# Invariant generalized functions on $\mathfrak{s l}(2, \mathbb{R})$ with values in a $\mathfrak{s l}(2, \mathbb{R})$-module 

P. Lavaud<br>Universitè de Paris 7, Paris, France

Received 10 May 2004; accepted 10 May 2004
Available online 2 July 2004
Communicated by M. Vergne


#### Abstract

Let $\mathfrak{g}$ be a finite-dimensional real Lie algebra. Let $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ be a representation of $\mathfrak{g}$ in a finite-dimensional real vector space. Let $\mathcal{C}_{V}=(\operatorname{End}(V) \otimes S(\mathfrak{g}))^{9}$ be the algebra of $\operatorname{End}(V)$ valued invariant differential operators with constant coefficients on $\mathfrak{g}$. Let $\mathcal{U}$ be an open subset of $\mathfrak{g}$. We consider the problem of determining the space of generalized functions $\phi$ on $\mathcal{U}$ with values in $V$ which are locally invariant and such that $\mathcal{C}_{V} \phi$ is finite dimensional.

In this article we consider the case $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$. Let $\mathcal{N}$ be the nilpotent cone of $\mathfrak{s l}(2, \mathbb{R})$. We prove that when $\mathcal{U}$ is $S L(2, \mathbb{R})$-invariant, then $\phi$ is determined by its restriction to $\mathcal{U}, \mathcal{N}$ where $\phi$ is analytic (cf. Theorem 6.1). In general this is false when $\mathcal{U}$ is not $S L(2, \mathbb{R})$-invariant and $V$ is not trivial. Moreover, when $V$ is not trivial, $\phi$ is not always locally $L^{1}$. Thus, this case is different and more complicated than the situation considered by Harish-Chandra (Amer. J. Math 86 (1964) 534; Publ. Math. 27 (1965) 5) where $\mathfrak{g}$ is reductive and $V$ is trivial.

To solve this problem we find all the locally invariant generalized functions supported in the nilpotent cone $\mathcal{N}$. We do this locally in a neighborhood of a nilpotent element $Z$ of $\mathfrak{g}$ (cf. Theorem 4.1) and on an $S L(2, \mathbb{R})$-invariant open $\operatorname{subset} \mathcal{U} \subset \mathfrak{s l}(2, \mathbb{R})$ (cf. Theorem 4.2). Finally, we also give an application of our main theorem to the Superpfaffian (Superpfaffian, prepublication, e-print math.GR/0402067, 2004). (C) 2004 Elsevier Inc. All rights reserved.


## 1. Introduction

Let $\mathfrak{g}$ be a finite-dimensional real Lie algebra. Let $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ be a representation of $\mathfrak{g}$ in a finite-dimensional real vector space. Let $\mathcal{C}_{V}=(\operatorname{End}(V) \otimes S(\mathfrak{g}))^{\mathfrak{g}}$ be the

[^0]algebra of $\operatorname{End}(V)$-valued invariant differential operators with constant coefficients on $\mathfrak{g}$. It is the classical family algebra in the terminology of Kirillov (cf. [Kir00]). Let $\mathcal{U}$ be an open subset of $\mathfrak{g}$. We consider the problem of determining the space of generalized functions $\phi$ on $\mathcal{U}$ with values in $V$ which are locally invariant and such that $\mathcal{C}_{V} \phi$ is finite dimensional.

When $V=\mathbb{R}$ is the trivial module and $\mathfrak{g}$ is reductive, the problem was solved by Harish-Chandra (cf. in particular [HC64,HC65]). Let $\phi$ be a locally invariant generalized function such that $S(\mathfrak{g})^{\mathfrak{g}} \phi$ is finite dimensional. He proved that $\phi$ is locally $L^{1}, \phi$ is determined by its restriction $\left.\phi\right|_{\mathfrak{g}^{\prime}}$ to the open subset $\mathfrak{g}^{\prime}$ of semi-simple regular elements of $\mathfrak{g}$ and $\left.\phi\right|_{\mathfrak{g}^{\prime}}$ is analytic.

In this article we consider the case $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$. Let $\mathcal{N}$ be the nilpotent cone of $\mathfrak{s l}(2, \mathbb{R})$. In this case $\mathfrak{g}^{\prime}=\mathfrak{s l}(2, \mathbb{R}) \backslash \mathcal{N}$. Let $\phi$ be a locally invariant generalized function on $\mathcal{U}$ with values in $V$ such that $\mathcal{C}_{V} \phi$ is finite dimensional. We prove that when $\mathcal{U}$ is $S L(2, \mathbb{R})$-invariant, then $\phi$ is determined by its restriction to $\mathcal{U} \mathcal{N}$ where $\phi$ is analytic (cf. Theorem 6.1). In general this is false when $\mathcal{U}$ is not $S L(2, \mathbb{R})$-invariant and $V$ is not trivial. Moreover, when $V$ is not trivial, $\phi$ is not always locally $L^{1}$. Finally, we also give an application of our main theorem to the Superpfaffian (cf. [Lav04]).

To solve the problem we find all the locally invariant generalized functions supported in the nilpotent cone $\mathcal{N}$. Let $V_{n}$ be the $n+1$-dimensional irreducible representation of $\mathfrak{s l}(2, \mathbb{R})$. Let $\mathcal{U}$ be an open subset of $\mathfrak{s l}(2, \mathbb{R})$. We denote by $\mathcal{C}^{-\infty}\left(\mathcal{U}, V_{n}\right)^{s I(2, \mathbb{R})}$ the set of locally invariant generalized functions on $\mathcal{U}$ with values in $V_{n}$. Let $\square$ be the Casimir operator on $\mathfrak{g}$.

We denote by $\mathcal{N}^{+}$(resp. $\mathcal{N}^{-}$) the "upper" (resp. "lower") half nilpotent cone (cf. 4.1). We put

$$
\begin{align*}
& \mathcal{S}_{n}^{0}(\mathcal{U})=\left\{\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, V_{n}\right)^{\mathrm{sl}(2, \mathbb{R})} /\left.\phi\right|_{\mathcal{U}\{0\}}=0\right\},  \tag{1}\\
& \mathcal{S}_{n}^{ \pm}(\mathcal{U})=\left\{\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, V_{n}\right)^{\mathfrak{s l}(2, \mathbb{R})} /\left.\phi\right|_{\mathcal{U}\left(\mathcal{N}^{ \pm} \cup\{0\}\right)}=0\right\},  \tag{2}\\
& \mathcal{S}_{n}(\mathcal{U})=\left\{\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, V_{n}\right)^{\mathfrak{s l}(2, \mathbb{R})} /\left.\phi\right|_{\mathcal{U}, \mathcal{N}}=0\right\} . \tag{3}
\end{align*}
$$

Let $Z \in \mathcal{N}^{+}$. We assume that $\mathcal{U}$ is a suitable open neighborhood of $Z$ (cf. Section 4.6). Let $\delta_{\mathcal{N}^{ \pm}}$be an invariant generalized function with support $\mathcal{N}^{ \pm} \cup\{0\}$ (cf. Section 4.4). We construct an invariant function $s_{n}$ on $\mathcal{N} \cap \mathcal{U}$ with values in $V_{n}$. We prove (cf. Theorem 4.1):
(i) When $n$ is even, $\mathcal{S}_{n}(\mathcal{U})$ is an infinite-dimensional vector space with basis

$$
\begin{equation*}
\left(\square^{k}\left(s_{n} \delta_{\mathcal{N}^{+}}\right)\right)_{k \in \mathbb{N}} \tag{4}
\end{equation*}
$$

(ii) When $n$ is odd, $\operatorname{dim}\left(\mathcal{S}_{n}(\mathcal{U})\right)=\frac{n+1}{2}$ and a basis is given by

$$
\begin{equation*}
\left(\square^{k}\left(s_{n} \delta_{\mathcal{N}^{+}}\right)\right)_{0 \leqslant k \leqslant \frac{n-1}{2}} . \tag{5}
\end{equation*}
$$

We assume that $\mathcal{U}$ is an $S L(2, \mathbb{R})$-invariant open subset of $\mathfrak{s l}(2, \mathbb{R})$. If $\mathcal{U} \cap \mathcal{N} \neq \emptyset$, we have $\mathcal{N}^{+} \subset \mathcal{U}$ or $\mathcal{N}^{-} \subset \mathcal{U}$. We prove (cf. Theorem 4.2)
(i)

$$
\begin{cases}\mathcal{S}_{n}^{0}(\mathcal{U})=\{0\} & \text { if } 0 \notin \mathcal{U}  \tag{6}\\ \mathcal{S}_{n}^{0}(\mathcal{U}) \simeq\left(V_{n} \otimes S(\mathfrak{s l}(2, \mathbb{R}))\right)^{\mathfrak{s}(2, \mathbb{R})} & \text { if } 0 \in \mathcal{U}\end{cases}
$$

(2) When $n$ is even, we have

$$
\begin{gather*}
\mathcal{S}_{n}(\mathcal{U})=\mathcal{S}_{n}^{0}(\mathcal{U}) \oplus \operatorname{Vect}\left\{\left.\square^{k}\left(s_{n} \delta_{\mathcal{N}^{+}}\right)\right|_{\mathcal{U}} / k \in \mathbb{N}\right\} \oplus \operatorname{Vect}\left\{\left.\square^{k}\left(s_{n} \delta_{\mathcal{N}^{-}}\right)\right|_{\mathcal{U}} / k \in \mathbb{N}\right\},  \tag{7}\\
\mathcal{S}_{n}^{ \pm}(\mathcal{U})=\mathcal{S}_{n}^{0}(\mathcal{U}) \oplus \operatorname{Vect}\left\{\left.\square^{k}\left(s_{n} \delta_{\mathcal{N}^{ \pm}}\right)\right|_{\mathcal{U}} / k \in \mathbb{N}\right\} . \tag{8}
\end{gather*}
$$

(iii) When $n$ is odd:

$$
\begin{equation*}
\mathcal{S}_{n}(\mathcal{U})=\mathcal{S}_{n}^{ \pm}(\mathcal{U})=\mathcal{S}_{n}^{0}(\mathcal{U}) \tag{9}
\end{equation*}
$$

Finally, let $\mathcal{U}$ be an open subset of $\mathfrak{s l}(2, \mathbb{R})$. Let $V$ be the space of a real finitedimensional representation of $\mathfrak{g}$. Let $\phi$ be an invariant function defined on $\mathcal{U}$ such that $\mathcal{C}_{V} \phi$ is finite dimensional. This last condition is equivalent to the existence of $r \in \mathbb{N}$ and $\left(a_{0}, \ldots, a_{r-1}\right) \in \mathbb{R}^{r}$ such that:

$$
\left(\square^{r}+\sum_{k=0}^{r-1} a_{k} \square^{k}\right) \phi=0 .
$$

Moreover, we assume that $\left.\phi\right|_{\mathcal{U N}}=0$. We prove (cf. Theorem 5.3) that if $\mathcal{U}$ is $S L(2, \mathbb{R})$-invariant, then we have $\phi=0$.

In general, when $\mathcal{U}$ is not $S L(2, \mathbb{R})$-invariant, there exist non trivial solutions of the equation $\square^{k} \phi=0$ which are supported in the nilpotent cone (cf. Theorem 5.2).

## 2. Notations

Let $\mathfrak{g}$ be a finite-dimensional real Lie algebra. Let $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ be a representation of $\mathfrak{g}$ in a finite-dimensional real vector space $V$. Let $\mathcal{U}$ be an open subset of $\mathfrak{g}$. We denote by $\mathcal{D}_{\mathrm{c}}^{\infty}(\mathcal{U})$ the space of compactly supported smooth densities on $\mathcal{U}$. We put

$$
\begin{equation*}
\mathcal{C}^{-\infty}(\mathcal{U}, V)=\mathcal{L}\left(\mathcal{D}_{\mathrm{c}}^{\infty}(\mathcal{U}), V\right), \tag{10}
\end{equation*}
$$

where $\mathcal{L}$ stands for continuous homomorphisms. It is the space of generalized functions on $\mathcal{U}$ with values in $V$. We put $\mathcal{C}^{-\infty}(\mathcal{U})=\mathcal{C}^{-\infty}(\mathcal{U}, \mathbb{R})$. For $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$ and $\mu \in \mathcal{D}_{\mathrm{c}}^{\infty}(\mathcal{U})$, we denote by

$$
\begin{equation*}
\int_{\mathcal{U}} \phi(Z) d \mu(Z) \tag{11}
\end{equation*}
$$

the image of $\mu$ by $\phi$. We have

$$
\begin{equation*}
\mathcal{C}^{-\infty}(\mathcal{U}, V)=\mathcal{C}^{-\infty}(\mathcal{U}) \otimes V \tag{12}
\end{equation*}
$$

(we will also write $\phi v$ for $\phi \otimes v$ ).

Let $Z \in \mathfrak{g}$. We denote by $\partial_{Z}$ the derivative in the direction $Z$. It acts on $\mathcal{C}^{-\infty}(\mathcal{U})$ and on $\mathcal{C}^{-\infty}(\mathcal{U}, V)$. We extend $\partial$ to a morphism of algebras from $S(\mathfrak{g})$ to the algebra of differential operators with constant coefficients on $\mathfrak{g}$. We denote by $\mathcal{L}_{Z}$ the differential operator defined by

$$
\begin{equation*}
\left(\mathcal{L}_{Z} \phi\right)(X)=\left.\frac{d}{d t} \phi(X-t[Z, X])\right|_{t=0} \tag{13}
\end{equation*}
$$

The map $Z \mapsto \mathcal{L}_{Z}$ is a Lie algebra homomorphism from $\mathfrak{g}$ into the algebra of differential operators on $\mathfrak{g}$. Let $Z \in \mathfrak{g}$ and $\phi \otimes v \in \mathcal{C}^{-\infty}(\mathcal{U}) \otimes V$, we put

$$
\begin{equation*}
Z .(\phi \otimes v)=\phi \otimes \rho(Z) v+\left(\mathcal{L}_{Z} \phi\right) \otimes v \tag{14}
\end{equation*}
$$

In other words, if we extend $\mathcal{L}_{Z}$ (resp. $\rho(Z)$ ) linearly to a representation of $\mathfrak{g}$ in $\mathcal{C}^{-\infty}(\mathcal{U}, V)$, we have for $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$ :

$$
\begin{equation*}
Z . \phi=\left(\rho(Z)+\mathcal{L}_{Z}\right) \phi . \tag{15}
\end{equation*}
$$

We say that $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$ is locally invariant if for any $Z \in \mathfrak{g}$ we have $Z . \phi=0$. We put

$$
\begin{equation*}
\mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{g}}=\left\{\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V) / \forall Z \in \mathfrak{g}, Z . \phi=0\right\} . \tag{16}
\end{equation*}
$$

## 3. Support $\{0\}$ distributions

In this section we assume that $\mathfrak{g}$ is unimodular. We choose an invariant measure $d Z$ on $\mathfrak{g}$. We define the Dirac function $\delta_{0}$ on $\mathfrak{g}$ with support $\{0\}$ (which depends on the choice of $d Z$ ) by the following: Let $\mathcal{C}_{\mathrm{c}}^{\infty}(\mathfrak{g})$ be the set of smooth compactly supported functions on $\mathfrak{g}$. Then:

$$
\begin{equation*}
\forall f \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathfrak{g}), \int_{\mathfrak{g}} \delta_{0}(Z) f(Z) d Z=f(0) \tag{17}
\end{equation*}
$$

We have the following well-known theorem:
Theorem 3.1. Let $\mathfrak{g}$ be a finite-dimensional unimodular real Lie algebra and $V$ be a finite-dimensional $\mathfrak{g}$-module. Then

$$
\begin{equation*}
\left\{\phi \in \mathcal{C}^{-\infty}(\mathfrak{g}, V)^{\mathfrak{g}} /\left.\phi\right|_{\mathfrak{g} \backslash\{0\}}=0\right\} \simeq(V \otimes S(\mathfrak{g}))^{\mathfrak{g}} . \tag{18}
\end{equation*}
$$

The isomorphism (which depends on the choice of $d Z$ ) sends $\sum_{i} v_{i} \otimes D_{i} \in(V \otimes S(\mathfrak{g}))^{\mathfrak{g}}$ to $\sum_{i}\left(\partial_{D_{i}} \delta_{0}\right) v_{i}$.

## 4. Support in the nilpotent cone

From now on, we assume that $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$.

### 4.1. Notations

We put:

$$
H=\left(\begin{array}{cc}
1 & 0  \tag{19}\\
0 & -1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

We denote by $(h, x, y) \in\left(\mathfrak{s l}(2, \mathbb{R})^{*}\right)^{3}$ the dual basis of $(H, X, Y)$. Thus:

$$
\left(\begin{array}{cc}
h & x  \tag{20}\\
y & -h
\end{array}\right) \in \mathfrak{s l}(2, \mathbb{R})^{*} \otimes \mathfrak{s l}(2, \mathbb{R})
$$

is the generic point of $\mathfrak{s l}(2, \mathbb{R})$. Let $\mathcal{N}$ be the nilpotent cone of $\mathfrak{s l}(2, \mathbb{R})$. It is the union of three orbits:
(i) $\{0\}$.
(ii) the half cone $\mathcal{N}^{+}$with equations $h^{2}+x y=0 ; x-y>0$.
(iii) the half cone $\mathcal{N}^{-}$with equations $h^{2}+x y=0 ; x-y<0$.

We denote by $\square$ the Casimir operator of $\mathfrak{s l}(2, \mathbb{R})$ :

$$
\begin{equation*}
\square=\frac{1}{2}\left(\partial_{H}\right)^{2}+2 \partial_{Y} \partial_{X} \tag{21}
\end{equation*}
$$

It is an invariant differential operator with constant coefficients on $\mathfrak{s l}(2, \mathbb{R})$.
Let $V_{1}=\mathbb{R}^{2}$ be the standard representation of $\mathfrak{s l}(2, \mathbb{R})$. We denote by $(e=(1,0), f=(0,1))$ the standard basis of $\mathbb{R}^{2}$. The symplectic form $B$ such that $B(e, f)=1$ is $\mathfrak{s l}(2, \mathbb{R})$-invariant. For $v \in V_{1}$, we define $\mu_{1}(v) \in \mathfrak{s l}(2, \mathbb{R})$ as the unique element such that:

$$
\begin{equation*}
\forall Z \in \mathfrak{s l}(2, \mathbb{R}), \operatorname{tr}\left(\mu_{1}(v) Z\right)=\frac{1}{2} B(v, Z v) \tag{22}
\end{equation*}
$$

It defines a (moment) map:

$$
\begin{equation*}
\mu_{1}: V_{1} \rightarrow \mathfrak{s l}(2, \mathbb{R}) . \tag{23}
\end{equation*}
$$

We have $\mu_{1}(e)=\frac{1}{2} X$ and $\mu_{1}(f)=-\frac{1}{2} Y$. The function $\mu_{1}$ is a two-fold covering of $\mathcal{N}^{+}$by $V_{1} \backslash\{0\}$.

Let $Z_{0} \in \mathcal{M} \backslash\{0\}$. Let $\mathcal{U}$ be a "small" neighborhood of $Z_{0}$. In this section we determine:

$$
\begin{equation*}
\left\{\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})} /\left.\phi\right|_{\mathcal{U} \mathcal{N}}=0\right\} \tag{24}
\end{equation*}
$$

We can assume that $Z_{0}=X \in \mathcal{N}^{+}$.

### 4.2. Restriction to $X+\mathbb{R} Y$

We define a map:

$$
\begin{align*}
& \pi: S L(2, \mathbb{R}) \times(X+\mathbb{R} Y) \rightarrow \mathfrak{s l}(2, \mathbb{R}) \\
& (g, Z) \mapsto \operatorname{Ad}(g)(Z) \tag{25}
\end{align*}
$$

This map is submersive. Let $I_{2}$ be the identity matrix in $S L(2, \mathbb{R})$. Let $\Delta_{X} \subset X+\mathbb{R} Y$ be an open interval containing $X$. We choose a connected open subset $\mathcal{V} \subset S L(2, \mathbb{R})$ such that $I_{2} \in \mathcal{V}$. We put:

$$
\begin{equation*}
\mathcal{U}=\pi\left(\mathcal{V} \times \Delta_{X}\right) \tag{26}
\end{equation*}
$$

It is an open neighborhood of $X$ in $\mathfrak{g}$.
Lemma 4.1. There is an injective (restriction) map:

$$
\begin{align*}
& \mathfrak{J}_{X}: \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})} \rightarrow \mathcal{C}^{-\infty}\left(\Delta_{X}, V\right) \\
& \quad \phi \mapsto \phi_{X} . \tag{27}
\end{align*}
$$

Proof. The map

$$
\begin{equation*}
\pi_{\mathcal{U}}=\left.\pi\right|_{\mathcal{V} \times \Delta_{X}}: \mathcal{V} \times \Delta_{X} \rightarrow \mathcal{U} \tag{28}
\end{equation*}
$$

is a submersion. Thus if $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)$, then $\pi_{\mathcal{U}}^{*}(\phi)$ is a well defined generalized function on $\mathcal{V} \times \Delta_{X}$ with values in $V$. Moreover,

$$
\begin{equation*}
\phi=0 \Leftrightarrow \pi_{\mathcal{U}}^{*}(\phi)=0 . \tag{29}
\end{equation*}
$$

Now, we assume that $\phi$ is locally invariant. Then, $\pi_{\mathcal{U}}^{*}(\phi)$ is also locally invariant and

$$
\begin{equation*}
\pi_{\mathcal{U}}^{*}(\phi) \in \mathcal{C}^{\infty}(\mathcal{V}) \widehat{\otimes} \mathcal{C}^{-\infty}\left(\Delta_{X}\right) \tag{30}
\end{equation*}
$$

(Where $\widehat{\otimes}$ is a completed tensor product.) Thus $\pi_{\mathcal{U}}^{*}(\phi)$ can be restricted to $\left\{I_{2}\right\} \times$ $\Delta_{X} \subset \mathcal{V} \times \Delta_{X}$ (cf. [HC64]). We identify $\Delta_{X}$ and $\left\{I_{2}\right\} \times \Delta_{X}$. We put:

$$
\begin{equation*}
\left.\phi_{X} \stackrel{\text { def }}{=} \pi_{\mathcal{U}}^{*}(\phi)\right|_{\Delta_{X}} . \tag{31}
\end{equation*}
$$

Since $\mathcal{V}$ is connected and $\phi$ is locally invariant, we have:

$$
\begin{equation*}
\pi_{\mathcal{U}}^{*}(\phi)(g, Z)=\rho(g) \phi_{X}(Z) \tag{32}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\phi_{X}=0 \Leftrightarrow \pi_{\mathcal{U}}^{*}(\phi)=0 \tag{33}
\end{equation*}
$$

We have for $Z \in \mathfrak{s l}(2, \mathbb{R})$ :

$$
\begin{equation*}
\mathcal{L}_{Z}=-h \partial_{[Z, H]}-x \partial_{[Z, X]}-y \partial_{[Z, Y]} \tag{34}
\end{equation*}
$$

In particular:

$$
\begin{gather*}
\mathcal{L}_{H}=-2 x \partial_{X}+2 y \partial_{Y}  \tag{35}\\
\mathcal{L}_{X}=2 h \partial_{X}-y \partial_{H}  \tag{36}\\
\mathcal{L}_{Y}=x \partial_{H}-2 h \partial_{Y} \tag{37}
\end{gather*}
$$

If $\mathcal{V}$ is sufficiently small, we have $x \neq 0$ on $\mathcal{U}$. We assume that this condition is realized. It follows that on $\mathcal{U}$ we have:

$$
\begin{gather*}
\partial_{X}=-\frac{1}{2 x} \mathcal{L}_{H}+\frac{y}{x} \partial_{Y} \\
\partial_{H}=\frac{1}{x} \mathcal{L}_{Y}+\frac{2 h}{x} \partial_{Y} \tag{38}
\end{gather*}
$$

We have $\Delta_{X} \subset\{X+y Y / y \in \mathbb{R}\}$. We use the coordinate $\left.y\right|_{\Delta_{X}}$, still denoted by $y$, on $\Delta_{X}$. Let $\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V_{n}\right)$. We put $\psi(y)=\psi(X+y Y)$.

Lemma 4.2. We have:

$$
\begin{equation*}
\mathfrak{J}_{X}\left(\mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s i l}(2, \mathbb{R})}\right)=\left\{\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V\right) /(\rho(X)+y \rho(Y)) \psi(y)=0\right\} . \tag{39}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathfrak{J}_{X}: \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})} \rightarrow\left\{\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V\right) /(\rho(X)+y \rho(Y)) \psi(y)=0\right\} \tag{40}
\end{equation*}
$$

is an isomorphism.
Proof. Since $\left.x\right|_{\Lambda_{X}}=1$ and $\left.h\right|_{\Delta_{X}}=0$ we have for $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$ :

$$
\left(\mathcal{L}_{X} \phi\right)_{X}(y)=-y\left(\partial_{H} \phi\right)_{X}(y)
$$

and

$$
\begin{equation*}
\left(\mathcal{L}_{Y} \phi\right)_{X}(y)=\left(\partial_{H} \phi\right)_{X}(y) \tag{41}
\end{equation*}
$$

It follows that we have:

$$
\begin{equation*}
\left(\mathcal{L}_{X} \phi\right)_{X}(y)+y\left(\mathcal{L}_{Y} \phi\right)_{X}(y)=0 \tag{42}
\end{equation*}
$$

Let $\psi \in \mathfrak{J}_{X}\left(\mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}\right)$. Then, there is $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$ such that $\psi=\phi_{X}$. We have:

$$
\begin{align*}
(\rho(X)+y \rho(Y)) \psi(y) & =(\rho(X)+y \rho(Y)) \phi_{X}(y) \\
& =(\rho(X) \phi)_{X}(y)+y(\rho(Y) \phi)_{X}(y)+\left(\mathcal{L}_{X} \phi\right)_{X}(y)+y\left(\mathcal{L}_{Y} \phi\right)_{X}(y) \\
& =\left(\left(\rho(X)+\mathcal{L}_{X}\right) \phi\right)_{X}(y)+y\left(\left(\rho(Y)+\mathcal{L}_{Y}\right) \phi\right)_{X}(y)=0 \tag{43}
\end{align*}
$$

Let $\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V\right)$ such that $(\rho(X)+y \rho(Y)) \psi(y)=0$. We define $\tilde{\psi} \in \mathcal{C}^{-\infty}(\mathcal{V} \times$ $\Delta_{X}$ ) by the formula:

$$
\begin{equation*}
\tilde{\psi}(g, y)=\rho(g) \psi(y) \tag{44}
\end{equation*}
$$

Since $\rho$ is a smooth function on $\operatorname{SL}(2, \mathbb{R})$ with values in $G L(V)$, this is a well defined generalized function on $\mathcal{V} \times \Delta_{X}$ with values in $V$.

Let $(g, Z) \in \mathcal{V} \times \Delta_{X}$. Let $\left(g^{\prime}, Z^{\prime}\right) \in \mathcal{V} \times \Delta_{X}$ such that $\operatorname{Ad}(g)(Z)=\operatorname{Ad}\left(g^{\prime}\right)\left(Z^{\prime}\right)$. Then, $\operatorname{Ad}\left(\left(g^{\prime}\right)^{-1} g\right) Z=Z^{\prime}$. We put $G^{Z}=\left\{g^{\prime \prime} \in S L(2, \mathbb{R}) / \operatorname{Ad}\left(g^{\prime \prime}\right)(Z)=Z\right\}$. For $g^{\prime \prime} \in S L(2, \mathbb{R})$, we have $\operatorname{Ad}\left(g^{\prime \prime}\right)(Z) \in \Delta_{X} \Leftrightarrow g^{\prime \prime} \in G^{Z}$. Then, the fiber of $\pi_{\mathcal{U}}$ at $(g, Z)$ is included in $\left\{\left(g^{\prime}, Z\right) / g^{-1} g^{\prime} \in G^{Z}\right\}$. Moreover, for $Z^{\prime} \in \mathfrak{s l}(2, \mathbb{R}),\left[Z, Z^{\prime}\right]=0 \Leftrightarrow Z^{\prime} \in \mathbb{R} Z$. Thus, since $\mathcal{V}$ is connected, the condition $(\rho(X)+y \rho(Y)) \psi(y)=0$ on $\Delta_{X}$ ensures that $\tilde{\psi}$ is constant along the fibers of $\pi_{\mathcal{U}}$. Thus there is a well defined generalized function $\bar{\psi}$ on $\mathcal{U}$ such that:

$$
\begin{equation*}
\pi_{\mathcal{U}}^{*}(\bar{\psi})=\tilde{\psi} \tag{45}
\end{equation*}
$$

It follows from the construction that $(\bar{\psi})_{X}=\psi$.
The hypothesis $\left.\phi\right|_{\mathcal{U N}}=0$ means that $\phi_{X}$ is supported in $\{X\} \subset \Delta_{X}$.

### 4.3. Radial part of $\square$

In the neighborhood $\mathcal{U}$ of $X$ defined in Section 4.2:

$$
\begin{align*}
\square & =\frac{1}{2}\left(\partial_{H}\right)^{2}+2 \partial_{Y} \partial_{X} \\
& =\frac{1}{2}\left(\frac{1}{x} \mathcal{L}_{Y}+\frac{2 h}{x} \partial_{Y}\right)^{2}+2 \partial_{Y}\left(\frac{-1}{2 x} \mathcal{L}_{H}+\frac{y}{x} \partial_{Y}\right) \tag{46}
\end{align*}
$$

We define the radial part of $\square$ as the differential operator $\square_{X}$ on $\mathcal{C}^{-\infty}\left(\Delta_{X}, V\right)$ :

$$
\begin{equation*}
\square_{X}=\left(3+\rho(H)+2 y \frac{\partial}{\partial y}\right) \frac{\partial}{\partial y}+\frac{1}{2} \rho(Y)^{2} . \tag{47}
\end{equation*}
$$

This definition is justified by the following lemma:
Lemma 4.3. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$, then we have:

$$
\begin{equation*}
(\square \phi)_{X}=\square_{X} \phi_{X} \tag{48}
\end{equation*}
$$

Proof. Since $\left.x\right|_{\Delta_{X}}=1$ and $\left.h\right|_{\Delta_{X}}=0$, we have:

$$
\begin{align*}
(\square \phi)_{X}= & \frac{1}{2}\left(\left(\mathcal{L}_{Y}^{2}+2 \mathcal{L}_{Y} \frac{h}{x} \frac{\partial}{\partial y}\right) \phi\right)_{X}+2\left(\frac{-1}{2}\left(\frac{\partial}{\partial y} \mathcal{L}_{H} \phi\right)_{X}+\left(\frac{\partial}{\partial y} y \frac{\partial}{\partial y} \phi\right)_{X}\right) \\
= & \frac{1}{2}\left(\left(\rho(Y)^{2}+2\left(x \partial_{H}-2 h \partial_{Y}\right) \frac{h}{x} \frac{\partial}{\partial y}\right) \phi\right)_{X} \\
& +2\left(\frac{-1}{2}\left(-\rho(H) \frac{\partial}{\partial y} \phi_{X}\right)+\frac{\partial}{\partial y} \phi_{X}+y\left(\frac{\partial}{\partial y}\right)^{2} \phi_{X}\right) \\
= & \frac{1}{2}\left(\rho(Y)^{2}+2 \frac{\partial}{\partial y}\right) \phi_{X}+\left(\rho(H)+2+2 y \frac{\partial}{\partial y}\right) \frac{\partial}{\partial y} \phi_{X} \\
= & \left(3+\rho(H)+2 y \frac{\partial}{\partial y}\right) \frac{\partial}{\partial y} \phi_{X}+\frac{1}{2} \rho(Y)^{2} \phi_{X}=\square_{X} \phi_{X} . \tag{49}
\end{align*}
$$

### 4.4. The Dirac function $\delta_{\mathcal{N}^{+}}$(resp. $\delta_{\mathcal{N}^{-}}$)

Let $d Z=d x d y d h$ be the Lebesgue measure on $\mathfrak{s l}(2, \mathbb{R})$. Let $\left(e^{*}, f^{*}\right) \in\left(V_{1}^{*}\right)^{2}$ be the dual basis of $(e, f)$. The Lebesgue measure $d v=-2 d e^{*} d f^{*}$ on $V_{1}$ is $\mathfrak{s l}(2, \mathbb{R})$ invariant. We define an invariant generalized function $\delta_{\mathcal{N}^{+}}\left(\right.$resp. $\left.\delta_{\mathcal{N}^{-}}\right)$on $\mathfrak{s l}(2, \mathbb{R})$ and supported in $\mathcal{N}^{+} \cup\{0\}$ (resp. $\mathcal{N}^{-} \cup\{0\}$ ) by

$$
\begin{gather*}
\forall g \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathfrak{s l}(2, \mathbb{R})), \quad \int_{\mathfrak{s l}(2, \mathbb{R})} \delta_{\mathcal{N}^{+}}(\boldsymbol{Z}) g(Z) d Z \stackrel{\text { def }}{=} \int_{V_{1}} g \circ \mu_{1}(v) d v, \\
\left(\text { resp. } \forall g \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathfrak{s l}(2, \mathbb{R})), \quad \int_{\mathfrak{s l}(2, \mathbb{R})} \delta_{\mathcal{N}^{-}}(\boldsymbol{Z}) g(\boldsymbol{Z}) d Z \stackrel{\text { def }}{=} \int_{V_{1}} g \circ\left(-\mu_{1}\right)(v) d v\right) . \tag{50}
\end{gather*}
$$

We put

$$
\begin{equation*}
\delta_{X}=\left(\delta_{\mathcal{N}^{+}}\right)_{X} \in \mathcal{C}^{-\infty}\left(\Delta_{X}\right) \tag{51}
\end{equation*}
$$

We still denote by $d y$ the Lebesgue measure on $\Delta_{X}$. It is invariant. Let $g \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\Delta_{X}\right)$.

Then we have:

$$
\begin{equation*}
\int_{\Delta_{X}} \delta_{X}(y) g(y) d y=g(0) \tag{52}
\end{equation*}
$$

### 4.5. Irreducible representations

If $V=V^{1} \oplus \cdots \oplus V^{n}$ where $V^{i}$ is an irreducible representation of $\mathfrak{s l}(2, \mathbb{R})$, then we have:

$$
\begin{equation*}
\mathcal{C}^{-\infty}(\mathcal{U}, V)=\bigoplus_{i=1}^{n} \mathcal{C}^{-\infty}\left(\mathcal{U}, V^{i}\right) \tag{53}
\end{equation*}
$$

every subspace being stable for $\mathfrak{s l}(2, \mathbb{R})$. Thus we can assume from now on that the representation of $\mathfrak{s l}(2, \mathbb{R})$ in $V$ is irreducible.
We fix the Cartan subalgebra $\mathfrak{h}=\mathbb{R} H$ and the positive root $2 h$ (we still denote by $h$ its restriction to $\mathfrak{h}$ ). Let $n \in \mathbb{N}$. We denote by $V_{n}$ the irreducible representation of $\mathfrak{s l}(2, \mathbb{R})$ with highest weight $n h$. We have $\operatorname{dim}\left(V_{n}\right)=n+1$. We decompose $V_{n}$ under the action of $\mathbb{R} H$. We fix $v_{0} \in V_{n} \backslash\{0\}$ a vector of weight $-n h$ :

$$
\begin{equation*}
\rho(H) v_{0}=-n v_{0} \tag{54}
\end{equation*}
$$

We put for $0 \leqslant i \leqslant n: v_{i}=\rho(X)^{i} v_{0}$. We have $\rho(X) v_{n}=0$ and $\rho(H) v_{i}=(-n+2 i) v_{i}$. On the other hand, $\rho(Y) v_{0}=0$ and for $1 \leqslant i \leqslant n: \rho(Y) v_{i}=(n-i+1) i v_{i-1}$.

### 4.6. A basic function on $\mathcal{N}^{+}$

We construct a function $s_{n}: \mathcal{U} \cap \mathcal{N}^{+} \rightarrow V_{n}$ which is the basic tool to generate all the generalized functions we are looking for.

### 4.6.1. Case $n$ even

In this case $V_{n}$ is isomorphic to the irreducible component of $S^{\frac{n}{2}}(\mathfrak{s l}(2, \mathbb{R}))$ (under adjoint action of $\mathfrak{s l}(2, \mathbb{R})$ ) generated by $X^{\frac{n}{2}}$. From now on we will identify $V_{n}$ with this component. We denote by $s_{n}: \mathcal{N} \rightarrow V_{n}$ the invariant map defined by:

$$
\begin{equation*}
s_{n}(Z)=Z^{\frac{n}{2}} \tag{55}
\end{equation*}
$$

### 4.6.2. Case $n=1$

We recall that $\mu_{1}: V_{1} \backslash\{0\} \rightarrow \mathcal{N}^{+}$is a two-fold covering with $\mu_{1}(e)=\frac{1}{2} X$. If $\mathcal{U}$ is a sufficiently small connected neighborhood of $X$, there exists a unique continuous section $s_{1}$ of $\mu_{1}$ in $\mathcal{U} \cap \mathcal{N}^{+}$such that $s_{1}\left(\frac{1}{2} X\right)=e$. We have $s_{1}: \mathcal{U} \cap \mathcal{N}^{+} \rightarrow V_{1}$. It satisfies:

$$
\begin{equation*}
\forall Z \in \mathcal{U} \cap \mathcal{N}^{+}, \mu_{1}\left(s_{1}(Z)\right)=Z \tag{56}
\end{equation*}
$$

### 4.6.3. Case n odd

More generally, when $n$ is odd, $V_{n}$ is isomorphic to the irreducible component of $V_{1} \otimes S^{\frac{n-1}{2}}(\mathfrak{s l}(2, \mathbb{R}))$ generated by $e \otimes X^{\frac{n-1}{2}}$. From now on we will identify $V_{n}$ with this component. Let $\mathcal{U}$ be the above neighborhood of $X$. We define a function $s_{n}: \mathcal{U} \cap \mathcal{N}^{+} \rightarrow V_{n}$ by:

$$
\begin{equation*}
\forall Z \in \mathcal{U} \cap \mathcal{N}^{+}, s_{n}(\boldsymbol{Z})=s_{1}(\boldsymbol{Z}) \otimes Z^{\frac{n-1}{2}} \in V_{n} . \tag{57}
\end{equation*}
$$

### 4.7. Basic theorem

Let $\mathcal{U}$ be an open subset of $\mathfrak{s l}(2, \mathbb{R})$. We put:

$$
\begin{equation*}
\mathcal{S}_{n}(\mathcal{U})=\left\{\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, V_{n}\right)^{s l(2, \mathbb{R})} /\left.\phi\right|_{\mathcal{U} \mathcal{N}}=0\right\} . \tag{58}
\end{equation*}
$$

Theorem 4.1. Let $n \in \mathbb{N}$. Let $\mathcal{U}$ be an open connected neighborhood of $X$ such that the function $s_{n}$ is well defined on $\mathcal{U} \cap \mathcal{N}$ (cf. Section 4.6) and $\mathfrak{J}_{X}$ is bijective (cf. Section 4.2). Then:
(i) When $n$ is even, $\mathcal{S}_{n}(\mathcal{U})$ is an infinite-dimensional vector space with basis:

$$
\begin{equation*}
\left(\square^{k}\left(s_{n} \delta_{\mathcal{N}^{+}}\right)\right)_{k \in \mathbb{N}} . \tag{59}
\end{equation*}
$$

(ii) When $n$ is odd, $\operatorname{dim}\left(\mathcal{S}_{n}(\mathcal{U})\right)=\frac{n+1}{2}$ and a basis is given by:

$$
\begin{equation*}
\left(\square^{k}\left(s_{n} \delta_{\mathcal{N}^{+}}\right)\right)_{0 \leqslant k \leqslant \frac{n-1}{2}} . \tag{60}
\end{equation*}
$$

Remark. Since $\delta_{\mathcal{N}^{+}}(\boldsymbol{Z}) d Z$ is a measure on $\mathfrak{s l}(2, \mathbb{R})$ with support $\mathcal{N}^{+} \cup\{0\}$ and $s_{n}$ is a smooth function on $\mathcal{U} \cap \mathcal{N}$ with values in $V_{n}, s_{n} \delta_{\mathcal{N}^{+}}$is a well defined generalized function on $\mathcal{U}$ with values in $V_{n}$.

Proof. Thanks to the isomorphism $\mathfrak{J}_{X}$ we have to determine the space:

$$
\begin{equation*}
\left\{\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V_{n}\right) /\left.\psi\right|_{\Delta_{X} \backslash\{0\}}=0 \text { and }(\rho(X)+y \rho(Y)) \psi(y)=0\right\} \tag{61}
\end{equation*}
$$

Let $\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V_{n}\right)$. We write:

$$
\begin{equation*}
\psi(y)=\sum_{i=0}^{n} \psi_{i}(y) v_{i} \tag{62}
\end{equation*}
$$

where $\psi_{i} \in \mathcal{C}^{-\infty}\left(\Delta_{X}\right)$ and $\left(v_{i}\right)_{0 \leqslant i \leqslant n}$ is the basis defined in Section 4.5. We put:

$$
\begin{equation*}
\delta^{k}(y)=\left(\frac{\partial}{\partial y}\right)^{k} \delta_{X}(y) \tag{63}
\end{equation*}
$$

Since $\psi$ is supported in $\mathcal{N}$ and $\Delta_{X} \cap \mathcal{N}=\{X\}$, there exists $a_{i, k} \in \mathbb{R}$, all equal to zero but for finite number, such that:

$$
\begin{equation*}
\psi_{i}(y)=\sum_{k \in \mathbb{N}} a_{i, k} \delta^{k}(y) \tag{64}
\end{equation*}
$$

For $n=0$, we have $\rho=0$ and the condition $(\rho(X)+y \rho(Y)) \psi(y)=0$ is automatically satisfied.

For $n \geqslant 1$, we put $\alpha_{i}=(n-i+1) i$. We have $y \delta^{0}(y)=0$ and for $k \geqslant 1, y \delta^{k}(y)=$ $-k \delta^{k-1}(y)$. Thus:

$$
\begin{equation*}
\sum_{0 \leqslant i \leqslant n-1, k \in \mathbb{N}} a_{i, k} \delta^{k}(y) v_{i+1}-\sum_{1 \leqslant i \leqslant n, k \geqslant 1} \alpha_{i} a_{i, k} k \delta^{k-1}(y) v_{i-1}=0 . \tag{65}
\end{equation*}
$$

It follows:

$$
\begin{cases}a_{n-1, k}=0 & \text { for } k \geqslant 0  \tag{66}\\ a_{1, k}=0 & \text { for } k \geqslant 1, \\ a_{i-1, k}=(k+1)(i+1)(n-i) a_{i+1, k+1} & \text { for } n \geqslant 2,1 \leqslant i \leqslant n-1 \text { and } k \geqslant 0\end{cases}
$$

It follows in particular
(i) from the first and the last relations that $\forall i, k \geqslant 0$ with $2 i+1 \leqslant n$ : $a_{n-(2 i+1), k}=0$,
(ii) from the last relation that $\forall i \geqslant 0$ with $2 i \leqslant n, \quad\left(a_{n-2 i, k}\right)_{k \geqslant 0}$ is completely determined by $\left(a_{n, k}\right)_{k \geqslant 0}$.

We distinguish between the two cases according to the parity of $n$.
$n$ even: In this case, for $n \geqslant 2$, the second relation follows from (i). Hence the map:

$$
\begin{gather*}
\left\{\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V_{n}\right) /\left.\psi\right|_{\Delta_{X} \backslash\{0\}}=0 \quad \text { and } \quad(\rho(X)+y \rho(Y)) \psi(y)=0\right\} \rightarrow \mathbb{R}^{\mathbb{N}} \\
\psi(y)=\sum_{0 \leqslant i \leqslant n, k \in \mathbb{N}} a_{i, k} \delta^{k}(y) v_{i} \mapsto\left(a_{n, k}\right)_{k \in \mathbb{N}} \tag{67}
\end{gather*}
$$

is bijective. This is also true for $n=0$.
$n$ odd: It follows from the two last relations that for $k \geqslant i \geqslant 1 \quad a_{2 i-1, k}=0$. In particular, the map:

$$
\begin{gather*}
\left\{\psi \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V_{n}\right) /\left.\psi\right|_{\Delta_{X} \backslash\{0\}}=0 \quad \text { and } \quad(\rho(X)+y \rho(Y)) \psi(y)=0\right\} \rightarrow \mathbb{R}^{\frac{n+1}{2}} \\
\psi(y)=\sum_{0 \leqslant i \leqslant n, k \in \mathbb{N}} a_{i, k} \delta^{k}(y) v_{i} \mapsto\left(a_{n, 0}, \ldots, a_{n, \frac{n-1}{2}}\right) \tag{68}
\end{gather*}
$$

is bijective.

This proves the first part of the theorem on the dimension of $\mathcal{S}_{n}(\mathcal{U})$. It remains to prove that the functions $\square^{k}\left(s_{n} \delta_{\mathcal{N}}\right)$ form a basis of $\mathcal{S}_{n}(\mathcal{U})$. We have for $\psi(y)=\sum_{i=0}^{n} \sum_{k \in \mathbb{N}} a_{i, k} \delta^{k}(y) v_{i} \in \mathcal{C}^{-\infty}\left(\Delta_{X}, V_{n}\right)$ such that $\rho(X+y Y) \psi(y)=0$

$$
\begin{align*}
\square_{X} \psi(y) & =\left(3+\rho(H)+2 y \partial_{Y}\right) \sum_{k \in \mathbb{N}} a_{n, k} \delta^{k+1}(y) v_{n}+\sum_{i=0}^{n-1} \ldots v_{i} \\
& =\sum_{k \in \mathbb{N}}(n-2 k-1) a_{n, k} \delta^{k+1}(y) v_{n}+\sum_{i=0}^{n-1} \ldots v_{i}, \tag{69}
\end{align*}
$$

where $\ldots$ are elements of $\mathcal{C}^{-\infty}\left(\Delta_{X}\right)$.
$n$ even: Since $v_{n}=X^{\frac{n}{2}}$, we have $\left(s_{n} \delta_{\mathcal{N}}\right)_{X}(y)=\delta_{X}(y) X^{\frac{n}{2}}$. By induction on $k$, it follows:

$$
\begin{align*}
\left(\square^{k}\left(s_{n} \delta_{\mathcal{N}}\right)\right)_{X}(y)= & (n-2 k+1) \ldots(n-1) \delta^{k}(y) X^{\frac{n}{2}} \\
& + \text { terms with } X^{\frac{n}{2}-i} \text { for } i \geqslant 1 \tag{70}
\end{align*}
$$

Since $n$ is even $n-2 k+1 \neq 0$. The result follows.
$n$ odd: Since $v_{n}=e \otimes X^{\frac{n-1}{2}}$, we have $\left(s_{n} \delta_{\mathcal{N}}\right)_{X}(y)=\delta_{X}(y)\left(e \otimes X^{\frac{n-1}{2}}\right)$. By induction on $k$, it follows:

$$
\begin{align*}
\left(\square^{k}\left(s_{n} \delta_{\mathcal{N}}\right)\right)_{X}(y)= & (n-2 k+1) \ldots(n-1) \delta^{k}(y)\left(e \otimes X^{\frac{n-1}{2}}\right) \\
& + \text { terms with } e \otimes X^{\frac{n-1}{2}-i} \text { for } i \geqslant 1 \tag{71}
\end{align*}
$$

In this case for $k=\frac{n+1}{2}, n-2 k+1=0$. Thus, since $\square^{k}\left(s_{n} \delta_{\mathcal{N}}\right)$ is invariant, it follows from the isomorphism (68) that for $k \geqslant \frac{n+1}{2}: \square^{k}\left(s_{n} \delta_{\mathcal{N}}\right)=0$. The result follows.

### 4.8. Global version

Let $\mathcal{U}$ be an open subset of $\mathfrak{s l}(2, \mathbb{R})$. We put:

$$
\begin{gather*}
\mathcal{S}_{n}^{0}(\mathcal{U})=\left\{\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, V_{n}\right)^{s(2,(\mathbb{R})} /\left.\phi\right|_{\mathcal{U} \backslash\{0\}}=0\right\},  \tag{72}\\
\mathcal{S}_{n}^{ \pm}(\mathcal{U})=\left\{\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, V_{n}\right)^{s \operatorname{sl}(2, \mathbb{R})} /\left.\phi\right|_{\mathcal{U}\left(\mathcal{N}^{ \pm} \cup\{0\}\right)}=0\right\} . \tag{73}
\end{gather*}
$$

Theorem 4.2. Let $\mathcal{U}$ be an $\operatorname{SL}(2, \mathbb{R})$-invariant open subset of $\mathfrak{s l}(2, \mathbb{R})$. Then we have:
(i)

$$
\begin{cases}\mathcal{S}_{n}^{0}(\mathcal{U})=\{0\} & \text { if } 0 \notin \mathcal{U}  \tag{74}\\ \mathcal{S}_{n}^{0}(\mathcal{U}) \simeq\left(V_{n} \otimes S(\mathfrak{s l}(2, \mathbb{R}))\right)^{\mathfrak{s l}(2, \mathbb{R})} & \text { if } 0 \in \mathcal{U}\end{cases}
$$

(ii) When $n$ is even, we have:

$$
\begin{gather*}
\mathcal{S}_{n}(\mathcal{U})=\mathcal{S}_{n}^{0}(\mathcal{U}) \oplus \operatorname{Vect}\left\{\left.\square^{k}\left(s_{n} \delta_{\mathcal{N}^{+}}\right)\right|_{\mathcal{U}} / k \in \mathbb{N}\right\} \oplus \operatorname{Vect}\left\{\left.\square^{k}\left(s_{n} \delta_{\mathcal{N}^{-}}\right)\right|_{\mathcal{U}} / k \in \mathbb{N}\right\},  \tag{75}\\
\mathcal{S}_{n}^{ \pm}(\mathcal{U})=\mathcal{S}_{n}^{0}(\mathcal{U}) \oplus \operatorname{Vect}\left\{\left.\square^{k}\left(s_{n} \delta_{\mathcal{N}^{ \pm}}\right)\right|_{\mathcal{U}} / k \in \mathbb{N}\right\} . \tag{76}
\end{gather*}
$$

(iii) When $n$ is odd:

$$
\begin{equation*}
\mathcal{S}_{n}(\mathcal{U})=\mathcal{S}_{n}^{ \pm}(\mathcal{U})=\mathcal{S}_{n}^{0}(\mathcal{U}) \tag{77}
\end{equation*}
$$

Proof. (i) It follows from Theorem 3.1.
(ii) When $n$ is even, the function $\delta_{\mathcal{N}}^{ \pm}$is defined on $\mathfrak{s l}(2, \mathbb{R})$, the function $s_{n}$ is defined on $\mathcal{N}$ and the product $s_{n} \delta_{\mathcal{N}^{ \pm}}$is well defined (cf. Remark of Theorem 4.1). Then the result follows from Theorem 4.1.
(iii) Let $n$ be odd. We assume that $\mathcal{U} \cap \mathcal{N} \neq \emptyset$. Since $\mathcal{U}$ is $S L(2, \mathbb{R})$-invariant, we have $\mathcal{N}^{+} \subset \mathcal{U}$ or $\mathcal{N}^{-} \subset \mathcal{U}$. We assume that $\mathcal{N}^{+} \subset \mathcal{U}$ (the case $\mathcal{U} \subset \mathcal{N}^{-}$is similar).

Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$. Let $\mathcal{U}_{0} \subset \mathcal{U}$ be a suitable neighborhood of $X$ where $s_{1}$ (and thus $s_{n}$ ) is defined (cf. Section 4.6). There exists $\left(a_{0}, \ldots, a_{\frac{n-1}{2}}\right) \in \mathbb{R}^{\frac{n+1}{2}}$ such that on $\mathcal{U}_{0}$ (cf. Theorem 4.1):

$$
\begin{equation*}
\phi(Z)=\sum_{k=0}^{\frac{n+1}{2}} a_{k} \square^{k}\left(s_{n}(Z) \delta_{\mathcal{N}^{+}}(Z)\right)=\sum_{k=0}^{\frac{n+1}{2}} a_{k} \square^{k}\left(\left(s_{1}(Z) \otimes Z^{\frac{n-1}{2}}\right) \delta_{\mathcal{N}^{+}}(Z)\right) . \tag{78}
\end{equation*}
$$

Since $\mu_{1}: V_{1} \backslash\{0\} \rightarrow \mathcal{N}^{+}$is a non trivial two-fold covering, there is not any continuous section. In other words there is not any continuous $S L(2, \mathbb{R})$-invariant map $s: \mathcal{N}^{+} \rightarrow V_{1}$ such that for any $Z \in \mathcal{U}_{0}, s(Z)=s_{1}(Z)$. Thus $a_{0}=\cdots=a_{\frac{n-1}{2}}=0$. The result follows.

## 5. Invariant solutions of differential equations

### 5.1. Introduction

Let $\mathcal{C}_{V}=(\operatorname{End}(V) \otimes S(\mathfrak{s l}(2, \mathbb{R})))^{\mathfrak{s l}(2, \mathbb{R})}$ be the algebra of $\operatorname{End}(V)$-valued invariant differential operators with constant coefficients on $\mathfrak{g}$. It is the classical family algebra in the terminology of Kirillov (cf. [Kir00]). When $V=V_{n}$ is the ( $n+1$ )-dimensional irreducible representation of $\mathfrak{s l}(2, \mathbb{R})$, we put $\mathcal{C}_{n}=\mathcal{C}_{V_{n}}$.

Let $\mathcal{U} \subset \mathfrak{s l}(2, \mathbb{R})$ be an open subset. It is a natural and interesting problem to determine the generalized functions $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{s \operatorname{ll}(2, \mathbb{R})}$ such that $\mathcal{C}_{V} \phi$ is finite dimensional.

We recall that $S(\mathfrak{s l}(2, \mathbb{R}))^{\mathfrak{s l}(2, \mathbb{R})}=\mathbb{R}[\square]$. It is a subalgebra of $\mathcal{C}_{V}$. An other subalgebra of $\mathcal{C}_{V}$ is $\operatorname{End}(V)^{\mathfrak{s I}(2, \mathbb{R})}$. When $V=V_{n}$, we put:

$$
\begin{equation*}
M_{n}=\rho_{n}(X) Y+\rho_{n}(Y) X+\frac{1}{2} \rho_{n}(H) H \in \mathcal{C}_{n} \tag{79}
\end{equation*}
$$

According Rozhkovskaya (cf. [Roz03]), $\mathcal{C}_{n}$ is a free $S(\mathfrak{s l}(2, \mathbb{R}))^{\mathfrak{s l}(2, \mathbb{R})}$-module with basis $\mathcal{B}_{n}=\left(1, M_{n}, \ldots,\left(M_{n}\right)^{n}\right)$.

Lemma 5.1. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$. Then we have

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{R}}\left(\mathcal{C}_{V} \phi\right)<\infty \Leftrightarrow \operatorname{dim}_{\mathbb{R}}(\mathbb{R}[\square] \phi)<\infty . \tag{80}
\end{equation*}
$$

Proof. We argue as in [Roz03]. Let $H$ be the set of harmonic polynomials in $S(\mathfrak{s l}(2, \mathbb{R}))$. Then, $S(\mathfrak{s l}(2, \mathbb{R}))=\mathbb{R}[\square] \otimes H(\mathrm{cf}$. $[$ Kos 63$])$, and:

$$
\begin{equation*}
\mathcal{C}_{V}=\mathbb{R}[\square] \otimes(H \otimes \operatorname{End}(V))^{\mathfrak{s l}(2, \mathbb{R})} . \tag{81}
\end{equation*}
$$

Since $\operatorname{dim}_{\mathbb{R}}(H \otimes \operatorname{End}(V))^{\mathfrak{s l}(2, \mathbb{R})}<\infty$, the result follows:
Remark. Since $\mathbb{R}[\square] \subset \mathbb{R}[\square] \otimes \operatorname{End}(V)^{\mathfrak{s l}(2, \mathbb{R})} \subset \mathcal{C}_{V}$, the condition $\operatorname{dim}\left(\mathcal{C}_{V} \phi\right)<\infty$ is also equivalent to the existence of $r \in \mathbb{N}$ and $\left(A_{0}, \ldots, A_{r-1}\right) \in\left(\operatorname{End}(V)^{\mathfrak{s l}(2, \mathbb{R})}\right)^{r}$ such that:

$$
\begin{equation*}
\left(\square^{r}+A_{r-1} \square^{r-1}+\cdots A_{1} \square+A_{0}\right) \phi=0 . \tag{82}
\end{equation*}
$$

Useful examples of (82) are $(\square-\lambda)^{k} \phi=0$ for $\lambda \in \mathbb{C}$ and generalized functions with values in a complex representation. We give such an example below.

Definition 5.1. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$. We say that $\phi$ is $\square$-finite if $\operatorname{dim}_{\mathbb{R}}(\mathbb{R}[\square] \phi)<\infty$.

In other words, $\phi$ is $\square$-finite if there exists $r \in \mathbb{N}$ and $\left(a_{0}, \ldots, a_{r-1}\right) \in \mathbb{R}^{r}$ such that

$$
\begin{equation*}
\left(\square^{r}+a_{r-1} \square^{r-1}+\cdots a_{1} \square+a_{0}\right) \phi=0 . \tag{83}
\end{equation*}
$$

Example (This was our original motivation to study this problem). Let $\mathfrak{g}=\mathfrak{g}_{\mathbf{0}} \oplus \mathfrak{g}_{\mathbf{1}}$ be a Lie superalgebra. We define the generalized functions on $\mathfrak{g}$ as the generalized functions on $\mathfrak{g}_{\mathbf{0}}$ with values in the exterior algebra $\Lambda\left(\mathfrak{g}_{\mathbf{1}}^{*}\right)$ of $\mathfrak{g}_{1}^{*}$

$$
\begin{equation*}
\mathcal{C}^{-\infty}(\mathfrak{g}) \stackrel{\text { def }}{=} \mathcal{C}^{-\infty}\left(\mathfrak{g}_{\mathbf{0}}\right) \otimes \Lambda\left(\mathfrak{g}_{\mathbf{1}}^{*}\right)=\mathcal{C}^{-\infty}\left(\mathfrak{g}_{\mathbf{0}}, \Lambda\left(\mathfrak{g}_{1}^{*}\right)\right) \tag{84}
\end{equation*}
$$

We assume that $\mathfrak{g}$ has a non degenerate invariant symmetric even bilinear form $B$. Let $\Omega \in S^{2}(\mathfrak{g})$ be the Casimir operator associated with $B$. We have $\Omega=\Omega_{\mathbf{0}}+\Omega_{\mathbf{1}}$ with
$\Omega_{0} \in S^{2}\left(\mathfrak{g}_{0}\right)$ and $\Omega_{1} \in \Lambda^{2}\left(\mathfrak{g}_{1}\right)$. We consider $\Omega_{\mathbf{1}}$ as an element of $\operatorname{End}\left(\Lambda\left(\mathfrak{g}_{1}^{*}\right)\right)$ acting by interior product. When they can be evaluated (cf. for example [Lav98, Chapitre III.5]), the Fourier transforms of the coadjoint orbits in $\mathfrak{g}^{*}$ are invariant generalized functions $\phi$ on $\mathfrak{g}$ subject to equations of the form $(\Omega-\lambda) \phi=0$ with $\lambda \in \mathbb{C}$. It can be written $\left(\Omega_{0}+\left(\Omega_{1}-\lambda\right)\right) \phi=0$ (for $\mathfrak{g}_{\mathbf{0}}=\mathfrak{s l}(2, \mathbb{R})$ it is of the form (82) with $\Omega_{\mathbf{0}}=\square$ and $A_{0}=\Omega_{\mathbf{1}}-\lambda$. We have:

$$
\begin{equation*}
\left(\Omega_{\mathbf{0}}-\lambda\right)^{k}=\sum_{i=0}^{k}\binom{k}{i}(\Omega-\lambda)^{i}\left(-\Omega_{\mathbf{1}}\right)^{k-i} \tag{85}
\end{equation*}
$$

For $k>\frac{\operatorname{dim}\left(\mathfrak{g}_{1}\right)}{2}$, we have $\Omega_{1}^{k}=0$. It follows that for $k>1+\frac{\operatorname{dim}\left(\mathfrak{g}_{1}\right)}{2}$ we have:

$$
\begin{equation*}
\left(\Omega_{0}-\lambda\right)^{k} \phi=0 \tag{86}
\end{equation*}
$$

this equation is of the form of (82).

### 5.2. Generalized functions with support $\{0\}$

We immediately obtain from Theorem 3.1
Theorem 5.1. Let $V$ be a representation of $\mathfrak{s l}(2, \mathbb{R})$. Let $\phi \in \mathcal{C}^{-\infty}(\mathfrak{s l}(2, \mathbb{R}), V)^{\mathfrak{s l}(2, \mathbb{R})}$ such that $\left.\phi\right|_{\mathfrak{s l}(2, \mathbb{R}) \backslash\{0\}}=0$ and $\phi$ is $\square$-finite. Then, we have $\phi=0$.

### 5.3. Support in the nilpotent cone: local version

Theorem 5.2. Let $n \in \mathbb{N}$. Let $V_{n}$ be the irreducible $n+1$-dimensional representation of $\mathfrak{s l}(2, \mathbb{R})$. Let $W$ be a finite-dimensional vector space with trivial action of $\mathfrak{s l}(2, \mathbb{R})$. Let $\mathcal{U}$ be an open connected neighborhood of $X$ such that the function $s_{n}$ is well defined on $\mathcal{U} \cap \mathcal{N} \quad\left(c f . \quad\right.$ Section 4.6) and $\mathfrak{J}_{X}$ is bijective (cf. Section 4.2). Let $\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, W \otimes V_{n}\right)^{\mathfrak{s l}(2, \mathbb{R})}$ such that $\left.\phi\right|_{\mathcal{U} \mathcal{N}}=0$. Let $r \in \mathbb{N}$ and $\left(a_{0}, \ldots, a_{r-1}\right) \in \mathbb{R}^{r}$ such that: $\left(\square^{r}+\sum_{k=0}^{r-1} a_{k} \square^{k}\right) \phi=0$.

Then, we have $\phi=0$ when at least one of the following conditions is satisfied:
(i) $n$ is even;
(ii) $n$ is odd and $a_{0} \neq 0$.

Proof. Let $\phi \in \mathcal{C}^{-\infty}\left(\mathcal{U}, W \otimes V_{n}\right)^{s(2,(\mathbb{R})}$ such that $\left.\phi\right|_{\mathcal{U} \mathcal{N}}=0$. From Theorem 4.1 we obtain that there exist $p \in \mathbb{N}$, with $p=\frac{n-1}{2}$ if $n$ is odd and $\left(w_{0}, \ldots, w_{p}\right) \in W^{p+1}$, such that:

$$
\begin{equation*}
\phi=\sum_{i=0}^{p} w_{i} \otimes \square^{i}\left(s_{n} \delta_{\mathcal{N}^{+}}\right) \tag{87}
\end{equation*}
$$

Then:
(i) When $n$ is even, for $0 \leqslant j \leqslant p+r$, we have $\sum_{k+i=j} a_{k} w_{i}=0$.
(ii) When $n$ is odd, for $0 \leqslant j \leqslant \frac{n-1}{2}$, we have $\sum_{k+i=j} a_{k} w_{i}=0$.

The result follows.
Remark. When $n$ is odd, in contrast with the classical case ( $V=V_{0}$ is the trivial representation) there exist (in a neighborhood of $X$ ) non trivial locally invariant solutions of the equation $\square^{k} \phi=0$ supported in the nilpotent cone! For example, if $k \geqslant \frac{n+1}{2}$ the functions $\phi=\square^{i}\left(s_{n} \delta_{\mathcal{N}^{+}}\right)$for $0 \leqslant i \leqslant \frac{n-1}{2}$ are not trivial, supported in the nilpotent cone and satisfy the equation $\square^{k} \phi=0$.

When we consider the equation $(\square-\lambda)^{k} \phi=0$ for $\lambda \in C \backslash\{0\}$, then the trivial solution is again the only one supported in the nilpotent cone.

### 5.4. Support in the nilpotent cone: global version

Theorem 5.3. Let $V$ be a real finite-dimensional representation of $\mathfrak{s l}(2, \mathbb{R})$. Let $\mathcal{U}$ be an $S L(2, \mathbb{R})$-invariant open subset of $\mathfrak{s l}(2, \mathbb{R})$. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$ such that $\left.\phi\right|_{\mathcal{U}, \mathcal{N}}=0$ and $\phi$ is $\square$-finite. Then we have $\phi=0$.

Proof. It is enough to prove the theorem for $V$ irreducible. Then, the result follows from Theorems 4.2, 5.2 and 5.1.

## 6. General invariant generalized functions

### 6.1. Main theorem

Theorem 6.1. Let $V$ be a real finite-dimensional representation of $\mathfrak{s l}(2, \mathbb{R})$. Let $\mathcal{U}$ be an $S L(2, \mathbb{R})$-invariant open subset of $\mathfrak{s l}(2, \mathbb{R})$. Let $\phi \in \mathcal{C}^{-\infty}(\mathcal{U}, V)^{\mathfrak{s l}(2, \mathbb{R})}$ such that $\phi$ is $\square$ finite. Then $\phi$ is determined by $\left.\phi\right|_{\mathcal{Z N}}$ and $\left.\phi\right|_{\mathcal{Z} N \mathcal{N}}$ is an analytic function.

Proof. The fact that $\phi$ is determined by $\left.\phi\right|_{\mathcal{Z} \mathcal{N}}$ follows from Theorem 5.3. The fact that $\left.\phi\right|_{\mathcal{U} \mathcal{N}}$ is analytic can be proved exactly as in [HC65].

Remark. In general $\phi$ will not be locally $L^{1}$. Indeed, let $\phi_{0} \in \mathcal{C}^{-\infty}(\mathfrak{s l}(2, \mathbb{R}))^{\mathfrak{s l}(2, \mathbb{R})}$ a non zero $\square$-finite generalized function. Then $\phi_{0}$ is locally $L^{1}$, but for $k \in \mathbb{N}^{*}$ :

$$
\begin{equation*}
M_{n}^{k} \phi_{0} \in \mathcal{C}^{-\infty}\left(\mathfrak{s l}(2, \mathbb{R}), \operatorname{End}\left(V_{n}\right)\right)^{\mathfrak{s l}(2, \mathbb{R})} \tag{88}
\end{equation*}
$$

is usually not locally $L^{1}$.

### 6.2. Application to the superpfaffian

Let us consider the Lie superalgebra $\mathfrak{g}=\mathfrak{s p v}(2,2 n)$. Its even part is $\mathfrak{g}_{\mathbf{0}}=$ $\mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s o}(2 n, \mathbb{R})$. Its odd part is $\mathfrak{g}_{1}=V_{1} \otimes W$ where $W$ is the standard $2 n$ dimensional representation of $\mathfrak{s o}(2 n, \mathbb{R})$.

In [Lav04] we constructed a particular invariant generalized function Spf on $\mathfrak{s p o}(2,2 n)$ called Superpfaffian. It generalizes the Pfaffian on $\mathfrak{s v}(2 n, \mathbb{R})$ and the inverse square root of the determinant on $\mathfrak{s l}(2, \mathbb{R})$. As it is a polynomial of degree $n$ on $\mathfrak{s v}(2 n, \mathbb{R})$, we may consider that we have:

$$
\begin{equation*}
\operatorname{Spf} \in \mathcal{C}^{-\infty}\left(\mathfrak{s l}(2, \mathbb{R}), \bigoplus_{k=0}^{n} S^{k}\left(\mathfrak{s v}(2 n, \mathbb{R})^{*}\right) \otimes \Lambda\left(\mathfrak{g}_{1}^{*}\right)\right)^{\mathfrak{s l}(2, \mathbb{R})} \tag{89}
\end{equation*}
$$

Let $\Omega$ (resp. $\square, \Omega_{\mathbf{0}}^{\prime}, \Omega_{\mathbf{1}}$ ) be the Casimir operator on $\mathfrak{s p o}(2,2 n)$ (resp. on $\mathfrak{s l}(2, \mathbb{R})$, $\left.\mathfrak{s v}(2 n, \mathbb{R}), \mathfrak{g}_{1}\right)$. Then $\Omega=\square+\Omega_{0}^{\prime}+\Omega_{1}$ and

$$
\begin{equation*}
\Omega_{\mathbf{0}}^{\prime}+\Omega_{\mathbf{1}} \in \operatorname{End}\left(\bigoplus_{k=0}^{n} S^{k}\left(\mathfrak{s v}(2 n, \mathbb{R})^{*}\right) \otimes \Lambda\left(\mathfrak{g}_{1}^{*}\right)\right)^{\mathfrak{s l}(2, \mathbb{R})} \tag{90}
\end{equation*}
$$

is a nilpotent endomorphism. The superpfaffian satisfies:

$$
\begin{equation*}
\left(\square+\left(\Omega_{\mathbf{0}}^{\prime}+\Omega_{\mathbf{1}}\right)\right) \operatorname{Spf}=\Omega \operatorname{Spf}=0 \tag{91}
\end{equation*}
$$

The function Spf is analytic on $\mathfrak{s l}(2, \mathbb{R}) \backslash \mathcal{N}$ and in [Lav04] an explicit formula is given for $\operatorname{Spf}(X) \in \oplus_{k=0}^{n} S^{k}\left(\mathfrak{s v}(2 n, \mathbb{R})^{*}\right) \otimes \Lambda\left(\mathfrak{g}_{1}^{*}\right)$ with $X \in \mathfrak{s l}(2, \mathbb{R}) \backslash \mathcal{N}$. However, since Spf is not locally $L^{1}$ (cf. [Lav04]), it is not clear whether Spf is determined by its restriction to $\mathfrak{s l}(2, \mathbb{R}) \backslash \mathcal{N}$ or not. In [Lav04] we proved that Spf is characterized, as an invariant generalized function on $\mathfrak{s l}(2, \mathbb{R})$, by its restriction to $\mathfrak{s l}(2, \mathbb{R}) \backslash \mathcal{N}$ and its wave front set.

From the preceding results we obtain this new characterization of Spf :
Theorem 6.2. Let $\phi \in \mathcal{C}^{-\infty}\left(\mathfrak{s l}(2, \mathbb{R}), \oplus_{k=0}^{n} S^{k}\left(\mathfrak{s v}(2 n, \mathbb{R})^{*}\right) \otimes \Lambda\left(\mathfrak{g}_{1}^{*}\right)\right)^{\mathfrak{s l}(2, \mathbb{R})}$ such that:
(i) for $X \in \mathfrak{s l}(2, \mathbb{R}) \backslash \mathcal{N}, \phi(X)=\operatorname{Spf}(X) \in \oplus_{k=0}^{n} S^{k}\left(\mathfrak{s v}(2 n, \mathbb{R})^{*}\right) \otimes \Lambda\left(\mathfrak{g}_{1}^{*}\right)$;
(ii) $\Omega \phi=0$.

Then we have $\phi=\operatorname{Spf}$.

## Acknowledgments

I wish to thank Michel Duflo for many fruitful discussions on the subject and many useful comments on preliminary versions of this article.

## References

[HC64] Harish-Chandra, Invariant differential operators and distributions on a semisimple lie algebra, Amer. J. Math. 86 (1964) 534-564.
[HC65] Harish-Chandra, Invariant eigendistributions on a semisimple lie algebra, Publ. Math. de l'IHES 27 (1965) 5-54.
[Kir00] A.A. Kirillov, Family algebras, Electron. Res. Announc. Amer. Math. Soc. 6 (2000) 7-20.
[Kos63] B. Kostant, Lie groups representations on polynomial rings, Amer. J. Math. 85 (1963) 327-404.
[Lav98] P. Lavaud, Formule de localisation en supergéométrie. Thèse de doctorat de l'Université de Paris VII, 1998.
[Lav04] P. Lavaud, Superpfaffian. prepublication, e-print math.GR/0402067, 2004.
[Roz03] N. Rozhkovskaya, Commutativity of quantum family algebras, Lett. Math. Phys. 63 (2) (2003) 87-103.


[^0]:    E-mail address: lavaud@noos.fr.

