

Available online at www.sciencedirect.com

Journal of Functional Analysis 219 (2005) 226-244

JOURNAL OF Functional Analysis

http://www.elsevier.com/locate/jfa

Invariant generalized functions on $\mathfrak{sl}(2,\mathbb{R})$ with values in a $\mathfrak{sl}(2,\mathbb{R})$ -module

P. Lavaud

Université de Paris 7, Paris, France Received 10 May 2004; accepted 10 May 2004

Available online 2 July 2004

Communicated by M. Vergne

Abstract

Let g be a finite-dimensional real Lie algebra. Let $\rho: g \to \text{End}(V)$ be a representation of g in a finite-dimensional real vector space. Let $C_V = (\text{End}(V) \otimes S(g))^g$ be the algebra of End(V)valued invariant differential operators with constant coefficients on g. Let \mathcal{U} be an open subset of g. We consider the problem of determining the space of generalized functions ϕ on \mathcal{U} with values in V which are locally invariant and such that $C_V \phi$ is finite dimensional.

In this article we consider the case $g = \mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{N} be the nilpotent cone of $\mathfrak{sl}(2, \mathbb{R})$. We prove that when \mathcal{U} is $SL(2, \mathbb{R})$ -invariant, then ϕ is determined by its restriction to $\mathcal{U}\setminus\mathcal{N}$ where ϕ is analytic (cf. Theorem 6.1). In general this is false when \mathcal{U} is not $SL(2, \mathbb{R})$ -invariant and V is not trivial. Moreover, when V is not trivial, ϕ is not always locally L^1 . Thus, this case is different and more complicated than the situation considered by Harish-Chandra (Amer. J. Math 86 (1964) 534; Publ. Math. 27 (1965) 5) where g is reductive and V is trivial.

To solve this problem we find all the locally invariant generalized functions supported in the nilpotent cone \mathcal{N} . We do this locally in a neighborhood of a nilpotent element Z of g (cf. Theorem 4.1) and on an $SL(2, \mathbb{R})$ -invariant open subset $\mathcal{U} \subset \mathfrak{sl}(2, \mathbb{R})$ (cf. Theorem 4.2). Finally, we also give an application of our main theorem to the Superpfaffian (Superpfaffian, prepublication, e-print math.GR/0402067, 2004).

© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let g be a finite-dimensional real Lie algebra. Let $\rho : \mathfrak{g} \to \operatorname{End}(V)$ be a representation of g in a finite-dimensional real vector space. Let $\mathcal{C}_V = (\operatorname{End}(V) \otimes S(\mathfrak{g}))^{\mathfrak{g}}$ be the

E-mail address: lavaud@noos.fr.

algebra of End(V)-valued invariant differential operators with constant coefficients on g. It is the *classical family algebra* in the terminology of Kirillov (cf. [Kir00]). Let U be an open subset of g. We consider the problem of determining the space of generalized functions ϕ on U with values in V which are locally invariant and such that $C_V \phi$ is finite dimensional.

When $V = \mathbb{R}$ is the trivial module and g is reductive, the problem was solved by Harish-Chandra (cf. in particular [HC64,HC65]). Let ϕ be a locally invariant generalized function such that $S(g)^{g}\phi$ is finite dimensional. He proved that ϕ is locally L^{1} , ϕ is determined by its restriction $\phi|_{g'}$ to the open subset g' of semi-simple regular elements of g and $\phi|_{g'}$ is analytic.

In this article we consider the case $g = \mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{N} be the nilpotent cone of $\mathfrak{sl}(2, \mathbb{R})$. In this case $g' = \mathfrak{sl}(2, \mathbb{R}) \setminus \mathcal{N}$. Let ϕ be a locally invariant generalized function on \mathcal{U} with values in V such that $\mathcal{C}_V \phi$ is finite dimensional. We prove that when \mathcal{U} is $SL(2, \mathbb{R})$ -invariant, then ϕ is determined by its restriction to $\mathcal{U} \setminus \mathcal{N}$ where ϕ is analytic (cf. Theorem 6.1). In general this is false when \mathcal{U} is not $SL(2, \mathbb{R})$ -invariant and V is not trivial. Moreover, when V is not trivial, ϕ is not always locally L^1 . Finally, we also give an application of our main theorem to the Superpfaffian (cf. [Lav04]).

To solve the problem we find all the locally invariant generalized functions supported in the nilpotent cone \mathcal{N} . Let V_n be the n + 1-dimensional irreducible representation of $\mathfrak{sl}(2,\mathbb{R})$. Let \mathcal{U} be an open subset of $\mathfrak{sl}(2,\mathbb{R})$. We denote by $\mathcal{C}^{-\infty}(\mathcal{U}, V_n)^{\mathfrak{sl}(2,\mathbb{R})}$ the set of locally invariant generalized functions on \mathcal{U} with values in V_n . Let \Box be the Casimir operator on g.

We denote by \mathcal{N}^+ (resp. \mathcal{N}^-) the "upper" (resp. "lower") half nilpotent cone (cf. 4.1). We put

$$\mathcal{S}_{n}^{0}(\mathcal{U}) = \{ \phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V_{n})^{\mathfrak{sl}(2,\mathbb{R})} / \phi |_{\mathcal{U} \setminus \{0\}} = 0 \},$$
(1)

$$\mathcal{S}_{n}^{\pm}(\mathcal{U}) = \{ \phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V_{n})^{\mathfrak{sl}(2,\mathbb{R})} / \phi |_{\mathcal{U} \setminus (\mathcal{N}^{\pm} \cup \{0\})} = 0 \},$$
(2)

$$\mathcal{S}_{n}(\mathcal{U}) = \{ \phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V_{n})^{\mathfrak{sl}(2,\mathbb{R})} / \phi |_{\mathcal{U}\mathcal{N}} = 0 \}.$$
(3)

Let $Z \in \mathcal{N}^+$. We assume that \mathcal{U} is a suitable open neighborhood of Z (cf. Section 4.6). Let $\delta_{\mathcal{N}^{\pm}}$ be an invariant generalized function with support $\mathcal{N}^{\pm} \cup \{0\}$ (cf. Section 4.4). We construct an invariant function s_n on $\mathcal{N} \cap \mathcal{U}$ with values in V_n . We prove (cf. Theorem 4.1):

(i) When *n* is even, $S_n(U)$ is an infinite-dimensional vector space with basis

$$(\Box^{k}(s_{n}\delta_{\mathcal{N}^{+}}))_{k\in\mathbb{N}}.$$
(4)

(ii) When *n* is odd, $\dim(S_n(\mathcal{U})) = \frac{n+1}{2}$ and a basis is given by

$$\left(\Box^{k}(s_{n}\delta_{\mathcal{N}^{+}})\right)_{0\leqslant k\leqslant\frac{n-1}{2}}.$$
(5)

We assume that \mathcal{U} is an $SL(2, \mathbb{R})$ -invariant open subset of $\mathfrak{sl}(2, \mathbb{R})$. If $\mathcal{U} \cap \mathcal{N} \neq \emptyset$, we have $\mathcal{N}^+ \subset \mathcal{U}$ or $\mathcal{N}^- \subset \mathcal{U}$. We prove (cf. Theorem 4.2) (i)

$$\begin{cases} S_n^0(\mathcal{U}) = \{0\} & \text{if } 0 \notin \mathcal{U}, \\ S_n^0(\mathcal{U}) \simeq (V_n \otimes S(\mathfrak{sl}(2, \mathbb{R})))^{\mathfrak{sl}(2, \mathbb{R})} & \text{if } 0 \in \mathcal{U}. \end{cases}$$
(6)

(2) When n is even, we have

$$\mathcal{S}_{n}(\mathcal{U}) = \mathcal{S}_{n}^{0}(\mathcal{U}) \oplus \operatorname{Vect}\{\Box^{k}(s_{n}\delta_{\mathcal{N}^{+}})|_{\mathcal{U}}/k \in \mathbb{N}\} \oplus \operatorname{Vect}\{\Box^{k}(s_{n}\delta_{\mathcal{N}^{-}})|_{\mathcal{U}}/k \in \mathbb{N}\}, \quad (7)$$

$$S_n^{\pm}(\mathcal{U}) = S_n^0(\mathcal{U}) \oplus \operatorname{Vect}\{ \Box^k(s_n \delta_{\mathcal{N}^{\pm}})|_{\mathcal{U}}/k \in \mathbb{N} \}.$$
(8)

(iii) When *n* is odd:

$$\mathcal{S}_n(\mathcal{U}) = \mathcal{S}_n^{\pm}(\mathcal{U}) = \mathcal{S}_n^0(\mathcal{U}).$$
(9)

Finally, let \mathcal{U} be an open subset of $\mathfrak{sl}(2,\mathbb{R})$. Let V be the space of a real finitedimensional representation of \mathfrak{g} . Let ϕ be an invariant function defined on \mathcal{U} such that $\mathcal{C}_V \phi$ is finite dimensional. This last condition is equivalent to the existence of $r \in \mathbb{N}$ and $(a_0, \ldots, a_{r-1}) \in \mathbb{R}^r$ such that:

$$\left(\Box^r + \sum_{k=0}^{r-1} a_k \Box^k\right) \phi = 0.$$

Moreover, we assume that $\phi|_{U \cup V} = 0$. We prove (cf. Theorem 5.3) that if U is $SL(2, \mathbb{R})$ -invariant, then we have $\phi = 0$.

In general, when \mathcal{U} is not $SL(2, \mathbb{R})$ -invariant, there exist non trivial solutions of the equation $\Box^k \phi = 0$ which are supported in the nilpotent cone (cf. Theorem 5.2).

2. Notations

Let g be a finite-dimensional real Lie algebra. Let $\rho: g \to \text{End}(V)$ be a representation of g in a finite-dimensional real vector space V. Let \mathcal{U} be an open subset of g. We denote by $\mathcal{D}_{c}^{\infty}(\mathcal{U})$ the space of compactly supported smooth densities on \mathcal{U} . We put

$$\mathcal{C}^{-\infty}(\mathcal{U}, V) = \mathcal{L}(\mathcal{D}_{c}^{\infty}(\mathcal{U}), V),$$
(10)

where \mathcal{L} stands for continuous homomorphisms. It is the space of generalized functions on \mathcal{U} with values in V. We put $\mathcal{C}^{-\infty}(\mathcal{U}) = \mathcal{C}^{-\infty}(\mathcal{U}, \mathbb{R})$. For $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$ and $\mu \in \mathcal{D}^{\infty}_{c}(\mathcal{U})$, we denote by

$$\int_{\mathcal{U}} \phi(Z) \, d\mu(Z) \tag{11}$$

the image of μ by ϕ . We have

$$\mathcal{C}^{-\infty}(\mathcal{U}, V) = \mathcal{C}^{-\infty}(\mathcal{U}) \otimes V \tag{12}$$

(we will also write ϕv for $\phi \otimes v$).

Let $Z \in \mathfrak{g}$. We denote by ∂_Z the derivative in the direction Z. It acts on $\mathcal{C}^{-\infty}(\mathcal{U})$ and on $\mathcal{C}^{-\infty}(\mathcal{U}, V)$. We extend ∂ to a morphism of algebras from $S(\mathfrak{g})$ to the algebra of differential operators with constant coefficients on \mathfrak{g} . We denote by \mathcal{L}_Z the differential operator defined by

$$(\mathcal{L}_Z\phi)(X) = \frac{d}{dt}\phi(X - t[Z, X])|_{t=0}.$$
(13)

The map $Z \mapsto \mathcal{L}_Z$ is a Lie algebra homomorphism from g into the algebra of differential operators on g. Let $Z \in \mathfrak{g}$ and $\phi \otimes v \in \mathcal{C}^{-\infty}(\mathcal{U}) \otimes V$, we put

$$Z.(\phi \otimes v) = \phi \otimes \rho(Z)v + (\mathcal{L}_Z \phi) \otimes v.$$
(14)

In other words, if we extend \mathcal{L}_Z (resp. $\rho(Z)$) linearly to a representation of \mathfrak{g} in $\mathcal{C}^{-\infty}(\mathcal{U}, V)$, we have for $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$:

$$Z.\phi = (\rho(Z) + \mathcal{L}_Z)\phi.$$
(15)

We say that $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$ is locally invariant if for any $Z \in \mathfrak{g}$ we have $Z.\phi = 0$. We put

$$\mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{g}} = \{\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V) / \forall Z \in \mathfrak{g}, Z.\phi = 0\}.$$
(16)

3. Support {0} distributions

In this section we assume that g is unimodular. We choose an invariant measure dZ on g. We define the Dirac function δ_0 on g with support $\{0\}$ (which depends on the choice of dZ) by the following: Let $C_c^{\infty}(g)$ be the set of smooth compactly supported functions on g. Then:

$$\forall f \in \mathcal{C}^{\infty}_{c}(\mathfrak{g}), \int_{\mathfrak{g}} \delta_{0}(Z) f(Z) \, dZ = f(0).$$
(17)

We have the following well-known theorem:

Theorem 3.1. Let g be a finite-dimensional unimodular real Lie algebra and V be a finite-dimensional g-module. Then

$$\{\phi \in \mathcal{C}^{-\infty}(\mathfrak{g}, V)^{\mathfrak{g}}/\phi|_{\mathfrak{g}\setminus\{0\}} = 0\} \simeq (V \otimes S(\mathfrak{g}))^{\mathfrak{g}}.$$
(18)

The isomorphism (which depends on the choice of dZ) sends $\sum_i v_i \otimes D_i \in (V \otimes S(\mathfrak{g}))^{\mathfrak{g}}$ to $\sum_i (\partial_{D_i} \delta_0) v_i$.

4. Support in the nilpotent cone

From now on, we assume that $g = \mathfrak{sl}(2, \mathbb{R})$.

4.1. Notations

We put:

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$
 (19)

We denote by $(h, x, y) \in (\mathfrak{sl}(2, \mathbb{R})^*)^3$ the dual basis of (H, X, Y). Thus:

$$\begin{pmatrix} h & x \\ y & -h \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{R})^* \otimes \mathfrak{sl}(2, \mathbb{R})$$
(20)

is the generic point of $\mathfrak{sl}(2,\mathbb{R})$. Let \mathcal{N} be the nilpotent cone of $\mathfrak{sl}(2,\mathbb{R})$. It is the union of three orbits:

- (i) $\{0\}$.
- (ii) the half cone \mathcal{N}^+ with equations $h^2 + xy = 0$; x y > 0.
- (iii) the half cone \mathcal{N}^- with equations $h^2 + xy = 0$; x y < 0.

We denote by \Box the Casimir operator of $\mathfrak{sl}(2,\mathbb{R})$:

$$\Box = \frac{1}{2} \left(\partial_H \right)^2 + 2 \partial_Y \partial_X. \tag{21}$$

It is an invariant differential operator with constant coefficients on $\mathfrak{sl}(2,\mathbb{R})$.

Let $V_1 = \mathbb{R}^2$ be the standard representation of $\mathfrak{sl}(2,\mathbb{R})$. We denote by (e = (1,0), f = (0,1)) the standard basis of \mathbb{R}^2 . The symplectic form *B* such that B(e,f) = 1 is $\mathfrak{sl}(2,\mathbb{R})$ -invariant. For $v \in V_1$, we define $\mu_1(v) \in \mathfrak{sl}(2,\mathbb{R})$ as the unique element such that:

$$\forall Z \in \mathfrak{sl}(2, \mathbb{R}), \operatorname{tr}(\mu_1(v)Z) = \frac{1}{2}B(v, Zv).$$
(22)

It defines a (moment) map:

$$\mu_1: V_1 \to \mathfrak{sl}(2, \mathbb{R}). \tag{23}$$

We have $\mu_1(e) = \frac{1}{2}X$ and $\mu_1(f) = -\frac{1}{2}Y$. The function μ_1 is a two-fold covering of \mathcal{N}^+ by $V_1 \setminus \{0\}$.

Let $Z_0 \in \mathcal{N} \setminus \{0\}$. Let \mathcal{U} be a "small" neighborhood of Z_0 . In this section we determine:

$$\{\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})} / \phi|_{\mathcal{U}\mathcal{N}} = 0\}.$$
(24)

We can assume that $Z_0 = X \in \mathcal{N}^+$.

4.2. *Restriction to* $X + \mathbb{R}Y$

We define a map:

$$\pi: SL(2, \mathbb{R}) \times (X + \mathbb{R}Y) \to \mathfrak{sl}(2, \mathbb{R})$$
$$(g, Z) \mapsto Ad(g)(Z).$$
(25)

This map is submersive. Let I_2 be the identity matrix in $SL(2, \mathbb{R})$. Let $\Delta_X \subset X + \mathbb{R}Y$ be an open interval containing X. We choose a connected open subset $\mathcal{V} \subset SL(2, \mathbb{R})$ such that $I_2 \in \mathcal{V}$. We put:

$$\mathcal{U} = \pi(\mathcal{V} \times \varDelta_X). \tag{26}$$

It is an open neighborhood of X in g.

Lemma 4.1. There is an injective (restriction) map:

$$\mathfrak{I}_X : \mathcal{C}^{-\infty} (\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})} \to \mathcal{C}^{-\infty} (\mathcal{A}_X, V)$$
$$\phi \mapsto \phi_X. \tag{27}$$

Proof. The map

$$\pi_{\mathcal{U}} = \pi|_{\mathcal{V} \times \mathcal{A}_X} : \mathcal{V} \times \mathcal{A}_X \to \mathcal{U}$$
(28)

is a submersion. Thus if $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$, then $\pi^*_{\mathcal{U}}(\phi)$ is a well defined generalized function on $\mathcal{V} \times \Delta_X$ with values in V. Moreover,

$$\phi = 0 \iff \pi_{\mathcal{U}}^*(\phi) = 0. \tag{29}$$

Now, we assume that ϕ is locally invariant. Then, $\pi^*_{\mathcal{U}}(\phi)$ is also locally invariant and

$$\pi_{\mathcal{U}}^*(\phi) \in \mathcal{C}^{\infty}(\mathcal{V}) \widehat{\otimes} \mathcal{C}^{-\infty}(\varDelta_X)$$
(30)

(Where $\widehat{\otimes}$ is a completed tensor product.) Thus $\pi_{\mathcal{U}}^*(\phi)$ can be restricted to $\{I_2\} \times \Delta_X \subset \mathcal{V} \times \Delta_X$ (cf. [HC64]). We identify Δ_X and $\{I_2\} \times \Delta_X$. We put:

$$\phi_X \stackrel{\text{def}}{=} \pi^*_{\mathcal{U}}(\phi)|_{\mathcal{A}_X}.$$
(31)

Since \mathcal{V} is connected and ϕ is locally invariant, we have:

$$\pi^*_{\mathcal{U}}(\phi)(g,Z) = \rho(g)\phi_X(Z). \tag{32}$$

Thus

$$\phi_X = 0 \iff \pi_{\mathcal{U}}^*(\phi) = 0. \qquad \Box \tag{33}$$

We have for $Z \in \mathfrak{sl}(2, \mathbb{R})$:

$$\mathcal{L}_{Z} = -h\partial_{[Z,H]} - x\partial_{[Z,X]} - y\partial_{[Z,Y]}.$$
(34)

In particular:

$$\mathcal{L}_H = -2x\partial_X + 2y\partial_Y,\tag{35}$$

$$\mathcal{L}_X = 2h\partial_X - y\partial_H,\tag{36}$$

$$\mathcal{L}_Y = x\partial_H - 2h\partial_Y. \tag{37}$$

If \mathcal{V} is sufficiently small, we have $x \neq 0$ on \mathcal{U} . We assume that this condition is realized. It follows that on \mathcal{U} we have:

$$\partial_X = -\frac{1}{2x}\mathcal{L}_H + \frac{y}{x}\partial_Y,$$

$$\partial_H = \frac{1}{x}\mathcal{L}_Y + \frac{2h}{x}\partial_Y.$$
 (38)

We have $\Delta_X \subset \{X + yY/y \in \mathbb{R}\}$. We use the coordinate $y|_{\Delta_X}$, still denoted by y, on Δ_X . Let $\psi \in \mathcal{C}^{-\infty}(\Delta_X, V_n)$. We put $\psi(y) = \psi(X + yY)$.

Lemma 4.2. We have:

$$\mathfrak{I}_X(\mathcal{C}^{-\infty}(\mathcal{U},V)^{\mathfrak{sl}(2,\mathbb{R})}) = \{\psi \in \mathcal{C}^{-\infty}(\varDelta_X,V)/(\rho(X) + y\rho(Y))\psi(y) = 0\}.$$
 (39)

Thus

$$\Im_X : \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})} \to \{ \psi \in \mathcal{C}^{-\infty}(\mathcal{A}_X, V) / (\rho(X) + y\rho(Y))\psi(y) = 0 \}$$
(40)

is an isomorphism.

Proof. Since $x|_{\Delta_X} = 1$ and $h|_{\Delta_X} = 0$ we have for $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})}$:

$$(\mathcal{L}_X\phi)_X(y) = -y(\partial_H\phi)_X(y),$$

and

$$(\mathcal{L}_Y \phi)_X(y) = (\partial_H \phi)_X(y). \tag{41}$$

It follows that we have:

$$(\mathcal{L}_X\phi)_X(y) + y(\mathcal{L}_Y\phi)_X(y) = 0.$$
(42)

Let $\psi \in \mathfrak{I}_X(\mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})})$. Then, there is $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})}$ such that $\psi = \phi_X$. We have:

$$(\rho(X) + y\rho(Y))\psi(y) = (\rho(X) + y\rho(Y))\phi_X(y)$$

= $(\rho(X)\phi)_X(y) + y(\rho(Y)\phi)_X(y) + (\mathcal{L}_X\phi)_X(y) + y(\mathcal{L}_Y\phi)_X(y)$
= $((\rho(X) + \mathcal{L}_X)\phi)_X(y) + y((\rho(Y) + \mathcal{L}_Y)\phi)_X(y) = 0.$ (43)

Let $\psi \in \mathcal{C}^{-\infty}(\Delta_X, V)$ such that $(\rho(X) + \gamma \rho(Y))\psi(\gamma) = 0$. We define $\tilde{\psi} \in \mathcal{C}^{-\infty}(\mathcal{V} \times \Delta_X)$ by the formula:

$$\tilde{\psi}(g, y) = \rho(g)\psi(y). \tag{44}$$

Since ρ is a smooth function on $SL(2, \mathbb{R})$ with values in GL(V), this is a well defined generalized function on $\mathcal{V} \times \Delta_X$ with values in V.

Let $(g, Z) \in \mathcal{V} \times \Delta_X$. Let $(g', Z') \in \mathcal{V} \times \Delta_X$ such that $\operatorname{Ad}(g)(Z) = \operatorname{Ad}(g')(Z')$. Then, $\operatorname{Ad}((g')^{-1}g)Z = Z'$. We put $G^Z = \{g'' \in SL(2, \mathbb{R}) / \operatorname{Ad}(g'')(Z) = Z\}$. For $g'' \in SL(2, \mathbb{R})$, we have $\operatorname{Ad}(g'')(Z) \in \Delta_X \Leftrightarrow g'' \in G^Z$. Then, the fiber of $\pi_{\mathcal{U}}$ at (g, Z) is included in $\{(g', Z)/g^{-1}g' \in G^Z\}$. Moreover, for $Z' \in \mathfrak{sl}(2, \mathbb{R}), [Z, Z'] = 0 \Leftrightarrow Z' \in \mathbb{R}Z$. Thus, since \mathcal{V} is connected, the condition $(\rho(X) + \gamma\rho(Y))\psi(\gamma) = 0$ on Δ_X ensures that $\tilde{\psi}$ is constant along the fibers of $\pi_{\mathcal{U}}$. Thus there is a well defined generalized function $\bar{\psi}$ on \mathcal{U} such that:

$$\pi_{\mathcal{U}}^*(\bar{\psi}) = \tilde{\psi}.\tag{45}$$

It follows from the construction that $(\bar{\psi})_X = \psi$. \Box

The hypothesis $\phi|_{\mathcal{UN}} = 0$ means that ϕ_X is supported in $\{X\} \subset \Delta_X$.

4.3. Radial part of \Box

In the neighborhood \mathcal{U} of X defined in Section 4.2:

$$\Box = \frac{1}{2} (\partial_H)^2 + 2\partial_Y \partial_X$$
$$= \frac{1}{2} \left(\frac{1}{x} \mathcal{L}_Y + \frac{2h}{x} \partial_Y \right)^2 + 2\partial_Y \left(\frac{-1}{2x} \mathcal{L}_H + \frac{y}{x} \partial_Y \right). \tag{46}$$

We define the radial part of \Box as the differential operator \Box_X on $\mathcal{C}^{-\infty}(\varDelta_X, V)$:

$$\Box_X = \left(3 + \rho(H) + 2y\frac{\partial}{\partial y}\right)\frac{\partial}{\partial y} + \frac{1}{2}\rho(Y)^2.$$
(47)

This definition is justified by the following lemma:

Lemma 4.3. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})}$, then we have:

$$(\Box \phi)_X = \Box_X \phi_X. \tag{48}$$

Proof. Since $x|_{\Delta_X} = 1$ and $h|_{\Delta_X} = 0$, we have:

$$(\Box \phi)_{X} = \frac{1}{2} \left(\left(\mathcal{L}_{Y}^{2} + 2\mathcal{L}_{Y} \frac{h}{x} \frac{\partial}{\partial y} \right) \phi \right)_{X} + 2 \left(\frac{-1}{2} \left(\frac{\partial}{\partial y} \mathcal{L}_{H} \phi \right)_{X} + \left(\frac{\partial}{\partial y} y \frac{\partial}{\partial y} \phi \right)_{X} \right)$$

$$= \frac{1}{2} \left(\left(\rho(Y)^{2} + 2(x\partial_{H} - 2h\partial_{Y}) \frac{h}{x} \frac{\partial}{\partial y} \right) \phi \right)_{X}$$

$$+ 2 \left(\frac{-1}{2} \left(-\rho(H) \frac{\partial}{\partial y} \phi_{X} \right) + \frac{\partial}{\partial y} \phi_{X} + y \left(\frac{\partial}{\partial y} \right)^{2} \phi_{X} \right)$$

$$= \frac{1}{2} \left(\rho(Y)^{2} + 2 \frac{\partial}{\partial y} \right) \phi_{X} + \left(\rho(H) + 2 + 2y \frac{\partial}{\partial y} \right) \frac{\partial}{\partial y} \phi_{X}$$

$$= \left(3 + \rho(H) + 2y \frac{\partial}{\partial y} \right) \frac{\partial}{\partial y} \phi_{X} + \frac{1}{2} \rho(Y)^{2} \phi_{X} = \Box_{X} \phi_{X}. \quad \Box \quad (49)$$

4.4. The Dirac function δ_{N^+} (resp. δ_{N^-})

Let $dZ = dx \, dy \, dh$ be the Lebesgue measure on $\mathfrak{sl}(2, \mathbb{R})$. Let $(e^*, f^*) \in (V_1^*)^2$ be the dual basis of (e, f). The Lebesgue measure $dv = -2de^* df^*$ on V_1 is $\mathfrak{sl}(2, \mathbb{R})$ -invariant. We define an invariant generalized function $\delta_{\mathcal{N}^+}$ (resp. $\delta_{\mathcal{N}^-}$) on $\mathfrak{sl}(2, \mathbb{R})$ and supported in $\mathcal{N}^+ \cup \{0\}$ (resp. $\mathcal{N}^- \cup \{0\}$) by

$$\forall g \in \mathcal{C}^{\infty}_{\mathbf{c}}(\mathfrak{sl}(2,\mathbb{R})), \quad \int_{\mathfrak{sl}(2,\mathbb{R})} \delta_{\mathcal{N}^{+}}(Z) g(Z) \, dZ \stackrel{\mathrm{def}}{=} \int_{V_{1}} g \circ \mu_{1}(v) \, dv,$$

$$\left(\text{resp. }\forall g \in \mathcal{C}_{c}^{\infty}(\mathfrak{sl}(2,\mathbb{R})), \quad \int_{\mathfrak{sl}(2,\mathbb{R})} \delta_{\mathcal{N}^{-}}(Z)g(Z) \, dZ \stackrel{\text{def}}{=} \int_{V_{1}} g_{\circ}(-\mu_{1})(v) \, dv\right). \tag{50}$$

We put

$$\delta_X = (\delta_{\mathcal{N}^+})_X \in \mathcal{C}^{-\infty}(\varDelta_X).$$
(51)

We still denote by dy the Lebesgue measure on Δ_X . It is invariant. Let $g \in \mathcal{C}^{\infty}_{c}(\Delta_X)$.

Then we have:

$$\int_{\Lambda_X} \delta_X(y) g(y) \, dy = g(0). \tag{52}$$

4.5. Irreducible representations

If $V = V^1 \oplus \cdots \oplus V^n$ where V^i is an irreducible representation of $\mathfrak{sl}(2, \mathbb{R})$, then we have:

$$\mathcal{C}^{-\infty}(\mathcal{U}, V) = \bigoplus_{i=1}^{n} \mathcal{C}^{-\infty}(\mathcal{U}, V^{i}),$$
(53)

every subspace being stable for $\mathfrak{sl}(2,\mathbb{R})$. Thus we can assume from now on that the representation of $\mathfrak{sl}(2,\mathbb{R})$ in V is irreducible.

We fix the Cartan subalgebra $\mathfrak{h} = \mathbb{R}H$ and the positive root 2h (we still denote by h its restriction to \mathfrak{h}). Let $n \in \mathbb{N}$. We denote by V_n the irreducible representation of $\mathfrak{sl}(2,\mathbb{R})$ with highest weight nh. We have $\dim(V_n) = n + 1$. We decompose V_n under the action of $\mathbb{R}H$. We fix $v_0 \in V_n \setminus \{0\}$ a vector of weight -nh:

$$\rho(H)v_0 = -nv_0. \tag{54}$$

We put for $0 \le i \le n$: $v_i = \rho(X)^i v_0$. We have $\rho(X)v_n = 0$ and $\rho(H)v_i = (-n+2i)v_i$. On the other hand, $\rho(Y)v_0 = 0$ and for $1 \le i \le n$: $\rho(Y)v_i = (n-i+1)iv_{i-1}$.

4.6. A basic function on \mathcal{N}^+

We construct a function $s_n : U \cap \mathcal{N}^+ \to V_n$ which is the basic tool to generate all the generalized functions we are looking for.

4.6.1. Case n even

In this case V_n is isomorphic to the irreducible component of $S^{\underline{n}}_2(\mathfrak{sl}(2,\mathbb{R}))$ (under adjoint action of $\mathfrak{sl}(2,\mathbb{R})$) generated by $X^{\underline{n}}_2$. From now on we will identify V_n with this component. We denote by $s_n : \mathcal{N} \to V_n$ the invariant map defined by:

$$s_n(Z) = Z^{\frac{n}{2}}.$$
(55)

4.6.2. Case n = 1

We recall that $\mu_1 : V_1 \setminus \{0\} \to \mathcal{N}^+$ is a two-fold covering with $\mu_1(e) = \frac{1}{2}X$. If \mathcal{U} is a sufficiently small connected neighborhood of X, there exists a unique continuous section s_1 of μ_1 in $\mathcal{U} \cap \mathcal{N}^+$ such that $s_1(\frac{1}{2}X) = e$. We have $s_1 : \mathcal{U} \cap \mathcal{N}^+ \to V_1$. It satisfies:

$$\forall Z \in \mathcal{U} \cap \mathcal{N}^+, \ \mu_1(s_1(Z)) = Z.$$
(56)

4.6.3. Case n odd

More generally, when *n* is odd, V_n is isomorphic to the irreducible component of $V_1 \otimes S^{\frac{n-1}{2}}(\mathfrak{sl}(2,\mathbb{R}))$ generated by $e \otimes X^{\frac{n-1}{2}}$. From now on we will identify V_n with this component. Let \mathcal{U} be the above neighborhood of X. We define a function $s_n: \mathcal{U} \cap \mathcal{N}^+ \to V_n$ by:

$$\forall Z \in \mathcal{U} \cap \mathcal{N}^+, \ s_n(Z) = s_1(Z) \otimes Z^{\frac{n-1}{2}} \in V_n.$$
(57)

4.7. Basic theorem

Let \mathcal{U} be an open subset of $\mathfrak{sl}(2,\mathbb{R})$. We put:

$$\mathcal{S}_{n}(\mathcal{U}) = \{ \phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V_{n})^{\mathfrak{sl}(2,\mathbb{R})} / \phi |_{\mathcal{U}\mathcal{N}} = 0 \}.$$
(58)

Theorem 4.1. Let $n \in \mathbb{N}$. Let \mathcal{U} be an open connected neighborhood of X such that the function s_n is well defined on $\mathcal{U} \cap \mathcal{N}$ (cf. Section 4.6) and \mathfrak{T}_X is bijective (cf. Section 4.2). Then:

(i) When n is even, $S_n(U)$ is an infinite-dimensional vector space with basis:

$$(\Box^k(s_n\delta_{\mathcal{N}^+}))_{k\in\mathbb{N}}.$$
(59)

(ii) When *n* is odd, $\dim(S_n(\mathcal{U})) = \frac{n+1}{2}$ and a basis is given by:

$$\left(\Box^{k}(s_{n}\delta_{\mathcal{N}^{+}})\right)_{0\leqslant k\leqslant\frac{n-1}{2}}.$$
(60)

Remark. Since $\delta_{\mathcal{N}^+}(Z)dZ$ is a measure on $\mathfrak{sl}(2,\mathbb{R})$ with support $\mathcal{N}^+ \cup \{0\}$ and s_n is a smooth function on $\mathcal{U} \cap \mathcal{N}$ with values in V_n , $s_n \delta_{\mathcal{N}^+}$ is a well defined generalized function on \mathcal{U} with values in V_n .

Proof. Thanks to the isomorphism \mathfrak{I}_X we have to determine the space:

$$\{\psi \in \mathcal{C}^{-\infty}(\varDelta_X, V_n)/\psi|_{\varDelta_X \setminus \{0\}} = 0 \text{ and } (\rho(X) + y\rho(Y))\psi(y) = 0\}.$$
 (61)

Let $\psi \in \mathcal{C}^{-\infty}(\Delta_X, V_n)$. We write:

$$\psi(y) = \sum_{i=0}^{n} \psi_i(y) v_i, \tag{62}$$

where $\psi_i \in \mathcal{C}^{-\infty}(\Delta_X)$ and $(v_i)_{0 \le i \le n}$ is the basis defined in Section 4.5. We put:

$$\delta^{k}(y) = \left(\frac{\partial}{\partial y}\right)^{k} \delta_{X}(y). \tag{63}$$

Since ψ is supported in \mathcal{N} and $\Delta_X \cap \mathcal{N} = \{X\}$, there exists $a_{i,k} \in \mathbb{R}$, all equal to zero but for finite number, such that:

$$\psi_i(y) = \sum_{k \in \mathbb{N}} a_{i,k} \delta^k(y).$$
(64)

For n = 0, we have $\rho = 0$ and the condition $(\rho(X) + y\rho(Y))\psi(y) = 0$ is automatically satisfied.

For $n \ge 1$, we put $\alpha_i = (n - i + 1)i$. We have $y\delta^0(y) = 0$ and for $k \ge 1$, $y\delta^k(y) = -k\delta^{k-1}(y)$. Thus:

$$\sum_{0 \le i \le n-1, \ k \in \mathbb{N}} a_{i,k} \delta^k(y) v_{i+1} - \sum_{1 \le i \le n, \ k \ge 1} \alpha_i a_{i,k} k \delta^{k-1}(y) v_{i-1} = 0.$$
(65)

It follows:

$$\begin{cases} a_{n-1,k} = 0 & \text{for } k \ge 0, \\ a_{1,k} = 0 & \text{for } k \ge 1, \\ a_{i-1,k} = (k+1)(i+1)(n-i)a_{i+1,k+1} & \text{for } n \ge 2, \ 1 \le i \le n-1 \text{ and } k \ge 0. \end{cases}$$
(66)

It follows in particular

- (i) from the first and the last relations that $\forall i, k \ge 0$ with $2i + 1 \le n$: $a_{n-(2i+1),k} = 0$,
- (ii) from the last relation that $\forall i \ge 0$ with $2i \le n$, $(a_{n-2i,k})_{k\ge 0}$ is completely determined by $(a_{n,k})_{k\ge 0}$.

We distinguish between the two cases according to the parity of *n*. *n* even: In this case, for $n \ge 2$, the second relation follows from (i). Hence the map:

$$\{\psi \in \mathcal{C}^{-\infty}(\varDelta_X, V_n)/\psi|_{\varDelta_X \setminus \{0\}} = 0 \quad \text{and} \quad (\rho(X) + y\rho(Y))\psi(y) = 0\} \to \mathbb{R}^{\mathbb{N}}$$

$$\psi(y) = \sum_{0 \leqslant i \leqslant n, \ k \in \mathbb{N}} a_{i,k} \delta^k(y) v_i \mapsto (a_{n,k})_{k \in \mathbb{N}}$$
(67)

is bijective. This is also true for n = 0.

n odd: It follows from the two last relations that for $k \ge i \ge 1$ $a_{2i-1,k} = 0$. In particular, the map:

$$\{\psi \in \mathcal{C}^{-\infty}(\varDelta_X, V_n)/\psi|_{\varDelta_X \setminus \{0\}} = 0 \quad \text{and} \quad (\rho(X) + y\rho(Y))\psi(y) = 0\} \to \mathbb{R}^{\frac{n+1}{2}}$$
$$\psi(y) = \sum_{0 \le i \le n, \ k \in \mathbb{N}} a_{i,k} \delta^k(y) v_i \mapsto (a_{n,0}, \dots, a_{n,\frac{n-1}{2}}) \tag{68}$$

is bijective.

This proves the first part of the theorem on the dimension of $S_n(\mathcal{U})$. It remains to prove that the functions $\Box^k(s_n\delta_N)$ form a basis of $S_n(\mathcal{U})$. We have for $\psi(y) = \sum_{i=0}^n \sum_{k \in \mathbb{N}} a_{i,k}\delta^k(y)v_i \in \mathcal{C}^{-\infty}(\Delta_X, V_n)$ such that $\rho(X + yY)\psi(y) = 0$

$$\Box_X \psi(y) = (3 + \rho(H) + 2y\partial_Y) \sum_{k \in \mathbb{N}} a_{n,k} \delta^{k+1}(y) v_n + \sum_{i=0}^{n-1} \dots v_i$$
$$= \sum_{k \in \mathbb{N}} (n - 2k - 1) a_{n,k} \delta^{k+1}(y) v_n + \sum_{i=0}^{n-1} \dots v_i,$$
(69)

where ... are elements of $\mathcal{C}^{-\infty}(\varDelta_X)$.

n even: Since $v_n = X^{\frac{n}{2}}$, we have $(s_n \delta_N)_X(y) = \delta_X(y) X^{\frac{n}{2}}$. By induction on k, it follows:

$$(\Box^{k}(s_{n}\delta_{\mathcal{N}}))_{X}(y) = (n-2k+1)\dots(n-1)\delta^{k}(y)X^{\frac{n}{2}}$$

+ terms with $X^{\frac{n}{2}-i}$ for $i \ge 1$. (70)

Since *n* is even $n - 2k + 1 \neq 0$. The result follows.

n odd: Since $v_n = e \otimes X^{\frac{n-1}{2}}$, we have $(s_n \delta_N)_X(y) = \delta_X(y)(e \otimes X^{\frac{n-1}{2}})$. By induction on *k*, it follows:

$$(\Box^{k}(s_{n}\delta_{\mathcal{N}}))_{X}(y) = (n-2k+1)\dots(n-1)\delta^{k}(y)(e\otimes X^{\frac{n-1}{2}})$$

+ terms with $e\otimes X^{\frac{n-1}{2}-i}$ for $i \ge 1$. (71)

In this case for $k = \frac{n+1}{2}$, n - 2k + 1 = 0. Thus, since $\Box^k(s_n \delta_N)$ is invariant, it follows from the isomorphism (68) that for $k \ge \frac{n+1}{2}$: $\Box^k(s_n \delta_N) = 0$. The result follows. \Box

4.8. Global version

Let \mathcal{U} be an open subset of $\mathfrak{sl}(2,\mathbb{R})$. We put:

$$\mathcal{S}_{n}^{0}(\mathcal{U}) = \{ \phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V_{n})^{\mathfrak{sl}(2,\mathbb{R})} / \phi |_{\mathcal{U} \setminus \{0\}} = 0 \},$$
(72)

$$\mathcal{S}_{n}^{\pm}(\mathcal{U}) = \{ \phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V_{n})^{\mathfrak{sl}(2,\mathbb{R})} / \phi |_{\mathcal{U} \setminus (\mathcal{N}^{\pm} \cup \{0\})} = 0 \}.$$
(73)

Theorem 4.2. Let \mathcal{U} be an $SL(2, \mathbb{R})$ -invariant open subset of $\mathfrak{sl}(2, \mathbb{R})$. Then we have: (i)

$$\begin{cases} S_n^0(\mathcal{U}) = \{0\} & \text{if } 0 \notin \mathcal{U}, \\ S_n^0(\mathcal{U}) \simeq (V_n \otimes S(\mathfrak{sl}(2, \mathbb{R})))^{\mathfrak{sl}(2, \mathbb{R})} & \text{if } 0 \in \mathcal{U}. \end{cases}$$
(74)

(ii) When n is even, we have:

$$\mathcal{S}_{n}(\mathcal{U}) = \mathcal{S}_{n}^{0}(\mathcal{U}) \oplus \operatorname{Vect}\{\Box^{k}(s_{n}\delta_{\mathcal{N}^{+}})|_{\mathcal{U}}/k \in \mathbb{N}\} \oplus \operatorname{Vect}\{\Box^{k}(s_{n}\delta_{\mathcal{N}^{-}})|_{\mathcal{U}}/k \in \mathbb{N}\},$$
(75)

$$\mathcal{S}_{n}^{\pm}(\mathcal{U}) = \mathcal{S}_{n}^{0}(\mathcal{U}) \oplus \operatorname{Vect}\{ \Box^{k}(s_{n}\delta_{\mathcal{N}^{\pm}})|_{\mathcal{U}}/k \in \mathbb{N} \}.$$
(76)

(iii) When n is odd:

$$\mathcal{S}_n(\mathcal{U}) = \mathcal{S}_n^{\pm}(\mathcal{U}) = \mathcal{S}_n^0(\mathcal{U}).$$
(77)

Proof. (i) It follows from Theorem 3.1.

(ii) When *n* is even, the function $\delta_{\mathcal{N}}^{\pm}$ is defined on $\mathfrak{sl}(2, \mathbb{R})$, the function s_n is defined on \mathcal{N} and the product $s_n \delta_{\mathcal{N}^{\pm}}$ is well defined (cf. Remark of Theorem 4.1). Then the result follows from Theorem 4.1.

(iii) Let *n* be odd. We assume that $\mathcal{U} \cap \mathcal{N} \neq \emptyset$. Since \mathcal{U} is $SL(2, \mathbb{R})$ -invariant, we have $\mathcal{N}^+ \subset \mathcal{U}$ or $\mathcal{N}^- \subset \mathcal{U}$. We assume that $\mathcal{N}^+ \subset \mathcal{U}$ (the case $\mathcal{U} \subset \mathcal{N}^-$ is similar).

Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})}$. Let $\mathcal{U}_0 \subset \mathcal{U}$ be a suitable neighborhood of X where s_1 (and thus s_n) is defined (cf. Section 4.6). There exists $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^{\frac{n+1}{2}}$ such that on \mathcal{U}_0 (cf. Theorem 4.1):

$$\phi(Z) = \sum_{k=0}^{\frac{n+1}{2}} a_k \Box^k(s_n(Z)\delta_{\mathcal{N}^+}(Z)) = \sum_{k=0}^{\frac{n+1}{2}} a_k \Box^k((s_1(Z)\otimes Z^{\frac{n-1}{2}})\delta_{\mathcal{N}^+}(Z)).$$
(78)

Since $\mu_1: V_1 \setminus \{0\} \to \mathcal{N}^+$ is a non trivial two-fold covering, there is not any continuous section. In other words there is not any continuous $SL(2, \mathbb{R})$ -invariant map $s: \mathcal{N}^+ \to V_1$ such that for any $Z \in \mathcal{U}_0$, $s(Z) = s_1(Z)$. Thus $a_0 = \cdots = a_{\frac{n-1}{2}} = 0$. The result follows. \Box

5. Invariant solutions of differential equations

5.1. Introduction

Let $C_V = (\text{End}(V) \otimes S(\mathfrak{sl}(2,\mathbb{R})))^{\mathfrak{sl}(2,\mathbb{R})}$ be the algebra of End(V)-valued invariant differential operators with constant coefficients on g. It is the *classical family algebra* in the terminology of Kirillov (cf. [Kir00]). When $V = V_n$ is the (n + 1)-dimensional irreducible representation of $\mathfrak{sl}(2,\mathbb{R})$, we put $C_n = C_{V_n}$.

Let $\mathcal{U} \subset \mathfrak{sl}(2, \mathbb{R})$ be an open subset. It is a natural and interesting problem to determine the generalized functions $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})}$ such that $\mathcal{C}_V \phi$ is finite dimensional.

We recall that $S(\mathfrak{sl}(2,\mathbb{R}))^{\mathfrak{sl}(2,\mathbb{R})} = \mathbb{R}[\Box]$. It is a subalgebra of \mathcal{C}_V . An other subalgebra of \mathcal{C}_V is $\operatorname{End}(V)^{\mathfrak{sl}(2,\mathbb{R})}$. When $V = V_n$, we put:

$$M_n = \rho_n(X)Y + \rho_n(Y)X + \frac{1}{2}\rho_n(H)H \in \mathcal{C}_n.$$
(79)

According Rozhkovskaya (cf. [Roz03]), C_n is a free $S(\mathfrak{sl}(2,\mathbb{R}))^{\mathfrak{sl}(2,\mathbb{R})}$ -module with basis $\mathcal{B}_n = (1, M_n, \dots, (M_n)^n)$.

Lemma 5.1. Let $\phi \in C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})}$. Then we have

$$\dim_{\mathbb{R}}(\mathcal{C}_V\phi) < \infty \iff \dim_{\mathbb{R}}(\mathbb{R}[\Box]\phi) < \infty.$$
(80)

Proof. We argue as in [Roz03]. Let H be the set of harmonic polynomials in $S(\mathfrak{sl}(2,\mathbb{R}))$. Then, $S(\mathfrak{sl}(2,\mathbb{R})) = \mathbb{R}[\Box] \otimes H$ (cf. [Kos63]), and:

$$\mathcal{C}_{V} = \mathbb{R}[\Box] \otimes (H \otimes \operatorname{End}(V))^{\mathfrak{sl}(2,\mathbb{R})}.$$
(81)

Since $\dim_{\mathbb{R}}(H \otimes \operatorname{End}(V))^{\mathfrak{sl}(2,\mathbb{R})} < \infty$, the result follows:

Remark. Since $\mathbb{R}[\Box] \subset \mathbb{R}[\Box] \otimes \operatorname{End}(V)^{\mathfrak{sl}(2,\mathbb{R})} \subset \mathcal{C}_V$, the condition $\dim(\mathcal{C}_V \phi) < \infty$ is also equivalent to the existence of $r \in \mathbb{N}$ and $(A_0, \ldots, A_{r-1}) \in (\operatorname{End}(V)^{\mathfrak{sl}(2,\mathbb{R})})^r$ such that:

$$(\Box^{r} + A_{r-1}\Box^{r-1} + \cdots A_{1}\Box + A_{0})\phi = 0.$$
(82)

Useful examples of (82) are $(\Box - \lambda)^k \phi = 0$ for $\lambda \in \mathbb{C}$ and generalized functions with values in a complex representation. We give such an example below.

Definition 5.1. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})}$. We say that ϕ is \Box -finite if $\dim_{\mathbb{R}}(\mathbb{R}[\Box]\phi) < \infty$.

In other words, ϕ is \Box -finite if there exists $r \in \mathbb{N}$ and $(a_0, \ldots, a_{r-1}) \in \mathbb{R}^r$ such that

$$(\Box^{r} + a_{r-1}\Box^{r-1} + \cdots a_{1}\Box + a_{0})\phi = 0.$$
(83)

Example (This was our original motivation to study this problem). Let $g = g_0 \oplus g_1$ be a Lie superalgebra. We define the generalized functions on g as the generalized functions on g_0 with values in the exterior algebra $\Lambda(g_1^*)$ of g_1^*

$$\mathcal{C}^{-\infty}(\mathfrak{g}) \stackrel{\text{def}}{=} \mathcal{C}^{-\infty}(\mathfrak{g}_{\mathbf{0}}) \otimes \Lambda(\mathfrak{g}_{\mathbf{1}}^*) = \mathcal{C}^{-\infty}(\mathfrak{g}_{\mathbf{0}}, \Lambda(\mathfrak{g}_{\mathbf{1}}^*)).$$
(84)

We assume that g has a non degenerate invariant symmetric even bilinear form *B*. Let $\Omega \in S^2(\mathfrak{g})$ be the Casimir operator associated with *B*. We have $\Omega = \Omega_0 + \Omega_1$ with

 $\Omega_0 \in S^2(\mathfrak{g}_0)$ and $\Omega_1 \in \Lambda^2(\mathfrak{g}_1)$. We consider Ω_1 as an element of $\operatorname{End}(\Lambda(\mathfrak{g}_1^*))$ acting by interior product. When they can be evaluated (cf. for example [Lav98, Chapitre III.5]), the Fourier transforms of the coadjoint orbits in \mathfrak{g}^* are invariant generalized functions ϕ on \mathfrak{g} subject to equations of the form $(\Omega - \lambda)\phi = 0$ with $\lambda \in \mathbb{C}$. It can be written $(\Omega_0 + (\Omega_1 - \lambda))\phi = 0$ (for $\mathfrak{g}_0 = \mathfrak{sl}(2, \mathbb{R})$ it is of the form (82) with $\Omega_0 = \Box$ and $A_0 = \Omega_1 - \lambda$). We have:

$$(\Omega_0 - \lambda)^k = \sum_{i=0}^k \binom{k}{i} (\Omega - \lambda)^i (-\Omega_1)^{k-i}.$$
(85)

For $k > \frac{\dim(\mathfrak{g}_1)}{2}$, we have $\Omega_1^k = 0$. It follows that for $k > 1 + \frac{\dim(\mathfrak{g}_1)}{2}$ we have: $(\Omega_0 - \lambda)^k \phi = 0.$ (86)

this equation is of the form of (82).

5.2. Generalized functions with support $\{0\}$

We immediately obtain from Theorem 3.1

Theorem 5.1. Let V be a representation of $\mathfrak{sl}(2,\mathbb{R})$. Let $\phi \in \mathcal{C}^{-\infty}(\mathfrak{sl}(2,\mathbb{R}), V)^{\mathfrak{sl}(2,\mathbb{R})}$ such that $\phi|_{\mathfrak{sl}(2,\mathbb{R})\setminus\{0\}} = 0$ and ϕ is \Box -finite. Then, we have $\phi = 0$.

5.3. Support in the nilpotent cone: local version

Theorem 5.2. Let $n \in \mathbb{N}$. Let V_n be the irreducible n + 1-dimensional representation of $\mathfrak{sl}(2, \mathbb{R})$. Let W be a finite-dimensional vector space with trivial action of $\mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{U} be an open connected neighborhood of X such that the function s_n is well defined on $\mathcal{U} \cap \mathcal{N}$ (cf. Section 4.6) and \mathfrak{T}_X is bijective (cf. Section 4.2). Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, W \otimes V_n)^{\mathfrak{sl}(2,\mathbb{R})}$ such that $\phi|_{\mathcal{U},\mathcal{N}} = 0$. Let $r \in \mathbb{N}$ and $(a_0, \ldots, a_{r-1}) \in \mathbb{R}^r$ such that: $(\Box^r + \sum_{k=0}^{r-1} a_k \Box^k)\phi = 0$.

Then, we have $\phi = 0$ when at least one of the following conditions is satisfied:

(i) *n* is even; (ii) *n* is odd and $a_0 \neq 0$.

Proof. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, W \otimes V_n)^{\mathfrak{sl}(2,\mathbb{R})}$ such that $\phi|_{\mathcal{U}\mathcal{N}} = 0$. From Theorem 4.1 we obtain that there exist $p \in \mathbb{N}$, with $p = \frac{n-1}{2}$ if *n* is odd and $(w_0, \dots, w_p) \in W^{p+1}$, such that:

$$\phi = \sum_{i=0}^{p} w_i \otimes \Box^i (s_n \delta_{\mathcal{N}^+}).$$
(87)

Then:

(i) When *n* is even, for $0 \le j \le p + r$, we have $\sum_{k+i=j} a_k w_i = 0$.

(ii) When *n* is odd, for $0 \le j \le \frac{n-1}{2}$, we have $\sum_{k+i=j} a_k w_i = 0$.

The result follows. \Box

Remark. When *n* is odd, in contrast with the classical case ($V = V_0$ is the trivial representation) there exist (in a neighborhood of *X*) non trivial locally invariant solutions of the equation $\Box^k \phi = 0$ supported in the nilpotent cone! For example, if $k \ge \frac{n+1}{2}$ the functions $\phi = \Box^i(s_n \delta_{N^+})$ for $0 \le i \le \frac{n-1}{2}$ are not trivial, supported in the nilpotent cone and satisfy the equation $\Box^k \phi = 0$.

When we consider the equation $(\Box - \lambda)^k \phi = 0$ for $\lambda \in C \setminus \{0\}$, then the trivial solution is again the only one supported in the nilpotent cone.

5.4. Support in the nilpotent cone: global version

Theorem 5.3. Let V be a real finite-dimensional representation of $\mathfrak{sl}(2, \mathbb{R})$. Let U be an $SL(2, \mathbb{R})$ -invariant open subset of $\mathfrak{sl}(2, \mathbb{R})$. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})}$ such that $\phi|_{\mathcal{UN}} = 0$ and ϕ is \Box -finite. Then we have $\phi = 0$.

Proof. It is enough to prove the theorem for V irreducible. Then, the result follows from Theorems 4.2, 5.2 and 5.1. \Box

6. General invariant generalized functions

6.1. Main theorem

Theorem 6.1. Let V be a real finite-dimensional representation of $\mathfrak{sl}(2, \mathbb{R})$. Let U be an $SL(2, \mathbb{R})$ -invariant open subset of $\mathfrak{sl}(2, \mathbb{R})$. Let $\phi \in C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})}$ such that ϕ is \Box -finite. Then ϕ is determined by $\phi|_{\mathcal{UN}}$ and $\phi|_{\mathcal{UN}}$ is an analytic function.

Proof. The fact that ϕ is determined by $\phi|_{U\mathcal{N}}$ follows from Theorem 5.3. The fact that $\phi|_{U\mathcal{N}}$ is analytic can be proved exactly as in [HC65]. \Box

Remark. In general ϕ will not be locally L^1 . Indeed, let $\phi_0 \in \mathcal{C}^{-\infty}(\mathfrak{sl}(2,\mathbb{R}))^{\mathfrak{sl}(2,\mathbb{R})}$ a non zero \Box -finite generalized function. Then ϕ_0 is locally L^1 , but for $k \in \mathbb{N}^*$:

$$M_n^k \phi_0 \in \mathcal{C}^{-\infty} \left(\mathfrak{sl}(2, \mathbb{R}), \operatorname{End}(V_n) \right)^{\mathfrak{sl}(2, \mathbb{R})}$$
(88)

is usually not locally L^1 .

6.2. Application to the superpfaffian

Let us consider the Lie superalgebra $g = \mathfrak{spo}(2, 2n)$. Its even part is $g_0 = \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{so}(2n, \mathbb{R})$. Its odd part is $g_1 = V_1 \otimes W$ where W is the standard 2ndimensional representation of $\mathfrak{so}(2n, \mathbb{R})$.

In [Lav04] we constructed a particular invariant generalized function Spf on $\mathfrak{spo}(2, 2n)$ called Superpfaffian. It generalizes the Pfaffian on $\mathfrak{so}(2n, \mathbb{R})$ and the inverse square root of the determinant on $\mathfrak{sl}(2, \mathbb{R})$. As it is a polynomial of degree n on $\mathfrak{so}(2n, \mathbb{R})$, we may consider that we have:

$$\operatorname{Spf} \in \mathcal{C}^{-\infty} \left(\mathfrak{sl}(2,\mathbb{R}), \bigoplus_{k=0}^{n} S^{k}(\mathfrak{so}(2n,\mathbb{R})^{*}) \otimes \Lambda(\mathfrak{g}_{1}^{*}) \right)^{\mathfrak{sl}(2,\mathbb{R})}.$$
(89)

Let Ω (resp. \Box , Ω'_0 , Ω_1) be the Casimir operator on $\mathfrak{spo}(2, 2n)$ (resp. on $\mathfrak{sl}(2, \mathbb{R})$, $\mathfrak{so}(2n, \mathbb{R}), \mathfrak{g}_1$). Then $\Omega = \Box + \Omega'_0 + \Omega_1$ and

$$\Omega_{\mathbf{0}}' + \Omega_{\mathbf{1}} \in \operatorname{End}\left(\bigoplus_{k=0}^{n} S^{k}(\mathfrak{so}(2n, \mathbb{R})^{*}) \otimes \Lambda(\mathfrak{g}_{1}^{*})\right)^{\mathfrak{sl}(2, \mathbb{R})}$$
(90)

is a nilpotent endomorphism. The superpfaffian satisfies:

$$(\Box + (\Omega'_0 + \Omega_1))\operatorname{Spf} = \Omega \operatorname{Spf} = 0.$$
(91)

The function Spf is analytic on $\mathfrak{sl}(2, \mathbb{R}) \setminus \mathcal{N}$ and in [Lav04] an explicit formula is given for $\operatorname{Spf}(X) \in \bigoplus_{k=0}^{n} S^{k}(\mathfrak{so}(2n, \mathbb{R})^{*}) \otimes \Lambda(\mathfrak{g}_{1}^{*})$ with $X \in \mathfrak{sl}(2, \mathbb{R}) \setminus \mathcal{N}$. However, since Spf is not locally L^{1} (cf. [Lav04]), it is not clear whether Spf is determined by its restriction to $\mathfrak{sl}(2, \mathbb{R}) \setminus \mathcal{N}$ or not. In [Lav04] we proved that Spf is characterized, as an invariant generalized function on $\mathfrak{sl}(2, \mathbb{R})$, by its restriction to $\mathfrak{sl}(2, \mathbb{R}) \setminus \mathcal{N}$ and its wave front set.

From the preceding results we obtain this new characterization of Spf:

Theorem 6.2. Let $\phi \in \mathcal{C}^{-\infty}(\mathfrak{sl}(2,\mathbb{R}), \bigoplus_{k=0}^{n} S^{k}(\mathfrak{so}(2n,\mathbb{R})^{*}) \otimes \Lambda(\mathfrak{g}_{1}^{*}))^{\mathfrak{sl}(2,\mathbb{R})}$ such that:

(i) for $X \in \mathfrak{sl}(2,\mathbb{R}) \setminus \mathcal{N}$, $\phi(X) = \operatorname{Spf}(X) \in \bigoplus_{k=0}^{n} S^{k}(\mathfrak{so}(2n,\mathbb{R})^{*}) \otimes \Lambda(\mathfrak{g}_{1}^{*});$

(ii)
$$\Omega \phi = 0$$
.

Then we have $\phi = \text{Spf.}$

Acknowledgments

I wish to thank Michel Duflo for many fruitful discussions on the subject and many useful comments on preliminary versions of this article.

References

- [HC64] Harish-Chandra, Invariant differential operators and distributions on a semisimple lie algebra, Amer. J. Math. 86 (1964) 534–564.
- [HC65] Harish-Chandra, Invariant eigendistributions on a semisimple lie algebra, Publ. Math. de l'IHES 27 (1965) 5–54.
- [Kir00] A.A. Kirillov, Family algebras, Electron. Res. Announc. Amer. Math. Soc. 6 (2000) 7-20.
- [Kos63] B. Kostant, Lie groups representations on polynomial rings, Amer. J. Math. 85 (1963) 327-404.
- [Lav98] P. Lavaud, Formule de localisation en supergéométrie. Thèse de doctorat de l'Université de Paris VII, 1998.
- [Lav04] P. Lavaud, Superpfaffian. prepublication, e-print math.GR/0402067, 2004.
- [Roz03] N. Rozhkovskaya, Commutativity of quantum family algebras, Lett. Math. Phys. 63 (2) (2003) 87–103.