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Abstract

Let g be a finite-dimensional real Lie algebra. Let r : g-EndðVÞ be a representation of g in

a finite-dimensional real vector space. Let CV ¼ ðEndðVÞ#SðgÞÞg be the algebra of EndðVÞ-
valued invariant differential operators with constant coefficients on g: Let U be an open subset
of g: We consider the problem of determining the space of generalized functions f on U with
values in V which are locally invariant and such that CVf is finite dimensional.
In this article we consider the case g ¼ slð2;RÞ: Let N be the nilpotent cone of slð2;RÞ:We

prove that when U is SLð2;RÞ-invariant, then f is determined by its restriction to U\N where

f is analytic (cf. Theorem 6.1). In general this is false when U is not SLð2;RÞ-invariant and V

is not trivial. Moreover, when V is not trivial, f is not always locally L1: Thus, this case is
different and more complicated than the situation considered by Harish-Chandra (Amer.

J. Math 86 (1964) 534; Publ. Math. 27 (1965) 5) where g is reductive and V is trivial.

To solve this problem we find all the locally invariant generalized functions supported in the

nilpotent cone N : We do this locally in a neighborhood of a nilpotent element Z of g (cf.

Theorem 4.1) and on an SLð2;RÞ-invariant open subset UCslð2;RÞ (cf. Theorem 4.2). Finally,
we also give an application of our main theorem to the Superpfaffian (Superpfaffian,

prepublication, e-print math.GR/0402067, 2004).

r 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let g be a finite-dimensional real Lie algebra. Let r : g-EndðVÞ be a representation
of g in a finite-dimensional real vector space. Let CV ¼ ðEndðVÞ#SðgÞÞg be the
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algebra of EndðVÞ-valued invariant differential operators with constant coefficients on
g: It is the classical family algebra in the terminology of Kirillov (cf. [Kir00]). Let U be
an open subset of g: We consider the problem of determining the space of generalized
functions f on U with values in V which are locally invariant and such that CVf is
finite dimensional.
When V ¼ R is the trivial module and g is reductive, the problem was solved by

Harish-Chandra (cf. in particular [HC64,HC65]). Let f be a locally invariant

generalized function such that SðgÞgf is finite dimensional. He proved that f is

locally L1; f is determined by its restriction fjg0 to the open subset g0 of semi-simple

regular elements of g and fjg0 is analytic.
In this article we consider the case g ¼ slð2;RÞ: Let N be the nilpotent cone of

slð2;RÞ: In this case g0 ¼ slð2;RÞ\N : Let f be a locally invariant generalized function
on U with values in V such that CVf is finite dimensional. We prove that when U is
SLð2;RÞ-invariant, then f is determined by its restriction to U\N where f is analytic
(cf. Theorem 6.1). In general this is false when U is not SLð2;RÞ-invariant and V is

not trivial. Moreover, when V is not trivial, f is not always locally L1: Finally, we
also give an application of our main theorem to the Superpfaffian (cf. [Lav04]).
To solve the problem we find all the locally invariant generalized functions

supported in the nilpotent cone N : Let Vn be the n þ 1-dimensional irreducible
representation of slð2;RÞ: Let U be an open subset of slð2;RÞ: We denote by
C
NðU;VnÞslð2;RÞ the set of locally invariant generalized functions on U with values in
Vn: Let & be the Casimir operator on g:

We denote by Nþ
(resp. N


) the ‘‘upper’’ (resp. ‘‘lower’’) half nilpotent cone
(cf. 4.1). We put

S0nðUÞ ¼ ffAC
NðU;VnÞslð2;RÞ=fjU\f0g ¼ 0g; ð1Þ

S7
n ðUÞ ¼ ffAC
NðU;VnÞslð2;RÞ=fjU\ðN7,f0gÞ ¼ 0g; ð2Þ

SnðUÞ ¼ ffAC
NðU;VnÞslð2;RÞ=fjU\N ¼ 0g: ð3Þ

Let ZANþ
: We assume that U is a suitable open neighborhood of Z (cf. Section

4.6). Let dN7 be an invariant generalized function with support N7,f0g (cf.

Section 4.4). We construct an invariant function sn on N-U with values in Vn: We
prove (cf. Theorem 4.1):
(i) When n is even, SnðUÞ is an infinite-dimensional vector space with basis

ð&kðsndNþÞÞkAN: ð4Þ

(ii) When n is odd, dimðSnðUÞÞ ¼ nþ1
2
and a basis is given by

ð&kðsndNþÞÞ
0pkpn
1

2
: ð5Þ
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We assume that U is an SLð2;RÞ-invariant open subset of slð2;RÞ: If U-Na|; we

have NþCU or N
CU: We prove (cf. Theorem 4.2)
(i)

S0nðUÞ ¼ f0g if 0eU;
S0nðUÞCðVn#Sðslð2;RÞÞÞslð2;RÞ if 0AU:

(
ð6Þ

(2) When n is even, we have

SnðUÞ ¼ S0nðUÞ"Vectf&kðsndNþÞjU=kANg"Vectf&kðsndN
ÞjU=kANg; ð7Þ

S7
n ðUÞ ¼ S0nðUÞ"Vectf&kðsndN7ÞjU=kANg: ð8Þ

(iii) When n is odd:

SnðUÞ ¼ S7
n ðUÞ ¼ S0nðUÞ: ð9Þ

Finally, let U be an open subset of slð2;RÞ: Let V be the space of a real finite-
dimensional representation of g: Let f be an invariant function defined on U such
that CVf is finite dimensional. This last condition is equivalent to the existence of
rAN and ða0;y; ar
1ÞARr such that:

&r þ
Xr
1
k¼0

ak&
k

 !
f ¼ 0:

Moreover, we assume that fjU\N ¼ 0: We prove (cf. Theorem 5.3) that if U is

SLð2;RÞ-invariant, then we have f ¼ 0:
In general, when U is not SLð2;RÞ-invariant, there exist non trivial solutions of the

equation &kf ¼ 0 which are supported in the nilpotent cone (cf. Theorem 5.2).

2. Notations

Let g be a finite-dimensional real Lie algebra. Let r : g-EndðVÞ be a
representation of g in a finite-dimensional real vector space V : Let U be an open
subset of g:We denote by DN

c ðUÞ the space of compactly supported smooth densities
on U: We put

C
NðU;VÞ ¼ LðDN

c ðUÞ;VÞ; ð10Þ

where L stands for continuous homomorphisms. It is the space of generalized
functions on U with values in V : We put C
NðUÞ ¼ C
NðU;RÞ: For fAC
NðU;VÞ
and mADN

c ðUÞ; we denote by Z
U
fðZÞ dmðZÞ ð11Þ

the image of m by f: We have

C
NðU;VÞ ¼ C
NðUÞ#V ð12Þ

(we will also write fv for f#v).
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Let ZAg:We denote by @Z the derivative in the direction Z: It acts on C
NðUÞ and
on C
NðU;VÞ: We extend @ to a morphism of algebras from SðgÞ to the algebra of
differential operators with constant coefficients on g: We denote by LZ the
differential operator defined by

ðLZfÞðXÞ ¼ d

dt
fðX 
 t½Z;X �Þjt¼0: ð13Þ

The map Z/LZ is a Lie algebra homomorphism from g into the algebra of
differential operators on g: Let ZAg and f#vAC
NðUÞ#V , we put

Z:ðf#vÞ ¼ f#rðZÞv þ ðLZfÞ#v: ð14Þ

In other words, if we extend LZ (resp. rðZÞ) linearly to a representation of g in
C
NðU;VÞ; we have for fAC
NðU;VÞ:

Z:f ¼ ðrðZÞ þ LZÞf: ð15Þ

We say that fAC
NðU;VÞ is locally invariant if for any ZAg we have Z:f ¼ 0:
We put

C
NðU;VÞg ¼ ffAC
NðU;VÞ=8ZAg;Z:f ¼ 0g: ð16Þ

3. Support f0g distributions

In this section we assume that g is unimodular. We choose an invariant measure
dZ on g: We define the Dirac function d0 on g with support f0g (which depends on
the choice of dZ) by the following: Let CNc ðgÞ be the set of smooth compactly
supported functions on g: Then:

8fACNc ðgÞ;
Z

g

d0ðZÞf ðZÞ dZ ¼ f ð0Þ: ð17Þ

We have the following well-known theorem:

Theorem 3.1. Let g be a finite-dimensional unimodular real Lie algebra and V be a

finite-dimensional g-module. Then

ffAC
Nðg;VÞg=fjg\f0g ¼ 0gCðV#SðgÞÞg: ð18Þ

The isomorphism (which depends on the choice of dZ) sends
P

i vi#DiAðV#SðgÞÞg toP
i ð@Di

d0Þvi:
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4. Support in the nilpotent cone

From now on, we assume that g ¼ slð2;RÞ:

4.1. Notations

We put:

H ¼
1 0

0 
1

� �
; X ¼

0 1

0 0

� �
; Y ¼

0 0

1 0

� �
: ð19Þ

We denote by ðh; x; yÞAðslð2;RÞ�Þ3 the dual basis of ðH;X ;Y Þ: Thus:
h x

y 
h

� �
Aslð2;RÞ�#slð2;RÞ ð20Þ

is the generic point of slð2;RÞ: Let N be the nilpotent cone of slð2;RÞ: It is the union
of three orbits:

(i) f0g:
(ii) the half cone Nþ

with equations h2 þ xy ¼ 0; x 
 y40:
(iii) the half cone N


with equations h2 þ xy ¼ 0; x 
 yo0:

We denote by & the Casimir operator of slð2;RÞ:

& ¼ 1

2
ð@HÞ2 þ 2@Y@X : ð21Þ

It is an invariant differential operator with constant coefficients on slð2;RÞ:
Let V1 ¼ R2 be the standard representation of slð2;RÞ: We denote by

ðe ¼ ð1; 0Þ; f ¼ ð0; 1ÞÞ the standard basis of R2: The symplectic form B such that
Bðe; f Þ ¼ 1 is slð2;RÞ-invariant. For vAV1; we define m1ðvÞAslð2;RÞ as the unique
element such that:

8ZAslð2;RÞ; trðm1ðvÞZÞ ¼ 1
2
Bðv;ZvÞ: ð22Þ

It defines a (moment) map:

m1 :V1-slð2;RÞ: ð23Þ

We have m1ðeÞ ¼ 1
2
X and m1ð f Þ ¼ 
1

2
Y : The function m1 is a two-fold covering of

Nþ
by V1\f0g:

Let Z0AN \f0g: Let U be a ‘‘small’’ neighborhood of Z0: In this section we
determine:

ffAC
NðU;VÞslð2;RÞ=fjU\N ¼ 0g: ð24Þ

We can assume that Z0 ¼ XANþ
:
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4.2. Restriction to X þ RY

We define a map:

p :SLð2;RÞ � ðX þ RYÞ-slð2;RÞ

ðg;ZÞ/AdðgÞðZÞ: ð25Þ

This map is submersive. Let I2 be the identity matrix in SLð2;RÞ: Let DXCX þ RY

be an open interval containing X : We choose a connected open subset VCSLð2;RÞ
such that I2AV: We put:

U ¼ pðV � DX Þ: ð26Þ

It is an open neighborhood of X in g:

Lemma 4.1. There is an injective (restriction) map:

IX :C
NðU;VÞslð2;RÞ-C
NðDX ;VÞ

f/fX : ð27Þ

Proof. The map

pU ¼ pjV�DX
: V � DX-U ð28Þ

is a submersion. Thus if fAC
NðU;VÞ; then p�UðfÞ is a well defined generalized
function on V � DX with values in V : Moreover,

f ¼ 0 3 p�UðfÞ ¼ 0: ð29Þ

Now, we assume that f is locally invariant. Then, p�UðfÞ is also locally invariant
and

p�UðfÞACNðVÞc##C
NðDX Þ ð30Þ

(Where c## is a completed tensor product.) Thus p�UðfÞ can be restricted to fI2g �
DXCV � DX (cf. [HC64]). We identify DX and fI2g � DX : We put:

fX ¼def p�UðfÞjDX
: ð31Þ

Since V is connected and f is locally invariant, we have:

p�UðfÞðg;ZÞ ¼ rðgÞfX ðZÞ: ð32Þ
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Thus

fX ¼ 0 3 p�UðfÞ ¼ 0: & ð33Þ

We have for ZAslð2;RÞ:

LZ ¼ 
h@½Z;H� 
 x@½Z;X � 
 y@½Z;Y �: ð34Þ

In particular:

LH ¼ 
2x@X þ 2y@Y ; ð35Þ

LX ¼ 2h@X 
 y@H ; ð36Þ

LY ¼ x@H 
 2h@Y : ð37Þ

If V is sufficiently small, we have xa0 on U: We assume that this condition is
realized. It follows that on U we have:

@X ¼ 
 1

2x
LH þ y

x
@Y ;

@H ¼ 1

x
LY þ 2h

x
@Y : ð38Þ

We have DXCfX þ yY=yARg:We use the coordinate yjDX
; still denoted by y; on

DX : Let cAC
NðDX ;VnÞ: We put cðyÞ ¼ cðX þ yYÞ:

Lemma 4.2. We have:

IX ðC
NðU;VÞslð2;RÞÞ ¼ fcAC
NðDX ;VÞ=ðrðXÞ þ yrðYÞÞcðyÞ ¼ 0g: ð39Þ

Thus

IX : C
NðU;VÞslð2;RÞ-fcAC
NðDX ;VÞ=ðrðXÞ þ yrðYÞÞcðyÞ ¼ 0g ð40Þ

is an isomorphism.

Proof. Since xjDX
¼ 1 and hjDX

¼ 0 we have for fAC
NðU;VÞslð2;RÞ:

ðLXfÞX ðyÞ ¼ 
yð@HfÞX ðyÞ;

and

ðLYfÞX ðyÞ ¼ ð@HfÞX ðyÞ: ð41Þ
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It follows that we have:

ðLXfÞX ðyÞ þ yðLYfÞX ðyÞ ¼ 0: ð42Þ

Let cAIX ðC
NðU;VÞslð2;RÞÞ: Then, there is fAC
NðU;VÞslð2;RÞ such that c ¼ fX :
We have:

ðrðXÞ þ yrðYÞÞcðyÞ ¼ ðrðXÞ þ yrðY ÞÞfX ðyÞ

¼ ðrðXÞfÞX ðyÞ þ yðrðY ÞfÞX ðyÞ þ ðLXfÞX ðyÞ þ yðLYfÞX ðyÞ

¼ ððrðXÞ þ LX ÞfÞX ðyÞ þ yððrðYÞ þ LY ÞfÞX ðyÞ ¼ 0: ð43Þ

Let cAC
NðDX ;VÞ such that ðrðXÞ þ yrðY ÞÞcðyÞ ¼ 0: We define *cAC
NðV �
DX Þ by the formula:

*cðg; yÞ ¼ rðgÞcðyÞ: ð44Þ

Since r is a smooth function on SLð2;RÞ with values in GLðVÞ; this is a well defined
generalized function on V � DX with values in V :
Let ðg;ZÞAV � DX : Let ðg0;Z0ÞAV � DX such that AdðgÞðZÞ ¼ Adðg0ÞðZ0Þ: Then,

Adððg0Þ
1gÞZ ¼ Z0:We put GZ ¼ fg00ASLð2;RÞ=Adðg00ÞðZÞ ¼ Zg: For g00ASLð2;RÞ;
we have Adðg00ÞðZÞADX3g00AGZ: Then, the fiber of pU at ðg;ZÞ is included in
fðg0;ZÞ=g
1g0AGZg:Moreover, for Z0Aslð2;RÞ; ½Z;Z0� ¼ 03Z0ARZ: Thus, since V
is connected, the condition ðrðXÞ þ yrðY ÞÞcðyÞ ¼ 0 on DX ensures that *c is constant
along the fibers of pU : Thus there is a well defined generalized function %c on U
such that:

p�Uð %cÞ ¼ *c: ð45Þ

It follows from the construction that ð %cÞX ¼ c: &

The hypothesis fjU\N ¼ 0 means that fX is supported in fXgCDX :

4.3. Radial part of &

In the neighborhood U of X defined in Section 4.2:

& ¼ 1
2
ð@HÞ2 þ 2@Y@X

¼ 1
2

1

x
LY þ 2h

x
@Y

� �2
þ2@Y


1
2x

LH þ y

x
@Y

� �
: ð46Þ
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We define the radial part of & as the differential operator &X on C
NðDX ;VÞ:

&X ¼ 3þ rðHÞ þ 2y
@

@y

� �
@

@y
þ 1
2
rðY Þ2: ð47Þ

This definition is justified by the following lemma:

Lemma 4.3. Let fAC
NðU;VÞslð2;RÞ; then we have:

ð&fÞX ¼ &XfX : ð48Þ

Proof. Since xjDX
¼ 1 and hjDX

¼ 0; we have:

ð&fÞX ¼ 1
2

L2Y þ 2LY

h

x

@

@y

� �
f

� �
X

þ2 
1
2

@

@y
LHf

� �
X

þ @

@y
y
@

@y
f

� �
X

� �
¼ 1
2

rðY Þ2 þ 2ðx@H 
 2h@Y Þ
h

x

@

@y

� �
f

� �
X

þ 2 
1
2


rðHÞ @

@y
fX

� �
þ @

@y
fX þ y

@

@y

� �2
fX

 !

¼ 1
2

rðYÞ2 þ 2 @

@y

� �
fX þ rðHÞ þ 2þ 2y

@

@y

� �
@

@y
fX

¼ 3þ rðHÞ þ 2y
@

@y

� �
@

@y
fX þ 1

2
rðYÞ2fX ¼ &XfX : & ð49Þ

4.4. The Dirac function dNþ (resp. dN
)

Let dZ ¼ dx dy dh be the Lebesgue measure on slð2;RÞ: Let ðe�; f �ÞAðV �
1 Þ
2 be the

dual basis of ðe; f Þ: The Lebesgue measure dv ¼ 
2de� df � on V1 is slð2;RÞ-
invariant. We define an invariant generalized function dNþ (resp. dN
) on slð2;RÞ
and supported in Nþ,f0g (resp. N
,f0g) by

8gACNc ðslð2;RÞÞ;
Z

slð2;RÞ
dNþðZÞgðZÞ dZ ¼def

Z
V1

g3m1ðvÞ dv;

resp: 8gACNc ðslð2;RÞÞ;
Z

slð2;RÞ
dN
ðZÞgðZÞ dZ ¼def

Z
V1

g3ð
m1ÞðvÞ dv

 !
: ð50Þ

We put

dX ¼ ðdNþÞXAC
NðDX Þ: ð51Þ

We still denote by dy the Lebesgue measure on DX : It is invariant. Let gACNc ðDX Þ:
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Then we have: Z
DX

dX ðyÞgðyÞ dy ¼ gð0Þ: ð52Þ

4.5. Irreducible representations

If V ¼ V1"?"Vn where Vi is an irreducible representation of slð2;RÞ; then we
have:

C
NðU;VÞ ¼
Mn

i¼1
C
NðU;ViÞ; ð53Þ

every subspace being stable for slð2;RÞ: Thus we can assume from now on that the
representation of slð2;RÞ in V is irreducible.
We fix the Cartan subalgebra h ¼ RH and the positive root 2h (we still denote by h

its restriction to h). Let nAN: We denote by Vn the irreducible representation of
slð2;RÞ with highest weight nh: We have dimðVnÞ ¼ n þ 1: We decompose Vn under
the action of RH: We fix v0AVn\f0g a vector of weight 
nh:

rðHÞv0 ¼ 
nv0: ð54Þ

We put for 0pipn: vi ¼ rðXÞi
v0:We have rðXÞvn ¼ 0 and rðHÞvi ¼ ð
n þ 2iÞvi: On

the other hand, rðYÞv0 ¼ 0 and for 1pipn: rðY Þvi ¼ ðn 
 i þ 1Þivi
1:

4.6. A basic function on Nþ

We construct a function sn : U-Nþ-Vn which is the basic tool to generate all the
generalized functions we are looking for.

4.6.1. Case n even

In this case Vn is isomorphic to the irreducible component of S
n
2ðslð2;RÞÞ (under

adjoint action of slð2;RÞ) generated by X
n
2: From now on we will identify Vn with

this component. We denote by sn :N-Vn the invariant map defined by:

snðZÞ ¼ Z
n
2: ð55Þ

4.6.2. Case n ¼ 1

We recall that m1 :V1\f0g-Nþ
is a two-fold covering with m1ðeÞ ¼ 1

2
X : If U is a

sufficiently small connected neighborhood of X ; there exists a unique continuous

section s1 of m1 in U-Nþ
such that s1ð12XÞ ¼ e:We have s1 : U-Nþ-V1: It satisfies:

8ZAU-Nþ
; m1ðs1ðZÞÞ ¼ Z: ð56Þ
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4.6.3. Case n odd

More generally, when n is odd, Vn is isomorphic to the irreducible component of

V1#S
n
1
2 ðslð2;RÞÞ generated by e#X

n
1
2 : From now on we will identify Vn with this

component. Let U be the above neighborhood of X : We define a function

sn : U-Nþ-Vn by:

8ZAU-Nþ
; snðZÞ ¼ s1ðZÞ#Z

n
1
2 AVn: ð57Þ

4.7. Basic theorem

Let U be an open subset of slð2;RÞ: We put:

SnðUÞ ¼ ffAC
NðU;VnÞslð2;RÞ=fjU\N ¼ 0g: ð58Þ

Theorem 4.1. Let nAN: Let U be an open connected neighborhood of X such that the

function sn is well defined on U-N (cf. Section 4.6) and IX is bijective (cf. Section

4.2). Then:
(i) When n is even, SnðUÞ is an infinite-dimensional vector space with basis:

ð&kðsndNþÞÞkAN: ð59Þ

(ii) When n is odd, dimðSnðUÞÞ ¼ nþ1
2

and a basis is given by:

ð&kðsndNþÞÞ
0pkpn
1

2
: ð60Þ

Remark. Since dNþðZÞdZ is a measure on slð2;RÞ with support Nþ,f0g and sn is a

smooth function on U-N with values in Vn; sndNþ is a well defined generalized

function on U with values in Vn:

Proof. Thanks to the isomorphism IX we have to determine the space:

fcAC
NðDX ;VnÞ=cjDX \f0g ¼ 0 and ðrðX Þ þ yrðY ÞÞcðyÞ ¼ 0g: ð61Þ

Let cAC
NðDX ;VnÞ: We write:

cðyÞ ¼
Xn

i¼0
ciðyÞvi; ð62Þ

where ciAC
NðDX Þ and ðviÞ0pipn is the basis defined in Section 4.5. We put:

dkðyÞ ¼ @

@y

� �k

dX ðyÞ: ð63Þ

ARTICLE IN PRESS
P. Lavaud / Journal of Functional Analysis 219 (2005) 226–244236



Since c is supported in N and DX-N ¼ fXg; there exists ai;kAR; all equal to zero
but for finite number, such that:

ciðyÞ ¼
X
kAN

ai;kd
kðyÞ: ð64Þ

For n ¼ 0; we have r ¼ 0 and the condition ðrðXÞ þ yrðY ÞÞcðyÞ ¼ 0 is
automatically satisfied.

For nX1; we put ai ¼ ðn 
 i þ 1Þi: We have yd0ðyÞ ¼ 0 and for kX1; ydkðyÞ ¼

kdk
1ðyÞ: Thus:X

0pipn
1; kAN

ai;kd
kðyÞviþ1 


X
1pipn; kX1

aiai;kkdk
1ðyÞvi
1 ¼ 0: ð65Þ

It follows:

an
1;k ¼ 0 for kX0;

a1;k ¼ 0 for kX1;

ai
1;k ¼ ðk þ 1Þði þ 1Þðn 
 iÞaiþ1;kþ1 for nX2; 1pipn 
 1 and kX0:

8><>: ð66Þ

It follows in particular

(i) from the first and the last relations that 8i; kX0 with 2i þ 1pn: an
ð2iþ1Þ;k ¼ 0;

(ii) from the last relation that 8iX0 with 2ipn; ðan
2i;kÞkX0 is completely

determined by ðan;kÞkX0:

We distinguish between the two cases according to the parity of n:
n even: In this case, for nX2; the second relation follows from (i). Hence the map:

fcAC
NðDX ;VnÞ=cjDX \f0g ¼ 0 and ðrðX Þ þ yrðY ÞÞcðyÞ ¼ 0g-RN

cðyÞ ¼
X

0pipn; kAN

ai;kd
kðyÞvi/ðan;kÞkAN ð67Þ

is bijective. This is also true for n ¼ 0:
n odd: It follows from the two last relations that for kXiX1 a2i
1;k ¼ 0: In

particular, the map:

fcAC
NðDX ;VnÞ=cjDX \f0g ¼ 0 and ðrðXÞ þ yrðYÞÞcðyÞ ¼ 0g-R
nþ1
2

cðyÞ ¼
X

0pipn; kAN

ai;kd
kðyÞvi/ðan;0;y; a

n;
n
1
2
Þ ð68Þ

is bijective.
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This proves the first part of the theorem on the dimension of SnðUÞ: It remains
to prove that the functions &kðsndN Þ form a basis of SnðUÞ: We have for

cðyÞ ¼
Pn

i¼0
P

kAN ai;kd
kðyÞviAC
NðDX ;VnÞ such that rðX þ yY ÞcðyÞ ¼ 0

&XcðyÞ ¼ ð3þ rðHÞ þ 2y@Y Þ
X
kAN

an;kd
kþ1ðyÞvn þ

Xn
1
i¼0

yvi

¼
X
kAN

ðn 
 2k 
 1Þan;kd
kþ1ðyÞvn þ

Xn
1
i¼0

y vi; ð69Þ

where y are elements of C
NðDX Þ:
n even: Since vn ¼ X

n
2; we have ðsndN ÞX ðyÞ ¼ dX ðyÞX

n
2: By induction on k; it follows:

ð&kðsndN ÞÞX ðyÞ ¼ ðn 
 2k þ 1Þyðn 
 1ÞdkðyÞX
n
2

þ terms with X
n
2

i for iX1: ð70Þ

Since n is even n 
 2k þ 1a0: The result follows.
n odd: Since vn ¼ e#X

n
1
2 ; we have ðsndN ÞX ðyÞ ¼ dX ðyÞðe#X

n
1
2 Þ: By induction

on k; it follows:

ð&kðsndN ÞÞX ðyÞ ¼ ðn 
 2k þ 1Þyðn 
 1ÞdkðyÞðe#X
n
1
2 Þ

þ terms with e#X
n
1
2


i for iX1: ð71Þ

In this case for k ¼ nþ1
2 ; n 
 2k þ 1 ¼ 0: Thus, since&kðsndN Þ is invariant, it follows

from the isomorphism (68) that for kXnþ1
2
: &kðsndN Þ ¼ 0: The result follows. &

4.8. Global version

Let U be an open subset of slð2;RÞ: We put:

S0nðUÞ ¼ ffAC
NðU;VnÞslð2;RÞ=fjU\f0g ¼ 0g; ð72Þ

S7
n ðUÞ ¼ ffAC
NðU;VnÞslð2;RÞ=fjU\ðN7,f0gÞ ¼ 0g: ð73Þ

Theorem 4.2. Let U be an SLð2;RÞ-invariant open subset of slð2;RÞ: Then we have:
(i)

S0nðUÞ ¼ f0g if 0eU;
S0nðUÞCðVn#Sðslð2;RÞÞÞslð2;RÞ if 0AU:

(
ð74Þ
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(ii) When n is even, we have:

SnðUÞ ¼ S0nðUÞ"Vectf&kðsndNþÞjU=kANg"Vectf&kðsndN
ÞjU=kANg; ð75Þ

S7
n ðUÞ ¼ S0nðUÞ"Vectf&kðsndN7ÞjU=kANg: ð76Þ

(iii) When n is odd:

SnðUÞ ¼ S7
n ðUÞ ¼ S0nðUÞ: ð77Þ

Proof. (i) It follows from Theorem 3.1.

(ii) When n is even, the function d7N is defined on slð2;RÞ; the function sn is defined

on N and the product sndN7 is well defined (cf. Remark of Theorem 4.1). Then the

result follows from Theorem 4.1.

(iii) Let n be odd. We assume that U-Na|: Since U is SLð2;RÞ-invariant, we
have NþCU or N
CU: We assume that NþCU (the case UCN


is similar).

Let fAC
NðU;VÞslð2;RÞ: Let U0CU be a suitable neighborhood of X where s1 (and

thus sn) is defined (cf. Section 4.6). There exists ða0;y; an
1
2
ÞAR

nþ1
2 such that on U0

(cf. Theorem 4.1):

fðZÞ ¼
Xnþ12
k¼0

ak&
kðsnðZÞdNþðZÞÞ ¼

Xnþ12
k¼0

ak&
kððs1ðZÞ#Z

n
1
2 ÞdNþðZÞÞ: ð78Þ

Since m1 :V1\f0g-Nþ
is a non trivial two-fold covering, there is not any

continuous section. In other words there is not any continuous SLð2;RÞ-invariant
map s :Nþ-V1 such that for any ZAU0; sðZÞ ¼ s1ðZÞ: Thus a0 ¼ ? ¼ an
1

2
¼ 0:

The result follows. &

5. Invariant solutions of differential equations

5.1. Introduction

Let CV ¼ ðEndðVÞ#Sðslð2;RÞÞÞslð2;RÞ be the algebra of EndðVÞ-valued invariant
differential operators with constant coefficients on g: It is the classical family algebra

in the terminology of Kirillov (cf. [Kir00]). When V ¼ Vn is the ðn þ 1Þ-dimensional
irreducible representation of slð2;RÞ; we put Cn ¼ CVn

:
Let UCslð2;RÞ be an open subset. It is a natural and interesting problem to

determine the generalized functions fAC
NðU;VÞslð2;RÞ such that CVf is finite
dimensional.
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We recall that Sðslð2;RÞÞslð2;RÞ ¼ R½&�: It is a subalgebra of CV : An other

subalgebra of CV is EndðVÞslð2;RÞ: When V ¼ Vn; we put:

Mn ¼ rnðXÞY þ rnðYÞX þ 1
2
rnðHÞHACn: ð79Þ

According Rozhkovskaya (cf. [Roz03]), Cn is a free Sðslð2;RÞÞslð2;RÞ-module with
basis Bn ¼ ð1;Mn;y; ðMnÞnÞ:

Lemma 5.1. Let fAC
NðU;VÞslð2;RÞ: Then we have

dimRðCVfÞoN 3 dimRðR½&�fÞoN: ð80Þ

Proof. We argue as in [Roz03]. Let H be the set of harmonic polynomials in
Sðslð2;RÞÞ: Then, Sðslð2;RÞÞ ¼ R½&�#H (cf. [Kos63]), and:

CV ¼ R½&�#ðH#EndðVÞÞslð2;RÞ: ð81Þ

Since dimRðH#EndðVÞÞslð2;RÞoN; the result follows:

Remark. Since R½&�CR½&�#EndðVÞslð2;RÞCCV ; the condition dimðCVfÞoN

is also equivalent to the existence of rAN and ðA0;y;Ar
1ÞA EndðVÞslð2;RÞ
� �r

such that:

ð&r þ Ar
1&
r
1 þ?A1&þ A0Þf ¼ 0: ð82Þ

Useful examples of (82) are ð&
 lÞkf ¼ 0 for lAC and generalized functions
with values in a complex representation. We give such an example below.

Definition 5.1. Let fAC
NðU;VÞslð2;RÞ: We say that f is &-finite if
dimRðR½&�fÞoN:

In other words, f is &-finite if there exists rAN and ða0;y; ar
1ÞARr such that

ð&r þ ar
1&
r
1 þ?a1&þ a0Þf ¼ 0: ð83Þ

Example (This was our original motivation to study this problem). Let g ¼ g0"g1
be a Lie superalgebra. We define the generalized functions on g as the generalized
functions on g0 with values in the exterior algebra Lðg�1Þ of g�1

C
NðgÞ ¼def C
Nðg0Þ#Lðg�1Þ ¼ C
Nðg0;Lðg�1ÞÞ: ð84Þ

We assume that g has a non degenerate invariant symmetric even bilinear form B:

Let OAS2ðgÞ be the Casimir operator associated with B:We have O ¼ O0 þ O1 with
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O0AS2ðg0Þ and O1AL2ðg1Þ: We consider O1 as an element of EndðLðg�1ÞÞ acting by
interior product. When they can be evaluated (cf. for example [Lav98, Chapitre
III.5]), the Fourier transforms of the coadjoint orbits in g� are invariant generalized
functions f on g subject to equations of the form ðO
 lÞf ¼ 0 with lAC: It can be
written ðO0 þ ðO1 
 lÞÞf ¼ 0 (for g0 ¼ slð2;RÞ it is of the form (82) with O0 ¼ &

and A0 ¼ O1 
 l). We have:

ðO0 
 lÞk ¼
Xk

i¼0

k

i

� �
ðO
 lÞið
O1Þk
i: ð85Þ

For k4dimðg1Þ
2

; we have Ok
1 ¼ 0: It follows that for k41þ dimðg1Þ

2
we have:

ðO0 
 lÞkf ¼ 0: ð86Þ

this equation is of the form of (82).

5.2. Generalized functions with support f0g

We immediately obtain from Theorem 3.1

Theorem 5.1. Let V be a representation of slð2;RÞ: Let fAC
Nðslð2;RÞ;VÞslð2;RÞ such

that fjslð2;RÞ\f0g ¼ 0 and f is &-finite. Then, we have f ¼ 0:

5.3. Support in the nilpotent cone: local version

Theorem 5.2. Let nAN: Let Vn be the irreducible n þ 1-dimensional representation of

slð2;RÞ: Let W be a finite-dimensional vector space with trivial action of slð2;RÞ: Let U
be an open connected neighborhood of X such that the function sn is well defined on

U-N (cf. Section 4.6) and IX is bijective (cf. Section 4.2). Let

fAC
NðU;W#VnÞslð2;RÞ such that fjU\N ¼ 0: Let rAN and ða0;y; ar
1ÞARr such

that: ð&r þ
Pr
1

k¼0 ak&
kÞf ¼ 0:

Then, we have f ¼ 0 when at least one of the following conditions is satisfied:

(i) n is even;
(ii) n is odd and a0a0:

Proof. Let fAC
NðU;W#VnÞslð2;RÞ such that fjU\N ¼ 0: From Theorem 4.1 we

obtain that there exist pAN; with p ¼ n
1
2
if n is odd and ðw0;y;wpÞAW pþ1; such that:

f ¼
Xp

i¼0
wi#&iðsndNþÞ: ð87Þ

Then:

(i) When n is even, for 0pjpp þ r; we have
P

kþi¼j akwi ¼ 0:
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(ii) When n is odd, for 0pjpn
1
2 ; we have

P
kþi¼j akwi ¼ 0:

The result follows. &

Remark. When n is odd, in contrast with the classical case (V ¼ V0 is the trivial
representation) there exist (in a neighborhood of X ) non trivial locally invariant

solutions of the equation&kf ¼ 0 supported in the nilpotent cone! For example, if

kXnþ1
2
the functions f ¼ &iðsndNþÞ for 0pipn
1

2
are not trivial, supported in the

nilpotent cone and satisfy the equation &kf ¼ 0:

When we consider the equation ð&
 lÞkf ¼ 0 for lAC\f0g; then the trivial
solution is again the only one supported in the nilpotent cone.

5.4. Support in the nilpotent cone: global version

Theorem 5.3. Let V be a real finite-dimensional representation of slð2;RÞ: Let U be an

SLð2;RÞ-invariant open subset of slð2;RÞ: Let fAC
NðU;VÞslð2;RÞ such that fjU\N ¼ 0

and f is &-finite. Then we have f ¼ 0:

Proof. It is enough to prove the theorem for V irreducible. Then, the result follows
from Theorems 4.2, 5.2 and 5.1. &

6. General invariant generalized functions

6.1. Main theorem

Theorem 6.1. Let V be a real finite-dimensional representation of slð2;RÞ: Let U be an

SLð2;RÞ-invariant open subset of slð2;RÞ: Let fAC
NðU;VÞslð2;RÞ such that f is &-
finite. Then f is determined by fjU\N and fjU\N is an analytic function.

Proof. The fact that f is determined by fjU\N follows from Theorem 5.3. The fact

that fjU\N is analytic can be proved exactly as in [HC65]. &

Remark. In general f will not be locally L1: Indeed, let f0AC
Nðslð2;RÞÞslð2;RÞ a non
zero &-finite generalized function. Then f0 is locally L1; but for kAN�:

Mk
nf0AC
Nðslð2;RÞ;EndðVnÞÞslð2;RÞ ð88Þ

is usually not locally L1:
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6.2. Application to the superpfaffian

Let us consider the Lie superalgebra g ¼ spoð2; 2nÞ: Its even part is g0 ¼
slð2;RÞ"soð2n;RÞ: Its odd part is g1 ¼ V1#W where W is the standard 2n-

dimensional representation of soð2n;RÞ:
In [Lav04] we constructed a particular invariant generalized function Spf on

spoð2; 2nÞ called Superpfaffian. It generalizes the Pfaffian on soð2n;RÞ and the
inverse square root of the determinant on slð2;RÞ: As it is a polynomial of degree n

on soð2n;RÞ; we may consider that we have:

SpfAC
N slð2;RÞ;
Mn

k¼0
Skðsoð2n;RÞ�Þ#Lðg�1Þ

 !slð2;RÞ

: ð89Þ

Let O (resp. &; O0
0; O1) be the Casimir operator on spoð2; 2nÞ (resp. on slð2;RÞ;

soð2n;RÞ; g1). Then O ¼ &þ O0
0 þ O1 and

O0
0 þ O1AEnd

Mn

k¼0
Skðsoð2n;RÞ�Þ#Lðg�1Þ

 !slð2;RÞ

ð90Þ

is a nilpotent endomorphism. The superpfaffian satisfies:

ð&þ ðO0
0 þ O1ÞÞSpf ¼ O Spf ¼ 0: ð91Þ

The function Spf is analytic on slð2;RÞ\N and in [Lav04] an explicit formula is given

for SpfðXÞA"n
k¼0 Skðsoð2n;RÞ�Þ#Lðg�1Þ with XAslð2;RÞ\N : However, since Spf is

not locally L1 (cf. [Lav04]), it is not clear whether Spf is determined by its restriction

to slð2;RÞ\N or not. In [Lav04] we proved that Spf is characterized, as an invariant

generalized function on slð2;RÞ; by its restriction to slð2;RÞ\N and its wave
front set.
From the preceding results we obtain this new characterization of Spf:

Theorem 6.2. Let fAC
Nðslð2;RÞ;"n
k¼0 Skðsoð2n;RÞ�Þ#Lðg�1ÞÞ

slð2;RÞ
such that:

(i) for XAslð2;RÞ\N ; fðX Þ ¼ SpfðX ÞA"n
k¼0 Skðsoð2n;RÞ�Þ#Lðg�1Þ;

(ii) Of ¼ 0:

Then we have f ¼ Spf :
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