
On the calculation of roots of unity in a number
field

Pascal Molin
IMJ

Université Paris 7
75013 Paris

Abstract

We review some algorithms for the calculation of roots of unity in a number field, and provide
evidence that hard cases exist for each of them. We suggest a hybrid approach with garanteed
polynomial complexity which proves to be efficient in practice.

Key words: roots of unity, Kannan’s algorithm, LLL algorithm, polynomial factorization,
linear programming, effective Čebotarev’s theorem.

1. Introduction

Let K be a number field. The computation of its torsion units µ(K) is a basic task
in algorithmic number theory, necessary in particular for the computation of the class
group. The problem is not considered to be hard, and Cohen (1993) recommends to use a
lattice enumeration technique due to Kannan. This has become a standard for computer
algebra systems.

This enumeration algorithm is efficient for most cases, however its estimated com-
plexity is exponential. In the context of extensive computations linked to class group
heuristics, many examples of moderate size have been found recently for which the au-
tomatic computation of torsion units bottlenecked the whole process, if not definitely
stopping it.

In addition, the computational context has evolved during the last 20 years, and great
improvements have been made in the directions of short vectors enumeration (Hanrot
and Stehlé, 2007), as well as polynomial factorization over number fields (Belabas, 2004).

? This research was carried out during my Ph.D. thesis at university Bordeaux 1.
Email address: pascal.molin@math.univ-paris-diderot.fr (Pascal Molin).
URL: http://www.math.jussieu.fr/~molinp (Pascal Molin).

Preprint submitted to Elsevier May 2010

This paper reconsiders several strategies for the computation of roots of unity: we
first recall Kannan’s small vectors point of vue; then we separate the two problems
of computing the order m = #µ(K), for which we propose heuristics, and the actual
algebraic computation of a primitive unit ζm ∈ OK, for which we give two algorithms: an
optimization of Belabas’s polynomial factorization algorithm to the cyclotomic setting,
and a LLL approach obtained via the complex embeddings.

We exhibit or construct critical examples for each technique. Along the way we present
a linear programming approach to build number fields with prescribed ramification.

A hybrid approach having polynomial complexity is proposed. It has been successfully
implemented as default algorithm in the PARI/gp software (function nfrootsof1).

Notations

For the following:
• K is a number field of degree n, OK its ring of integers and disc(K) its discriminant.

The algebraic norm of an element x ∈ K is denoted Norm(x).
• For m > 2, µm is the set of m-th roots of unity. A m-th primitive root is denoted ζm.
We write µ(K) for the roots of unity present in K.
• p is a prime number, p a prime integral ideal dividing it in OK. Let k(p) be its residual
field and Frobp the Frobenius automorphism induced in K, if the extension is Galois.
• for σ an embedding K ↪→ C, we denote by xσ its action on x.

2. Torsion units as short vectors: Kannan’s algorithm

K being a separable extension, it has n = [K : Q] complex embeddings

σ : K ↪→ C.

This makes it possible to define a product

〈x, y〉 =
∑
σ

xσyσ, x, y ∈ K (1)

endowing K⊗R with a Euclidean norm

‖x‖C =

√∑
σ

|xσ|2. (2)

This norm is related to the usual algebraic norm Norm(x) =
∏
σ x

σ by the arithmetic-
geometric means inequality

‖x‖2C > n |Norm(x)|
2
n . (3)

This allows to characterize the roots of unity in K as the shortest non-zero vectors of
the lattice OK. More precisely, we have (Cohen, 1993):

Proposition 1 (Kronecker). For all x ∈ OK \{0}, one has ‖x‖2C > [K : Q], with equality
if and only if x is a root of unity.

Thus the computation of roots of unity in K amounts to enumerating vectors in the
ellipsoid ‖x‖2C 6 n.

2

Contrary to other approaches, one advantage of this technique is that it combines the
problem of computing the order m = #µ(K), and that of finding an actual primitive
root ζm ∈ OK.

Two closely related algorithms perform this task: the first is due to Fincke and Pohst
(1985), the other to Kannan (1985). These are deterministic algorithms which rely on
an initial reduction of the lattice and a exhaustive enumeration of its short vectors. The
binary complexity of this task is in any case exponential, respectively 2O(n2) and O(n

n
2)

binary operations (Hanrot and Stehlé, 2007).

2.1. Results

Despite its huge theoretic complexity, this exhaustive search performs well in practice
in the following settings: low dimension (say n 6 50); when there are no non-trivial roots
of unity; or when K is cyclotomic.

However, one can easily construct number fields for which the enumeration step is
time consuming. In particular, random composita of fields of small degree provide many
hard cases.

As an example, the polynomial

P =x66 − x65 + x64 − x62 + 2x61 − 2x60 + x59 + x58 − 3x57 + 4x56 − 3x55

+4x53 − 7x52 + 7x51 − 3x50 − 4x49 + 11x48 − 14x47 + 10x46 + x45 − 15x44

−20x43 + 21x42 − 36x41 + 16x40 + 5x39 − 41x38 + 57x37 − 52x36 + 11x35

+46x34 − 98x33 + 109x32 − 63x31 − 35x30 + 144x29 − 207x28 + 172x27

−28x26 − 179x25 + 351x24 − 379x23 + 200x22 + 151x21 + 114x20 + 86x19

+65x18 + 49x17 + 37x16 + 28x15 + 21x14 + 16x13 + 12x12 + 9x11 + 7x10

+5x9 + 4x8 + 3x7 + 2x6 + 2x5 + x4 + x3 + x2 + 1

(4)

defines a field containing the forty-sixth roots of unity. The search for roots of unity using
Fincke-Pohst algorithm (with the PARI/gp implementation) has been interrupted after
four weeks on a dedicated machine.

3. Find the order

Computing the order m = #µ(K), or at least finding a close upper bound is much
simpler than computing a generator ζm. This is also a prerequisite for the algorithms we
will present next.

First of all, if there exist one real embedding σ : K ↪→ R, then µ(K) = µ(R) = {±1}.
In particular this is the case for all fields of odd degree n.

3.1. Ramification of primes

Greater restrictions can be obtained by the ramification of primes induced by the
inclusion Q(ζm) ⊂ K.

Proposition 2. Let p be a prime. If µpk ⊂ K, one has
• (p− 1) | n and k 6 1 + vp(n);
• k 6 b vp(disc(K))

n + 1
p−1c.

3

where n = [K : Q] and vp denotes the p-adic valuation.

Proof. The first point derives from the multiplicativity of degrees

[Q(ζpk) : Q] = (p− 1)pk−1 | n = [K : Q].

The second is obtained from the discriminants relation: if K ⊂ K then disc(K)[K:K] |
disc(K).

The cyclotomic field Q(ζpk) having degree (p− 1)pk−1 and discriminant (Lang, 1964)

disc(Q(ζpk)) = ±pp
k−1(pk−k−1),

the second inequality follows. 2

3.2. Decomposition of primes

The local global principle works for roots of unity.

Proposition 3. The following statements are equivalent:
(i) µm ⊂ K;
(ii) µm ⊂ Kp for each prime ideal p;
(iii) for every prime p not dividingm×discK and all prime ideals p dividing p, Norm(p) ≡

1 mod m.

Proof. We consider the Galois extension K(ζm)/K. Let us suppose that for each non
ramified prime p ⊂ OK one has Norm(p) ≡ 1 mod m, then the action of Frobp on ζm is
given by ζm 7→ ζ

Norm(p)
m = ζm, so that this Frobenius acts as identity. Čebotarev’s density

theorem concludes that the Galois group contains only the trivial class of conjugacy,
which means that the extension has degree 1. 2

Remark 4. Čebotarev’s theorem allows to replace every prime p by almost all primes,
that is a set of primes of density 1.

This proposition makes it possible to guess the number of roots of unity in K with
the following procedure: “compute the gcd of a number of values Norm(p) − 1 until it
stabilizes”.

Computationaly speaking, this is easy to implement, and one does not even need to
compute OK nor perform any arithmetic in K. If p is unramified in K = Q[x]/R(x), write

R(x) =
r∏
i=1

Ri(x) mod p (5)

the factorization of R(x) in Fp, which corresponds to the prime ideal decomposition

pOK =

r∏
i=1

pi (6)

with fi = deg(Ri) the inertia degree of the prime ideal pi. Then the gcd of Norm(pi)− 1
is simply pf − 1 where f = gcd {fi}.

4

Combining this idea with proposition 2, we obtain the following algorithm, in which
the parameter N will be discussed later.

Input: K a number field, N integer
Output: a multiple m of the number of roots of unity in K;
Set m = 0 and p = 2;
repeat

1 set p next unramified prime;
compute the decomposition of p in OK;
compute the gcd f of the inertia degrees;
set m = gcd(m, pf − 1);

until m stable since the last N loops;
for each divisor pkii of m do

if pi − 1 - [K : Q] then
ki = 0

else
ki = min(ki, 1 + vpi([K : Q]);
ki = min(ki, b

vpi (disc(K))

[K:Q] + 1
pi−1c);

end
done
return the product of pkii

Algorithm 1: Heuristic on the number of roots

This heuristic is quite precise in practice: the output number is in any case a multiple
of the number of roots of unity in K, and in most cases it matches the true value.

However, one can build “bad” number fields K, which means that any sensible imple-
mentation of Algorithm 1 (i.e. any reasonable value of N) will output a strict multiple
of m.

As an example, the number field

K = Q(
√
−51,

√
−230,

√
263,
√

307) (7)

has degree n = 8, and no real embedding. Running Algorithm 1,
• the ramification criterion gives µ(K) ⊂ µ24;
• the decomposition criterion of primes (p) gives µ(K) ⊂ µ24 for p 6 317, then µ(K) ⊂ µ4

for all primes p 6 2999.
However, these conclusions are still inaccurate. In fact, K contains only the trivial roots
µ2.

3.3. Randomized version

The example above seems to show that Algorithm 1 is ineffective. In fact, algorithm 1
can be made rigorous for explicit values of the parameter N . However such values must
be large, this will be discussed in the next section.

On the other hand, it is quite easy to randomize the algorithm so that it outputs the
correct value m with probability

P (m = #µ(K)) > 1− 2−N . (8)

One needs to replace the line 1 “set p next unramified prime” by “set p 6≡ 1 mod m a
random unramified prime”.

5

In fact, if d = [K(ζm) : K], only a density 1
d of unramified primes satisfy Norm(p) =

1 mod m, hence the result.

3.4. Effective Čebotarev’s theorems

In order to make proposition 3 effective, we introduce two quantities:
• the upper bound for m computed by considering all primes up to x

mK(x) = gcd {Norm(p)− 1, p | pOK, p 6 x unramified } . (9)

• the number of primes one needs to consider to get the correct value m = #µ(K) =
limx→∞mK(x)

S(K) = inf {x > 2,mK(x) = m where µ(K) = µm} . (10)

Algorithm 1 can be made rigorous if one is able to bound S(K). This question is solved
with effective versions of Čebotarev’s density theorems.

Under the generalized Riemann’s hypothesis (GRH), Lagarias and Odlyzko (1977,
cor1.2) give the following statement, (where the constant is due to Serre (1981)):

Theorem 5. Let L/K be a Galois extension, and assume that the Dedekind zeta function
of L does not have any zero of real part greater that 1

2 . Then for every conjugacy class
C of Gal(L/K), there exists an unramified prime p of K with Frobp ∈ C and

Norm(p) 6 c(log disc(L))2

where c is an absolute constant, which one can take equal to 70.

One applies this theorem to any non trivial class of automorphisms ofK(µm)/K, which
gives

Proposition 6. Under GRH, if µm 6∈ K then m - mK(x) for

x = 70
(
log disc(K(µm))

)2
.

On the other hand, one can use the bounds of (Serre, 1981, prop.4’) to give a criterion
which does not depend on disc(K(µm)):

Proposition 7. Under GRH, for all p, k such that µpk 6∈ K, then pk - mK(x) for

x > 70ϕ(pk)2
[
log disc(K) + n log(pϕ(pk))

]2
where n = [K : Q].

Corollary 8. Under GRH, and with the notation of proposition 7, Algorithm 1 outputs
the correct value m = #µ(K) for the choice of parameter

N = 70
(
n2disc(K) + 2n3 log(n)

)2
. (11)

Proof. Let pk be an integer such that µpk ⊂ K. From the ramification criterion, we
know that φ(pk) | n, in particular φ(pk) 6 n. The corresponding primes are then filtered
by the decomposition criterion under the bound of proposition 7. 2

6

{Di} S(K) S(K)/∆2
6 S(K)/∆6

{-1} 5 0.33 1.29

{-7} 11 0.44 2.20

{-23} 23 0.42 3.12

{-177} 59 0.29 4.15

{-2033} 101 0.28 5.29

{-172417} 149 0.19 5.32

{-58, 73} 227 0.14 5.67

{-311, 58} 317 0.15 6.91

{-1167, 389} 389 0.14 7.31

{-467, 1401} 467 0.16 8.54

{-1671, 557} 557 0.18 9.93

{-1707, 569} 569 0.18 10.12

{-2, -7, -1} 113 0.06 2.55

{-19, 5, 2} 191 0.07 3.53

{-47, -2, -7} 347 0.08 5.41

{-7, 5, 41} 359 0.10 6.06

{-87, -10, 19} 653 0.06 6.47

{-86, 17, 105} 977 0.08 9.07

Table 1. S(K) for quadratic fields, comparison with ∆6 = log discK(ζ6)

This bound is by far too big to be used in practice: on the example (4), Proposition 7
states we need to check all primes less than p = 12159134333 to prove (under GRH) that
µ(K) = µ46. In practice, S(K) = 5 already proves m | 46, and the next step is to find
ζ46.

In the next section, we investigate the sharpness of this bound on S(K).

3.4.1. Finding bad examples
We are looking for large values of S(K): our strategy is to choose a value m > 2, and

find numerically fields K such that m | mK(x) for large values of x, but µm 6⊂ K.
As a first example, we consider quadratic fields K = Q(

√
D) for m = 4 or m = 6 (i.e.

ϕ(m) = 2).
m = 4: We want Norm(p) ≡ 1 mod 4, which means that primes congruent to 3 mod 4

are inert, that is
(
D
p

)
= −1.

m = 6: This time, we demand that Norm(p) ≡ 1 mod 3, so that the primes p ≡ 2 mod 3

(except 2) should be inert (
(
D
p

)
= −1).

7

With a compositum of two fields K = Q(
√
D1,
√
D2), we can also mimic the eighth

roots of unity when all primes congruent to 3, 5, 7 mod 8 have a non trivial inertia in at
least one quadratic subfield.

As an example K = Q(
√

7,
√
−723), for which S(K) = 131. The heuristic detects

wrongly µ24 (or µ12 with the ramification criterion).
Focusing on 8-th roots, one obtains for example K = Q(

√
11,
√
−23) which passes all

tests up to S(K) = 127.
Another nice example is K = Q(

√
−7,
√

5,
√

41), which seems to contain µ24 until
S(K) = 359.

Table 1 shows a list of fields K = Q(
√
D1, . . .) such that µ(K) = µ2 but (at least)

3 | mK(x) for x < S(K).
In particular, we tried to obtain good lower bounds of the c constant appearing in

theorem 5, that is of the ratio S(K)/∆2
m, where ∆m = log discK(ζm).

The values obtained are small compared to the proven value 70, and they are decreasing
when we aim at larger S(K).

On the other hand, it is asked in Serre (1981) if the exponent 2 in proposition 5 can
be replaced by 1 + ε. In this context, the last column of table 1 shows increasing values
of S(K)/δm.

3.4.2. Generalization with linear programming
Larger values of S(K) can be reached with the same idea of composing small fields,

in order to distribute inertia degrees among them.
Linear programming can be used to find good combinations with a degree as small as

possible. Let K = K1 . . .Kn be the compositum of the Kj = Q[X]/(Qj).
As before, one demands that for each prime p up to a certain fixed bound, the inertia

degree fp/p of p | pOK is a multiple of the order of p in (Z/mZ)∗.
Let us write

(Z/mZ)× =
∏
q

∏
i

Z/qeq,iZ,

the p-primary decomposition of (Z/mZ)× and

o(p) =
∏
q

qαp,q

the decomposition into prime factors of the order of p modulo m.
Then define the coefficients

δ(Kj , p, q
α) =

 1 if ∀p | pOKj ,Norm(p) ≡ 1 mod [qα]

0 otherwise.

The fact that m | mK(x) is then coded by the following linear program, where the
columns are indexed by a family of polynomials Qj , and the lines describe the inertia
degree with respect to every prime p less than x:

∀p 6 x, ∀q | o(p),
∑
j

xjδ(Kj , p, q
αp,q) > 1 (12)

We add the following objective function:

Minimize
∑
j

xj deg(Qj)− disc(Qj)
−1

8

m deg(K) ∆m = log disc(K(µm)) S(K) S(K)/∆2
m S(K)/∆m

6 8 29.1 131 1.55e-1 4.50

6 8 29.9 149 1.67e-1 4.98

4 16 137.3 991 5.26e-2 7.21

4 32 249.4 2003 3.22e-2 8.03

4 32 364.0 2999 2.26e-2 8.24

6 32 344.0 2999 2.53e-2 8.72

6 32 397.1 3089 1.96e-2 7.78

12 64 1354.2 8009 4.37e-3 5.91

Table 2. Fields found with linear programming (using GLPK 2 library)

in order to minimize the degree of the compositum K, and to a minor extent its discrim-
inant.

As is, this program would output the m-th cyclotomic extension as a compositum of
some of its subfields. Thus we add some low inertia constraints on a prime p > pn to
avoid this situation.

Running this integer linear program 1 , even without reaching the true optimum, yields
extensions with interesting extremal ramification properties in the context of the effective
Čebotarev theorem.

The table 2 shows some of the constructions obtained this way. The remarks made
about table 1 are still valid here, in particular one can increase the ratio S(K)/∆m. The
method described here could help further investigations on this topic.

4. Roots via Hensel lifting

This section is an restriction to the roots of unity setting of the general algorithm of
polynomial factorisation in number fields, for which we refer to (Belabas, 2004).

4.1. Principle

Once a multiple m of the order of µ(K) is known, the true order can be found by fac-
toring the cyclotomic polynomial Φm over K. The modular algorithm of Belabas consists
in the following steps:
(1) compute a local root ζ modulo a prime ideal p;
(2) lift ζ modulo pk with Hensel’s lemma;
(3) take a representative ζ ∈ OK as soon as the fundamental domain of the lattice pk

is sufficiently large so that it contains the ellipsoid ‖x‖2C 6 n, hence µ(K).

1 available at http://www.math.jussieu.fr/~molinp.
2 Gnu Linear Programming Kit, see references.

9

ζ ∈ OK

ζ̄ ∈ k(p) Hensel
// ζ̄ ∈ OK/pk

canonical lift
ff

The first two steps are straightforward. As for the third, one must make sure that the
lift will be a root of unity, if it exists. If such a lift does not exists, it then proves that
the heuristic on m has to be refined and we proceed with its divisors.

In the next paragraphs, we give some details for each step of Algorithm 2.
Input: K a number field with a basis of OK, a multiple m of the order of µK
Output: the expression of a primitive root in µK
begin

choose a prime ideal p;
evaluate the lift exponent k;
repeat for k increasing

compute pk and determine a LLL-reduced basis;
compute the maximal radius in its fundamental domain D;

until B(n) ⊂ D;
for each q = pl dividing m do

compute ζq ∈ OK/p a primitive q-th root of unity;
lift it modulo pk by Hensel;
repeat for l decreasing

take central lift ζq ∈ OK;
until ζq ∈ B(n), otherwise set ζq ← ζpq ;

done
return product of ζq

end
Algorithm 2: Modular calculation of roots of unity

4.1.1. Choice of p and computation in k(p)

In theory, every non ramified prime allows to perform the following steps. In practice,
one must balance two aspects: a large value of p or a greater inertia degree result in a
lattice p of larger volume, thus reducing the exponent k. The drawback is however the
cost of calculations in k(p).

In practice, it is interesting to choose a small prime of big inertia degree.
We then use the standard Cantor-Zassenhaus algorithm to find a root of the cyclotomic

polynomial Φq in the finite field k(p) = Fp[X]/P .
If there is no root, m was overestimated and we proceed to the next value of q;

otherwise we obtaind one ζ̄.
A prime ideal p is represented by two generators p = 〈p, β〉, its powers are given by

pk = 〈pk, βk〉

before one applies LLL to obtain a nicer fundamental domain.

10

4.1.2. Lifting in OK
The lattice pk ⊂ OK is represented with a Z-basis (v1, . . . vn), and the canonical lift

OK/pk → OK is the lift belonging to the centered fundamental domain

D =
{∑

xivi, xi ∈]− 1
2 ; 1

2]
}
.

We use the geometric setting of section 2, in particular the Euclidean space inherited
from the complex embeddings. For r > 0, we introduce the ball

B(r) =
{
x ∈ OK, ‖x‖2C 6 r

}
. (13)

We note
G =

(
〈vi, vj〉

)
(14)

the Gram matrix of (v1, . . . vn), so that 〈x, y〉 =t xGy for x =
∑
i xivi and y =

∑
i yivi ∈

pk.
Proposition 1 asserts that µ(K) ⊂ B(n), so that one can make sure that the lift

ζ ∈ OK/pk → ζ ∈ D will give a root of unity if B(n) ⊂ D. The following criterion
answers this question.

Lemma 9.
B(r) ⊂ D ⇔ r 6 Rmax =

1

2 maxj
√

(G−1)j,j
. (15)

where (G−1)j,j denote the diagonal terms of the inverse matrix G−1.

Proof. This radius is the shortest distance of the centre ofD to its facets. These distances
are given by

d(
∑ vi

2
, Hj) =

1

2
d(vj , Hj)

where Hj = Vect(v1, . . . v̌j , . . . vn) is the hyperplane spanned by the vi for i 6= j.
Let us write ṽj the vector orthogonal to Hj defined by

∀i, 〈ṽj , vi〉 = δi,j ,

so that ṽj is precisely the j-th column of G−1.
We then obtain d(vj , Hj) =

|〈ṽj ,vj〉|
‖ṽj‖C

, hence d(vj , Hj) =
∥∥(G−1)j

∥∥−1
C

.
It remains to compute the norm∥∥(G−1)j

∥∥2
C

=t (G−1)jG(G−1)j = (G−1)j,j ,

which concludes the proof. 2

For calculations, it is preferable to express ṽi on the orthonormal basis (v∗j), that is
to replace the Gram matrix G by the Gram-Schmidt orthogonalization matrix

K =
(
〈v∗i , vj〉

)
i,j
.

The inversion step is simpler since this matrix is triangular. The computations have to
be adapted only when taking the norm, where the orthogonality gives∥∥K−1j ∥∥2

C
=
∑
i

K2
i,j

‖v∗i ‖
2
C

.

11

As a consequence we have the alternative expression

Rmax =
1

2
min
j

√√√√∑
i

K2
i,j

‖v∗i ‖
2
C

−1

. (16)

4.1.3. Estimates for the exponent k
The radius (16) will be bigger if the basis (v1, . . . vn) is almost orthogonal and made

of short vectors. This explains why we first take (v1, . . . vn) to be LLL-reduced.
This LLL-reduction of pk is the most time-consuming part of the algorithm, since the

matrix has dimension n and entries of size pk, using the best L̃1 algorithm of Novocin
et al. (2011), the complexity Oε(n5+εk log p + n3.5+ε(k log p)1+ε) can be quasi-linear in
terms of k.

If one adopts a LLL-reduction with a quality factor γ, a study of the formula (16)
gives the following upper bound for k (Belabas, 2004)

Rmax >
‖v1‖C

2
(3√γ

2

)n−1 .
Moreover, the norm of v1 ∈ pk is a multiple of Norm(p)k and the arithmetic-geometric

means inequality (3) gives
‖v1‖C > nNorm(p)

2k
n .

Thus we have the following upper bound:

k 6
n log(2n

3
2

(3√γ
2

)n−1
)

2f log(p)
= O

(n2

f log(p)

)
. (17)

All in all, using latest LLL algorithms, Algorithm ?? has polynomial running time
Oε(n

7+ε).

5. Integral linear system

Assume we know that µ(K) = µm. A primitive root ζm ∈ OK is obtained as a solution
of the integer linear system

n∑
i=1

αiω
σ
i = e

2iπ
m , (ai) ∈ Zn, (18)

where OK =
⊕
Zωi and σ : K→ C is a fixed embedding.

This system has complex coefficients and is hard to solve. However there is a standard
way to find integral relations with small coefficients between complex numbers, based on
the LLL algorithm.

We consider the lattice Λ = Zn+1A, where A is the (n+ 1)× (n+ 2) matrix

A =


1 · · · 0 bMRe(ωσ1)c bM Im(ωσ1)c
...
. . .

...
...

...

0 · · · 1 bMRe(ωσn)c bM Im(ωσn)c

0 · · · 0 bMRe(e
2iπ
m c) bM Im(e

2iπ
m c)


(19)

12

and depends on a big constantM chosen on purpose, so that the shortest non-zero vector
of the lattice

Z = (α1, . . . αn, k)A

corresponds to an equality
n∑
i=1

αiω
σ
i = ke

2iπ
m , k = ±1,

and has its two last components almost equal to zero, while other vectors should be of
norm in the greater range given by M .

Rigorously setting up this knapsack strategy demands two estimates: an upper bound
for the expected vector norm, and a lower bound for other unwanted vectors. We give
such bounds in the proposition 14 below.

Then, the properties of LLL-reduced basis (proposition 15) allow to choose the con-
stant M to select exactly the desired of unity:

Theorem 10. For the explicit values CO and Cσ defined in equations (24) and (25)
below, if one choses

M > 2n(n+1)+1/2Cσ(
√
n+ 2(nCO + 1))n. (20)

then the first vector Z1 of a LLL reduced basis of Λ satisfies:
• either its n first components give the expression of a m-th primitive root of unity ζm;
• or O does not contain the group of m-th roots of unity.

We prove this theorem in the following paragraphs.
In practice, the size of M would lead to huge computations. However we can decide to

run the LLL reduction with a much smaller valueM , and test whether the first vector Z1

corresponds to a root of unity or not, in which case one has to switch to a more rigorous
approach to refine the result.

Input: a number field K with a basis of OK and the order m of µm
Output: an expression of a m-th primitive root ζ or failure
begin

choose M to be, say, the n-th root of (20);
build the matrix A of (19);
perform its LLL reduction;
compute the vector x ∈ OK defined by its first components;
if x is of order m then

return (m,x);
else

return failure;
end

end
Algorithm 3: Linear dependency

5.1. Norm inequalities

Every vector Z of Λ is the data of an algebraic integer x given by its coordinates on
the basis of O, and the decimal approximation of a complex number Mz formed of the
two last components.

13

More precisely, to any couple (x, k) ∈ OK ×Z, with x =
∑
αiωi, we define

• the vector X = (α1, . . . αn, k) ∈ Zn+1;
• its image Z = (α1, . . . αn, a, b) ∈ Λ;
• the complex z =

∑
αiω

σ
i + ke2iπ/m ∈ C.

Each space above is endowed with its Euclidean norm ‖·‖2, for which we have

‖Z‖22 =
∑

α2
i + a2 + b2 = ‖x‖2 + a2 + b2. (21)

We also consider the 1-norm ‖x‖1 =
∑
|αi|.

Lemma 11. With the notations above, we have

‖X‖22 +
(
M |z| −

√
2 ‖X‖1

)2
6 ‖Z‖22 6 ‖X‖22 +

(
M |z|+

√
2 ‖X‖1

)2
.

Proof. In fact, the definition of integer part implies

MRe(z)−
∑
|αi| 6 a 6MRe(z) +

∑
|αi|

and the same inequality on imaginary parts, so that when taking the square

a2 + b2 >M2 |z|2 − 2M ‖X‖1 (|Re(z)|+ |Im(z)|) + 2 ‖X‖21

>
(
M |z| −

√
2 ‖X‖1

)2
.

2

The conversion from and to the norm ‖·‖C introduced in section 2 is straightforward:
introducing the matrix of conjugates

V = (ωσj)σ:K↪→C,16j6n (22)

we have
‖x‖C = ‖V x‖2 . (23)

We define the constants
CO =

∥∥V −1∥∥
2

(24)
and

Cσ =
∏
τ 6=σ

max(1, ‖Vτ‖2) (25)

where τ runs over the complex embeddings, and Vτ is the line (ωτ1 , . . . ω
τ
n) of V .

From proposition 1 we deduce

Lemma 12. For all ζ ∈ µ(K),
‖ζ‖22 6 nCO. (26)

On the other hand, we have the lower bound

Lemma 13. Suppose ζm ∈ O, then keeping current notations, if z 6= 0 we have

|z| > 1

Cσ ‖X‖n−11

. (27)

14

Proof. Since we supposed ζm ∈ O, there exist some y = x+kζm ∈ OK, with x =
∑
αiωi

such that z = yσ. For each embedding τ : K ↪→ C we have

|yτ | 6 |xτ |+
∣∣∣ke2iπk/m∣∣∣ 6 ‖Vτ‖2 ‖(α1, . . . αn)‖2 + |k| 6 max(‖Vτ‖2 , 1) ‖X‖1

and since y ∈ OK, we obtain the result from (25) and 1 6 |Norm(y)| = |yσ|
∏
τ 6=σ |yτ |. 2

From these inequalities we deduce

Proposition 14. Suppose µm ⊂ O, and set ζm =
∑
αiωi the root of unity whose image

by σ is e
2iπ
m . Then

• the vector Z ∈ Λ obtained as image of the vector X of components (α1, . . . αn,−1)
satisfies

‖Z‖22 6 2nCO + 2; (28)
• for all vector Z in Λ whose associated complex number z is non zero, we have

‖Z‖2 >
1√
n+ 1

(
M√
2Cσ

) 1
n

. (29)

Proof. The vector Z corresponds to the complex z = 0, so lemma 11 implies ‖Z‖22 6
‖X‖22 + ‖X‖21 = ‖ζ‖22 + ‖ζ‖1 + 2. With the trivial upper bound ‖ζ‖1 6 ‖ζ‖22, the lemma
12 proves the assertion.

The second part is deduced from the other inequality in lemma 11 combined with the
lower bound of lemma 13: let U = ‖X‖1 > 1, |z| is a solution of the system{√

n+ 2 ‖Z‖2 > U +
∣∣M |z| − √2U

∣∣
|z| > 1

CσUn−1 .

If M |z| 6
√

2U , then

U >

(
M√
2Cσ

) 1
n

= UM (30)

so that √
n+ 2 ‖Z‖2 > UM .

On the other hand, if M |z| >
√

2U , then
√
n+ 2 ‖Z‖2 >

M

CσUn−1
− (
√

2− 1)U

with a right-hand member which is decreasing in U , hence always greater than its value
for UM , which is UM . Thus, if |z| 6= 0 we obtain the inequality (29). 2

We finish the proof of theorem 10. The theory of LLL reduction gives a quality bound
on the short vector output:

Proposition 15. Let Λ be a lattice of dimension n, and Z1 the first vector of a LLL
reduced basis. Then for all non-zero vector Z of Λ we have

‖Z1‖2 6 2n ‖Z‖2 .

15

Proof. See (von zur Gathen and Gerhard, 2003). Note that the lattice here has dimension
n+ 1. 2

To make sure that, under the hypotheses of proposition 14, the short vector output
by the LLL reduction is ζm, we only need to make the inequality

1√
n+ 1

(
M√
2Cσ

) 1
n

6 2n(2nCO + 2)

impossible. Therefore we set

M > 2n(n+1)+1/2Cσ(
√
n+ 2(nCO + 1))n,

which concludes the proof of theorem 10.

6. Suggested Algorithm

Collecting the results of the previous sections, we suggest the following steps, each one
making the algorithm stop if it manages to give a definitive answer.

Input: a number field K with a basis of OK
Output: the order of µ(K) and the expression of a primitive root ζ
begin

guess m = #µK with heuristic algorithm 1;
if m = 2 then

return (m = 2, ζ = −1);
else

try algorithm 3;
if we obtain ζ of order m then

return (m, ζ);
else

run the modular algorithm 2;
return its result (m′, ζ);

end
end

end
Algorithm 4: Complete strategy

7. Timings

The table 3 below gives the results obtained by the different algorithms studied on a
panel of polynomials. The factorisation algorithm means algorithm 2 run after heuristic
1; and lindep refers to algorithm 3, also after the guess of heuristic 1. A star (?) indicates
that the test had to be interrupted after long calculations.

These results illustrate the strength of the factorisation algorithm: it always give the
result in a reasonable time, even in the case we fooled the heuristic step with fields built
on purpose (last lines), compelling it to factor more polynomials. The hybrid approach
we suggest amounts to taking the lindep column, and eventually add the factorisation
column when there is a failure. It manages to solve quickly all simple cases for which
Kannan’s algorithm performs well, and remains polynomial in hard cases.

16

degree roots m factorisation Kannan lindep

small fields

12 36 20.0ms 0.0ms 20.0ms

32 96 310.0ms 30.0ms 440.0ms

large cyclotomics

96 194 2mn 690.0ms 5.2s

180 362 1.6h 5.4s 17.4s

compositum of small fields

54 18 7.7s ? > 3 days 2.3s

66 46 17.4s ? > 4 weeks 1.1s

72 24 15.3s 5h27 fail

fields constructed with linear programming

24 72 0.2s 0.1s 0.2s

48 24 11s 0.2s 1.7s

54 6 12s 0.2s 2.1s

64 4 18.6s 0.4s 3.3s

64 6 36.4s 0.4s 3.7s

Table 3. comparison of all approaches

Acknowledgements

The author would like to thank Karim Belabas who has suggested this work, and Régis
de la Bretèche for pointing an error in a previous version.

References

Belabas, K., 2004. A relative van Hoeij algorithm over number fields. J. Symbolic Com-
put. 37 (5), 641–668.

Cohen, H., 1993. A course in computational algebraic number theory. Vol. 138 of Grad-
uate Texts in Mathematics. Springer-Verlag, Berlin.

Fincke, U., Pohst, M., 1985. Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comp. 44 (170), 463–471.

Hanrot, G., Stehlé, D., 2007. Improved analysis of Kannan’s shortest lattice vector algo-
rithm (extended abstract). In: Advances in cryptology—CRYPTO 2007. Vol. 4622 of
Lecture Notes in Comput. Sci. Springer, Berlin, pp. 170–186.

Kannan, R., 1985. Lattices, basis reduction and the shortest vector problem. In: Theory
of algorithms (Pécs, 1984). Vol. 44 of Colloq. Math. Soc. János Bolyai. North-Holland,
Amsterdam, pp. 283–311.

17

Lagarias, J. C., Odlyzko, A. M., 1977. Effective versions of the Chebotarev density the-
orem. In: Algebraic number fields: L-functions and Galois properties (Proc. Sympos.,
Univ. Durham, Durham, 1975). Academic Press, London, pp. 409–464.

Lang, S., 1964. Algebraic numbers. Addison-Wesley Publishing Co., Inc., Reading, Mass.-
Palo Alto-London.

Novocin, A., Stehlé, D., Villard, G., 2011. An LLL-reduction algorithm with quasi-linear
time complexity. In: Proceedings of the 43rd annual ACM symposium on Theory of
computing. ACM New York, NY, USA, San Jose, United States, pp. 403–412.

Serre, J.-P., 1981. Quelques applications du théorème de densité de Chebotarev. Inst.
Hautes Études Sci. Publ. Math. (54), 323–401.

von zur Gathen, J., Gerhard, J., 2003. Modern computer algebra, 2nd Edition. Cambridge
University Press, Cambridge.

18

