such thak(zo, Ci,) < 2 1y, takezy € Cy, N B(zo, 27 1),
22 € U N B(z0, 2 Ya1). Then(Cy. + 71z5) N W. N U is non empty and
(Cr, +7122) NO(W.NU) C 39U N W,, since

AW.NU) C OW.ND)HUQBUNW,)anddUNW, = QU NW,)U@UNIW,).

In particular, H = (C\, + Z1z5) N W. N U is a hypersurface i/ which
does not intersedt. HoweverU \ H is locally pseudoconvex, contaisand
is strictly smaller tharf], which is a contradiction. O

Remark 1The proof of th_e aboveJemma shows tha‘g, if difn= 2, then, for any
open Stein subsetdf \ U, W \ aU is Stein. Henc@U is a pseudoconcave set
in the sense of Oka i \ U (see [29], p. 88).

Other kinds of pseudoconvex hulls (w.kt) are constructed as follow.
Lemma 6 Let{g,}qeca C P,(M). Then the open set
X ={peM : ¢ =supy, is locally bounded from above at

aeA
is locally pseudoconvex it. Further, onX, ¢* the upper regularization ap
w.r.t.  belongs toP,, (X).

Lemma 7 Let M be a complex manifold, and letbe a closed positive

(1, 1)—current inM. Assume there exists an analytic subBét M such thaiw
admits local locally bounded potentials @i \ B. Let{¢,}oca C Po(M \ B).
Let X denote the open set i \ B where this family is locally bounded from
above. Then, the interior of U B in M is a locally pseudoconvex open subset
in M.
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Proof. The lemmais local, hence we assumiés the unit ball and thdtp, }4c 4 IS

a set of plurisubharmonic functions #h\ B. LetU be the maximal open subset
of M \ B for which this family is locally uniformly bounded from above. Let
be the upper envelope of this family, and ¢¢tdenote its upper regularization,
which is a plurisubharmonic function i.

Write B = B;UB5, with codimB; = 1 andcodinB;, > 2. First, we prove that,
in M \ By, the interiorU’ of U U B, is locally pseudoconvex. Lét: (H, A") —
M\ B1 be aHartogs'figure (see [28] p.49) such thét/) cc U’ andh(A") CC
M \ B;. Since codinB, > 2, each plurisubharmonic functigriin M \ B admits
a plurisubharmonic extension, which we den@teto M \ B;. ¢’ satisfies that
for any relatively compact open subseéin M \ By, sup, ¢ = SUpx, 5, ¢'- This
fact applies tap*. Hence for anyy, max;z; ¢* > sup, ) @« > SUP,an) Po- IN
particular, any point ok(A") \ B, belongs taU, soh(A™) C U'.

Next, by using the disc characterisation of pseudoconvexity, it is classical
that if X is an open pseudoconvex subseMn, B,, then the interior oX U By
is pseudoconvex, wheBy is a complex hypersurface. O

Remark 2In particular, this seX is invariant under bimeromorphic maps.

Lemma 8 Let W be an open subset @ biholomorphic to the unit ball in
C". Let D cc W be a strongly pseudoconvex open subseWofThen, for
anyy € P,(M), there exists a unique functidfy, () € P,(M) such that
Tp(Yy) =¥ onM\ Dand(w+dd“Tp(¥))" = 0on D. FurtherTp () > .

Proof. Leta € PSHW) N L*(W, loc) be a potential foew on W. From [5],
Proposition 9.1, a unique plurisubharmonic functio#  exists such that
(ddc(m))" =0onD,a+v¥ =a+yonW\ D,anda + ¢ > a+ ¢ on
W. Note tham —a =1y onW\ D and we define

_Jmaxy,a+v¥ —a)=a+ ¥ —a zeW
TD(‘P)—{W e M\ W

O

Lemma9 LetU be an open subset . Let A C P,(M) be a family which is
stable with respect to thmaxoperation.

Assume that any poini € M \ U admits a pair of open neighbourhoods
(W, D) asin Lemma 8, withV C M \ U, such that, for alk € A, the function
Tp(u), belongs taA.

Assume thaiX, the open subset wher is locally bounded from above,
containsU. Denotey™ = (sup,., ¥)* € P,(X), the upper regularization (w.r.t.
w) of the upper envelope of this family.

Then the positive measu¢e + dd ¢*)" has support inJ.
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Proof. Since A is stable by the max operation, from Choquet's Lemma 2, we

get an increasing sequenfg}ieny C A with (Iim;_, o u;)* = ¢*. From the

hypothesis, le{ W, D) open neighbourhoods of € X \ U such thatvu <

A, Tp(u) € A. Replacing each; by i; = Tp(u;) € A, then

the sequencgi; } ;e is increasing, sincg; may be obtained by a Perron method,

it increases t@* outside a pluripolar set, singe€ = ( “T u;)* and the negli-
Jj—>+00

gible set{( ”T ij) < ( IiT ij)*} is pluripolar.
J—>T00 J—>T0o0
Hence, from[5], Theorem 7.4, +Iimja) +dd‘u;)" = (w+ dd¢*)" isvanishing

on D. Since this property is valid for any such paWw, D), with W N U = 0,
the assertion is proved. O

3.1. Some extremal functions

Let w be a closed positivél, 1)—current on the complex manifoltd . Assume
thatw admits local locally bounded potentials near every poiiifsee (2.1)).

Definition 6 Let U be a domain inM, and leth be a function o/ which is
locally bounded and lower semicontinuous wa.t Define

X(h,w) ={p € M : ¢ =SUpy,p v iSlocally bounded from above aj,p
whereP,(M, U, h) = {y € P,(M) such thaty, < h}.

Let ¢* be the upper regularization gf (w.r.t. ) in X (h, w) and call it the
extremal function associated &6, » and’. DefineU (h, w) to be the connected
component oX (i, w) which containdJ.

By assumptionP,,(M, U, h) is locally bounded from above dn, henceX (i, w)
contains/. Wheni = 0, andM is a pseudoconvex domain@f, we obtain the
usual hull of holomorphy ot/ with respect taVf. For M a projective manifold,

h = 0, this hull is similar to hull introduced in [19]. We refer to this article
for further properties when this hull is assumed to be compact in some locally
pseudoconvex domain.

From Lemma 9, the extremal functiop* satisfies (w + ddp™)" =0 on

U(h, w) \ U. Moreover, inU, we have(w + dd“¢*)" = 0 on the open subset
{¢* < h} (see [5], Corollary 9.2).

Definition 7 Let U be a domain inM andy € P,(M). FiXx D = {D;};en
an open cover oM \ U by open strongly pseudoconvex subgatswhich are
relatively compact in complex holomorphic chafts W; — Bc» (0, 1). Assume
that eachD; is repeated infinitely often in the sequerizeDefine by induction,
Y_1 = ¢, andy; = Tp (Y;_1), fori € N. Let X () denote the open subset
where the family{y; };cn is locally bounded from above, and IEt(y) be the
connected component &f(y) which containd/. DefineB(y) = (sup.y ¥:)*,
which belongs teP, (U (v)).
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Note that this family is an increasing sequence w.&tN. Hypothesis of Lemma

9 are satisfy, hencév + dd°B(y))" =0 onU(y) \ U. Moreover,B(y) > v

on U (y). Although B(y) depends in general of the cover chosen, we will not
indicate this dependence.

Remark 3

i. Notice that the balayage procedure in Definition 7 when applied to a function
(e.g. the zero function), gives a function which is strictly greater than the
original one in points where is a strictly positive current.

ii. Let X be a relatively compact domain M with smooth boundary. Assume
for simplicity thatw is smooth and strictly positive. Then applying the Green
formula for X with respect to the Khler metricw (see [4]), we see that a
family 7 c P,(M) is locally bounded from above iX if it is bounded
for the L norm induced od X. In particular, the above balayage procedure
applied toM \ X is always locally bounded.

3.2. The case of a Chern class

In this section, we interpret the above results whda a Chern current of a line
bundle. Note that a closed positivé, 1)—currentw is the Chern current of a
hermitian line bundld. over a complex manifold/ if it lies in H?(M, Z) via
the De-Rham isomorphism.

Let (E,h) — M be a complex hermitian line bundle with positive (singular)
metric curvature. Denote : E* — M the bundle map fronk* to M, the dual
line bundle ofE, and denoté |2 the norm of¢ € E* induced byh.

Let A be a subset oM. DenoteT(a) = {¢ € Efy, ¢ < al, and denote

Ty = Ta(1). Let T, be the pseudoconvex hull @, in the complex manifold
E*.

Lemma 10 Ty is a disqued pseudoconvex subsek tf

Proof. Consider the action af*, in the fibre ofE, (A, ¢) — A.¢. Letd € C*,
thenATy C ATy, hencelTy C ATy. ButTy C A~AT,, hence\T, C ATy. So
/\T; = TTF This is a classical result thatW is a pseudoconvex domain@f,
H anirreducible hypersurface i andK a compact subset i, with H N K
non void, then the pseudoconvex hull@ \ H) U K is W. HenceT,, contains
0.7, since it contains @}, . O

SinceTy ¢ #~X(U) and 0T, = U, from the above lemma, we see tffatis a
twisted pseudoconvex Hartogs’ domain olUemMoreoverT,; C Ty (1). Assume
thatiC(E) admits local locally bounded potentials, then there exists an u.s.c
(W.r.t. iC(E)) functiong € P,cs)(U) such thatly = {¢ € E*, In|¢)?+ ¢ <

0}. Indeed, lety : Efy, >~ W x C be a local trivialization of£* over the open
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subsetW biholomorphic to an open ball i6". Sincety is a morphism of vec-
tor bundle tw (Tyw) is a Hartogs’ locally pseudoconvex domain with baige
Hencerw (Tyw) = {(p, 2) € W xC, In|z|2+yw(P) < 0} with ¢ a plurisub-
harmonic functioniW. In the local trivializatiorty : E‘*W ~ W xC, assume that
Ity (P, 217 = aw.., (p)|z|? whereay ,,, is alogarithmic plurisubharmonic func-
tionin W, withdd¢In(aw,) = iC(E, h). Definep = Yy —Inay . One check
that this functionp does not depends on the choosen trivialisation, hence define
an elemeny € Pic(g)(U) such thally, = {¢ € E*, log|¢|? + ¢((¢)) < O}.

Note thaty is maximal in the following sense.

Let W be an open set it/ \ U, and lety € Pic(ey(W). If W' is a relatively
compact open subset 8f and ifIimaivr‘\/f 0(z) — ¥ (z) = 0theny > ¥ in G.
z— oW’

For the function
,_ Jmaxe, ¥) ze W
o zeEW\W

beIongstoP,-c(E>(U) andis zerool/. Hence ¢ € E;“/ :In¢1P4+¢ om(¢) < 0)
is pseudoconvex, contaiff, hence containg, . Sog’ = ¢.

Lemma 11 Assume thatC(E) admits local locally bounded potentials, then
the positive measur@ C(E) + dd“p)" has support irl, the closure o/ in U.

Proof. Let D, W be domains as in Lemma 8 withh N U = . Sincey is
maximal,Tp (¢) = ¢. However,(w + Tp(¢))" vanishes orD, by construction.
|

Lemma 12 Let Ty (0, 0) denote the hull of; with respect to globally defined
plurisubharmonic functions o&* (see Sect. 3.1). Theh, (0, 0) is a disqued
subset ovel/ (0, w) which contains the image @f (0, ) by the null section.
MoreoverTy(0,0) = {¢ € E*, In|¢]?> + ¢*(m(¢)) < 0}, whereg* is the
extremal function associated with andw (see Sect. 3.1).

Proof. By definition 7,,(0,0) C {¢ € E*, In|¢]? + ¢*(7(¢)) < O} = A.
To prove the equality, we argue by contradiction. kgte A \ Ty (0,0). A
being open, there exists a neighbourhd@dof ¢, in A, a non constant pluri-
subharmonic functiony on E*, such that{y» < 0} containsTy, but does not
containsW. i being plurisubharmonidyr > 0} is the closure ofy > 0}.
Hence there existg € W N {y > 0}. Let us replacey by v’ = log|z|?+ N .
Then{y’ < 0} containsTy and for N large enough, still not contairtg. That
isTy C{y' <0)NA##A HenceTy ¢ ] €'{y' <0} A 3 A How-
0€l 0, 27]
ever ﬂ e’{y’ < 0} is a twisted Hartogs’ pseudoconvex domain overlt

0e[ 0, 27
containsIy, hence, it is defined by a functignt € Picx (M, U, 0). O
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4. Bounds of Monge-Ampere masses

Recall that if M is a complex manifold, a non relatively compact connected
component ofif \ K wherekK is a compact set i, is called an end o#/. Let

w be a closed positivél, 1)—current onM, which admits local locally bounded
potentials. LetF C P,(M), and letX (F) denote the open subset M where
this family is locally bounded from above.

Definition 8 An end ofX (F) will be called a pseudoconcave end with respect
to F.

Consider the following situation. Le¥ be a complex manifold, e/ be an
open subseta¥f, and letF = P, (M, U, 0). LetU (0, w) as defined in Sect. 3.1.
Working in the relative topology o/ (0, ), assume thal/ (0, w) \ U admits a
connected componeit with compact boundary (hencé is a pseudoconcave
end with respect t®,, (U, M, 0), if it is non relatively compact).

Let ¢* be the extremal function associated wifli0, w). Recall thatp* is ev-
erywhere positive and restricted tois identically vanishing. Assume that

Vp e X, {¢* < (p)*} N X is arelatively compact subset &f(0, w).

Let M; = U U X. We havedy, X = dyo.mX. LetX, = {z € My : d(z, X) <
€}. For e small enough, this open subset has a relatively compact boundary in
M3, andp* satisfies hypothesis of Lemma 4. Hence,

oo > f X (@) (@ + dd°g™)' = / X (@) o
Xe

Xe

for any positive smooth decreasing functipn R — R™*.

The integrals are finite since oK., the positive measur@y + dd¢*)" has
support onX, N U, which is a compact set. Lettinggoing to zero, we obtain
the following Proposition (we work in the topology 0f(0, w)).

Proposition 1 LetU (0, w) be as above and let be a connected component of
U (0, w) \ U with compact boundary. Let* be the extremal function associated
with U (0, ). Assume thap* < ¢(p)*} N X is a relatively compact subset of
U (O, w) for everyp € X. Then, for any positive decreasing smooth function
x : R — RT, we have

/_ x(@Ho" < / X (@) (@ +dde*)" < 4o00. 4.1)
X 0X

Remark 4Let M be a complex manifold and let be a closed positivél, 1)—
current which satisfies condition (2.1). Assume that P, (M) is exhaustive and
satisfies the Monge-Angue equatiotiw + dd“p)" = 0. Then Lemma 3 implies
thato" = 0.



Monge-Amere currents over pseudoconcave spaces 225

For compact singularities in the unit ball, we obtain the following well known
fact (seee.q.[30]).

Corollary 1 Letu € PSHB(1)), such that its polar sel. = {u = —oc} is a
compact subset cﬂ(%), andu is locally bounded orB \ L.

Then / (ddu)" < +oo.
B(H\L

Proof. We work inM = B(1) \ L. The pseudoconvex hull & = B(1) \ B(3)

is M. Now, —u € P,(M), wherew = dd‘u, and this function satisfies that
{—u < ¢} N B(3) is relatively compact inV for anyc € R. So does-u — C
for some constant, chosen such that — C is negative on a neighbourhood of
aB(%). Lety* be the extremal function associatedtandU. Butg* > —u—C,
hence from Proposition 1,

/_ " < / (w+dde")" < +00. O
B(3H\L IB(3)

5. Pluricomplete currents

In this section, we consider a currenton a manifoldM which admits local
locally bounded potentials (see 2.1) dh\ B, whereB is an analytic subset in

M. If B may be written as intersection of hypersurfaceg.@n indeterminacy
set of a meromorphic map with value in a projective manifold), we construct
a functiong € P,(M \ B) which goes tot-oo nearB. Hence, under suitable
pseudoconcavity conditions, we will be able to bound Monge-Arapnasses

of wn g . To avoid numerous hypothesis, we will restrict ourself to spread
manifolds over a projective manifold.

5.1. Spread spaces and distance to the boundary

Definition 9 Let M be a manifold. A complex manifold: U — M is spread
over M if the mapx is a local biholomorphism. We say that: U — M is
locally pseudoconvex ovef (with respect tor), if there exists an open covering
W of M by Stein open subselié € VV such thatr ~1(W) is a Stein manifold for
anyw e W.

We say thatr : U — M is a domain ove, if U is connected. Examples of
spreading are a canonical injectibn U — M of an open subsdf of M, a
restrictionz;y : U' — M of a covering mapr : U — M to an open subset. In
the first case; : U — M is locally pseudoconvex oved if and only if U is a
locally pseudoconvex open subsetidf
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We recall notion of boundary distance for a spread spacer Léf — (M, wp)
be a spread space over atdér manifold. We still denotg, the pullback byr of
wo. ForQ € U, letd,y(Q) = supr > 0, s.t. exp, : B(0,r) — U is defined.
This function is either identicallgo or Lipschitzian.

Theorem 2 ([26,35])Let(M, wo) be a Kahler manifold and a compact subset
in M. Then, there exists real constarts- 0 and«, such that, for any locally
pseudoconvex spread domain U — M, subject to the condition(U) C K,
the function- log d,y (if U admits some boundary points ovd) satisfiesld® —
logdyy > —awg for any pointp in U such thatd,y (p) < 8.

5.2. A spannedness property for divisors

We fix notations. LetV be a projective manifold of dimension> 2. Denote
O(1) the line bundle oveV which gives the projective embedding Bfand let
wo be a K&hler metricorV. If w : U — V is a spreading, we still denot2(/)
andw the pullbacks byr of O(l) andwy. If s is a section of some line bundle on
amanifoldM, we denote orgk its vanishing order at a poimnt, if Y is a complex
hypersurface inv, we denote mujtY its multiplicity at p. For a divisorD on
M, denotev, (D) its multiplicity at p. If s is a meromorphic section of a line
bundle overM, we denotds) its divisor andZ; its zero set.

Theorem 3 Let (V, O(1)) be a projective manifold. Then there exigtss N,
such that for any > I, for any locally pseudoconvex domain U — V over
V, any hypersurfac& < U, and anyp € U, there exists af € H°(U, O(l) ®
[Y]) of minimal growth such thatrd,s < mult,Y — 1.

Proof. We give the main arguments of the proof, since similar methods appears
in [3,27] for the univalent case and in [16] in the above case.

SinceV is compact and)(1) is strictly positive, there exists a real numiger
such thatRicci(wg) > —iBC(O(1)). Letly = Ent(1+n+ B)+ 1, where Entr)
denotes the integer part of a real number

Lets andx denote the real constants which appearin Theorem % bety >
Osuchthatédeg < 1. Letl; = Enttmax(daeg+1+n—1+8,1+n))+1> I.

Let! > Ip.

First, note that there exists a finite number of square integrable holomorphic
sections of2 (1) overU which give an immersion dff in some projective space,
see [17]. Hence, ip ¢ Y, one of those sections satisfies our requirements.

Assumep € Y. Lets, ..., t, be sections of (1) which give local coordinates
centred int (p) and denote by the same letter their pullbackebizet W be some
small open neighbourhood ¢fin U, biholomorphic byr to some coordinate
open set. Lek; be a smooth section @(/ + 1) with compact support irw,
holomorphic and non zero in a neighbourhoogof
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Letk = € +n — 1, with 0 < € < €. Forl > Iy , we solve thed—equation
ds1 = ds2 With weight exp—(k + 1) log ||#]|? by L? methods (see [10]).
Hence the holomorphic sectieg = s1 — s, on U, is hon-vanishing ap.
Moreover, from thel.? estimazltes, we deduce
sy — s2|

_ —(—4e log min(a,daU\Y )
I = , D e dV,, < +oo

’

since||t]|12(p) = (It]? + ... + |,]D(p) = C1d? __(p) in a neighbourhood op.

du\y
Hence forl > [;, from Skoda [33], there exits,, ..., h, € HO(U \ Y, O(l)) such
that

i=n
§3 = Zhiti (51)
i=1
I = ”h”2 —(—4e Iogmin(s,dau\y))dv 5.2
= ||t||2ke wo < +00 . (5.2)
U
From the growth condition, the sections, ... , h, define sections; of

HO(U, O ® [Y)). Let f be a minimal local equation of at p and write

I=n
h; = g7 Then, fs3 = Z git;. Hencegss(p) # 0, one of theg;'s has a vanishing
i=1
order lower than orgf — 1 = mult,Y — 1. Next the sectiong; globalize as
sectionss; of HO(U, O(l) ® [Y]), and one of them satisfies our requirements.
]

Remark 5SinceV is compact, rya}{tnz" exists, hence

/ ||h||2e—(—4€ log min(S,daU\y))deo < mva.XHl‘”ZkI (53)
U\Y

So, rescaling the sectiohsby a linear factor, we may assume that the right hand
side is lower than one.

Corollary 2 Under the hypothesis of Theorem 3,let [;. LetE — U be a
line bundle, and let € H°(U, E) \ {0}. Then, for anyk € N and anyp € U,
there exists € HO(U, E ® O(kl)) such that,((§ = 0)) < (v,(s = 0) — k)*.

Proof. First, we prove the corollary fot = 1. If the pointp does not belong
to Z,, sinceO(l) is very ample, the corollary is true. Assurpec Z; and let
Y1, ..., Y, beitsglobalirreducible (reduced) components which contaiiirite

Y =YiU...UY,. Letn, ... ,t beminimallocal equations atfor Y1, ..., Y,
respectively, sothatmuyly’ = ord,#;+. . .+ord,zt,. Lets’ € HO(U, O()®[Y'])

a section as in Theorem 3 and denotesbyhe corresponding meromorphic
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section ofO (/) overU . We may assume thatthe polar divisosGE Y1 +. . .+7Y,,
withr’ < r. By hypothesis, there exists strictly positive integers . . , n,, such
thats = #/*...1" e wheree € E, is a local non vanishing germ at In the

8
f1...1,
and orgg < mult,Y’ — 1. Hence§ = s’ ® s € HO(U, E® O()) ands’ ® s =
gt e @e. Soords’ ® s < mult,(Y') — 1+ ord, (¢ ..l =
ord,s — 1.

Next, assume the corollary is true for some inteiger 1. Lets;, denote the
corresponding section & ® O(kl). We apply the step = 1to E ® O(kl) and
S to conclude. O

same ways’' =

¢’ wheree’ € O(l),, is a local non vanishing germ at

Remark 61f we apply this corollary to the line bundlg>], whereD is an ef-
fective divisor, and to its canonical section, we see th@i/;) ® [ D] is globally
generated outside the analytic subigete U ; v,(D) > k}.

5.3. Pluricomplete currents

Definition 10 A closed positivél, 1)—currento on a complex manifold/ is
said to be pluricomplete if there exists a closeds&in M such thatw admits
local locally bounded potentials oW \ L and a functionp € P,(M \ L) with

liminf ¢ = +o0.
M\L>p'—L

If P* is a projective space, we will denoig-s its Fubiny-Study form without
indication of the dimension.

Lemma 13 Let E — M be a line bundle, with smooth hermitian metric and
positive Chern curvaturey. Letso, ..., s, € H(M, E) \ {0} be holomor-
phic sections off. Let A denote their common zeros locus M. Let ¢ be
the associated meromorphic map framto P¥, given in homogeneous coordi-
nate byp — [si(p)lo<i<x . Then, the functiop — —log|s||?>(p) belongs to
Pyropstwg(M \ A) and satisfiezl\i/rgli]r)_fm Y = +o0.
Proposition 2 Let U — V be a locally pseudoconvex domain ovérand
let E — U be a line bundle ovel/. Letsg, ... ,sy € HU, E) \ {0} and
denoteB = ﬂ Z,, their common zero locus. Lef, 0 < o < N’, be global
O<i<N
sections of2(l), [ > 1,, without common zeros. L¢t: U — PNV +D-1 pe
the meromorphic map given in homogeneous coordinate by [eysi]..:(p),
which is holomorphic oV \ B. Considers the closed positivé, 1)—current
o = Yy*wrs. Then, there exisig € P,(U \ B) with Uli\rpainEB ¢(z) = +o0.
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Proof. Denote B, the indeterminacy ofy. HenceB = B; U B, with B; an
hypersurface and codify > 2. v is holomorphic onl/ \ B,. The associated
bundle morphisnU x CN+DWNV'+D 5 O(]) ® E gives an induced hermitian
singular metric orO(/) ® E whose curvature = y*wrs is smooth orl/ \ B.
To prove the proposition, it's enough to prove the following claim.

For anyzo € U \ B, there exists real strictly positive constagtg ande., such
that, for anyp € B, there existg, € P, (U \ B), with

liminf ¢,(z) = +o0 (5.4)
U\B>3z—p
VpeB, sup ¢, <Cg,, (5.5)
B(z0,€z9)

whereB(zo, 2¢,,) is a ball in a complex analytic chart centred:gtind disjoint
from B.

Indeed, if this claim is proved thep,= (supg,)* will be well defined or \ B
peB

due to (5.5). It belongs t&,,(U \ B) and satlsfles liminfp = 4o0.

B>z—B
First, we construct the functiop, € P,(U \ B), p € B. LetY; = (s; = 0),
i =0,...,N.Recall that for each integer 8 i < N, p belongs toY;. From
Theorem 3 and Remark 5, we may construct segtior Ho(U, O(l) ® [Y:]),

k=1,...,n,subjectto the following conditions
sy = Z,B,-kfk (5.6)
k=1
/ 151126 ImIC o Dgy, < 1 (5.7)
U\Y; -
where,s, € HO(U, O(l; + 1)) is non vanishing ap, andry, ... ,t, € Ho(U,

O(1)) give local coordinates centred at Moreover, we consideﬂ?" as mero-
morphic sectiong’ of O(/) overU, and| ;|12 = Y_;_, |82 Notethaw"@s,
HO(U, O(l) ® E). Working in the induce norm, define

gp=log| Y B ®@si?| € P,(U\B). (5.8)

1<k<n
O<i<N

Away of B, we have

k 2 2
Zlﬁ ® ,| Zk,lﬁ ®Sl| Zkltk|

Sl (5.9)

_ i X Busi? _ Yils, @ sil? (5.10)
- >k 1l 2l
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where the sum is over £ k <n and 0<i < N. Line (5.10) is due to (5.6).
Assumeeg(p) # 0. Recall thats, € HOU, O( + 1)), hence write locally
sp =5, ® eo. Next, in each chartgys; £ 0,0<i < N, saysepso # 0, we have

Zl|20§1 |2
sy ®@siP = s, > S e (5.11)
O<i<N o, i lepso
2 5|2
= s’ |? il 55| (5.12)

2alal? 2112 Zmlg“l2

The last expression is strictly positive Bt says greater than equal to 2 0,
does not depend an so

¢p = —log([I£]1%) + logc (5.13)

in a neighbourhood of.

Next, we prove the uniform bound in thg. Letzo € U \ B, and letW be
an open chart centered @ DenoteB(zg, €1), €1 > 0, the induced ball i,
and assumé(zo, 1) CC W. Let1 > e > 0, such thatB(zo, 2¢;) CC U \ B
and such that, saysg is non vanishing orB(zo, 2¢1). Letr be a holomorphic
section ofE, on B(zg, 1), non vanishing there. Then
k12
=— (5.14)

§ CaSi
o,

eot

k. |2
Z |1B; sil
ki

Here, only theﬂ{‘, 1<k=<mn 0<i < N,dependonp € B. In the

left hand side, the norm symbol represents the induced hermitian metric, in the
right hand side it represents a modulus of a holomorphic functionnilet

MaXz .0.e1) Zk,i |13iksi|2(< +00), 0 < my = minB(zo,q) Za,z e:o? |2 and 0 <

ma = MiNg ., 2., leol?. Then

1 ks, |2
m < — max ’Bl—s (5.15)
N1 B(zo,€1) ik eof
C(e, 2\ (s g2
L Cen 3 / 3 Bl Y 5L av,, (5.16)
my — JBo.2e0\Y; \“7 | €0 t
C ) 1 2 i 2 1
< (e1,n) / | Bi ||2 % ‘s_ =dv,, (5.17)
my B(z0.20\Y; |€0l Yi
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with y; = min(sé, dau\yl_)“f andw, is the usual Khler metric onC". Next, there

. Si 2 1 . . 5i 12
exists a constam such thad; — < AonB(z, 2¢1) \ Y; for anyi, sincel|¥ |
Vi
is lipchitzian and vanishes dn. Hence

C(eg, n)

ni.my

m =

C'(e))A x (N+1) (5.18)

whereC’(¢1) bounds the ratio of the Euclidean volume form and thehl€f
one andV + 1 appears since the vectg?, . .. , 8) belongs to the unit ball of
L2(U \ Y, :dV,,) by (5.7). O

Corollary 3 LetU — V be alocally pseudoconvex domain over the projective
manifoldV, dimV > 2. LetY be an effective divisor ofi. Then[Y] ® O(kl;)

is spanned by its global sections outsilg 1(Y) = {p € U : v,(Y) > k+1}.

If kK > 1, it admits a singular hermitian metric of positive curvature, which is
smooth away fronk, (Y) and is a pluricomplete positive current UA.

Proof. The first assertion is the content of Corollary 2 (in particiifare O (kl1)
admits a singular hermitian metric with a positive Chern currentwhich are smooth
away fromE;1(Y)). Letk > 1. By a Baire argument, selett +1 > n + 1
sections inH°(U, [Y]® O((k — 1)11)), which together spaiY ] ® O((k — 1)I1)

away fromB C E,(Y). Proposition 2 applied to this set of sections gives a
singular metric orfY] ® O(kl1), which is smooth away fron®, and is pluri-
complete. ]

Remark 7

i. Inthe construction of Proposition 2, we may select the sectigssich that
the holomorphic map given by them is biholomorphic onto its image (see
[17]). In particular, the current*w s obtained is strictly positive. Moreover,
adding some pullback by of elements inH°(V, O(l1)), we may always
assume that*wrs > Cwg, WhereC is a strictly positive constant.

ii. Letw be aclosed positivél, 1)—current on a complex manifoled . Assume
that it admits local locally bounded potentials &h\ B, whereB is an
analytic subset oM. Assume that for any € B, there exists a function

¢p € P,(M \ B)suchthat liminf ¢, = +oo.Foranyrelatively compact
M\B>z— peB

open subset/ in M \ B, let U; denote the interior of/ (0, w) U B, which
is locally pseudoconvex i (see Sect. 3). Then by definition 6f(0, w),
there exist® € P,(U; \ B) suchthat Iliminf ¢ = +oco.
U1\B>z— peB
LetE — U bealine bundle which admits a singular metric with a positive current
curvature. Lef denote its Nadel multiplier ideal sheaf (see [13] for a definition).
Using standard.? methods (see [14], prop. 4.2.1 in the compact case), we see
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that E ® O(lp) ® Z is spanned by its global sections. Hence, assumeiieal

is spanned by its global sections. et H°(U, E ® 7). To eachp € Z,, we
may associate the meromorphic sectigh®f O(l1), which are holomorphic on
U\ Z, (i.e.associated to sectiof§ € HO(U, O(l,) ® [Z,]) and which satisfies
the usual ideal relation (5.6)). We obtain then sectjgh®s € Ho(U, O(l1)®E).
Doing this procedure for any ¢ H°(U, E ® 7) and anyp € Z,, we obtain a
set of global sectioriz; of O(l;) ® E. Let Z; denote the coherent ideal sheaf
it generates. Thed = 7o C Z;. Working with G, as before, we obtain a
setG, of global section 0f0(2/;) ® E which defines an ideal shea$, and
so on. Then, one get a sequence of coherent ideal stigafs7Z; C Z,....

By Notherian properties, this sequence become locally stationary equal to the
structure shea® (as was shown). For a poipt € U, definem(p) to be the
least integer such that;), = O, for anyk > m(p). By construction the set
M, ={p e U : m(p) > I} are analytic subsets i.

Corollary 4 Under the above hypothesis, the line bun8le O(kl;) admits a
singular hermitian metric with a positive Chern current which are smooth away
fromM,. If k > 1, the line bundleE ® O(kl1) admits a singular hermitian metric,
with a Chern currentv,, which are smooth o&y \ M;_1 andwy is pluricomplete.
There existg € P, (U \ M;_1) with ” liminf @ = +o00.

\My_13z—>peMy—1

6. Some Hartogs’ phenomenon in projective manifolds

Definition 11 ([2]) Let X be a normal complex space of pure dimension 2.
For W c W open subsets of, we define the hull dV’ in W by

Wiy = {x eW t[f)l =suplfl.Vf e O(W)} :
W/

An open subseY C X is said to be pseudoconcave at the boundary point
P € 9yY if there exist§W,},, an open basis oP in X, s.t. P is an interior
point of Vﬂm\YWa. X is said to be pseudoconcave in the sense of Andreotti, if
there existy’, an open relatively compact subsetofwhich is pseudoconcave

in each of its boundary point.

Remark 8No boundary condition oX is assumed.

Proposition 3 ([15]) Let £2 be an open subset of the projective manifgldAs-

sume thaf? is pseudoconcave in the sense of Andreotti and locally pseudoconvex
in V, thenay £2, the topological boundary of? in V, is a compact hypersur-
face. Hence, i is a pseudoconcave open subset of the projective mariifold
thenV \ X contains a maximal compact hypersurfagégwhich may be empty).
Moreover, ifdimcV = 2, then each irreducible componant &f may be blow
down onto a point.
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Notice that for dinV > 3, there exists example of hypersurfaliesuch that

V' \ H is a pseudoconcave domain in the sense of Andreotti, but no irreducible
component ofH may be blow down. Indeed, I8t be a projective manifold

of dimensionn > 2, and let(L,h) — V be a hermitian line bundle with
curvature formw. Assumew has one strictly positive eigenvalue and another
one strictly negative. Then, the real hypersurfacd, in> P(L & C), given as

{c e L : h(¢) =1} is pseudoconcave, but the zero section (or the hyperplan to
infinity) does not contract to a lower dimensional analytic set in general.

We prove an extension theorem for currents which implies, in the projective case,
a result of Nadel-Tsuji [24].

Theorem 4 LetV = (V, O(1)) be a projective manifoldjimV > 2. LetH be

a hypersurface itV such thatV \ H is pseudoconcave in the sense of Andreotti.
LetU be an open neighbourhood &f in V. Letw be a(1, 1)—closed positive
current onU \ H which admits local locally bounded potentials. Then

f 0" < 400, (6.1)
K\H

for any compact sek in U. Moreover, ifl < k < n thenw* extends as a closed
positive currents througl#/ .

Proof. We may assume thdf does not intersect, the subset which gives
the pseudoconcavity condition dh\ H (see Definition 11). Let/; be a rel-
atively compact subset ity which containsH U K. From proposition 3, let
H' = H U H; the maximal compact hypersurface contained/in We may
assume thak is a compact subset ity; which contains a neighbourhood
of H' and thatx=k. Let wg be the Chern curvature of the line bund1),
and denotev; = w + wg. Let Xg = X (0, w;) be the open subset &f \ H’
where the familyP,, (U \ H’, U1 \ K, 0) is locally bounded from above (see
3.1). From Lemma 6X, is locally pseudoconvex ii/ \ H' and contains
U; \ K. Note that(V \ K) U X, is locally pseudoconvex if¥. Since it con-
tains Y, it is pseudoconcave in the sense of Andreotti. From proposition 3,
(VANK)UXo =V \ H, for H' is the maximal compact hypersurface kh
From Takeuchi’'s theorem 2, there exists > 0 and a constanf, such that
Y1 = —elog(min(s, dyv\p')) — C € P,,(U\ H', U1\ K, 0), sincew; > wo.
Denoteg* the extremal function associated By, (U \ H', U1 \ K, 0). Then
{p* <c}NK cc K\ H foranyc € R, sincep* > . From Proposition 1,

+00 > / (w1 +dde*)" > / (w + wo)" . (6.2)
9K K\H’
We deduce that the closed positive currentsk = 1, ... , n, have finite trace

measure neakl. Hence they extend as closed positive currents thrddigbee
e.0.[30,34]). |
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Corollary 5 Let H be a hypersurface in a projective manifold, dimv >

2. Assume tha¥V \ H is pseudoconcave in the sense of Andreotti. lLdbe

a neighbourhood off. Let f : U \ H — M be a holomorphic map into
the compact hler manifold(M, w;). Thenf extends as a meromorphic map
through H.

Proof. Theorem 4 applied tw = f*w1 + wo, implies that the graph df is of
finite volume neatd x M. Hence it extends through it. |

Theorem 5 Let V be a projective manifoldlimV > 2. Let H be a compact
complex hypersurface iW. Assume thaV \ H is pseudoconcave in the sense
of Andreotti. Let/ be an open subset &f which containsH. Letr : W, — V

be a locally pseudoconvex spread domain d¥wewxhich containd/ \ H. Then
any complex hypersurface of W, extends througl# .

Proof. DenoteO(1) the line bundle which gives the projective embeddind of
We denote by the same symbols pullbacksdef the line bundleD (), ! € N,
and ofwg, the Chern curvature a®(1). In the following, we assume tha& is
not a subset oW;. LetY cC V \ H open subset with pseudoconcave boundary
(see definition 11).

Shrinking U if necessary, we may assume thtis the maximal compact
hypersurface irU (see Proposition 3), thatU the topological boundary df
in W1 is relatively compact i, and thatU does not intersect. Let X be a
relatively compact open neighbourhoodadf in W;. We may assume that
has smooth boundary.

Let Z a complex hypersurface ;. Letm = max,.z mult,Z. From Corol-
lary 3 (see the proof of the second assertion), sectigns . ,s, € H°(Wxy,
O((m + 1)I1) ® [Z]) exist such that

— the meromorphic mag, from Wy to P, given byz — [s;(2)]o<i<, has base
points B contained inE,,;1(Z) = {z € W1, mult,Z > m + 1},
— the currentw = Y*(wry) is strictly positive, and pluricomplete iw;.

Moreover, by adding a non trivial section 6f((m + 1)l;) ~ O((m + D) ®
[Z] ® [—Z], we may assume, is vanishing onz.

Let X denote the pseudoconvex hullXfin W;. ThenX containgl \ H. For,
(VNU)U (X NU)is alocally pseudoconvex domain which is pseudoconcave
andH is the maximal compact hypersurfacelin see Proposition 3.

Let X (0, w + o) the pseudoconvex hull oX in Wy \ B with respect to
o + wp (see Sect. 3.1). We claim that(0, w + wg) N U = U \ (H U B).
Indeed, by Lemma 7X’ the interior of X (0, w + wg) U B is a pseudoconvex
subset inW; which containsX. HenceX’ containsX. From the description of
X, we deduceX (0, w + wg) N\U = U \ (H U B). In particular, those connected
components of( \ X which meetU are pseudoconcave ends (with respect to
Pw+wo(Wl \ B, X, O))
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Denotep* € P,1.,(W1\ B, X, 0) the extremal function associatedRg.
(W1\ B, X, 0). We claim that/ N{¢* < t} cc U\ (HUB),forallr € R. Since
w + wo > wo, from Takeuchi's theorem 2, there exists> 0,¢ > 0, andC,
such thatp; = (—e log min(s, dyv\u) — C)* belongs toP,,1.,(W1 \ B, X, 0).
Recall that to show thab is pluricomplete orv;, we have constructed a func-
tion ¢, € P,(W1 \ B) in Proposition 2, which satisfies Iim inﬁp/z(z) = 400
Denoteyp, = (¢5 — max<p2)+ € P,(W1\ B, X, 0). Then I|m|nf @ = +00,

Wi\B3p— B
sinceE,.11(Z) N X = (. Hence makpy, o) € P,iwy(W1\ B, X, 0) satisfies
the exhausting condition required above. So dped~rom Proposition 1, we
obtain

/ (w+ wo)" < / (w+ wo+dd°@)" < +o0. (6.3)
U\(XUBUH) IxXNU

In particular, all the Chern numbe?é o* o are finite. Hence the

U\(XUBUH)
graph of the meromorphic mapis of finite volume neaf x P*. Soy extends

throughH andZ C Z,, extends througl# . O

We obtain an Hartogs’ Theorem type which strengthened results in [15].

Corollary 6 (Hartogs’ Kugelsatz] et U be an open subset of the projective
manifold V, dimV > 2. Assume tha¥ \ U is a connected pseudoconcave

open subset o¥/, and assumé/ = U. Let H denote the maximal compact
hypersurface i/, and letF — V be a holomorphic vector bundle ovEr Then
any meromorphic sectionof F defined on a neighbourhood of the boundary
of U extends to a meromorphic sectionffon U. Moreover, any holomorphic
sections of F extends to a meromorphic section @rwhich is holomorphic on
U\H.

Proof. From [15], we may assum& connected with connected topological
boundary. LetW be a connected neighbourhood of the topological boundary
of U. Let W3 denote the domain of holomorphic existence of any holomorphic
section onW of any holomorphic vector bundle ov&r. Since over open ball in

V, any holomorphic vector bundle is trividly; — V is locally pseudoconvex.
From [16], W; — V is the domain of holomorphic existence of the algebra
@neNHO(W, O(n)). Let W, denote the hull of meromorphy & with respect

to any meromorphic section d# of any holomorphic vector bundle ovEr(see
[16]). Any meromorphic section df on W defines a meromorphic map from
toP(F @ C). Since forany such', P(F & C) is a projective manifoldiy, — V

is the meromorphic hull o. Then, from [15], we hav® U(U \ H) < W; —

W, .
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If H isthe empty set the corollary is proved.

AssumeH is non void. It is enough to prove that,#f : W; — Vis a
locally pseudoconvex domain ovéf, which admits a section alony \ H,
then any meromorphic function i, extends meromorphically througt. We
will prove that its graph, i, x P! extends througtil x P! (see also remark
below). First, note thalf x P! is a hypersurface i¥ x P s.t.(V \ H) x P!
is pseudoconcave in the sense of Andreotti. Indeed Egnote the open subset
in V \ U which gives the pseudoconcavity condition (see Definition 11). Then
Y x P! has a pseudoconcave boundary in the sense of Andreotti. Next, we notice
thatW; x P — V x P!is alocally pseudoconvex domain ovérx P! and that
it contains(U \ H) x P. From Theorem 5, we conclude the proof. O

Remark 9

i. Another way of proving the corollary goes as follow. In the above situation,
any hypersurface d¥; extends througt. Hence, any meromorphic func-
tion f on W, satisfies that any of its level set extends throu§hSo we
may find a pointp € H, which admits a neighbourhod#l, in V such that
W1\ H does not meet the polar set, the zero set nbr its level se{ f = 1}.
Shrinking W, if necessary, in suitable coordinates By, we may write,

W, = (HNW,) x A, whereA is the unit disc irC. The restrictions offw,

on each slicgp’} x (A \ {0}), p’ € H N W,, are holomorphic functions on
A\ {0}, which omit two values. From the big Picard’s theorem (see [1]), they
extend toA . By Hartogs-Levi theorem, our meromorphic function extends
to (U \ H) U W,. From the Thullen extension theorem, it extends through
each irreducible component &f which meetW,,.

ii. Since pseudoconvex hulls behave functorialy under fibre product, the last
corollary still holds under the technical assumption that the pseudoconvex
hull of a neighbourhood afU containsU \ H.

iii. We know, using results of S. Ivashkovich [20] and result from [16] that,
in the above situation, if : W(3U) — M is a meromorphic map from a
neighbourhoodV (aU) of U to a complex compact#tiler manifold M, w,),
then f extends meromorphically @ \ H. However, we do not know at that
time if wp + f*w; is a pluricomplete current.
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