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Abstract

Let g be a finite-dimensional real Lie algebra. Let p : g— End(V) be a representation of g in
a finite-dimensional real vector space. Let Cyy = (End(V)® S(g))® be the algebra of End(V)-
valued invariant differential operators with constant coefficients on g. Let ¢ be an open subset
of g. We consider the problem of determining the space of generalized functions ¢ on U with
values in V' which are locally invariant and such that Cy ¢ is finite dimensional.

In this article we consider the case g = sI(2, R). Let A/ be the nilpotent cone of sI(2, R). We
prove that when i/ is SL(2, R)-invariant, then ¢ is determined by its restriction to \N where
¢ is analytic (cf. Theorem 6.1). In general this is false when ¢ is not SL(2, R)-invariant and
is not trivial. Moreover, when ¥ is not trivial, ¢ is not always locally L!. Thus, this case is
different and more complicated than the situation considered by Harish-Chandra (Amer.
J. Math 86 (1964) 534; Publ. Math. 27 (1965) 5) where g is reductive and V is trivial.

To solve this problem we find all the locally invariant generalized functions supported in the
nilpotent cone A/. We do this locally in a neighborhood of a nilpotent element Z of g (cf.
Theorem 4.1) and on an SL(2, R)-invariant open subset i =sl(2, R) (cf. Theorem 4.2). Finally,
we also give an application of our main theorem to the Superpfaffian (Superpfaffian,
prepublication, e-print math.GR/0402067, 2004).
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let g be a finite-dimensional real Lie algebra. Let p : g— End(}”) be a representation
of g in a finite-dimensional real vector space. Let Cp = (End(V)® S(g))? be the
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algebra of End(V)-valued invariant differential operators with constant coefficients on
g. It is the classical family algebra in the terminology of Kirillov (cf. [Kir00]). Let ¢/ be
an open subset of g. We consider the problem of determining the space of generalized
functions ¢ on U with values in V' which are locally invariant and such that Cy ¢ is
finite dimensional.

When V' = R is the trivial module and g is reductive, the problem was solved by
Harish-Chandra (cf. in particular [HC64,HC65]). Let ¢ be a locally invariant
generalized function such that S(g)%¢ is finite dimensional. He proved that ¢ is
locally L', ¢ is determined by its restriction ¢| o to the open subset g’ of semi-simple
regular elements of g and ¢| o 1s analytic.

In this article we consider the case g = sl(2,R). Let A be the nilpotent cone of
sI(2, R). In this case ¢’ = sI(2, R)\N. Let ¢ be a locally invariant generalized function
on U with values in V such that Cy ¢ is finite dimensional. We prove that when U is
SL(2, R)-invariant, then ¢ is determined by its restriction to U\N where ¢ is analytic
(cf. Theorem 6.1). In general this is false when ¢/ is not SL(2, R)-invariant and V" is
not trivial. Moreover, when V is not trivial, ¢ is not always locally L'. Finally, we
also give an application of our main theorem to the Superpfaffian (cf. [Lav04]).

To solve the problem we find all the locally invariant generalized functions
supported in the nilpotent cone A. Let V, be the n+ 1-dimensional irreducible
representation of sl(2,R). Let &/ be an open subset of sl(2,R). We denote by

C* (U, V,,)E’I(Z’R) the set of locally invariant generalized functions on ¢/ with values in
V,. Let OO be the Casimir operator on g.

We denote by /" (resp. N7) the “upper” (resp. “lower”) half nilpotent cone
(cf. 4.1). We put

Souy = {peC™ U, V)™ /¢l 0, = 0}, (1)
SEU) ={peC U V)™ ™/l v+ Loy = O (2)
Sull) = {peC = U, V)" /@l = 0} (3)

Let Ze N™". We assume that I/ is a suitable open neighborhood of Z (cf. Section
4.6). Let 6,,= be an invariant generalized function with support N iu{O} (cf.
Section 4.4). We construct an invariant function s, on N’ ni{ with values in V,. We
prove (cf. Theorem 4.1):

(i) When n is even, S,(Uf) is an infinite-dimensional vector space with basis

(Dk(sné,/\[*»ker\l' (4)
(ii) When 7 is odd, dim(S,(U)) =25 and a basis is given by

(Dk(sllé./\[‘))ogkg%' (5)
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We assume that ¢/ is an SL(2, R)-invariant open subset of sI(2, R). If U/ "N #0, we
have N* <l or N~ <U. We prove (cf. Theorem 4.2)
(1)
SaU) = {0} if 0¢U, ©
SOU) =~ (V, ® S(s1(2, R)))" ™ if 0eu.
(2) When n is even, we have

Su(U) = SUU) @ Veet{ O (5,0 )|,y /keN} @ Vect{ O* (s, 00|, /keN},  (7)
SEU) = SoU) @ Vect{ ¥ (5,0 = )|, /keN}. (8)

(ii1) When 7 is odd:
Sult) = S, (U) = S,(U). )
Finally, let & be an open subset of sl(2,R). Let ¥ be the space of a real finite-
dimensional representation of g. Let ¢ be an invariant function defined on U such

that Cy ¢ is finite dimensional. This last condition is equivalent to the existence of
reN and (ag, ...,a,—1)€R" such that:

r—1
(Dr +) aka>d) =0.
k=0

Moreover, we assume that ¢|M\N = 0. We prove (cf. Theorem 5.3) that if U is
SL(2, R)-invariant, then we have ¢ = 0.

In general, when ¢/ is not SL(2, R)-invariant, there exist non trivial solutions of the
equation [1¥¢ = 0 which are supported in the nilpotent cone (cf. Theorem 5.2).

2. Notations

Let g be a finite-dimensional real Lie algebra. Let p:g—End(V) be a
representation of g in a finite-dimensional real vector space V. Let U be an open
subset of g. We denote by D (U) the space of compactly supported smooth densities
on Y. We put

C (U, V) = LODFWU), V), (10)

where £ stands for continuous homomorphisms. It is the space of generalized
functions on U with values in V. We put C"*(U) = C”*“ (U, R). For peC “ U, V)
and peDF (U), we denote by

Lwawa> (11)

the image of u by ¢. We have
CrPUT)=CTU)RV (12)

(we will also write ¢v for ¢ @v).
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Let Zeg. We denote by 0, the derivative in the direction Z. It acts on C~ “ (i) and
on C”* (U, V). We extend 0 to a morphism of algebras from S(g) to the algebra of
differential operators with constant coefficients on g. We denote by Lz the
differential operator defined by

(£20)(X) = & $(X — 112, X])| o (13)

The map Z+— L, is a Lie algebra homomorphism from g into the algebra of
differential operators on g. Let Zeg and ¢ ®veC™ " (U)® V , we put

Z(¢®v) = d®p(Z)v+ (L2¢) Q. (14)

In other words, if we extend L7 (resp. p(Z)) linearly to a representation of g in
C U, V), we have for peC™ (U, V):

Z.¢=(p(Z2)+L2)o. (15)

We say that ¢eC~ (U, V) is locally invariant if for any Zeg we have Z.¢ = 0.
We put

CoU V) ={peC U, V)/NZeg,Z.¢ =0}. (16)

3. Support {0} distributions

In this section we assume that g is unimodular. We choose an invariant measure
dZ on g. We define the Dirac function g on g with support {0} (which depends on
the choice of dZ) by the following: Let C(g) be the set of smooth compactly
supported functions on g. Then:

vf e (g), / S(Z)f (Z) dZ = £(0). (17)

3
We have the following well-known theorem:

Theorem 3.1. Let g be a finite-dimensional unimodular real Lie algebra and V be a
finite-dimensional g-module. Then

{peC (8, V)% /blgg0y = 0} = (V®S(9))". (18)

The isomorphism (which depends on the choice of dZ) sends Y_; v;® D;e (V ® S(g))® to
i (Op,00)vr-
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4. Support in the nilpotent cone

From now on, we assume that g = sl(2, R).
4.1. Notations

We put:

1 0 0 1 0 0
H:< ) X:< ) Y:( ) (19)
0 -1 0 0 1 0
We denote by (h, x,y)e(sl(2,R)*)* the dual basis of (H, X, Y). Thus:

h
( ~ ) esl(2,R)’ ®sl(2, R) (20)
y —h

is the generic point of sI(2, R). Let NV be the nilpotent cone of s[(2, R). It is the union
of three orbits:

(i) {0}.
(i) the half cone A" with equations 4> + xy = 0; x — y>0.
(iii) the half cone N/~ with equations 4> + xy = 0; x — y<0.

We denote by O the Casimir operator of sl(2, R):
1
0=3 (8)* + 20y0y. (21)

It is an invariant differential operator with constant coefficients on sl(2, R).

Let ¥, =R? be the standard representation of s[(2,R). We denote by
(e =(1,0),f = (0,1)) the standard basis of R*>. The symplectic form B such that
B(e,f ) =1 is sl(2, R)-invariant. For ve Vj, we define p,(v) esl(2, R) as the unique
element such that:

VZesl(2,R), tr(u, (v)Z) = 1B(v, Zv). (22)
It defines a (moment) map:
Uy Vi—sl(2,R). (23)

We have p,(e) = %X and u,(f) = —%Y. The function y, is a two-fold covering of
N by V\{0}.

Let Zoe N\{0}. Let U be a “small” neighborhood of Z;. In this section we
determine:

{peC™ ™ U, V)" /$l,n = 0} (24)

We can assume that Z, = XeN ™.
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4.2. Restriction to X + RY
We define a map:
n:SL(2,R) x (X + RY)—sl(2,R)
(9,2)— A4d(9)(2). (25)
This map is submersive. Let I, be the identity matrix in SL(2,R). Let Ayc X + RY
be an open interval containing X. We choose a connected open subset V= SL(2, R)
such that I,eV. We put:
U=mn(Vx Ay). (26)
It is an open neighborhood of X in g.
Lemma 4.1. There is an injective (restriction) map:
Iy C U, V)P S Ay, V)
P>y (27)
Proof. The map
Ty =Ty, VX Ax —>U (28)

is a submersion. Thus if ¢eC™ (U, V), then 7},(¢) is a well defined generalized
function on V x Ay with values in V. Moreover,

$=0 = m,($)=0. (29)

Now, we assume that ¢ is locally invariant. Then, 7;;(¢) is also locally invariant
and

() eC” (V)®C™* (Ax) (30)

(Where ® is a completed tensor product.) Thus ;;(¢) can be restricted to {L} x
Ax <V x Ay (cf. [HC64]). We identify Ay and {Lh} x 4x. We put:

def

by = ”1*4(¢)|AX- (31)
Since V is connected and ¢ is locally invariant, we have:

1 (¢)(9: Z) = p(9)x (2)- (32)
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Thus
oy =0 <= m(¢p)=0. d (33)

We have for Zesl(2,R):

Lz = —hdiz n) — X0z x] — YOz,y)- (34)
In particular:
Ly = —-2x0y + 2y8y, (35)
,CX = 2/’18X — y@H, (36)
£Y = x8H — 2/’16){ (37)

If V is sufficiently small, we have x#0 on U/. We assume that this condition is
realized. It follows that on &/ we have:

1
Oy = —— Ly +2 8y,
2x X

1 2h
Oy =—Ly +—09y. (38)
X X

We have Ay <{X +yY/yeR}. We use the coordinate y|, , still denoted by y, on
Ay. Let yeC™ " (Ax, V,). We put y () = (X +pY).

Lemma 4.2. We have:
Sy (€U V)T = {yec ™ (Ax, V) /(p(X) + yp(Y)Y(y) =0} (39)
Thus
S C WU V)T S fyeC (Ax, V) /(p(X) + yp(Y)Y(y) =0} (40)
is an isomorphism.
Proof. Since x|, = 1and i, =0 we have for peC ™ (U, y)R),

(Lxd)y(y) = —y(Ond)x (),

and

(Lyd)y () = (Oud)x (y)- (41)
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It follows that we have:

(Lxd)y(y) + y(Lyd)y(y) = 0. (42)

Let € 3y (C~ 7 (U, V)" ®®). Then, there is peC~* (U, V)" such that y = ¢ .
We have:

(p(X) + oY)W (v) = (p(X) +yp(Y))dx(»)
=(X)P)x () +y(p(Y)P)x () + (Lxd)x(¥) +¥(Lyd)x (¥)
=((p(X) + Lx)P) x () +y((p(Y) + Ly)9) x(¥) = 0. (43)

Let yeC™*(Ayx, V) such that (p(X) + yp(Y))¥(y) = 0. We define yyeC™* (V x
Ax) by the formula:

U(g,9) = p(9)y (). (44)

Since p is a smooth function on SL(2, R) with values in GL(V), this is a well defined
generalized function on V x Ay with values in V.

Let (9, Z)eV x Ax. Let (¢', Z") eV x Ay such that Ad(g)(Z) = Ad(¢')(Z’). Then,
Ad((¢)'9)Z = Z'. We put GZ = {g" e SL(2,R)/Ad(¢")(Z) = Z}. For ¢" e SL(2, R),
we have Ad(¢")(Z)eAy<g"eG?. Then, the fiber of my at (g,Z) is included in
{(¢',Z)/g7"'g' € GZ}. Moreover, for Z'esl(2,R), [Z,Z'] = 0= Z'€RZ. Thus, since V
is connected, the condition (p(X) + yp(Y))¥(y) = 0 on Ay ensures that  is constant

along the fibers of 7. Thus there is a well defined generalized function  on U
such that:

() = . (45)
=y. O

It follows from the construction that (/)

The hypothesis ¢|,, - = 0 means that ¢, is supported in {X}cAy.

4.3. Radial part of O

In the neighborhood U of X defined in Section 4.2:

(8]—1) + 20y0yx

l\)l'—‘ l\)\

2h -1
( Ly+= aY) 120y <— Ly+2 ay> . (46)
2x X
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We define the radial part of O as the differential operator Oy on C™ % (4dy, V):

Oy = <3+p(H)+2y(%>(%+%p(Y)2. (47)

This definition is justified by the following lemma:
Lemma 4.3. Let peC = (U, V)'®®) | then we have:

(O¢)y = Oxby. (48)
Proof. Since x|, =1and A|, =0, we have:

Oe=5((e+205)0) (3 (G) (554),)

;((,,( %% +2(xaH2hay)f’c§y>¢>X

+2<_71(—p(H)§¢X)+ ¢x+y( )¢x>

0\ 0
=%<p(Y) )d)x (( )+2+2yay)ay¢x
=(3+p<H>+zy%)a—y¢x+§pw>2¢x:DX¢X. 0 (49)

4.4. The Dirac function 0+ (resp. ox-)

Let dZ = dx dy dh be the Lebesgue measure on sl(2, R). Let (¢*,/*) e (V;)” be the
dual basis of (e,f ). The Lebesgue measure dv = —2de* df* on Vi is sl(2,R)-
invariant. We define an invariant generalized function 6,.+ (resp. d,-) on sl(2,R)

and supported in N U{0} (resp. N~ U{0}) by

VgeCs (12, R)), /I(m)ém 0@)dz [ g

<resp. VgeCy (12, R)), /I<2R>6N<z>g<z>dz"=“ / go(—m)(v)dv). (50)

We put
Ox = (0p+)y€C “(4x). (51)

We still denote by dy the Lebesgue measure on Ay. It is invariant. Let geC.” (4dy).
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Then we have:

ox(»)g(y) dy = g(0). (52)

Ax

4.5. Irreducible representations

If V=V'®---@® V" where V' is an irreducible representation of sl(2, R), then we
have:

c @ U, v, (53)

every subspace being stable for sl(2, R). Thus we can assume from now on that the
representation of sl(2, R) in V is irreducible.

We fix the Cartan subalgebra [) = RH and the positive root 2/ (we still denote by £
its restriction to [)). Let ne N. We denote by V), the irreducible representation of
sl(2, R) with highest weight nh. We have dim(V;) = n+ 1. We decompose ¥, under
the action of RH. We fix vye V,\{0} a vector of weight —nh:

p(H)vy = —nuy. (54)

We put for 0<i<n: v; = p(X)'vo. We have p(X)v, = 0 and p(H)v; = (—n + 2i)v;. On
the other hand, p(Y)vy =0 and for 1<i<n: p(Y)v; = (n — i+ 1)iv;_;.

4.6. A basic function on N'*

We construct a function s, : i/ "N — ¥, which is the basic tool to generate all the
generalized functions we are looking for.

4.6.1. Case n even
In this case V), is isomorphic to the irreducible component of S%(SI(2, R)) (under

adjoint action of sl(2, R)) generated by X2. From now on we will identify ¥V, with
this component. We denote by s, : N'— ¥V, the invariant map defined by:

sn(2) = 22. (55)

4.6.2. Casen=1

We recall that g, : V1\{0} >N is a two-fold covering with u;(e) =1X. If U is a
sufficiently small connected neighborhood of X, there exists a unique continuous
section s of g in UANT such that s (%X) = e. We have s : U NN - V. Tt satisfies:

VZeUnNT, u(s1(2) =Z. (56)
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4.6.3. Case n odd
More generally, when 7 is odd, V, is isomorphic to the irreducible component of

1 —1
Vi ® S (sl(2, R)) generated by e®XnT. From now on we will identify ¥V, with this
component. Let U be the above neighborhood of X. We define a function
S UNNT =T, by:

VZeUNNT, 5:(Z) = 51(Z)®Z'T eV (57)

4.7. Basic theorem
Let U be an open subset of sI(2,R). We put:

Sull) = {peC = U, V)" /@l = 0} (58)

Theorem 4.1. Let neN. Let U be an open connected neighborhood of X such that the
Sfunction s, is well defined on UNN (cf. Section 4.6) and Iy is bijective (cf. Section
4.2). Then:

(i) When n is even, S,(U) is an infinite-dimensional vector space with basis:

(Dk(snfsj\ﬁ))kew (59)
(i) When n is odd, dim(S,(U)) =" and a basis is given by:

§ (60)

Remark. Since 0, (Z)dZ is a measure on sl(2, R) with support N" U {0} and s, is a
smooth function on U NN with values in V,, 5,0+ is a well defined generalized
function on U with values in V.

Proof. Thanks to the isomorphism 3y we have to determine the space:
Vel (Ax, Vi) Wlap oy = 0 and (p(X) + yp(Y)W() =0} (61)

Let yeC™*(4x, V,). We write:

n

Yy =) vl (62)

i=0

where y;eC™ " (4y) and (v;)y<,<, is the basis defined in Section 4.5. We put:

k
3 () = (%) 5 (). (©3)
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Since 1 is supported in A and Ay "N = {X}, there exists a;; € R, all equal to zero
but for finite number, such that:

vi(y) = Z ai,k5k<y)' (64)

keN

For n=0, we have p=0 and the condition (p(X)+yp(Y)¥(y)=0 is
automatically satisfied.

For n>1, we put o; = (n — i+ 1)i. We have p6°(y) =0 and for k=1, yo*(y) =
—ko*~1(y). Thus:

aied Wvi — > waikd ™ (p)vig = 0. (65)
0<i<n—1,keN I<i<n, k=1
It follows:
a1 =0 for k=0,
aix=0 for k=1, (66)

i1 = (k+1)(i+1)(n—iai1p41 for n=2, 1<i<n—1 and k>0.

It follows in particular

(i) from the first and the last relations that Vi, k>0 with 2i + 1 <n: a,_iy1)x = 0,
(i) from the last relation that Vi>0 with 2i<n, (@y-2ik)iso 1S completely
determined by (dux);o-

We distinguish between the two cases according to the parity of n.
n even: In this case, for n>2, the second relation follows from (i). Hence the map:

{WeC™ ™ (Ax, Vi) Wl apqoy =0 and  (p(X) +yp(Y))(y) = 0} >R"

Y(y) = Z ai,kék (V)vi = (@nic)gen (67)

0<i<n, keN

is bijective. This is also true for n = 0.
n odd: It follows from the two last relations that for k=i>1 ay_1x =0. In
particular, the map:

(W eC™* (A, Vi) Wy =0 and  (p(X) + yp(Y)p(y) = 0} >R"T

v = > awxd i (g, .- a,1-1) (68)

0<i<n, keN

is bijective.
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This proves the first part of the theorem on the dimension of S, (). It remains
to prove that the functions [1%(s,0,/) form a basis of S,(). We have for

Y(0) =00 Sken @i (y)vieC™* (Ax, V,) such that p(X + yY )y (y) =0

n—1
Oxy(y) =3+ p(H) + 2y0y) Z a0 (Yo, + Z U
keN i=0

n—1
= Z (n — 2k — 1) 0 (y)v, + Z - Ui, (69)
i=0

keN

where ... are elements of C~% (4y).

n even: Since v, = X%, we have (s,0,) y(v) = 5X(y)X%. By induction on k, it follows:
(B (s000))x () = (n = 2k + 1).... (n = 1)6" () X
+ terms with X2/ for i>1. (70)

Since n is even n — 2k + 1#0. The result follows.

n—1 n—1
n odd: Since v, = e®X 2, we have (s5,0y)y(¥) = dx(»)(e®X 2 ). By induction
on k, it follows:

n=1
(O (50w ))x () = (1 =2k +1)...(n = 13" () (e®@ X )
+ terms with e® Xngl’[ for i=1. (71)

In this case for k = %, n—2k+1=0. Thus, since Dk(s,,éN) is invariant, it follows
from the isomorphism (68) that for k>%: O%(s,d,/) = 0. The result follows. [

4.8. Global version

Let U be an open subset of sl(2, R). We put:

Sou) = {peC U, V)" ™ /|0y = 0}, (72)

SEU) = {peC™ U V)" [l v ooy = O} (73)

Theorem 4.2. Let U be an SL(2, R)-invariant open subset of sl(2,R). Then we have:
(1)

{SSW) = {0} if 0¢U, )

SOU) =~ (V, @ S(s1(2, R)M P if 0eut.
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(i1) When n is even, we have:

Su(U) = S2U) @ Vect{ O (5,0 5+ ) |,y /keN} @ Vect{ O* (5,00 )|, /keN},  (75)

SEU) = SAU) @ Vect{ O (5,0 )|, /keN}. (76)
(iii) When n is odd:

SaU) = SEU) = S)U). (77)

Proof. (i) It follows from Theorem 3.1.

(i1) When # is even, the function 5;—} is defined on sl(2, R), the function s, is defined
on N and the product s,0,,+ is well defined (cf. Remark of Theorem 4.1). Then the
result follows from Theorem 4.1.

(iii) Let n be odd. We assume that & "N #0. Since U is SL(2, R)-invariant, we
have N* <l or N~ cU. We assume that N'" cif (the case YN~ is similar).

Let peC™ " (U, V)f’l(z’[m. Let Uy =U be a suitable neighborhood of X where s, (and

ntl
thus s,) is defined (cf. Section 4.6). There exists (ag, ..., dp_1)€ RZ such that on U
2

(cf. Theorem 4.1):

n

T+

a0 (s,(Z2)0\+(Z)) = aka((sl(Z)®Zl%l)(5N+(Z)). (78)

1 n+l
2

(7

$(Z2) =

T
[=1
>
(=1

Since u;:V1\{0} >N is a non trivial two-fold covering, there is not any
continuous section. In other words there is not any continuous SL(2, R)-invariant

map s: N — V| such that for any Zely, s(Z) = 51(Z). Thus ap = -+ = a,_; = 0.
2
The result follows. [

5. Invariant solutions of differential equations

5.1. Introduction

Let Cy = (End(V) ® S(sl(2, R)))SI(Z’R) be the algebra of End(V)-valued invariant
differential operators with constant coefficients on g. It is the classical family algebra
in the terminology of Kirillov (cf. [Kir00]). When ¥V = V, is the (n + 1)-dimensional
irreducible representation of sl(2, R), we put C, = Cy,.

Let U/ <sl(2,R) be an open subset. It is a natural and interesting problem to

determine the generalized functions ¢eC™* (U, V)SI(Z’R) such that Cyp¢ is finite

dimensional.
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We recall that S(sl(2,R))™® = R[O]. It is a subalgebra of Cy. An other
subalgebra of Cy is End(V)SI(Z’R). When V =V, we put:

1
My = p,(X)Y + p,(Y)X +3 p,(H)HEC, (79)

According Rozhkovskaya (cf. [Roz03]), C, is a free S(sI(2,R))™®®-module with
basis B, = (1, M,,, ..., (M,)").
Lemma 5.1. Let peC~ (U, V)" ®®) . Then we have
dimg(Crd)< o0 < dimg(R[O])< oo. (80)
Proof. We argue as in [Roz03]. Let H be the set of harmonic polynomials in
S(sl(2,R)). Then, S(sl(2,R)) = R[O]® H (cf. [Kos63]), and:
Cy = R[O]® (H®End(V))"*®). (81)

Since dim[lqg(H(@End(V))sl(z’[R> < 00, the result follows:

Remark. Since R[D]CR[D]®End(V)SI(2’R)CCV, the condition dim(Cyp¢)< 0
is also equivalent to the existence of reN and (A, ...,Ar,l)e(End(V)gI(z’m)r
such that:

(O + 4,0 + 4,0 + 40)¢ = 0. (82)

Useful examples of (82) are (O — /l)kqﬁ =0 for 2eC and generalized functions
with values in a complex representation. We give such an example below.

Definition 5.1. Let ¢eC “ (U, V)ﬂ(z’R). We say that ¢ is O-finite if
dimg(R[O]¢) < 0.

In other words, ¢ is O-finite if there exists reN and (ay, ...,a,—1) € R" such that

(O + a0+ a1 0 +ap)¢p = 0. (83)

Example (This was our original motivation to study this problem). Let g = g,®g;
be a Lie superalgebra. We define the generalized functions on g as the generalized
functions on g, with values in the exterior algebra A(gj) of gj

C 7 (9) E C " (39) ®A(g]) = C* (89, A(a}))- (84)

We assume that g has a non degenerate invariant symmetric even bilinear form B.
Let Qe S?(g) be the Casimir operator associated with B. We have Q = Qy + Q; with
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Qo S?(gy) and Qq € A%(g,). We consider Q; as an element of End(A(gj)) acting by
interior product. When they can be evaluated (cf. for example [Lav98, Chapitre
I11.5]), the Fourier transforms of the coadjoint orbits in g* are invariant generalized
functions ¢ on g subject to equations of the form (Q — 1)¢p = 0 with 1eC. It can be
written (Qg + (21 — 4))¢ = 0 (for g, = sl(2,R) it is of the form (82) with Qy = O
and A9 = Q1 — /). We have:

k
k N .
(Q — 1) = Z( i ) (Q— A (=) (85)
i=0
For k>dimT(9‘), we have QF = 0. It follows that for k> 1 + dimT@“) we have:
(Q—2)¢p=0. (86)

this equation is of the form of (82).
5.2. Generalized functions with support {0}

We immediately obtain from Theorem 3.1

Theorem 5.1. Let V be a representation of (2, R). Let peC~ % (s1(2, R), V)™ such
that @l )0y =0 and ¢ is O-finite. Then, we have ¢ = 0.

5.3. Support in the nilpotent cone: local version

Theorem 5.2. Let neN. Let V), be the irreducible n + 1-dimensional representation of
sl(2,R). Let W be a finite-dimensional vector space with trivial action of sl(2, R). Let U
be an open connected neighborhood of X such that the function s, is well defined on
UNN  (c¢f. Section 4.6) and Ty is bijective (cf. Section 4.2). Let

PpeC" U VRV, )5'(2’R> such that ¢|LAN =0. Let reN and (ao, ...,a,_1)€R" such

that: (O + Y54 ax %) = 0.
Then, we have ¢ = 0 when at least one of the following conditions is satisfied.

(1) n is even;
(i1) n is odd and ay#0.

Proof. Let ¢eC “ (U, W RV, )E’l @R such that Plyppr = 0. From Theorem 4.1 we
obtain that there exist pe N, with p = 5% Lif nis odd and (wy, ..., w,) € WP*! such that:

P
p=> WO (s,0,+). (87)
i=0
Then:

(1) When n is even, for 0<j<p + r, we have Z/m cagw; = 0.
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(i) When n is odd, for 0<;<”5!, we have D kriny @Wi = 0.

The result follows. O

Remark. When 7 is odd, in contrast with the classical case (V' = V; is the trivial
representation) there exist (in a neighborhood of X) non trivial locally invariant

solutions of the equation (0¥¢ = 0 supported in the nilpotent cone! For example, if
k=™ the functions ¢ = O (540 ) for 0<i<"3! are not trivial, supported in the
nilpotent cone and satisfy the equation [*¢ = 0.

When we consider the equation (O — 4)*¢ =0 for e C\{0}, then the trivial
solution is again the only one supported in the nilpotent cone.

5.4. Support in the nilpotent cone: global version

Theorem 5.3. Let V be a real finite-dimensional representation of sI(2,R). Let U be an
SL(2, R)-invariant open subset of sl(2,R). Let pC~~ (U, V)SI(Z’R) such that ¢, = 0
and ¢ is O-finite. Then we have ¢ = 0.

Proof. It is enough to prove the theorem for V irreducible. Then, the result follows
from Theorems 4.2, 5.2 and 5.1. O

6. General invariant generalized functions

6.1. Main theorem

Theorem 6.1. Let V be a real finite-dimensional representation of s1(2,R). Let U be an
SL(2, R)-invariant open subset of sl(2,R). Let peC~ = (U, V)™ *® such that ¢ is O-

Sfinite. Then ¢ is determined by ¢l 5 and Pl is an analytic function.

Proof. The fact that ¢ is determined by ¢|,, follows from Theorem S.3. The fact
that ¢|M\N is analytic can be proved exactly as in [HC65]. O

Remark. In general ¢ will not be locally L'. Indeed, let ¢, eC~* (sl(2, R))"’I(z‘R) a non
zero [-finite generalized function. Then ¢, is locally L', but for ke N*:

MFp,eC = (s1(2, R), End(V,))" P (88)

is usually not locally L'.
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6.2. Application to the superpfaffian

Let us consider the Lie superalgebra g =spo(2,2n). Its even part is g, =
sl(2,R)@so0(2n,R). Its odd part is g, = V,® W where W is the standard 2n-
dimensional representation of so(2n, R).

In [Lav04] we constructed a particular invariant generalized function Spf on
spo(2,2n) called Superpfaffian. It generalizes the Pfaffian on so(2n,R) and the
inverse square root of the determinant on sl(2, R). As it is a polynomial of degree n
on s0(2n, R), we may consider that we have:

sI(2,R)
SpfeC™ ™ <51(2, R), @ S*(so(2n, R)*)@A(gf)) . (89)
k=0

Let Q (resp. O, €, Q1) be the Casimir operator on spo(2,2n) (resp. on sl(2, R),
s0(2n,R), g,). Then Q = O + Q) + Q; and

sI(2,R)
Q) + Q1 €End (@ S¥(so(2n, R)*)@A(g’;)> (90)
k=0

is a nilpotent endomorphism. The superpfaffian satisfies:
(O + () + 21))Spf = Q Spf = 0. (91)

The function Spf is analytic on sI(2, R)\A and in [Lav04] an explicit formula is given
for Spf(X)e @7_, S¥(s0(2n, R)") ® A(g}) with X esl(2, R)\N. However, since Spf is
not locally L' (cf. [Lav04]), it is not clear whether Spf is determined by its restriction
to sl(2, R)\N or not. In [Lav04] we proved that Spf is characterized, as an invariant
generalized function on sl(2,R), by its restriction to sl(2, R)\N and its wave
front set.

From the preceding results we obtain this new characterization of Spf:

Theorem 6.2. Let peC~* (sI(2,R), ®7_, S¥(s0(2n, R)") @ A(g}))™ ™ such that:

(@) for Xesl(2,R)\N, ¢(X) = Spf(X)e ®7_, Sk(s0(2n, R)") @ A(g});
(ii) Q¢ = 0.

Then we have ¢ = Spf.
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