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SuperPfaffian

Pascal Lavaud

Abstract. Let V = V0 ⊕ V1 be a real finite dimensional supervector space
provided with a non-degenerate antisymmetric even bilinear form B . Let spo(V )
be the Lie superalgebra of endomorphisms of V which preserve B . We consider
spo(V ) as a supermanifold. We show that a choice of an orientation of V1 and
of a square root i of −1 determines a very interesting generalized function on
the supermanifold spo(V ), the superPfaffian.

When V = V1 , spo(V ) is the orthogonal Lie algebra so(V1), the su-
perPfaffian is the usual Pfaffian, a square root of the determinant.

When V = V0 , spo(V ) is the symplectic Lie algebra sp(V0), the superP-
faffian is a constant multiple of the Fourier transform of one the two minimal
nilpotent orbits in the dual of the Lie algebra sp(V0), and it is a square root
of the inverse of the determinant in the open subset of invertible elements of
spo(V ).

In this article, we present the definition and some basic properties of the
superPfaffian.

Introduction

Let V be an oriented finite dimensional real vector space provided with a
non degenerate symmetric bilinear form B . The Pfaffian of X ∈ so(V ) can be
defined by a suitable Berezin integral∫

V

dV (v) exp(−1

2
B(v,Xv)) (1)

over the vector space V seen as an odd space (cf. [13], [2] and section 2. below).
This definition still have a formal meaning for an oriented symplectic supervector
space V = V0 ⊕ V1 (V0 is a symplectic vector space, V1 is an oriented vector
space provided with a non degenerate symmetric bilinear form). This structure
provides us with a well defined Liouville integral dV on the supermanifold V .
The integral (1) converges when X is in an open subset of spo(V ), and it is a
square root of the inverse Berezinian. We call this function the superPfaffian. For
instance, if V = V0 , then for X ∈ sp(V ), B(v,Xv) is a quadratic form on V , and
the integral (1) is convergent when it is positive definite. In this case, det(X) is
strictly positive, and the superPfaffian is the positive square root of 1/ det(X).

Since the inverse Berezinian is not polynomial (it is only a rational func-
tion when V0 is not 0), there is no natural extension of this superPfaffian to a
function on the supermanifold spo(V ). The purpose of this article is to show that
there is a natural extension of this superPfaffian as a generalized function on the
supermanifold spo(V ). Notice that the superPfaffian is 0 when dim(V1) is odd.
Let m = dim(V0) (which is even) and n = dim(V1) (which we assume now to be
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even). Let i ∈ C be a square root of −1. We define the superPfaffian by the
formula:

Spf(X) = i(m−n)/2

∫
V

dV (v) exp(− i

2
B(v,Xv)). (2)

We prove that (2) has a well defined meaning as a generalized function of X on
the supermanifold spo(V ).

The Berezinian is not a straightforward extension of the determinant, and
the superPfaffian is not a straightforward extension of the Pfaffian. We establish
several very nice properties of the superPfaffian:

a) It is an analytic function in the open set where the inverse Berezinian is
defined, and, in this open set, it is a square root of the inverse Berezinian.

b) In the open set where it is convergent, it is given by (1).

c) It is a boundary value of an holomorphic function defined in a specific
cone of spo(V ⊗ C), and, together with property a), this determines the superP-
faffian up to sign.

d) It is harmonic. More precisely, let SpO(V ) be the supergroup of en-
domorphisms of V which preserve B . The superPfaffian is annihilated by the
homogeneous constant coefficient differential operators on spo(V ) which are of
degree > 0 and SpO(V )-invariant.

e) We give several formulas for Spf(X + Y ). They generalize in an elegant
manner formulas of Mathäı-Quillen for the Pfaffian, and formulas in Wick’s cal-
culus. Moreover, they are very useful to perform various computations of Spf(X)
in matrix coordinates.

I wish to thank Michel Duflo who introduced me to supermathematics and
spent much of his time to suggest to me many deep improvements to this paper.
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1. Prerequisites

1.1. Notations. In this article, unless otherwise specified, all supervector spaces
and superalgebras will be real. If V is a supervector space, we denote by V0 its
even part and by V1 its odd part. If v is a non zero homogeneous element of V ,
we denote by p(v) ∈ Z/2Z its parity. We put dim(V ) = (dim(V0), dim(V1)). We
denote by V ∗ the dual supervector space Hom(V,R). If V and W are supervector
spaces, V ⊗W and W ⊗ V are supervector spaces, and they are identified by the
usual rule of signs. We denote by S(V ) the symmetric algebra of V . Recall that
it is equal to S(V0)⊗ Λ(V1), where S(V0) and Λ(V1) are the classical symmetric
and exterior algebras of the corresponding ungraded vector spaces. We use the
notation Λ(U) only for ungraded vector spaces U . So, if V is a supervector space,
Λ(V ) is the exterior algebra of the underlying vector space.
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We choose a square root i of −1.

1.2. Near superalgebras. We say that a commutative superalgebra P is near
if it is finite dimensional, local, and with R as residual field. They are the algèbres
proches of Weil [16]. For α ∈ P , we denote by b(α) the canonical projection of α
in R (b(α) is the body of α , and α− b(α) —a nilpotent element of P— the soul
of α , according to the terminology of [4]). Let α ∈ P0 be an even element. If φ
is a smooth function defined in a neighborhood of b(α) in R with values in some
Fréchet supervector space W , we use the notation φP(α) (or simply φ(α) if the
context is clear) for the finite Taylor’s series:

φP(α) = φ(α) =
∞∑
k=0

(α− b(α))k

k!
φ(k)(b(α)) ∈ W ⊗ P . (3)

In particular, if b(α) 6= 0, we have

|α| = |b(α)|
b(α)

α, (4)

and if b(α) > 0,

√
α =

√
b(α)

(
1 +

1

2
(
α

b(α)
− 1)− 1

222!
(
α

b(α)
− 1)2 +

3

233!
(
α

b(α)
− 1)3 + . . .

)
. (5)

1.3. Supermanifolds. By a supermanifold we mean a smooth real supermani-
fold as in [3], [7], [1]. Let V be a finite dimensional supervector space. We consider
V as a supermanifold. We recall some relevant definitions in this particular case.
Let U ⊂ V0 be an open set. We put

C∞V (U) = C∞(U)⊗ Λ(V ∗1 ), (6)

where C∞(U) is the usual algebra of smooth real valued functions defined in U ,
and Λ(V ∗1 ) the exterior algebra of V ∗1 . We say that C∞V (U) is the superalgebra of
smooth functions on V defined in U . The supermanifold V is by definition the
topological space V0 equipped with the sheaf of superalgebras C∞V . Recall that
elements φ ∈ C∞V (U) are not functions in the usual sense, but we recall below how
to treat them as ordinary functions.

Notice that if U is not empty, there is a canonical inclusion S(V ∗) ⊂ C∞V (U).
The corresponding elements are called polynomial functions. One can also define
rational functions. Similarly, if W is a Fréchet supervector space (for instance
W = C), we denote by C∞V (U ,W ) = C∞(U ,W )⊗Λ(V ∗1 ) the space of W -valued
smooth functions.

We use similar notations, for instance Cω(U) ⊂ C∞(U) and CωV (U ,W ) ⊂
C∞V (U ,W ), for the real analytic functions.

If moreover V and W are complex supervector spaces, we use similar
notations, for instance H(U) ⊂ C∞(U ,C) and HV (U ,W ) ⊂ C∞V (U ,W ), for the
holomorphic functions.

1.4. Evaluation of functions on supermanifolds.

Let P be a near superalgebra. We put

VP = (V ⊗ P)0. (7)
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It is called the set of points of V with values in P . Extending the body b : P → R
to a map V ⊗P → V , and restricting it to the even part VP , we obtain a map, still
denoted by b : VP → V0. Let U ⊂ V0 be an open set. We denote by VP(U) ⊂ VP
the inverse image of U in VP . It is known that VP(U) is canonically identified to
the set of even algebra homomorphisms C∞V (U) → P . Let v ∈ VP(U). We will
denote the corresponding homomorphism by φ 7→ φ(v), and say that φ(v) ∈ P is
the value of φ ∈ C∞V (U) at the point v . Note that formula (3) is a particular case
of this definition, when V = R .

For φ ∈ C∞V (U), we denote by φP ∈ C∞(VP(U),P) the corresponding
function. More generally, for φ ∈ C∞V (U ,W ) we define φP ∈ C∞(VP(U),W ⊗ P).
The importance of this construction is that for P large enough (for instance if P
is an exterior algebra ΛRN with N ≥ dim(V1)), the map φ 7→ φP is injective,
which allows more or less to treat φ as an ordinary function.

Let A be a commutative superalgebra. We still use the notation VA =
(V ⊗A)0 . Polynomial functions S(V ∗) can be evaluated on VA , but, in general,
smooth functions can be evaluated on VA only if A is a near algebra. The
particular case A = S(V ∗) is important, because VA contains a particular point,
the generic point, corresponding to the identity in the identification of Hom(V, V )0
with (V ⊗ V ∗)0 ⊂ VA . Let us call v the generic point. We have f(v) = f for any
polynomial function f ∈ S(V ∗).

1.5. Coordinates and integration.

Let V be a finite dimensional supervector space. By a basis (gi)i∈I of V , we
mean an indexed basis consisting of homogeneous elements. The dual basis (zi)i∈I
of V ∗ is defined by the usual relation zj(gi) = δji . We also say that the basis (gi)i∈I
is the predual basis of the basis (zi)i∈I . We call (zi)i∈I a system of coordinates
on V . The corresponding derivations of the algebra of smooth functions on V
are denoted by ∂

∂zi
. They are characterized by the rule ∂

∂zj
(zi) = δij . The generic

point v of V is given by the formula v = giz
i ∈ VS(V ∗) .

We use systems of coordinates of the form (x1, . . . , xm, ξ1, . . . , ξn), where
(x1, . . . , xm) is a basis of V ∗0 , and (ξ1, . . . , ξn) a basis of V ∗1 . They will be denoted
by the symbol (x, ξ). Let (e1, . . . , em, f1, . . . , fn) be the corresponding predual
basis of V : thus (e1, . . . , em) is a basis of V0 and (f1, . . . , fn) is a basis of V1 .
These notations will be used in particular for the canonical basis of the standard
(m,n)-dimensional supervector space R(m,n) . Let I = (i1, . . . , in) ∈ {0, 1}n . We
denote by ξI the monomial (ξ1)i1 . . . (ξn)in of S(V ∗). Let U ⊂ V0 be an open set.
Let W be a Fréchet supervector space. Any φ ∈ C∞V (U ,W ) can be written in a
unique manner

φ =
∑
I

ξIφI(x
1, . . . , xm), (8)

with φI is an ordinary W -valued smooth function defined in the appropriate open
subset of Rm . Note that we write φI to the right of ξI (recall that ξIφI = ±φIξI ,
according to the sign rule).

We denote by C∞V,c(U ,W ) the subspace of C∞V (U ,W ) of functions with
compact support. The distributions on V defined in U are the elements of the
(Schwartz’s) dual of C∞V,c(U). If t is a distribution, we use the notation

t(φ) =

∫
V

t(v)φ(v)
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for φ ∈ C∞V,c(U). We also use complex valued distributions.

A system of coordinates (x, ξ) determines a distribution d(x,ξ) , called the
Berezin integral, by the formula∫

V

d(x,ξ)(v)φ(v) = (−1)
n(n−1)

2

∫
Rm

∣∣ dx1 . . . dxm
∣∣φ(1,...,1)(x

1, . . . , xn) (9)

for φ ∈ C∞V,c(V0), where
∣∣ dx1 . . . dxm

∣∣ is the Lebesgue measure on Rm .

In this article, we will be in fact interested by complex valued distributions.
Then we consider basis (e1, . . . , em, f1, . . . , fn) of V ⊗ C , where (e1, . . . , em) is a
basis of V0 and (f1, . . . , fn) is a basis of V1 ⊗C . The dual basis (x, ξ) provides a
coordinate system (x) on V0 and a dual basis (ξ) of V ∗1 ⊗C . Any f ∈ C∞V,c(V0,C)
can be written in the form (8), and the (complex) Berezin integral d(x,ξ) is again
well defined by formula (9).

1.6. Generalized functions. We say that a distribution t on V defined in U is
smooth (resp. smooth compactly supported) if there is a function ψ ∈ C∞V (U) (resp.
ψ ∈ C∞V,c(U)) such that t(v) = d(x,ξ)(v)ψ(v). It means that for any φ ∈ C∞V,c(U):

t(φ) =

∫
V

d(x,ξ)(v)ψ(v)φ(v). (10)

This definition does not depend on the coordinates system (x, ξ).

By definition, the generalized functions on V defined on U are the elements
of the (Schwartz’s) dual of the space of smooth compactly supported distributions.
For a generalized function φ and a smooth compactly supported distribution t ,
we write:

φ(t) = (−1)p(t)p(φ)

∫
V

t(v)φ(v). (11)

We denote by C−∞(U) the space of generalized functions on U and by C−∞V (U)
the space of generalized functions on V defined on U . Let us remark that, as
C∞V (U) = C∞(U)⊗Λ(V ∗1 ), we have:

C−∞V (U) = C−∞(U)⊗Λ(V ∗1 ). (12)

Let W be a Fréchet supervector space. A W -valued generalized function
is a continuous homomorphism (in sense of Schwartz) from the space of smooth
compactly supported distributions to W. We denote by C−∞V (U ,W ) the set of W -
valued generalized functions. If W is finite dimensional, we have C−∞V (U ,W ) =
C−∞V (U)⊗W .

1.7. Berezinians. Let V be a supervector space. We denote by gl(V ) the Lie
superalgebra of endomorphisms of V .

Let A be a commutative superalgebra. We write an element of gl(V )A in
the form

M =

(
A B
C D

)
∈ gl(V )A. (13)

where A ∈ gl(V0) ⊗ A0 , D ∈ gl(V1) ⊗ A0 , B ∈ Hom(V1, V0) ⊗ A1 , and
C ∈ Hom(V0, V1) ⊗ A1 . Berezin introduced the following generalizations of the
determinant (cf. [1, 3, 12]), called the Berezinian and inverse Berezinian.
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Definition 1.1. If D (resp. A) is invertible, we define:

Ber(M) = det(A−BD−1C) det(D)−1, (14)

(resp. Ber−(M) = det(A)−1 det(D − CA−1B)). (15)

Definition 1.2. Assume moreover that A is a near superalgebra. If D (resp.
A) is invertible, we define (cf. [15]):

Ber(1,0)(M) =
∣∣∣ det(A−BD−1C)

∣∣∣ det(D)−1, (16)

(resp. Ber−(1,0)(M) =
∣∣∣ det(A)−1

∣∣∣ det(D − CA−1B), ) (17)

All these functions are multiplicative, and when both A and D are invert-
ible, it is known that Ber−(M) = Ber−1(M) and Ber−(1,0)(M) = Ber−1

(1,0)(M).

Recall that gl(V )0 consists of the matrices

(
A 0
0 D

)
with A ∈ gl(V0)

and D ∈ gl(V1). We consider the two open sets U ′ = GL(V0) × gl(V1), and
U” = gl(V0) × GL(V1). Formula (14) defines a rational function on the open set
U” of the supermanifold gl(V ). Formula (16) defines a smooth function on the
open set U” of the supermanifold gl(V ). We still denote by Ber and Ber(1,0) the
elements of C∞gl(V )(U”) whose evaluation in gl(V )A is given as above. We similarly

define the elements Ber− and Ber−(1,0) of C∞gl(V )(U ′).

1.8. Oriented symplectic supervector spaces. Let V = V0 ⊕ V1 be a sym-
plectic supervector space, that is a supervector space provided with a symplec-
tic form B : a non degenerate even skew symmetric bilinear form on V . The
space V0 is a classical symplectic space. The dimension m of V0 is even. We
choose a symplectic basis (e1, . . . , em) of V0 , that is V0 is the direct sum of
m/2 symplectic vector spaces generated by the pairs (e1, e2), (e3, e4), . . . , and
B(e1, e2) = 1, B(e3, e4) = 1, . . . . The space V1 is a classical quadratic space.
We choose a symplectic basis (f1, . . . fn) of V1 ⊗ C , that is an orthonormal basis
of V1⊗C such that fj ∈ V1 or fj ∈ iV1 for all j . The dual basis (xi, ξj) of V ⊗C
is called a symplectic coordinate system on V .

The pair of functions ±ξ1 . . . ξn does not depend on the symplectic coor-
dinate system. A choice of one of the two elements of ±ξ1 . . . ξn is called an
orientation of V . If V is oriented, an oriented symplectic coordinate system on
V is a coordinate system for which the orientation is ξ1 . . . ξn .

Let V be an oriented symplectic supervector space. The distribution

dV =
1

(2π)m/2
d(x,ξ) (18)

does not depend on the oriented symplectic coordinate system. We call it the
Liouville measure of V .

1.9. Symplectic Lie superalgebras. Let V = (V,B) be a symplectic super-
vector space. We denote by spo(V,B) (or spo(V )) the Lie superalgebra of endo-
morphisms of V which leave B invariant. We have spo(V,B)0 = sp(V0)⊕ so(V1).

Remark concerning the notation: Let ΠV be the space V with opposite
parity. It carries a structure of orthogonal supervector space, and spo(V ) is
isomorphic to the usual orthosymplectic Lie superalgebra osp(ΠV ).
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We denote by µ ∈ spo(V )∗ ⊗ S2(V ∗) ⊂ S(spo(V )∗ × V ∗) the element such
that

µ(X, v) = −1

2
B(v,Xv), (19)

for any commutative superalgebra A , any X ∈ spo(V )A and v ∈ VA , where
B(v,Xv) ∈ A is defined by natural extension of scalars. Considering a basis Gk

of spo(V ), the dual basis Zk , the generic point X = GkZ
k , a basis gi of V , the

dual basis zi , and the generic point v = giz
i , we obtain:

µ = −1

2
B(gi, Gkgj)z

jZkzi. (20)

By composition with the exponential map, we obtain the analytic function eµ on
the supermanifold spo(V )× V , which plays an important role in what follows.

Let us explain the choice of the constant −1
2

in definition of µ and why we
call µ (or its variants µ̌ and µ̂ defined below) the moment map. The symplectic
form B gives to the supermanifold V a symplectic structure, and a Poisson bracket
on S(V ∗) by the following. Let f ∈ V ∗ , we denote by vf the element of V such
that for any w ∈ V : B(vf , w) = f(w). This gives an isomorphism from V ∗ onto
V . For f, g ∈ V ∗ , we put: {f, g} = B(vf , vg) and we extend it to a Poisson
bracket on S(V ∗).

Let µ̌ : spo(V )→ S2(V ∗) be the linear map such that µ̌(X)(v) = µ(X, v).
It is an isomorphism of Lie superalgebras µ̌ : spo(V )→ S2(V ∗). We extend µ̌ to
a morphism of commutative associative superalgebras from S(spo(V )) to S(V ∗).
For k ∈ N , µ̌ induces a surjective map µ̌ : Sk(spo(V )) → S2k(V ∗). We choose a
graded right inverse

Ξ : ⊕
k∈N

S2k(V ∗)→ S(spo(V )). (21)

Thus, for P ∈ S2k(V ∗), we have Ξ(P ) ∈ Sk(spo(V )) and µ̌(Ξ(P )) = P .

2. The superPfaffian as an holomorphic function

2.1. Definition. Let V = V0 ⊕ V1 be an oriented symplectic supervector space
of dimension (m,n). For X ∈ sp(V0), v 7→ B(v,Xv) is a quadratic form on V0 .
We denote by U ⊂ sp(V0) the open set of X ∈ sp(V0) for which this form is non
degenerate. It is the disjoint union of the subsets Up,q (with p + q = m) where
(p, q) is the signature of the quadratic form. We put U+ = Um,0 . It is an open
convex cone in sp(V0). We denote by V = U × so(V1), Vp,q = Up,q × so(V1),
V+ = U+ × so(V1) the corresponding open subsets of spo(V )0 . In particular V+

is an open convex cone in spo(V )0 .

Recall the Liouville Measure (18).

Theorem 2.1. There exists a unique function Spf ∈ Cωspo(V )(V+,C) such that

for any near superalgebra P and any element X of spo(V )P such that b(X) ∈ V+ :

Spf(X) =

∫
V

dV (v) exp(µ(X, v)). (22)

We call the function Spf defined in the preceding theorem the superPfaffian.
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Proof. Let P be any near superalgebra. We denote by SpfP the function on
spo(V )P(V+) such that for any X ∈ spo(V )P(V+), SpfP(X) is the right hand
side of (22). Let X ∈ spo(V )P(V+). Let X0 ∈ U+ and X1 ∈ sp(V1) such that
b(X) = X0 +X1 . Thus X = X0 +X1 +N with N nilpotent.

Let (x, ξ) be an oriented symplectic system of coordinates. Let v = eix
i +

fjξ
j be the generic point of V , v0 = eix

i be the generic point of V0 and v1 = fjξ
j

the generic point of V1 . We have v = v0 + v1 , B(v,X0v) = B(v0, X0v0) and
B(v,X1v) = B(v1, X1v1).

In particular B(v,X1v) is nilpotent. Thus B(v, (X−X0)v) ∈ (S2(V ∗)⊗P)0
is nilpotent. It follows that exp(−1

2
B(v, (X −X0)v)) ∈ (S(V ∗)⊗P)0 is a polyno-

mial function on V with values in P and that X 7→ exp(−1
2
B(v, (X −X0)v)) ∈

(S(V ∗)⊗P)0 is polynomial on spo(V )P .

Let Z ∈ spo(V )P such that b(Z) ∈ so(V1). Then B(v, Zv) is a nilpotent
element of S2(V ∗)P . We put:

P (Z, v0) =

∫
V1

dV1(v1) exp(−1

2
B(v0 + v1, Z(v0 + v1))) ∈ S(V ∗0 )⊗P . (23)

Fubini’s formula gives:∫
V

dV (v) exp(−1

2
B(v,Xv)) =

∫
V0

dV0(v0) exp(−1

2
B(v0, X0v0))P (X −X0, v0).

(24)
Since X0 ∈ U+ , B(v0, X0v0) is a positive definite quadratic form. The integral
on the right hand side is a Gaussian integral on V0 . Thus SpfP is an analytic
function on spo(V )P(V+).

Let Q = Λ(spo(V )∗1). Let h : spo(V )0 ↪→
(
spo(V )0

)
Q be the canonical

embedding defined by h(v) = v⊗ 1. Let H ∈
(
spo(V )1

)
Q be the generic point of

spo(V )1 . We put for X ∈ V+ :

φ(X) = SpfQ(h(X) +H) ∈ Q = Λ(spo(V )∗1)

=

∫
V0

dV0(v0) exp(−1

2
B(v0, X0v0))P (X1 +H, v0).

(25)

(X = X0 +X1 with X0 ∈ U+ and X1 ∈ so(V1); P is defined by (23).) It defines
a function

φ ∈ Cωspo(V )(V+), (26)

such that for any near superalgebra P , any X = Y + Z ∈ spo(V )P(V+) with
Y ∈ (spo(V )0)P(V+) and Z ∈ (spo(V )1)P , φ(X) = φ(Y )(Z).

Since φ is defined by a Gaussian integral on V0 all its derivatives along
spo(V )0 are determined by derivation “under the integral”. Moreover the above in-
tegral is Λ(spo(V )∗1)-linear, hence for any near superalgebra P and X ∈ spo(V )P ,
φ(X) = SpfP(X).

We put Spf = φ ∈ Cωspo(V )(V+) and call it the superPfaffian. The preceding

remark shows that for any near superalgebra P and X ∈ spo(V )P(V+) the
expression Spf(X) is not ambiguous: the value of the function Spf at X is given
by formula (22).
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2.2. Holomorphic extension in the appropriate subset. Formula (22) is
meaningful for X ∈ spo(V ⊗C)P with b(X) ∈ V+ × i spo(V )0 and it defines
an holomorphic function on V+ × i spo(V ). Indeed, let X ∈ spo(V ⊗C)P with
b(X) ∈ V+ × i spo(V )0 . As before, let X0 ∈ U+ × i sp(V0) and X1 ∈ so(V1⊗C)
such that b(X) = X0 + X1 . The calculations of the preceding section can be
reproduced here. The right hand side of formula (24) is still a Gaussian integral
and therefore defines a complex analytic function on spo(V ⊗C)P

(
V+×i spo(V )0

)
.

The same arguments as in the preceding section show that formula (22) defines an
holomorphic extension of Spf on V+ × i spo(V )0 still denoted by Spf .

2.3. Invariance. Let P be a near superalgebra. Let X ∈ gl(V )P . We denote
by X∗ ∈ gl(V )P the adjoint of X defined by:

∀v, w ∈ VP , B(Xv,w) = B(v,X∗w). (27)

We have: (X∗)∗ = X .

Let v ∈ V , we denote by B#(v) the element of V ∗ such that for any w ∈ V ,
B#(v)(w) = B(v, w). This defines an isomorphism B# : V → V ∗ . Moreover
for X ∈ gl(V ) non zero and homogenous we denote by tX the endomorphism
of V ∗ such that for any φ ∈ V ∗ non zero and homogenous and any v ∈ V ,
tX(φ)(v) = (−1)p(X)p(φ)φ(Xv). Then:

X∗ = (B#)−1 tXB#. (28)

We denote by GL(V )P the group of invertible elements of gl(V )P . Since
GL(V )P ⊂ gl(V )P , the definition of X∗ is meaningful for X = g ∈ GL(V )P . For
g ∈ GL(V )P we have from (28): Ber(g∗) = Ber(g) and Ber(1,0)(g

∗) = Ber(1,0)(g).

We put:

SpO(V )P =
{
g ∈ GL(V )P / g

∗ = g−1
}
. (29)

From the multiplicative property of Ber we get for g ∈ SpO(V )P :

Ber(g) = Ber(1,0)(g) = det(b(g)|V1) = ±1 (30)

Proposition 2.1. Let P be a near superalgebra. Let X ∈ spo(V ⊗C)P
(
V+ ×

i spo(V )
)

and g ∈ GL(V )P , then:

Spf(g∗Xg) = Ber−1
(1,0)(g) Spf(X). (31)

In particular, for g ∈ SpO(V )P , we have;

Spf(g−1Xg) = det(b(g)|V1) Spf(X). (32)

Proof. The first formula follows from the formula of change of coordinates (cf.
[1]). Assume moreover that g ∈ SpO(V )P . Then, by definition, we have g∗ = g−1

and formula (32) follows from (30).

2.4. Action of differential operators.

Let V be a symplectic finite dimensional supervector space. We assume
that dim(V1) is even.
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Let X ∈ spo(V ) be homogeneous. We denote by ∂X the derivation of
C∞spo(V )

(
spo(V )0

)
such that for any homogeneous ψ ∈ spo(V0)∗ :

∂Xψ = (−1)p(X)p(ψ)ψ(X). (33)

The mapping X 7→ ∂X extends to an isomorphism between to S
(
spo(V )

)
and the superalgebra of differential operators with constant coefficients on spo(V ).

Let D ∈ S(spo(V )). Since µ̌ is linear and even on spo(V ), we have for any
X ∈ spo(V )P(V0) and v ∈ VP where P is a near superagebra:(

∂D exp(µ)
)

(X, v) = µ̌(D)(v) exp(µ)(X, v). (34)

Moreover we recall that since Spf is defined by a Gaussian integral all
its derivatives are determined by derivation “under the integral”. Thus, if X ∈
spo(V )P(V+):

∂D

∫
V

dV (v) exp
(
µ(X, v)

)
=

∫
V

dV (v)µ̌(D)(v) exp(µ(X, v)). (35)

It follows:

Proposition 2.2. Let D ∈ ker(µ̌) ⊂ S(spo(V )). Then, we have ∂D Spf = 0.

Let X, Y ∈ spo(V ). We put K(X, Y ) = str(XY ). It defines a non
degenerate symmetric even bilinear form on spo(V ). Let (Xi)i∈I be a basis of
spo(V ) and (X ′i)i∈I the basis of spo(V ) such that K(Xi, X

′
j) = δji (δji is the Dirac

symbol). We put:

�K =
∑
i∈I

∂X′i∂Xi
∈ S2(spo(V )). (36)

As a corollary of the above proposition we obtain:

Corollary 2.1. Let D ∈ ⊕
k∈N∗

Sk(spo(V ))spo(V ) . Thus ∂D is an spo(V )-invar-

iant differential operator on spo(V ) with constant coefficients and zero scalar term.

If dim(V0) > 0 we have ∂D Spf = 0.

If V = V1 we have deg(D) 6= dim(V )
2

or D ∈
(
S

dim(V )
2

(
so(V )

))O(V )

⇒
∂D Spf = 0.

In particular, in all cases we have �K Spf = 0.

Proof. We will use the following lemma:

Lemma 2.1. For k > 1, if dim(V0) > 0 or V = V1 and k 6= dim(V ), we
have:

Sk(V ∗)spo(V ) = {0}. (37)

If V = V1 and k = dim(V ), we have:

Sk(V ∗)so(V ) = Λk(V ∗). (38)

Proof. Assume that dim(V0) > 0. Let P be a near superalgebra. Let
SpSO(V )P be the connected component of SpO(V )P . Since for v ∈ V0 \
{0}, SpSO(V )Pv = VP \ {0} , the invariant polynomials are constant and equality
(37) follows.

In case V = V1 cf. [17].



P. Lavaud 11

Let D ∈ Sk
(
spo(V )

)spo(V )
(k > 0), then µ̌(D) ∈ S2k(V ∗)spo(V ) .

Assume that dim(V0) > 0 or V = V1 and k 6= dim(V )
2

, then by Lemma 2.1
we have µ̌(D) = 0.

Assume that V = V1 and k = dim(V )
2

. Then µ̌(D) ∈ Λdim(V )(V ∗). In this
case, if µ̌(D) is O(V ) invariant, then we have µ̌(D) = 0.

The corollary follows from the proposition.

2.5. Taylor’s formula. We still assume that V is a symplectic finite dimen-
sional supervector space with n = dim(V1) even. Let (Pk)k∈N be a basis of
⊕
l∈N

S2l(V ∗) made with homogenous elements with respect to parity and degree

(we can replace N by any appropriate set of indices).

We define ck ∈ S(spo(V )∗) and by c̃k ∈ Cωspo(V )(V+) the formulas:

exp(µ(X, v)) =
∑
k∈N

Pk(v)ck(X); (39)

c̃k(X) =

∫
V

dV (v)Pk(v) exp
(
µ(X, v)

)
. (40)

We put ∂k = ∂Ξ(Pk) (with Ξ defined in formula (21)). We have:

Lemma 2.2. For any near superalgebra P and any X ∈ spo(V )P(V+):

c̃k(X) =
(
∂k Spf

)
(X). (41)

Proof. We use formula (35) to show:

∂k

∫
V

dV (v) exp(µ(X, v)) =

∫
V

dV (v)µ̌
(
Ξ(Pk)

)
(v) exp(µ(X, v))

=

∫
V

dV (v)Pk(v) exp(µ(X, v))

= c̃k(X).

(42)

Theorem 2.2. Let P be a near superalgebra. Let X, Y ∈ spo(V )P such that
b(Y ) ∈ so(V1), and b(X) ∈ U+ . In this case b(X + Y ) ∈ V+ . Taylor’s formula
for Spf reads:

Spf(X + Y ) =
∑
k∈N

(−1)p(Pk)ck(Y )c̃k(X). (43)

The sum converges as an analytic function in X .

Proof. We have

exp(µ(X + Y, v)) = exp(µ(Y, v)) exp(µ(X, v)). (44)

Then, we expand exp(µ(Y, v)) by formula (39):

exp(µ(Y, v)) =
∑
k∈N

Pk(v)ck(Y ) =
∑
k∈N

(−1)p(Pk)ck(Y )Pk(v); (45)

and integrate against dV (v) (since dim(V1) is even, this operation is even and thus
commute with multiplication by ck(Y ) on the left).
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2.6. Case V = V1 . In the particular case where V = V1 and Spf is the ordinary
pfaffian Pf , we have the following simplification which regain results of Mathäı-
Quillen ([13]) and Magneron ([11]). Since here the situation is purely algebraic, we
can work with C as ground field. We fix an oriented orthonormal basis (f1, . . . , fn)
of V . Let (ξ1, . . . , ξn) be its dual basis. Then (ξJ)J∈{0,1}n is a basis of S(V ∗). We
define as above cJ , c̃J and ∂J , for |J | = j1 + · · ·+ jn even.

For J ∈ {0, 1}n , we put VJ = Cj1f1 + · · · + Cjnfn . For J = (j1, . . . , jn) ∈
{0, 1}n we denote by J ′ = (j′1, . . . , j

′
n) ∈ {0, 1}n its complementary: ji + j′i = 1.

We have V = VJ ⊕ VJ ′ . We denote by pJ : V → VJ the projection of V onto VJ
with ker(pJ) = VJ ′ .

We consider the case |J | even. Since (f1, . . . , fn) is an orthonormal oriented
basis of V the non-degenerate symmetric bilinear form on V1 restricts to a non-
degenerate symmetric bilinear form on VJ . Let (ξ1, . . . , ξn) be the dual basis of
(f1, . . . , fn). We give to VJ the orientation defined by ξJ . Let 1 ≤ j1 < · · · < jr ≤
n such that ξJ = ξj1 . . . ξjr . Then (fj1 , . . . , fjr) is an orthonormal oriented basis
of VJ .

Let Y ∈ so(V1). We put:

YJ : VJ → VJ ; v 7→ YJ(v) = pJ
(
Y (v)

)
. (46)

We have YJ ∈ so(VJ). The matrix of YJ in the basis (fj1 , . . . , fjr) is obtained
from the matrix of Y in the basis (f1, . . . , fn) as the submatrix corresponding of
rows and columns (j1, . . . , jr).

We define ε(J, J ′) ∈ {−1, 1} by the formula:

ε(J, J ′)ξJξJ
′
= ξ1 . . . ξn; (47)

it is the signature of the permutation (1, . . . , n) 7→ (j1, . . . , jr, j
′
1, . . . , j

′
n−r).

Using this notations we have:

Proposition 2.3. For V = V1 , formula (43) reads (cf. [13, 14, 11]):

Pf(X + Y ) =
∑

J∈{0,1}n/|J |even

ε(J, J ′) Pf(XJ) Pf(YJ ′). (48)

Proof. We have:
cJ(Y ) = (−1)

|J|(|J|−1)
2 Pf(YJ). (49)

For J = (1, . . . , 1) it is the definition of Pf , and in the other cases it follows (see
[13]) by evaluating exp(µ(X, v)) at ξj

′
1 = · · · = ξj

′
n−r = 0.

We obtain for Y ∈ so(V1):

cJ ′(Y ) = (−1)
n(n−1)

2 ε(J, J ′)c̃J(Y ). (50)

Since for |J | even: (−1)
n(n−1)

2
+
|J|(|J|−1)

2
+
|J′|(|J′|−1)

2 = 1 = (−1)|J | , the formula follows.

2.7. Case X ∈ (spo(V )0)P and Y ∈ (spo(V )1)P .

We fix a symplectic oriented basis (ei, fj) of V . Let I = (i1, . . . , im) ∈ Nm

be a multiindice. We put: xI = (x1)i1 . . . (xm)im . Then:
(
ξJxI

)
(I,J)∈Nm×{0,1}n ,
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is a basis of S(V ∗). For I = (i1, . . . , im) ∈ Nm we put |I| = i1 + · · · + im and
I! = i1! . . . im! . Moreover we put:

∂|I|

∂xI
=

∂|I|

(∂x1)i1 . . . (∂xm)im
and

∂|J |

∂xJ
=

∂|J |

(∂ξ1)j1 . . . (∂ξn)jn
. (51)

Let P be a near superalgebra. Let v ∈ V ⊗V ∗ be the generic point of
V . Let X ∈ spo(V )P . We define cI,J(X) as the coefficient of ξJxI in the Taylor
formula:

exp(µ(X, v)) =
∑

(I,J)∈Nm×{0,1}n
ξJxIcI,J(X). (52)

(In particular, for X ∈ spo(V )P such that b(X) ∈ so(V1), since µ(X, v) is nilpo-

tent, the sum is finite.) When |I|+ |J | is even, it defines cI,J ∈ S
|I|+|J|

2 (spo(V )∗).
When |I|+ |J | is odd, we have cI,J(X) = 0. We put:

c̃I,J(X) =

∫
V

dV (v)(ξJxI)(v) exp
(
µ(X, v)

)
. (53)

and for A ∈ sp(V0)P :

c̃I(A) =

∫
V0

dV0(v0)(xI)(v0) exp
(
− 1

2
B(v0, Av0)

)
. (54)

To avoid confusing notations, in the rest of this paragraph we denote by B
the symplectic form on V . We put:

X =

(
A 0
0 D

)
and Y =

(
0 B
C 0

)
. (55)

with A ∈ sp(V0)P , D ∈ so(V1)P , B ∈ Hom(V1, V0)P and C ∈ Hom(V0, V1)P . We
have C = −B∗ , where B∗ is defined by:

∀v ∈ V0⊗P0, ∀w ∈ V1⊗P1, B(B∗v, w) = B(v,Bw)

Let v0 be the generic point of V0 , v1 be the generic point of V1 and
v = v0 + v1 be the generic point of V . We have:

µ(X, v) = −1

2
B(v0, Av0)− 1

2
B(v1, Dv1). (56)

Assume that b(X) ∈ V+ , that means b(A) ∈ U+ . Then, with the no-

tations of the preceding subsection, for |J | even, we have (−1)
|J′|(|J′|−1)

2
+

n(n−1)
2 =

(−1)
|J|(|J|−1)

2 , and so:

c̃I,J(X) =

∫
V0

dV0(v0)xI(v0) exp(−1

2
B(v0, Av0))∫

V1

dV1(v1)ξJ(v1) exp(−1

2
B(v1, Dv1))

= (−1)
|J|(|J|−1)

2 ε(J, J ′)c̃I(A) Pf(DJ ′).

(57)

We compute cI,J(Y ). Let us introduce some notations.
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Since B = −C∗ we have: µ(Y, v) = −B(v1, Cv0).

Let (I, J) ∈ Nm×{0, 1}n . We denote by CJ,I the |J |× |I| matrix obtained
from C by keeping jk times the k -th line of C (in other words we keep the lines
(j1, . . . , jr)) and ik times the k -th column of C .

Example: Assume that (m,n) = (3, 4). Let I = (2, 0, 1) and J = (0, 1, 1, 1)
and

C =


α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

δ1 δ2 δ3

 , then: CJ,I =

β1 β1 β3

γ1 γ1 γ3

δ1 δ1 δ3

 . (58)

Let r ∈ N . We denote by Sr the group of permutations of {1, . . . , r} . We
denote by φr the r -multilinear form on the r × r matrix antisymmetric in the
lines, symmetric in the columns defined for M = (ai,j)1≤i,j≤r with ai,j ∈ P1 by:

φr(M) =
∑
σ∈Sr

a1,σ(1) . . . ar,σ(r) (59)

In the sequel we put for C ∈ Hom(V0, V1)⊗P1 and I, J ∈ Nm × {0, 1}n :

cI,J(C) =

{
0 if |I| 6= |J |;
(−1)

|J|(|J|−1)
2 φ|J |(CJ,I) if |I| = |J |.

(60)

With this notations we have: cI,J(Y ) = cI,J(C).

Example: We take the preceding example with (m,n) = (3, 4), Y =(
0 B
C 0

)
with C as above, I = (2, 0, 1) and J = (0, 1, 1, 1). Then:

cI,J(Y ) = cI,J(C) = −φ3(CJ,I) = −2(β1γ1δ3 + β1γ3δ1 + β3γ1δ1) (61)

Formula (43) gives:

Proposition 2.4. Let P be a near superalgebra and

(
A B
C D

)
∈ spo(V )P(V+),

then:

Spf

(
A B
C D

)
=

∑
(I,J)∈Nm×Jn / |I|=|J | even

(−1)
|J|(|J|−1)

2 ε(J, J ′)cI,J(C) Pf(DJ ′)c̃I(A).

(62)

2.8. Spf(−X−1) and Spf2 .

Let W be a supervector space. Let w ∈ (V ⊗W ∗)0 . Let P be any near
superalgebra. For w ∈ WP , w(w) belongs to VP and v 7→ B(v,w(w)) is linear on
V while v 7→ B(v,Xv) is quadratic. Thus, as in proof of theorem 2.1, for any near
superalgebra P we define an analytic function ψP on spo(V )P(V+)×WP ×C by
the formula:

ψP(X,w, λ) =

∫
V

dV (v) exp
(
µ(X, v) + λB(v,w(w)

)
. (63)

As in the proof of theorem 2.1, we prove that there is a function ψ on
spo(V )×W ×C defined on V+ ×W0 ×C such that for any near superalgebra P
and (X,w, λ) ∈ spo(V )P(V+)×WP × C , we have ψ(X,w, λ) = ψP(X,w, λ).

We define:
Spfwλ (X,w) = ψ(X,w, λ). (64)

Thus, for λ ∈ C , we have Spfwλ ∈ C∞spo(V )×W (V+ ×W0).
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Lemma 2.3. (cf. [13] for the case V = V1 .) Let X ∈ spo(V )P(V+) be
invertible (since b(X)|V0 is already invertible, it means that b(X)|V1 is invertible)
and w ∈ WP . We have:

Spfwλ (X,w) = Spf(X) exp(
−λ2

2
B(w(w), X−1w(w))). (65)

Proof. Since X∗ = −X , we have:

µ(X, v) + λB(v,w(w)) = −1

2
B(v − λX−1w(w), X(v − λX−1w(w)))

+
λ2

2
B(X−1w(w),w(w)).

(66)

We put:

φ(X,λ,w) =

∫
V

dV (v) exp(−1

2
B(v − λX−1w(w), X(v − λX−1w(w)))). (67)

It is an analytic function on V+×C×V . Since dV (v) is invariant by translations, we
have on V+×R×V : φ(X,λ,w) = Spf(X). By uniqueness of analytic continuation,
it follows that for any λ ∈ C , we have φ(X,λ,w) = Spf(X).

Applying this lemma for various particular values of W and w we obtain
some useful formulas. First, we take W to be a supervector space isomorphic to
V and w ∈ V ⊗W ∗ be an isomorphism W → V . Let D ∈ S(V ), P ∈ S(V ∗) and
X ∈ spo(V )P(V+). We define:

cD(X) =
(
∂D exp(µ)

)
(X, 0); (68)

c̃P (X) =

∫
V

dV (v)P (v) exp(µ(X, v)). (69)

We extend the isomorphism B# : V → V ∗ to an isomorphism of algebras
B# : S(V ) → S(V ∗). We put for D ∈ S(V ): D# = B#(D). Let v ∈ V ⊗V ∗ be
the generic point of V . For D ∈ Sk(V ) we have: ∂Dv

k = k!D and:

∂w−1(D)

(
B(v,w)k

)
= (−1)kk!D#(v). (70)

Corollary 2.2. Let X ∈ spo(V )P(V+) be invertible.

1. If D ∈ S2k+1(V ), we have c̃D#(X) = cD(−X−1) = 0.

2. If D ∈ S2k(V ) we have c̃D#(X) = cD(X−1) Spf(X).

For <(λ2) < 0 (in this case λ2X−1 ∈ spo(V )P(V+)× ispo(V )P ):

(−λ2)
m−n−2k

2 (−1)kcD(X) = c̃D#(λ2X−1) Spf(X).

Remark: We point out that in case V = V0 formula (2) is Wick’s calculus
(cf. for example [5, Chapter 9.1]).



16 P. Lavaud

Proof. The first point is clear. We consider the second point. Let v ∈ V ⊗V ∗
be the generic point of V . Let D ∈ S2k(V ). Then:

∂w−1(D) exp(λB(v,w)) = (−λ)2kD#(v) exp(λB(v,w)). (71)

We apply 1
λ2k
∂w−1(D) to the exponential of equality (66), we apply the

distribution dV and then, we take the value at (X, 0). Since, cD(λ2X−1) =
λ2kcD(X−1), formula (2) follows.

For the second formula, we need an auxiliary result. Consider the applica-
tion:

φ 7→ Fλ(φ) =

∫
W

dW (w)

∫
V

dV (v)φ(v) exp(λB(w(w), v)). (72)

It is defined for φ ∈ C∞V (V0) such that, v 7→ φ(v) exp(λB(w(w), v)) and all its
derivatives are rapidly decreasing on V for any w ∈ WP . It is linear and φ(0) = 0
implies that Fλ(φ) = 0. Thus, there is Kλ ∈ C such that Fλ(φ) = Kλφ(0). To
find Kλ it is enough to consider a particular φ . For example φ(v) = exp(µ(X, v))
(φ = exp(µ̌(X))) for some X ∈ spo(V )P(V+) fixed. In this case formula (66)
shows that:

Fλ
(

exp(µ̌(X))
)

=

∫
V

dV (v) exp(µ(X, v))

∫
W

dW (w) exp(
−λ2

2
B(w(w), X−1w(w))).

hypothesis <(λ2) < 0 implies that λ2X−1 ∈ spo(V )P(V+) and thus, the above
integral converges. More precisely, since exp(µ(X, 0)) = 1, we have:

Kλ = Fλ
(

exp(µ̌(X))
)

= Spf(X) Spf(λ2X−1). (73)

Since it does not depends on X it is sufficient to consider

X =



J2 0
. . .

0 J2

0 0
. . .

0 0
0 0

. . .

0 0

J2 0
. . .

0 J2


(74)

where J2 =

(
0 −1
1 0

)
. We obtain: Kλ = (−λ2)

n−m
2 .

We multiply both sides of the exponential of equality (66) by D#(w(w)),
we integrate on V against dV (v) and integrate on W against dW (w). The right
hand side is straightforward. For the left hand side we have (the first equality is
obtained by integration by parts using equation (70)):

∫
W

dW (w)D#(w(w))

∫
V

dV (v) exp(µ(X, v) + λB(v,w(w)))

= (−λ)−2k

∫
W

dW (w)

∫
V

dV (v)
(
∂D exp(µ)

)
(X, v) exp(λB(v,w(w)))

= (−λ)−2kFλ
(
∂D exp(µ̌(X))

)
= (−λ)−2k(−λ2)

n−m
2

(
∂D exp(µ̌)(X)

)
(0)

= (−λ2)
n−m−2k

2 (−1)kcD(X).
(75)
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In the end of this subsection, to avoid confusing notations, we denote by
B the symplectic form on V ; moreover, we denote by v0 =

∑
i

eix
i (resp. v1 =∑

j

fjξ
j ) the generic point of V0 (resp. V1 ). Let P be a near superalgebra and D ∈

so(V1)P . Let J ∈ {0, 1}n . We define cI(D) by the formula: exp(−1
2
B(v1, Dv1)) =∑

J∈{0,1}n
ξJcJ(D). As a corollary of equation (65) we obtain:

Corollary 2.3. Let P be a near superalgebra. Let A ∈ sp(V0)P(U+), B ∈

Hom(V1, V0)⊗P1 and C ∈ Hom(V0, V1)⊗P1 such that

(
A B
C 0

)
∈ spo(V )P .

Then for any J ∈ {0, 1}n with |J | even:

∑
I∈Nm /|I|=|J |

(−i)|J |c̃I(A)cI,J(C) =
1√

det(A)
cJ(CA−1B)

=
(−1)

|J|(|J|−1)
2√

det(A)
Pf((CA−1B)J).

(76)

Proof. For v ∈ V0⊗P0 and w ∈ V1⊗P1 . we have: B(v,Bw) = B(w,Cv).
The coefficient of ξJxI in exp(−B(v0, Bv1)) = exp

(
− 1

2
(B(v0, Bv1)+B(v1, Cv0))

)
is cI,J(C). On the other hand, we have for w ∈ V1⊗P1 :

B(Bw,A−1Bw) = −B(w,CA−1Bw).

Consider equation (65) with V = V0 , W = V1 , X = A , and: w(w) = Bw .

We apply
(

∂
∂ξn

)jn
. . .
(
∂
∂ξ1

)j1 to (65) and take value at (X, 0). Then equality (76)

follows by multiplying each side by (−i)|J|
λ|J|

.

Similarly, for I ∈ Nm and A ∈ sp(V0)P , we define cI(A) by the formula
exp(−1

2
B(v0, Av0)) =

∑
I∈Nm

xIcI(A). We obtain:

Corollary 2.4. Let P be a near superalgebra. Let D ∈ so(V1)P invertible, B ∈

Hom(V1, V0)⊗P1 and C ∈ Hom(V0, V1)⊗P1 such that

(
0 B
C D

)
∈ spo(V )P .

Then for any I ∈ Nm with |I| even:∑
J∈Jn /|I|=|J |

ε(J, J ′)(−1)
|J|(|J|−1)

2 Pf(DJ ′)cI,J(C) = Pf(D)cI(BD
−1C). (77)

Proof. Here we apply formula (65) with V = V1 , W = V0 , X = D and

w(w) = Cw. (78)

We apply 1
I!

∂i1

∂y
i1
1

. . . ∂
im

∂yimm
to (65) and take value at (X, 0). Then, using (49) and

(50), equality (77) follows from multiplication of each side by (−1)
|I|
2

λ|I|
.
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Proposition 2.5. We have in Cωspo(V )(V+).

Spf2 = Ber− . (79)

It is equivalent to say that for any near superalgebra P and X ∈ spo(V )P(V+)×
i spo(V )P , we have:

Spf2(X) = Ber−(X). (80)

Proof. Proposition 2.1 with g = X−1 gives:

Spf(−X−1) = Ber−1
(1,0)(X

−1) Spf(X). (81)

Since on V+ , Ber−1
(1,0) = Ber− , the result follows from multiplying both sides

by Ber−(X) Spf(X) and using formula (73) with λ = i .

2.9. Product formulas.

First we consider the case X ∈ spo(V )P(V+). Let X =

(
A B
C D

)
. We put

X∗ =

(
A∗ C∗

B∗ D∗

)
. Then, X ∈ spo(V )P is equivalent to X∗ = −X . Moreover,

X ∈ spo(V )P(V+) implies that A is invertible. It follows that: A∗ = −A; D∗ =
−D; C∗ = −B . Using the formula:(

A B
C D

)
=

(
1 A−1B
0 1

)∗(
A 0
0 D − CA−1B

)(
1 A−1B
0 1

)
, (82)

we obtain from (31) the formula:

Spf

(
A B
C D

)
= Spf

(
A 0
0 D − CA−1B

)
=

Pf(D − CA−1B)√
det(A)

. (83)

We explain the relation with formula (62). Taylor formula (48) for Pf(D−
CA−1B) gives:

Pf(D − CA−1B) =
∑

J∈{0,1}n/|J | even

ε(J, J ′) Pf((−CA−1B)J) Pf(DJ ′). (84)

Compatibility with formula (62) follows from formula (76) because, for |J | even,

we have (−i)|J | = (−1)
|J|(|J|−1)

2 .

Now, we consider the case where X ∈ spo(V )P(V+) is invertible. As before

we put X =

(
A B
C D

)
. We assume moreover that D is invertible. Using the

formula

(
A B
C D

)
=

(
1 0

D−1C 1

)∗(
A−BD−1C 0

0 D

)(
1 0

D−1C 1

)
, (85)

We obtain:

Spf

(
A B
C D

)
= Spf

(
A−BD−1C 0

0 D

)
=

Pf(D)√
det(A−BD−1C)

. (86)

Compatibility with formula (62) comes from formula (43) for the function
1√

det(A−BD−1C)
and equation (77).

2.10. Homogeneity.
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Proposition 2.6. The superPfaffian is a homogeneous function of degree n−m
2

on V+ × i spo(V ).

Proof. It follows from proposition 2.1.

3. The SuperPfaffian as a generalized function

In this section we define Spf as a generalized function on spo(V ) by the
formula:

Spf(X) = i
m−n

2

∫
V

dV (v) exp(− i

2
B(v,Xv)) (87)

The meaning of this formula is the following: for any smooth compactly supported
distribution t on spo(V ), we have:∫

spo(V )

t(X) Spf(X) = i
m−n

2

∫
V

dV (v)

∫
spo(V )

t(X) exp(− i

2
B(v,Xv)). (88)

where the inner integral of the right hand side is a rapidly decreasing function on
V (cf. below). This generalized function on the supermanifold spo(V ) coincides
on V+ with the superPfaffian defined in the preceding section.

3.1. A well defined generalized function. In this section we prove that
formula (87) defines a generalized function on sp(V0), with values in a finite
dimensional subspace of S

((
so(V1)⊕ spo(V )1

)∗)
. This ensures that formula (87)

defines generalized function on spo(V ). The point is to show that∫
spo(V )

t(X) exp(− i

2
B(v,Xv))

is rapidly decreasing on V .

Let us fix some notations. Let v ∈ V ⊗V ∗ be the generic point of V . We
denote by µ̃ ∈ spo(V )∗⊗S2(V ∗) the polynomial of degree 2 on V with values in
spo(V )∗ such that for any near superalgebra P and any X ∈ spo(V )P :

µ̃(v)(X) = µ(X, v). (89)

In particular for u ∈ VP , µ̃(u) ∈ spo(V )∗P .

Let ρ be a smooth compactly supported distribution on sp(V0). We denote
by ρ̂ its Fourier transform. It is the smooth rapidly decreasing function on sp(V0)∗

(in sense of Schwartz) which is defined for f ∈ sp(V0)∗ by the formula:

ρ̂(f) =

∫
sp(V0)

ρ(X) exp(−if(X)), (90)

We fix J ∈ U+ . Then B(v, Jv) is a positive definite quadratic form on V0 .

For u ∈ V0 , we put: ‖u‖ =
√

1
2
B(u, Ju).

We fix a norm N ′ on spo(V )0 and denote by N the associated norm on

spo(V )∗0 . For f ∈ spo(V )∗0 we have: N(f) = Sup
Y ∈spo(V )0\{0}

|f(Y )|
N ′(Y )

. Thus we have for

u ∈ V0 :

N(µ̃(u)|sp(V0)) >
|µ̃(u)(J)|
N ′(J)

=
‖u‖2

N ′(J)
; (91)
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where µ̃(u)|sp(V0) is the restriction of µ̃(v0) to sp(V0).

For X ′′ ∈
(
so(V1)⊕ spo(V )1

)
P , we put:

φ(X ′′, v) =

∫
sp(V0)

ρ(X ′) exp
(
− i

2
B(v, (X ′ +X ′′)v)

)
(92)

Lemma 3.1. For any X ′′ ∈
(
so(V1) ⊕ spo(V )1

)
P , φ(X ′′, v) is a well defined

rapidly decreasing function on V . Moreover, φ is polynomial in X ′′ .

Proof. Let v0 ∈ V0⊗V ∗0 be the generic point of V0 and v1 ∈ V1⊗V ∗1 be
the generic point of V1 . We have v = v0 + v1 . Then: B(v, (X ′ + X ′′)v) =
−2µ̃(v0)(X ′) +B(v,X ′′v). It follows

φ(X ′′, v) = ρ̂
(
− µ̃(v0)|sp(V0)

)
exp

(
− i

2
B(v,X ′′v)

)
. (93)

Since b(X ′′) ∈ so(V1), we have:

B(v,X ′′v) = B(v1, b(X ′′)v1) +B(v, (X ′′ − b(X ′′))v). (94)

Hence, B(v,X ′′v) is nilpotent and X ′′ 7→ exp(− i
2
B(v,X ′′v)) defines a polynomial

function on so(V1)⊕ spo(V )1 with values in S(V ∗). In particular φ is polynomial
in X ′′ . Since ρ̂ is rapidly decreasing on sp(V0)∗ , formula (91) ensures that
the function ρ̂(−µ̃(v0)|sp(V0)) is rapidly decreasing on V0 . Thus, for any X ′′ ∈(
so(V1)⊕ spo(V )1

)
P , φ(X ′′, v) is a rapidly decreasing function on V .

The integral:

h(X ′′) =

∫
V

dV (v)φ(X ′′, v) =

∫
V

dV (v)

∫
sp(V0)

ρ(X ′) exp
(
− i

2
B(v, (X ′ +X ′′)v)

)
(95)

converges and it defines a polynomial function on so(V1)⊕ spo(V )1 . This means
that Spf is a generalized function on sp(V0) with values in S

(
(so(V1)⊕spo(V )1)∗

)
.

3.2. Comparison with the analytic version of section 2.. In this section
we denote by Spfan the analytic superPfaffian defined on V+×i spo(V ) by formula
(22) and by Spfgene the generalized superPfaffian defined on spo(V ) by formula
(87).

The function

(X, iY ) 7→ i
m−n

2 Spfan(i(X + iY )) (96)

is analytic on spo(V ) × iV− . We consider it as an analytic function on the open
cone spo(V )0 × iV− of spo(V ⊗C)0 with values in Λ(spo(V )∗1).

We fix a relatively compact open neighborhood X of 0 in spo(V )0 . Since
Spf is homogeneous of degree n−m

2
it follows that for any relatively compact open

subset W ⊂ spo(V )0 , there exists a constant KW such that for any (X, iY ) ∈
W × i(V− ∩ X ) and any homogeneous differential operator D ∈ Λ(spo(V )1) we
have for some k ∈ N :∣∣∣(D Spfan

)
(i(X + iY ))

∣∣∣ =
∣∣∣(D Spfan

)
(−Y + iX))

∣∣∣ 6 KWN
′(Y )−k. (97)

(N ′ is a norm on spo(V )0 .)
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Then [6, Theorem 3.1.15] shows that its limit when Y goes to 0 in V−
exists as a generalized function on spo(V )0 with values in Λ(spo(V )∗1). We have:

Spfgene(X) = lim
Y→0,Y ∈V−

i
m−n

2 Spfan(i(X + iY )). (98)

Since Spfan is the holomorphic extension of Spfan |V+ . It is entirely de-
termined by Spfan |V+ . On the other hand, since Spfgene(X) is the limit of

i
n−m

2 Spfan(i(X + iY )), Spfgene is determined by Spfan and thus by Spfan |V+ .
In particular it follows that Spfgene possesses the properties of Spfan .

Let P be a near superalgebra and X ∈ spo(V )P(V+), let ε > 0, we have:

Spfan((ε+ i)X) = (i + ε)
n−m

2 Spfan(X) (99)

It follows, taking the limit of (99) when ε goes to zero that:

Spfgene |V+ = Spfan |V+ . (100)

(φ|V+ denotes the restriction of the (generalized) function φ to the open set V+ .)
In particular, Spfgene is analytic on V+ . From now on Spf stands for Spfgene , and

for (X, Y ) ∈ spo(V ⊗C)P
(
V+×ispo(V )0

)
Spf(X+iY ) stands for Spfan(X+iY ).

3.3. Evaluation of Spf on Vp,q . We recall notations Up,q and Vp,q from section
2..

Proposition 3.1. Let P be a near superalgebra. Let (p, q) ∈ N2 such that
p+q = m. Let X ∈ spo(V )P(Vp,q). It means that X is represented in a symplectic

basis (e1, . . . , em, f1, . . . , fn) by X =

(
A B
C D

)
∈ spo(V )P , with b(A) ∈ Up,q . We

have:

Spf

(
A B
C D

)
= iq

Pf(D − CA−1B)√∣∣ det(A)
∣∣ . (101)

where we recall that Pf is the ordinary Pfaffian.

Proof. The first equality in formula (83) implies that it is enough to prove the
formula for X ∈

(
spo(Vp,q)0

)
P .

First, consider the particular case where X ∈ spo(V )P(V+). In this case
(p, q) = (m, 0), thus the coefficient is i0 = 1 and for X ∈ spo(V )P(V+), b(A) ∈ U+

and thus det(b(A)) > 0. The proposition reduces in this case to formula (83).
Since Vp,q is a purely even real manifold, it is enough to consider P = R and

X ∈ Vp,q . We put X =

(
A 0
0 D

)
, with A ∈ Up,q and D ∈ so(V0). Then:

Spf(X) = i
m−n

2

∫
V0

dV0(v0) exp(− i

2
B(v0, Av0))

∫
V1

dV1(v1) exp(− i

2
B(v1, Dv1)).

(102)

On one hand:∫
V1

dV1(v1) exp(− i

2
B(v1, Dv1)) = i

n
2 Pf(D). (103)
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On the other hand, it is well known (cf. for example [6, formula 3.4.6]) that
for A ∈ Up,q :∫

V0

|dx1 . . . dxm| exp
(
− i

2
B(v0, Av0)

)
=

(2π)
m
2

exp(ip−q
4
π)
√∣∣ det(A)

∣∣ . (104)

Since p+ q = m , i
m
2

exp(i p−q
4
π)

= iq and the formula follows.

In particular, it implies that Spf is smooth on V (in fact it is analytic) and
that for any X ∈ spo(V )P(V), we have: Spf(X)2 = Ber−(X).

3.4. Example: spo(2, 2).

Let us consider as an example the case g = spo(2, 2). Let P be a near
superalgebra. The algebra spo(2, 2)P is the set of matrices:

X =

 A B

C D

 =


a b
c −a

β δ
−α −γ

−α −β
−γ −δ

0 −d
d 0

 (105)

where a, b, c, d ∈ P0 and α, β, γ, δ ∈ P1. Here V = R(2,2) is endowed with the
symplectic form B given in the canonical base (e1, e2, f1, f2) (|ei| = 0 and |fi| = 1)
by B(fi, fj) = δji , B(e1, e2) = −B(e2, e1) = 1, B(e1, e1) = B(e2, e2) = 0 and
B(ei, fj) = B(fj, ei) = 0, and the orientation of V1 defined by the basis (f1, f2).

We have:

CA−1B =
1

a2 + bc

(
0 −(aαδ − bαγ + cβδ + aβγ)

aαδ − bαγ + cβδ + aβγ 0

)
.

(106)

We denote by Spf0 the superPfaffian on sp(R2) = sl(2,R). For X ∈
spo(2, 2)P(V) (V = U × so(2)), we get from (101):

Spf(X) =
(
d− a(αδ + βγ)− bαγ + cβδ

a2 + bc

)
Spf0

(
a b
c −a

)
, (107)

with (cf. formula (101)):

Spf0

(
a b
c −a

)
=

1√
−(a2 + bc)

if

(
a b
c −a

)
∈ U2,0 (108)

Spf0

(
a b
c −a

)
=

−1√
−(a2 + bc)

if

(
a b
c −a

)
∈ U0,2 (109)

Spf0

(
a b
c −a

)
=

i√
a2 + bc

if

(
a b
c −a

)
∈ U1,1. (110)

We denote by (x, y, ξ, η) the system of coordinates on R(2,2) dual of (e1, e2, f1, f2).
Let v = e1x+ e2y + f1ξ + f2η be the generic point of R(2,2) . We have:

µ(X, v) = dηξ + αξx+ βξy + γηx+ δηy − c

2
x2 + axy +

b

2
y2. (111)
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Since dV (v) = 1
2π
|dx dy| ∂

∂ξ
∂
∂η

, we have:

∫
R(2,2)

dV (v) exp(iµ(X, v)) =

1

2π

∫
R2

|dx dy|
(
id− (αx+ βy)(γx+ δy)

))
exp i(− c

2
x2 + axy +

b

2
y2), (112)

We compute the integral on the right hand side. We put

H =

(
αδ+βγ

2
βδ

−αγ −αδ+βγ
2

)
. (113)

If v0 = e1x+ e2y is the generic point of R2 , we have:

−(αx+ βy)(γx+ δy) = B(v0,Hv0). (114)

Thus

−
∫
R2

|dx dy| (αx+ βy)(γx+ δy) exp i(− c
2
x2 + axy +

b

2
y2)

= 2i∂H

∫
R2

|dx dy| exp− i

2
B(v0, Av0).

(115)

Since

Spf0

(
a b
c −a

)
=

i

2π

∫
R2

|dx dy| exp− i

2
B(v0, Av0),

we have in C−∞spo(V )(spo(V )0):

Spf(X) =
(
d+ 2

(αδ + βγ

2

∂

∂a
+ βδ

∂

∂b
− αγ ∂

∂c

))
Spf0

(
a b
c −a

)
. (116)

From this equation we deduce again (107).

3.5. The superPfaffian as the Fourier transform of a coadjoint orbit. In
this section we assume that V = V0 . Let Sp(V ) be the corresponding symplectic
group, and sp(V ) its Lie algebra. Recall, formula (89), the moment map µ̃ : V →
sp(V )∗ . The image µ̃(V ) is the disjoint union of a nilpotent Sp(V )-orbit Ω and
of {0} . The coadjoint orbit Ω is a symplectic manifold. The Fourier transform of
its Liouville measure (defined as in [2], section 7.5) is a generalized function FΩ

on sp(V ). The restriction of µ̃ to V \ {0} is a double cover of Ω. It follows easily
that we have :

Spf = 2FΩ. (117)

3.6. Singularities and wave front set.

We recall that a generalized function φ on spo(V ) is a generalized function
on spo(V )0 with values in Λ(spo(V )∗1). The support of singularities of φ , denoted
by singsupp(φ), and for any X ∈ singsupp(φ) its wave front set at X , denoted by
WFX(φ) is defined as usual (cf. for example [6, chapter 8]). For the superPfaffian
the Taylor formula (62) shows that the support of singularities and the wave front
set of Spf are those of its restriction to sp(V0). The preceding section implies:
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Proposition 3.2. We have singsupp(Spf) = spo(V )0 \ V and for any X ∈
singsupp(φ) WFX(Spf) ⊂ µ̃(V0) \ {0}.

3.7. Uniqueness results. We put:

(V−)0 =
{
f ∈ spo(V )∗0 /∀X ∈ V−, f(X) > 0

}
. (118)

We have µ̃(V0) ⊂ (V−)0 . As a direct application of [6, Theorem 8.4.15] we obtain.

Theorem 3.1. Let V be a symplectic supervector space. Let V+ , V− , (V−)0 ,
singsupp(Spf), be defined as above. Let φ ∈ C−∞spo(V )(spo(V )0) be a generalized

function on spo(V ), such that:

1. φ is smooth on V+ and (φ|V+)2 = Ber−

2. WF (φ) ⊂ spo(V )0 × (V−)0 .

Then, we have φ = Spf or − Spf . More precisely, an orientation of V1
chooses between Spf and − Spf .

Proof. Let φ ∈ C−∞spo(V )(spo(V )0) satisfying the above conditions. Condition

(2) and [6, Theorem 8.4.15] imply that for any open convex cone Γ with closure
included in V−

⋃
{0} , there is an analytic function F on spo(V ) × iΓ such that

on spo(V ):

φ(X) = lim
Y→0, Y ∈Γ

F (X + iY ). (119)

We choose an orientation of V1 . Condition (1) implies that on V+ , φ(X) =
± Spf(X). Thus, by [6, Theorem 3.1.15 and Remark], we have on spo(V )× iΓ

F (X + iY ) = ±i
m−n

2 Spf(i(X + iY )). (120)

where we recall that Spf(i(X + iY )) is the analytic function on V+ × i spo(V )
defined by formula (22). Thus equation (98) implies that φ = ± Spf .

Since changing the orientation of V1 changes Spf to − Spf , the last remark
follows.

Remark: In the definition of Spf besides the orientation of V1 , we chose
a square root i of −1. Changing i into −i changes Spf(X) into Spf(X) which

is the limit of (−i)m−n
2 Spf(−i(X + iY )) when Y goes to 0 in V+ = −V− . In

particular:

WF (Spf) = −WF (Spf). (121)

In [10] we proved an other unicity theorem for the superPfaffian in the case
of sl(2,R). In this article it is proved that the superPfaffian is the unique square
root of 1/ det which is harmonic and Sp(2,R)-invariant up to sign and complex
conjugation.

3.8. Concluding Remarks. One motivation for this study comes from differ-
ential supergeometry. The equivariant Euler form of an equivariant real Euclidean
oriented fiber bundle is equal to the Pfaffian of the equivariant curvature of an
equivariant connection. With complications partly due to the fact that the su-
perPfaffian is only a generalized function, this is still true in supergeometry (cf
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[8, 9]). Formula (2) may be considered as particular typical case of the localiza-
tion formula in supergeometry.

A second motivation is the close relationship between the superPfaffian and
the distribution character of the metaplectic representation of the simply connected
Lie supergroup with Lie superalgebra spo(V ). This will be studied in another
paper.
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