EXPOSÉ VIIA

ÉTUDE INFINITÉSIMALE DES SCHÉMAS EN GROUPES

par P. Gabriel

Dans l'exposé II nous nous étions limités à l'étude des invariants différentiels du premier ordre et nous n'avions pas abordé certains phénomènes spéciaux à la caractéristique p>0 ou à la caractéristique 0. Notre objet dans la partie A de cet exposé est de combler cette lacune. D'ailleurs, l'étude infinitésimale d'ordre quelconque d'un schéma en groupes est reliée à celle du groupe formel associé; l'objet de la deuxième partie de cet exposé est de présenter les premières définitions et propriétés concernant les groupes formels.

A) Opérateurs différentiels et p-Algèbres de Lie (*)

1. Opérateurs différentiels

Dans les paragraphes 1, 2 et 3 qui suivent, S désigne un schéma et les produits considérés sont des produits cartésiens dans la catégorie des S-schémas. Si X est un S-schéma, nous notons $p_{\rm X/S},\,p_{\rm X}$ ou simplement p le morphisme structural de X dans S

1.1. — Soit $u: Y \to X$ un morphisme de S-schémas et munissons l'image directe $u_*(\mathscr{O}_Y)$ du faisceau structural de Y de la structure de \mathscr{O}_X -Module induite par u. Le faisceau $\mathscr{H} = \mathscr{H}om_{p_X^{-1}(\mathscr{O}_S)}(\mathscr{O}_X, u_*(\mathscr{O}_Y))$ des homomorphismes de $p_X^{-1}(\mathscr{O}_S)$ -Modules de \mathscr{O}_X dans $u_*(\mathscr{O}_X)$ est donc muni naturellement d'une structure de \mathscr{O}_X -bi-Module : si U est un ouvert de X, f et d des sections de \mathscr{O}_X et \mathscr{H} sur U, fd et df sont respectivement les morphismes $x \mapsto fd(x)$ et $x \mapsto d(fx)$ de \mathscr{O}_X dans $u_*(\mathscr{O}_Y)$. Nous écrirons désormais (ad f)d au lieu de fd - df.

Une S-déviation d'ordre $\leqslant n$ est par définition un couple D = (u,d) formé d'un morphisme de S-schémas $u: Y \to X$ et d'un morphisme de $p^{-1}(\mathscr{O}_S)$ -Modules $d: \mathscr{O}_X \to u_*(\mathscr{O}_Y)$ tel que

(*)
$$(ad f_0)(ad f_1) \cdots (ad f_n)d = 0$$

111

^(*) La partie A du présent exposé n'avait pas été traitée sérieusement dans les exposés oraux.

pour tout ouvert U de X et toutes les suites de n+1 sections f_0, \ldots, f_n de \mathscr{O}_X sur U. Si les égalités (*) sont vérifiées, nous dirons aussi que d est une S-déviation de u d'ordre $\leq n$. En particulier, une S-déviation d'ordre ≤ 0 est un morphisme de \mathscr{O}_X -Modules de \mathscr{O}_X dans $u_*(\mathscr{O}_Y)$.

Un morphisme de $p^{-1}(\mathscr{O}_S)$ -Modules d de \mathscr{O}_X dans $u_*(\mathscr{O}_Y)$ est une S-déviation de u si, pour tout point y de Y, il existe un voisinage ouvert U de u(y) dans X et un voisinage ouvert V de y dans Y vérifiant les conditions suivantes : a) $u(V) \subset U$; b) si $v: V \to U$ est le morphisme induit par u, il y a un entier n tel que le morphisme $\mathscr{O}_U \to v_*(\mathscr{O}_V)$ induit par d soit une S-déviation d'ordre $\leq n$. Si d est une S-déviation de u, nous disons aussi que le couple D = (u, d) est une S-déviation et il nous arrivera d'écrire Y $\xrightarrow{D} X$ ou Y $\xrightarrow{d} X$. Lorsque d est l'homomorphisme d'algèbres qui définit u, nous écrirons aussi u au lieu de D.

1.2. — Considérons maintenant deux S-déviations D=(u,d) et E=(v,e):

$$Z \xrightarrow{v} Y \xrightarrow{u} X$$
.

Lorsque U parcourt les ouverts de X, les applications composées

$$\Gamma(v^{-1}u^{-1}\mathbf{U},\mathscr{O}_{\mathbf{Z}}) \xleftarrow{e(u^{-1}\mathbf{U})} \Gamma(u^{-1}\mathbf{U},\mathscr{O}_{\mathbf{Y}}) \xleftarrow{d(\mathbf{U})} \Gamma(\mathbf{U},\mathscr{O}_{\mathbf{X}})$$

définissent une S-déviation de uv que nous noterons de; lorsque d est d'ordre $\leq m$ et e d'ordre $\leq n$, de est d'ordre $\leq m+n$. Nous écrirons aussi $D \circ E = (uv, de)$ et nous dirons que $D \circ E$ ou DE est la S-déviation composée. Lorsque d est l'homomorphisme d'Algèbres définissant u (D = u avec la convention ci-dessus), on dit aussi que DE est l'image $de \to par u$.

L'application $(D,E)\mapsto D\circ E$ que nous venons de définir nous permettra désormais de parler de la *catégorie des* S-déviations qui a pour objets les S-schémas, pour morphismes les S-déviations.

1.2.1. — Supposons par exemple Y égal à $I_Z = \operatorname{Spec} \mathscr{O}_Z[T]/(T^2)$ et v égal à la section définie par l'homomorphisme d'Algèbres de $\mathscr{O}_Z[T]/(T^2)$ dans \mathscr{O}_Z qui s'annule sur la classe t de T modulo T^2 . On peut prendre alors pour e le morphisme de \mathscr{O}_Z -Modules qui s'annule sur la section unité de $\mathscr{O}_Z[T]/(T^2)$ et qui envoie t sur la section unité de \mathscr{O}_Z . Si l'on pose D = u et w = uv, de est alors simplement une S-dérivation de \mathscr{O}_X dans $w_*(\mathscr{O}_Z)$; pour tout S-morphisme $w: Z \to X$ on obtient ainsi une correspondance biunivoque entre les S-dérivations de \mathscr{O}_X dans $w_*(\mathscr{O}_Z)$ et les S-déviations de w de la forme $v \in E$, où v parcourt les morphismes de v dans v prolongeant v.

1.2.2. — Si d est une S-déviation de u, d est évidemment une S'-déviation de u pour tout morphisme $s: S \to S'$. D'autre part, soient $t: T \to S$ un morphisme de but $S, u_T: Y_T \to X_T$ le morphisme déduit de u par changement de base et t_Y , t_X les projections canoniques de Y_T , X_T dans Y, X. Il existe alors une T-déviation de u_T et une seule que nous noterons d_T ou $d \times T$ et qui vérifie l'égalité $t_X d_T = d t_Y$. Si l'on pose D = (u, d), on écrira aussi $D_T = (u_T, d_T)$ et nous dirons que d_T et D_T sont déduits de d et D par changement de base.

Soient par exemple $u: Y \to X$ et $v: Z \to T$ deux S-morphismes, d et e des S-déviations de u et v. Nous noterons $d \times e$ (produit de d et e) la S-déviation de $u \times v$ égale à $d_T \circ e_Y = e_X \circ d_Z$. Si l'on pose D = (u, d) et E = (v, d), nous écrirons aussi $D \times E = (u \times v, d \times e)$.

1.3. — Supposons maintenant Y égal à S; alors $u: S \to X$ est une section de $p: X \to S$, c'est-à-dire une immersion; on peut alors donner des S-déviations de u l'interprétation que voici : soient I_u le noyau de l'homomorphisme de $u^{-1}(\mathscr{O}_X)$ dans \mathscr{O}_S qui définit u, d un morphisme de $p^{-1}(\mathscr{O}_S)$ -Modules de \mathscr{O}_X dans $u_*(\mathscr{O}_S)$ et $d': u^{-1}(\mathscr{O}_X) \to \mathscr{O}_S$ le morphisme associé canoniquement à d. Alors d est une S-déviation de u d'ordre $\leq n$ si et seulement si d' s'annule sur I_u^{n+1} .

Cette interprétation peut être généralisée comme suit : soient $u: Y \to X$ un S-morphisme quelconque et Γu le graphe de u, c'est-à-dire le morphisme $Y \to Y \times X$ de composantes Id_Y et u. Pour toute S-déviation d de u d'ordre $\leqslant n$, on obtient par composition :

$$Y \xrightarrow{\text{diag.}} Y \times Y \xrightarrow{d_Y} Y \times X$$

une Y-déviation de Γu d'ordre $\leq n$ que nous noterons Γd (le graphe de d). On obtient ainsi une bijection $d \mapsto \Gamma d$ de l'ensemble des S-déviations de u d'ordre $\leq n$ sur l'ensemble des Y-déviations de Γu d'ordre $\leq n$. La bijection réciproque associe à une Y-déviation Y $\frac{e}{\Gamma u}$ Y × X la S-déviation composée

$$Y \xrightarrow{e} Y \times X \xrightarrow{\operatorname{pr}_2} X.$$

Appelons J le noyau de l'homomorphisme d'Algèbres

$$(\Gamma u)^{-1}(\mathscr{O}_{Y\times X})\longrightarrow \mathscr{O}_{Y}$$

qui définit Γu . Tenant compte de ce qui précède, on voit alors que les S-déviations de u d'ordre $\leq n$ correspondent canoniquement aux morphismes de \mathscr{O}_Y -Modules de $(\Gamma u)^{-1}(\mathscr{O}_{Y\times X})$ dans \mathscr{O}_Y qui s'annulent sur J^{n+1} .

1.4. — Soit X un S-schéma. On appelle S-opérateur différentiel (resp. S-opérateur différentiel d'ordre $\leq n$) sur X toute S-déviation (resp. toute S-déviation d'ordre $\leq n$) du morphisme identique de X. D'après 1.1, un S-opérateur différentiel d'ordre $\leq n$ est donc un endomorphisme de $p^{-1}(\mathcal{O}_{\mathrm{S}})$ -Module de \mathcal{O}_{X} qui vérifie les égalités $(*_n)$ de 1.1.

Nous désignerons par $\operatorname{Dif}_{X/S}^n$ le $\Gamma(\mathscr{O}_S)$ -module formé des S-opérateurs différentiels d'ordre $\leqslant n$, par $\operatorname{Dif}_{X/S}$ celui formé de tous les S-opérateurs différentiels. Comme nous l'avons vu en 1.2, on peut composer les S-déviations de Id X, ce qui munit $\operatorname{Dif}_{X/S}$ d'une structure de $\Gamma(\mathscr{O}_S)$ -algèbre ; nous dirons que c'est l'algèbre des opérateurs différentiels de X/S. De même, nous noterons $\mathscr{D}if_{X/S}$ le faisceau U \mapsto $\operatorname{Dif}_{X\times U/U}$, où U parcourt les ouverts de S.

1.4.1. — Comme nous l'avons vu en 1.3, on peut interpréter les opérateurs différentiels de X/S au moven du graphe du morphisme identique de X, c'est-à-dire du morphisme

diagonal $\Delta=\Delta_{X/S}$ de X dans X × X. Traduisons dans le contexte actuel les énoncés de 1.3 :

Munissons $\mathscr{O}_{X\times X}$ de la structure de $\operatorname{pr}_1^{-1}(\mathscr{O}_X)$ -Algèbre définie par pr_1 , de sorte que $\Delta^{-1}(\mathscr{O}_{X\times X})$ est muni d'une structure d'Algèbre sur $\mathscr{O}_X = \Delta^{-1}\operatorname{pr}_1^{-1}(\mathscr{O}_X)$. Soient $I_{X/S}$ le noyau de l'homomorphisme

$$\Delta_{X/S}^a:\Delta^{-1}(\mathscr{O}_{X\times X})\longrightarrow\mathscr{O}_X$$

définissant Δ et ${\rm P}^m_{{\rm X/S}}$ la $\mathscr{O}_{{\rm X}}\text{-}{\rm Algèbre}\ \Delta^{-1}(\mathscr{O}_{{\rm X}\times{\rm X}})/{\rm I}^{m+1}_{{\rm X/S}}.$

Si V est un ouvert affine de S et U un ouvert affine de X au-dessus de V, l'ensemble des sections de $P_{X/S}^m$ sur U est donc égal à $A \otimes_k A/I^{m+1}$, où l'on a posé $k = \Gamma(V, \mathscr{O}_S)$, $A = \Gamma(U, \mathscr{O}_X)$ et où I est l'idéal engendré par les éléments $a \otimes 1 - 1 \otimes a$, $a \in A$. Ceci étant, on a d'après 1.3 un isomorphisme canonique

$$j_{\mathbf{X}}: \mathrm{Dif}_{\mathbf{X}/\mathbf{S}}^m \xrightarrow{\sim} \mathrm{Hom}_{\mathscr{O}_{\mathbf{X}}}(\mathrm{P}_{\mathbf{X}/\mathbf{S}}^m, \mathscr{O}_{\mathbf{X}})$$

qu'on peut définir comme suit : si d appartient à $\operatorname{Dif}_{X/S}^m$ et si c est une section de $\operatorname{P}_{X/S}^m$ sur U de la forme $a\otimes b+\operatorname{I}^{m+1}$, on a $j_X(d)(c)=a\cdot d(b)$.

1.4.2. — Soient d un opérateur différentiel et u une section de X sur S. Nous appelons valeur de d en u la S-déviation composée

$$S \xrightarrow{u} X \xrightarrow{d} X$$
.

D'après 1.3 et 1.4.1, si d est un opérateur différentiel d'ordre $\leq n, du$ et d sont associés canoniquement à des morphismes

$$d': u^{-1}(\mathscr{O}_{\mathbf{X}})/\mathbf{I}_{u}^{m+1} \longrightarrow \mathscr{O}_{\mathbf{S}} \qquad \text{et} \qquad d'': \mathbf{P}_{\mathbf{X}/\mathbf{S}}^{m} \longrightarrow \mathscr{O}_{\mathbf{X}}.$$

Il est clair qu'on peut construire d' à partir de d'' de la manière suivante : le carré

$$\begin{array}{c|c} \mathbf{X} \simeq \mathbf{S} \times \mathbf{X} & \xrightarrow{u \times \mathbf{X}} & \mathbf{X} \times \mathbf{X} \\ p & & & \downarrow \mathbf{pr}_1 \\ \mathbf{S} & \xrightarrow{u} & \mathbf{X} \end{array}$$

est cartésien, ce qui permet d'identifier X à $S \times_X (X \times X)$, u à $S \times_X \Delta$, donc $u^*(P^m_{X/S})$ à $u^{-1}(\mathscr{O}_X)/I_u^{m+1}$. On identifie ainsi $u^*(d'')$ à un morphisme $u^{-1}(\mathscr{O}_X)/I_u^{m+1} \to \mathscr{O}_S$, qui n'est autre que d'.

417 **1.5.** — Posons comme d'habitude $I_S = \operatorname{Spec} \mathscr{O}_S[T]/(T^2)$. Soient $s: S \to I_S$ la section zéro (II 2.1) et σ la déviation canonique de s que nous avons définie en 1.2.1 : la déviation σ est donc l'homomorphisme de \mathscr{O}_S -Modules qui s'annule sur la section unité de $\mathscr{O}_S[T]/(T^2)$ et qui envoie la classe t de T modulo T^2 sur la section unité de \mathscr{O}_S .

Soit X un S-schéma. A tout I_S -automorphisme u de $I_S \times X$ induisant l'identité sur X est associé par composition un opérateur différentiel D_u de X :

$$\mathbf{X} \simeq \mathbf{S} \times \mathbf{X} \xrightarrow{\sigma \times \mathbf{X}} \mathbf{I}_{\mathbf{S}} \times \mathbf{X} \xrightarrow{u} \mathbf{I}_{\mathbf{S}} \times \mathbf{X} \xrightarrow{\mathrm{pr}_{2}} \mathbf{X}.$$

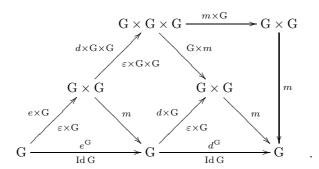
D'après II 4.11, l'application $u \mapsto D_u$ est un isomorphisme de l'algèbre de Lie du foncteur en groupes <u>Aut</u> X sur l'algèbre de Lie des $p^{-1}(\mathscr{O}_S)$ -dérivations de \mathscr{O}_X . L'isomorphisme réciproque associe à toute dérivation D l'automorphisme de $I_S \times X$ correspondant à l'automorphisme $a + bt \mapsto a + (Da + b)t$ de $\mathscr{O}_S[T]/(T^2)$.

2. Opérateurs différentiels invariants sur les schémas en groupes

2.1. — Soit G un S-schéma en groupes. Nous désignons par ε ou $\varepsilon_G: S \to G$ la section unité de G et par U(G) le $\Gamma(\mathscr{O}_S)$ -module des S-déviations de ε_G (ou S-déviations de l'origine) (cf. 1.1). Si d et e sont deux éléments de U(G), $d \times e$ est une S-déviation de $\varepsilon \times \varepsilon: S \simeq S \times S \to G \times G$. L'image de $d \times e$ par le morphisme multiplication $m: G \times G \to G$ (cf. 1.2) sera appelé le produit de d et d et

L'algèbre U(G) est aussi un foncteur covariant en $G: si\ u: G \to H$ est un homomorphisme de S-groupes et d une S-déviation de ε_G , l'image de d par u est un élément U(u)(d)=ud de U(H). L'application $U(u):U(G)\to U(H)$ ainsi définie est évidemment un homomorphisme de $\Gamma(\mathscr{O}_S)$ -algèbres. On définit de même un homomorphisme $\mathscr{U}(u)$ de $\mathscr{U}(G)$ dans $\mathscr{U}(H)$.

2.2. — Soient maintenant d une S-déviation de l'origine de G et $d \times G$ la S-déviation de $\varepsilon \times G : G \simeq S \times G \to G \times G$ obtenue à partir de d par changement de base. L'image de $d \times G$ par le morphisme multiplication $m : G \times G \to G$ est un opérateur différentiel d^G de G sur S. De plus, l'application $d \mapsto d^G$ est évidemment $\Gamma(\mathscr{O}_S)$ -linéaire et le diagramme « commutatif »



montre qu'on a $(d \cdot e)^{G} = d^{G} \cdot e^{G}$: la commutativité des deux triangles du bas résulte en effet de la définition de d^{G} et e^{G} ; d'autre part, la S-déviation composée de $e \times G$, $d \times G \times G$ et $m \times G$ coïncide avec $(d \cdot e) \times G$; son image par m est donc égale à $(d \cdot e)^{G}$.

418

On obtient ainsi un homomorphisme, appelé translation à droite, de la $\Gamma(\mathscr{O}_S)$ algèbre U(G) dans $\mathrm{Dif}_{G/S}$. Si $\mathscr{D}if_{G/S}$ désigne le faisceau U \mapsto $\mathrm{Dif}_{G\times U/U}$ sur S (1.4),
on définit de même une « Translation à droite » du faisceau $\mathscr{U}(G)$ dans $\mathscr{D}if_{G/S}$.

2.3. — Nous allons maintenant caractériser les opérateurs différentiels de G sur S de la forme d^G : soient $g: S \to G$ une section du morphisme structural de G et g_G la translation à droite de G par g, c'est-à-dire le morphisme composé

$$G \simeq G \times S \xrightarrow{G \times g} G \times G \xrightarrow{m} G.$$

Pour tout opérateur différentiel D de G sur S, nous notons alors D^g l'opérateur $g_G^{-1}Dg_G$ (1.2). Nous disons que D est *invariant* à *droite* si, pour tout changement de base $t: T \to S$ et toute section $g: T \to G \times T$, on a $(D_T)^g = D_T$.

Lemme. — Pour tout opérateur différentiel D de G sur S, les assertions suivantes sont équivalentes :

- (i) D est invariant à droite.
- (ii) Si m est le morphisme multiplication de G, on a $Dm = m(D \times G)$.
- (ii) \Rightarrow (i) : comme la condition (ii) est stable par changement de base, il suffit de montrer que (ii) entraı̂ne l'égalité $D^g = D$ pour toute section $g : S \to G$. Ceci résulte du diagramme commutatif

$$G \stackrel{m}{\longleftarrow} G \times G \stackrel{h}{\longleftarrow} G$$

$$D | Id G \qquad D \times G | Id(G \times G) \qquad D | Id G$$

$$G \stackrel{m}{\longleftarrow} G \times G \stackrel{h}{\longleftarrow} G \qquad ,$$

où h est le morphisme

421

$$G \xrightarrow{\sim} G \times S \xrightarrow{G \times g} G \times G$$

et $m \circ h$ la translation à droite par g.

(i) \Rightarrow (ii) : prenons en effet pour $t: T \to S$ le morphisme structural $p: G \to S$, pour section $g: T \to G \times T$ le morphisme diagonal $\Delta: G \to G \times G$. La translation à droite de $G \times G$ par Δ est alors le morphisme de $G \times G$ dans $G \times G$ qui a pour composantes m et pr₂. L'égalité $(D_G)^{\Delta} = D_G$ équivaut alors à la commutativité du premier carré du diagramme suivant

$$G \times G \xrightarrow{\Delta_{G \times G}} G \times G \xrightarrow{pr_1} G$$

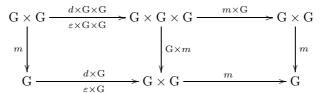
$$D_G \downarrow Id G \times G \qquad D_G \downarrow Id G \times G \qquad D \downarrow Id G$$

$$G \times G \xrightarrow{\Delta_{G \times G}} G \times G \xrightarrow{pr_1} G$$

L'égalité (ii) résulte donc de ce que $m = \operatorname{pr}_1 \circ \Delta_{G \times G}$

Considérons par exemple un élément d de l'algèbre infinitésimale U(G). Les deux

carrés du diagramme



sont alors commutatifs. Comme on a $m \circ (d \times G) = d^G$ et $(m \times G) \circ (d \times G \times G) = d^G \times G$, on a aussi $d^{G} \circ m = m \circ (d^{G} \times G)$. Pour toute S-déviation d de l'origine, d^{G} est donc un opérateur différentiel invariant à droite.

2.4. Théorème. — L'application $d \mapsto d^G$ est un isomorphisme de l'algèbre infinitésimale U(G) sur la sous-algèbre Dif^G_{G/S} de Dif_{G/S} formée des opérateurs différentiels invariants à droite.

Soit en effet D un opérateur différentiel quelconque de G sur S et désignons par D_0 sa valeur à l'origine, c'est-à-dire la déviation composée S $\xrightarrow{\varepsilon}$ G $\xrightarrow[\mathrm{id}_{\mathrm{G}}]{\mathrm{D}}$ G. L'opérateur différentiel invariant à droite $(D_0)^{\rm G}$ est alors obtenu par composition :

$$\mathbf{G} \simeq \mathbf{S} \times \mathbf{G} \xrightarrow{\varepsilon \times \mathbf{G}} \mathbf{G} \times \mathbf{G} \xrightarrow{\mathbf{D} \times \mathbf{G}} \mathbf{G} \times \mathbf{G} \xrightarrow{m} \mathbf{G}.$$

Si D est invariant à droite, on a D $m = m(D \times G)$, d'où D = D $m(\varepsilon \times G)$ = $m(D \times G)(\varepsilon \times G) = D_0^G$. En particulier, l'application $d \mapsto d^G$ est surjective.

Réciproquement, soit d une S-déviation de l'origine. On a alors un carré commutatif

$$G \times G \xrightarrow{d \times G} G$$

$$G \times \varepsilon \downarrow \qquad \qquad \downarrow \varepsilon$$

$$G \times S \simeq G \xrightarrow{d} S$$

d'où il résulte que $d=m(G\times\varepsilon)d=m(d\times G)\varepsilon=(d^G)_0$. A fortiori, l'application 422

Lorsque S varie, le théorème 2.4 implique évidemment que la Translation à droite $\mathscr{U}(G)\to\mathscr{D}\!if_{G/S}$ est un isomorphisme de \mathscr{O}_S -Algèbres de $\mathscr{U}(G)$ sur la sous-Algèbre $\mathscr{D}if_{\mathrm{G/S}}^{\mathrm{G}}:\mathrm{U}\mapsto\mathrm{Dif}_{\mathrm{Gu/U}}^{\mathrm{G}_{\mathrm{U}}}.$

2.4.1. Remarque. — Considérons le diagramme commutatif

$$G \stackrel{\eta}{\longleftarrow} G \times G$$

$$p \downarrow \uparrow \varepsilon \qquad pr_1 \downarrow \uparrow \Delta$$

$$S \stackrel{p}{\longleftarrow} G$$

où
$$\eta$$
 désigne le morphisme « $(x,y)\mapsto yx^{-1}$ » . Celui-ci induit des morphismes
$$\eta':\eta^{-1}(\mathscr{O}_{\mathbf{G}})\longrightarrow\mathscr{O}_{\mathbf{G}\times\mathbf{G}} \quad \text{ et } \quad \Delta^{-1}(\eta'):p^{-1}\varepsilon^{-1}(\mathscr{O}_{\mathbf{G}})\longrightarrow\Delta^{-1}(\mathscr{O}_{\mathbf{G}\times\mathbf{G}}).$$

Pour tout entier $n\geqslant 1,\, \Delta^{-1}(\eta')$ définit par passage au quotient un homomorphisme de faisceaux :

$$\eta^n: p^{-1}(p_{G/S}^n) \longrightarrow P_{G/S}^n,$$

où nous avons posé $p_{\mathrm{G/S}}^n = \varepsilon^{-1}(\mathscr{O}_{\mathrm{G}})/\mathrm{I}_{\varepsilon}^{n+1}$ (confer 1.3 et 1.4 pour les notations). Comme le carré formé par les morphismes η , p, pr_1 et p est cartésien, η^n induit un isomorphisme de $p^*(p_{\mathrm{G/S}}^m)$ sur $\mathrm{P}_{\mathrm{G/S}}^m$.

Les opérateurs différentiels de G sur S d'ordre $\leq n$ correspondent donc biunivoquement aux morphismes de \mathscr{O}_{G} -Modules $p^*(p^n_{G/S}) \longrightarrow \mathscr{O}_{G}$, c'est-à-dire aux morphismes de \mathscr{O}_{S} -Modules

$$p_{G/S}^n \longrightarrow p_*(\mathscr{O}_G).$$

Dans cette bijection, les opérateurs différentiels invariants à droite sont associés aux flèches composées

$$p_{\mathrm{G/S}}^n \xrightarrow{\mathrm{can.}} p_*(\mathscr{O}_{\mathrm{G}}).$$

On retrouve ainsi l'isomorphisme du théorème 2.4.

2.5. — Soit $\gamma: G \to \underline{\operatorname{Aut}} G$ l'homomorphisme de foncteurs en groupes qui associe à un S-morphisme $g: T \to G$ la translation à gauche de G_T par g, c'est-à-dire le morphisme composé

$$G_{T} \simeq T \underset{T}{\times} G_{T} \xrightarrow{g \times G_{T}} G_{T} \underset{T}{\times} G_{T} \xrightarrow{m_{T}} G_{T}.$$

Cet homomorphisme γ définit le diagramme d'ensembles ci-dessous

$$\operatorname{Lie} G \xrightarrow{\operatorname{Lie} \gamma} \operatorname{Lie}(\operatorname{\underline{Aut}} G)$$

$$\downarrow^{\beta}$$

$$U(G) \xrightarrow{\delta} \operatorname{Dif}_{G/S}$$

où l'on désigne par β l'application $u\mapsto D_u$ de 1.5, par δ la translation à droite définie en 2.2. Si x est un élément de Lie G, c'est-à-dire un morphisme de I_S dans G tel qu'on ait $xs=\varepsilon_G$ avec les notations de 1.5, on a le carré commutatif suivant qui détermine l'image de x par Lie γ :

$$\begin{split} I_{S} \times G & \xrightarrow{\text{(Lie } \gamma)(x)} I_{S} \times G \\ \downarrow_{x \times G} & \downarrow_{\text{pr}_{2}} \\ G \times G & \xrightarrow{m} G. \end{split}$$

424 D'après 1.5, l'image de (Lie γ)(x) par β est la déviation composée

$$G \simeq S \times G \xrightarrow{\sigma \times G} I_S \times G \xrightarrow{x \times G} G \times G \xrightarrow{m} G.$$

D'après 2.2, cette déviation composée n'est autre que $(x\sigma)^G$. En notant α l'application $x \mapsto x\sigma$ de Lie G dans U(G), on a donc

$$\beta(\text{Lie }\gamma) = \delta\alpha.$$

En particulier, α est un homomorphisme injectif de Lie G dans l'algèbre de Lie sousjacente à l'algèbre infinitésimale U(G).

3. Coalgèbres et dualité de Cartier

3.1. — Soit S un schéma (ou, plus généralement, un espace annelé). Une \mathscr{O}_S -Coalgèbre est un couple $(\mathscr{U}, \Delta_{\mathscr{U}})$ formé d'un \mathscr{O}_S -Module \mathscr{U} et d'un morphisme de \mathscr{O}_S -Modules $\Delta_{\mathscr{U}}: \mathscr{U} \to \mathscr{U} \otimes_{\mathscr{O}_S} \mathscr{U}$ (dit morphisme diagonal) tels que :

- (i) $\sigma \circ \Delta_{\mathscr{U}} = \Delta_{\mathscr{U}}$, où $\sigma(a \otimes b) = b \otimes a$.
- (ii) Le carré

$$\begin{array}{c|c} \mathcal{U} & \xrightarrow{\Delta_{\mathcal{U}}} & \mathcal{U} \otimes_{\mathcal{O}_{\mathrm{S}}} \mathcal{U} \\ & \downarrow^{\mathrm{id}_{\mathcal{U}} \otimes \Delta_{\mathcal{U}}} \\ \mathcal{U} \otimes_{\mathcal{O}_{\mathrm{S}}} \mathcal{U} & \xrightarrow{\Delta_{\mathcal{U}} \otimes \mathrm{id}_{\mathcal{U}}} & \mathcal{U} \otimes_{\mathcal{O}_{\mathrm{S}}} \mathcal{U} \otimes_{\mathcal{O}_{\mathrm{S}}} \mathcal{U} \end{array}$$

soit commutatif.

(iii) Il existe un morphisme de \mathscr{O}_S -Modules $\varepsilon_{\mathscr{U}}: \mathscr{U} \to \mathscr{O}_S$, dit augmentation, tel que les morphismes composés

$$\mathcal{U} \xrightarrow{\Delta_{\mathcal{U}}} \mathcal{U} \otimes_{\mathcal{O}_{S}} \mathcal{U} \xrightarrow{\operatorname{id}_{\mathcal{U}} \otimes \varepsilon_{\mathcal{U}}} \mathcal{U} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{S} \simeq \mathcal{U}$$

$$\mathcal{U} \xrightarrow{\Delta_{\mathcal{U}}} \mathcal{U} \otimes_{\mathcal{O}_{S}} \mathcal{U} \xrightarrow{\varepsilon_{U} \otimes \operatorname{id}_{\mathcal{U}}} \mathcal{O}_{S} \otimes_{\mathcal{O}_{S}} \mathcal{U} \simeq \mathcal{U}$$

soient le morphisme identique de \mathscr{U} .

Si $\varepsilon_{\mathscr{U}}$ et $\varepsilon'_{\mathscr{U}}$ sont deux augmentations, on a $\varepsilon_{\mathscr{U}} \simeq (\varepsilon_{\mathscr{U}} \otimes \varepsilon'_{\mathscr{U}}) \circ \Delta_{\mathscr{U}} \simeq \varepsilon'_{\mathscr{U}}$; l'augmentation est donc déterminée de façon unique par (iii).

Si $(\mathcal{U}, \Delta_{\mathcal{U}})$ et $(\mathcal{V}, \Delta_{\mathcal{V}})$ sont deux \mathcal{O}_S -Coalgèbres, un morphisme de la première dans la seconde est un morphisme de \mathcal{O}_S -Modules $f : \mathcal{U} \to \mathcal{V}$ tel que les diagrammes

soient commutatifs. Les morphismes de Coalgèbres se composent comme les morphismes de \mathscr{O}_S -Modules de sorte que nous pourrons parler de la catégorie des \mathscr{O}_S -Coalgèbres.

Cette catégorie possède des produits finis : l'objet final est le \mathscr{O}_S -Module \mathscr{O}_S , le morphisme diagonal étant l'identité ; le produit de deux Coalgèbres $(\mathscr{U}, \Delta_{\mathscr{U}})$ et $(\mathscr{V}, \Delta_{\mathscr{V}})$ est le produit tensoriel $\mathscr{U} \otimes_{\mathscr{O}_S} \mathscr{V}$, le morphisme diagonal étant le morphisme composé

$$\mathscr{U} \otimes \mathscr{V} \xrightarrow{\Delta_{\mathscr{U}} \otimes \Delta_{\mathscr{V}}} \mathscr{U} \otimes \mathscr{U} \otimes \mathscr{V} \otimes \mathscr{V} \xrightarrow{\mathrm{id}_{\mathscr{U}} \otimes \sigma \otimes \mathrm{id}_{\mathscr{V}}} \mathscr{U} \otimes \mathscr{V} \otimes \mathscr{U} \otimes \mathscr{V}$$

où $\sigma(a \otimes b) = b \otimes a$; les projections canoniques de $\mathscr{U} \otimes \mathscr{V}$ sur les facteurs \mathscr{U} et \mathscr{V} sont les morphismes $\mathrm{id}_{\mathscr{U}} \otimes \varepsilon_{\mathscr{V}}$ et $\varepsilon_{\mathscr{U}} \otimes \mathrm{id}_{\mathscr{V}}$.

3.1.1. — Soit \mathcal{A} une \mathcal{O}_S -Algèbre commutative, localement libre et de type fini en tant que \mathcal{O}_S -Module. Si nous posons

$$\mathscr{A}^* = \mathscr{H}om_{\mathscr{O}_{S}\text{-}Mod.}(\mathscr{A}, \mathscr{O}_{S}),$$

le morphisme canonique φ de $\mathscr{A}^* \otimes_{\mathscr{O}_{\mathbb{S}}} \mathscr{A}^*$ dans $(\mathscr{A} \otimes_{\mathscr{O}_{\mathbb{S}}} \mathscr{A})^*$ est inversible. Si m: $\mathscr{A} \otimes \mathscr{A} \to \mathscr{A}$ est le morphisme définissant la multiplication de \mathscr{A} , on obtient par composition un morphisme diagonal

$$\Delta_{\mathscr{A}^*}: \mathscr{A}^* \xrightarrow{m^*} (\mathscr{A} \otimes \mathscr{A})^* \xrightarrow{\varphi^{-1}} \mathscr{A}^* \otimes \mathscr{A}^*.$$

Ce morphisme diagonal fait évidemment de \mathscr{A}^* une \mathscr{O}_S -Coalgèbre qui a pour augmentation le morphisme transposé du morphisme $\mathscr{O}_S \to \mathscr{A}$ défini par la section unité de \mathscr{A} . De plus, il est clair que le foncteur $\mathscr{A} \mapsto \mathscr{A}^*$ est une antiéquivalence de la catégorie des \mathscr{O}_S -Algèbres, qui sont localement libres et de type fini en tant que \mathscr{O}_S -Modules, sur la catégorie des \mathscr{O}_S -Coalgèbres localement libres et de type fini en tant que \mathscr{O}_S -Modules.

3.1.2. — A toute \mathscr{O}_S -Coalgèbre \mathscr{U} est associée canoniquement un S-foncteur Spec* \mathscr{U} : $(\mathbf{Sch/S})^{\circ} \to (\mathbf{Ens})$: remarquons en effet que, pour tout S-schéma $q: T \to S$, $q^*(\mathscr{U} \otimes_{\mathscr{O}_S} \mathscr{U})$ s'identifie à $q^*(\mathscr{U}) \otimes_{\mathscr{O}_T} q^*(\mathscr{U})$, de sorte que $q^*(\Delta_{\mathscr{U}})$ fait de $\mathscr{U}_T = q^*(\mathscr{U})$ une \mathscr{O}_T -Coalgèbre; nous pouvons donc poser par définition et avec un abus de notation évident:

$$(\operatorname{Spec}^* \mathscr{U})(T) = \{ x \in \Gamma(T, \mathscr{U}_T) \mid \varepsilon_{\mathscr{U}_T}(x) = 1 \quad \text{et} \quad \Delta_{\mathscr{U}_T}(x) = x \otimes x \}.$$

Les sections x de \mathscr{U}_T correspondent évidemment aux morphismes de \mathscr{O}_T -Modules $\xi:\mathscr{O}_T\to\mathscr{U}_T$; les conditions $\varepsilon(x)=1$ et $\Delta(x)=x\otimes x$ expriment simplement que ξ est un morphisme de Coalgèbres. On a donc également :

$$(\operatorname{Spec}^* \mathscr{U})(T) = \operatorname{Hom}_{\mathscr{O}_T\text{-coalg.}}(\mathscr{O}_T, \mathscr{U}_T).$$

En particulier, si \mathscr{A} est une \mathscr{O}_S -Algèbre commutative qui est localement libre de type fini en tant que \mathscr{O}_S -Module, on a des isomorphismes

$$(\operatorname{Spec}^* \mathscr{A}^*)(\operatorname{T}) = \operatorname{Hom}_{\mathscr{O}_{\operatorname{T}}\text{-}\operatorname{coalg.}}(\mathscr{O}_{\operatorname{T}}, \mathscr{A}_{\operatorname{T}}^*) \simeq \operatorname{Hom}_{\mathscr{O}_{\operatorname{T}}\text{-}\operatorname{alg.}}(\mathscr{A}_{\operatorname{T}}, \mathscr{O}_{\operatorname{T}}) \simeq (\operatorname{Spec} \operatorname{A})(\operatorname{T})$$

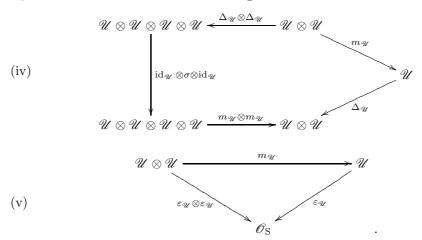
et

428

$$\operatorname{Spec}^* \mathscr{A}^* \simeq \operatorname{Spec} \mathscr{A}.$$

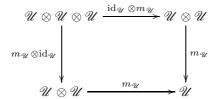
3.2. — Une \mathscr{O}_{S} -Coalgèbre en groupes, c'est-à-dire un groupe de la catégorie des \mathscr{O}_{S} -Coalgèbres, consiste en la donnée d'une \mathscr{O}_{S} -Coalgèbre $(\mathscr{U}, \Delta_{\mathscr{U}})$ et d'un morphisme de \mathscr{O}_{S} -Coalgèbres $m_{\mathscr{U}}: \mathscr{U} \otimes \mathscr{U} \to \mathscr{U}$. Un tel morphisme est un morphisme de

 \mathcal{O}_{S} -Modules rendant commutatifs les diagrammes suivants



Le morphisme de \mathcal{O}_S -Coalgèbres $m_{\mathscr{U}}$ doit en outre vérifier les conditions (ii)*, (iii)* et (vi) ci-dessous :

(ii)* Le carré



est commutatif.

(iii)* Il existe un morphisme de \mathscr{O}_S -Coalgèbres $\eta_{\mathscr{U}}:\mathscr{O}_S\to\mathscr{U}$ tel que les morphismes composés

$$\begin{split} \mathscr{U} &\simeq \mathscr{U} \otimes \mathscr{O}_{\mathbf{S}} \xrightarrow{\operatorname{id}_{\mathscr{U}} \otimes \eta_{\mathscr{U}}} \mathscr{U} \otimes \mathscr{U} \xrightarrow{m_{\mathscr{U}}} \mathscr{U} \\ \text{et} \quad \mathscr{U} &\simeq \mathscr{O}_{\mathbf{S}} \otimes \mathscr{U} \xrightarrow{\eta_{\mathscr{U}} \otimes \operatorname{id}_{\mathscr{U}}} \mathscr{U} \otimes \mathscr{U} \xrightarrow{m_{\mathscr{U}}} \mathscr{U} \end{split}$$

soient les morphismes identiques de \mathcal{U} .

(vi) Il existe un morphisme de \mathscr{O}_{S} -Coalgèbres $c_{\mathscr{U}}:\mathscr{U}\to\mathscr{U}$ tel que le morphisme composé

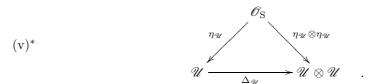
$$\mathscr{U} \xrightarrow{\Delta_{\mathscr{U}}} \mathscr{U} \otimes \mathscr{U} \xrightarrow{c_{\mathscr{U}} \otimes \mathrm{id}_{\mathscr{U}}} \mathscr{U} \otimes \mathscr{U} \xrightarrow{m_{\mathscr{U}}} \mathscr{U}$$

pour section unité l'image par $\eta_{\mathscr{U}}$ de la section unité de \mathscr{O}_{S} . La condition (iv) exprime aussi que le morphisme diagonal $\Delta_{\mathscr{U}}$ est compatible avec la multiplication; et en effet,

soit égal à $\eta_{\mathcal{U}} \circ \varepsilon_{\mathcal{U}}$.

3.2.1. — Les morphismes $\eta_{\mathscr{U}}$ et $c_{\mathscr{U}}$ de (iii)* et (vi) sont évidemment uniques. Les conditions (ii)* et (iii)* expriment simplement que $m_{\mathscr{U}}$ fait de \mathscr{U} une \mathscr{O}_{S} -algèbre qui a

 $\Delta_{\mathscr{U}}:\mathscr{U}\to\mathscr{U}\otimes\mathscr{U}$ doit être un homomorphisme de Coalgèbres en groupes, ce qui implique également la commutativité du triangle



D'autre part, comme dans toute catégorie, l'antipodisme $c_{\mathscr{U}}$ est un isomorphisme de \mathscr{U} sur la Coalgèbre en groupes opposée ; en particulier, $c_{\mathscr{U}}$ induit un isomorphisme d'algèbres de \mathscr{U} sur l'algèbre opposée \mathscr{U}° .

3.2.2. — Comme le foncteur $\mathscr{U} \mapsto \operatorname{Spec}^* \mathscr{U}$ commute aux produits finis, il transforme une Coalgèbre en groupes en un S-foncteur en groupes ; et en effet, pour tout S-schéma T, les éléments $x \in \Gamma(T, \mathscr{U}_T)$ appartenant à $(\operatorname{Spec}^* \mathscr{U})(T)$ forment un groupe pour la multiplication de l'algèbre $\Gamma(T, \mathscr{U}_T)$; l'inverse de x n'est autre que $c_{\mathscr{U}}(x)$.

Soient par exemple $\mathfrak g$ une $\mathscr O_S$ -Algèbre de Lie et $\mathscr U(\mathfrak g)$ l'Algèbre enveloppante de $\mathfrak g$, c'est-à-dire le faisceau sur S associé au préfaisceau qui attribue à tout ouvert V l'algèbre enveloppante $U(\Gamma(V,\mathfrak g))$ de l'algèbre de Lie $\Gamma(V,\mathfrak g)$.

Tout homomorphisme de $\mathfrak g$ dans l'Algèbre de Lie sous-jacente à une $\mathscr O_S$ -Algèbre se factorise d'une façon et d'une seule à travers le morphisme canonique de $\mathfrak g$ dans $\mathscr U(\mathfrak g)$; en outre, cette propriété universelle entraı̂ne, outre la fonctorialité de $\mathscr U(\mathfrak g)$ en $\mathfrak g$, que l'Algèbre enveloppante d'un produit d'Algèbres de Lie s'identifie au produit tensoriel des Algèbres enveloppantes.

En particulier, le morphisme diagonal $\delta: \mathfrak{g} \to \mathfrak{g} \times \mathfrak{g}$ induit un homomorphisme d'Algèbres $\Delta: \mathscr{U}(g) \to \mathscr{U}(\mathfrak{g} \times \mathfrak{g}) \simeq \mathscr{U}(\mathfrak{g}) \otimes \mathscr{U}(\mathfrak{g})$. Le morphisme nul $\mathfrak{g} \to 0$ induit un homomorphisme $\varepsilon: \mathscr{U}(\mathfrak{g}) \to \mathscr{U}(0) \simeq \mathscr{O}_{\mathbb{S}}$. L'isomorphisme $x \mapsto -x$ de \mathfrak{g} sur l'algèbre de Lie opposée \mathfrak{g}° induit un antiisomorphisme c de l'algèbre $\mathscr{U}(\mathfrak{g})$. On vérifie alors facilement que la multiplication m de l'Algèbre $\mathscr{U}(\mathfrak{g})$ fait de $(\mathscr{U}(\mathfrak{g}), \Delta)$ une $\mathscr{O}_{\mathbb{S}}$ -Coalgèbre en groupes qui a ε pour augmentation et c pour antipodisme.

3.2.3. — Soit \mathscr{U} une \mathscr{O}_S -Coalgèbre en groupes. On vérifie facilement que $G = \operatorname{Spec}^* \mathscr{U}$ est un bon S-groupe (II 4.6). Comme on a

$$\Gamma(I_S, \mathscr{U}_{I_S}) \simeq \Gamma(S, \mathscr{U}) \oplus d\Gamma(S, \mathscr{U}),$$

un élément $u_0 + du_1$ de $\Gamma(I_S, \mathcal{U}_{I_S})$ appartient à $(\operatorname{Spec}^* \mathcal{U})(I_S)$ si et seulement si l'on a

$$\Delta(u_0 + du_1) = (u_0 + du_1) \otimes (u_0 + du_1)$$
 et $\varepsilon(u_0 + du_1) = 1$,

d'où $\Delta u_0 + d\Delta u_1 = u_0 \otimes u_0 + (u_1 \otimes u_0 + u_0 \otimes u_1)d$ et $\varepsilon(u_0) + d\varepsilon(u_1) = 1$ c'est-à-dire $\Delta u_0 = u_0 \otimes u_0, \ u_1 = u_1 \otimes u_0 + u_0 \otimes u_1$ et $\varepsilon(u_0) = 1, \ \varepsilon(u_1) = 0.$

En particulier, (Lie G)(T) est l'ensemble des éléments primitifs de $\Gamma(T, \mathscr{U}_T)$, c'est-à-dire des éléments u tels qu'on ait $\Delta u = u \otimes 1 + 1 \otimes u$ (avec l'abus de notation évident déjà signalé).

La structure de $\Gamma(T, \mathcal{O}_T)$ -module de (Lie G)(T) est évidemment induite par celle de $\Gamma(T, \mathcal{U}_T)$. D'autre part, considérons deux éléments primitifs u et v de (Lie G)(S)

432

et posons $I = \operatorname{Spec} \mathscr{O}_S[d]/(d^2)$ et $I' = \operatorname{Spec} \mathscr{O}_S[d']/(d'^2)$. Comme la loi de composition de $G(I \times I')$ est induite par la multiplication de l'Algèbre $\mathscr{U}_{I \times I'}$, on a

$$(1+ud)(1+vd')(1+ud)^{-1}(1+vd')^{-1} = (1+ud)(1+vd')(1-ud)(1-vd)$$
$$= 1 + (uv - vu)dd'$$

D'où l'égalité [u,v]=uv-vu, qui prouve que G est très bon (II 4.10).

3.3. — Supposons enfin que \mathscr{U} soit une \mathscr{O}_S -Coalgèbre en groupes commutatifs, c'est-à-dire que le triangle

$$\mathcal{U}\otimes\mathcal{U} \xrightarrow{\sigma} \mathcal{U}\otimes\mathcal{U}$$

$$\downarrow^{m_{\mathcal{U}}}$$

$$\mathcal{U}\otimes\mathcal{U}$$

soit commutatif, ou encore que $m_{\mathscr{U}}$ fasse de \mathscr{U} une \mathscr{O}_S -Algèbre commutative. Les conditions (i), (ii), (iii), (iv), (v), (vi), (i)*, (ii)*, (iii)* et (v)* signifient alors aussi que \mathscr{U} est un cogroupe dans la catégorie des \mathscr{O}_S -Algèbres commutatives. En particulier, si de plus \mathscr{U} est un \mathscr{O}_S -Module quasi-cohérent, Spec \mathscr{U} est un S-schéma en groupes commutatifs.

Un homomorphisme de S-groupes de Spec \mathscr{U} dans $\mathbb{G}_{m,S}$ (I 4.3.2) est alors induit par un homomorphisme de \mathscr{O}_S -Algèbres unitaires

$$\varphi: \mathscr{O}_S[T, T^{-1}] \longrightarrow \mathscr{U}$$

tel que $(\varphi \otimes \varphi) \circ \Delta' = \Delta_{\mathrm{U}} \circ \varphi$ (le morphisme diagonal Δ' de $\mathscr{O}_{\mathrm{S}}[\mathrm{T},\mathrm{T}^{-1}]$ envoie T sur $\mathrm{T} \otimes \mathrm{T}$). Un tel homomorphisme φ est déterminé par l'image $\varphi(\mathrm{T})$ qui doit être un élément inversible x de \mathscr{U} tel que $\Delta_{\mathscr{U}} x = x \otimes x$; comme φ commute alors nécessairement avec l'augmentation, on a $\varepsilon_{\mathscr{U}} x = 1$ (l'augmentation de $\mathscr{O}_{\mathrm{S}}[\mathrm{T},\mathrm{T}^{-1}]$ envoie T sur 1). On a donc

$$\operatorname{Hom}_{S-\operatorname{gr.}}(\operatorname{Spec} \mathscr{U}, \mathbb{G}_{m,S}) \simeq (\operatorname{Spec}^* \mathscr{U})(S).$$

Comme cette formule reste valable après tout changement de base, on a finalement

$$\operatorname{Spec}^* \mathscr{U} = \operatorname{\underline{Hom}}_{\operatorname{S-gr.}}(\operatorname{Spec} \mathscr{U}, \mathbb{G}_{m,S})$$

pour toute \mathscr{O}_S -Coalgèbre en groupes commutatifs quasi-cohérente \mathscr{U} .

3.3.1. — Si l'on suppose de plus que \mathscr{U} est un \mathscr{O}_S -Module localement libre de type fini, Spec* \mathscr{U} est également représentable et l'on a (cf. 3.1.2) :

$$\operatorname{Spec}^* \mathscr{U} \simeq \operatorname{Spec} \mathscr{U}^*$$
.

Le foncteur $\mathscr{U} \mapsto \mathscr{U}^* = \mathscr{H}om_{\mathscr{O}_S\text{-Mod.}}(\mathscr{U}, \mathscr{O}_S)$ induit donc une dualité (*) de la catégorie des S-schémas en groupes commutatifs qui sont finis localement libres sur S (c'est la dualité de CARTIER). D'après 3.3, cette dualité associe $\underline{\text{Hom}}_{S\text{-gr.}}(G, \mathbb{G}_{m,S})$ à un S-groupe G.

^(*) Une dualité d'une catégorie $\mathscr C$ est un couple (D,φ) formé d'un foncteur contravariant D de $\mathscr C$ dans $\mathscr C$ et d'un isomorphisme fonctoriel $\varphi: \mathrm{Id}_\mathscr C \to \mathrm{DD}$ tel que les isomorphismes $\varphi D: D \to \mathrm{DDD}$ et $\mathrm{D}\varphi: \mathrm{DDD} \to \mathrm{D}$ soient réciproques l'un de l'autre.

434

4. « Frobeniuseries »

Soient p un nombre premier fixé et $(\mathbf{Sch}_{/\mathbb{F}_p})$ la catégorie des schémas de caractéristique p, c'est-à-dire des schémas au-dessus du corps premier \mathbb{F}_p . Suivant les conventions générales de ce séminaire, nous identifions $(\mathbf{Sch}_{/\mathbb{F}_p})$ à une sous-catégorie de $(\widehat{\mathbf{Sch}}_{/\mathbb{F}_p})$ au moyen du foncteur \mathbf{h} de I 1.1. Nous profitons de même de l'isomorphisme de $\mathrm{Hom}(\mathbf{h}_X, \mathbf{F})$ sur $\mathbf{F}(\mathbf{X})$ défini en I 1.1 pour identifier ces deux ensembles chaque fois que \mathbf{X} est un \mathbb{F}_p -schéma et \mathbf{F} un objet de $(\widehat{\mathbf{Sch}}_{/\mathbb{F}_p})$. Si \mathbf{T} est un \mathbb{F}_p -schéma, un \mathbf{T} -foncteur est un morphisme $q: \mathbf{F} \to \mathbf{T}$ de $(\widehat{\mathbf{Sch}}_{/\mathbb{F}_p})$ qui a \mathbf{T} pour but; pour tout \mathbf{T} -schéma $r: \mathbf{X} \to \mathbf{T}$, l'ensemble des morphismes $s: \mathbf{X} \to \mathbf{F}$ tels que $q \circ s = r$ sera alors noté $q(r), q(\mathbf{X}/\mathbf{T}), \mathbf{F}(r)$ ou $\mathbf{F}(\mathbf{X}/\mathbf{T})$ (ou même $\mathbf{F}(\mathbf{X})$ lorsqu'aucune confusion ne sera possible avec $\mathrm{Hom}(\mathbf{h}_{\mathbf{X}}, \mathbf{F})$).

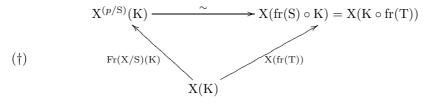
4.1. — Pour tout schéma S de caractéristique p, nous notons fr(S) ou fr l'endomorphisme de S qui induit l'identité sur l'espace topologique sous-jacent à S et qui associe x^p à une section x de \mathscr{O}_S sur un ouvert U. Alors l'application $fr: S \mapsto fr(S)$ est un endomorphisme du foncteur identique de $(\mathbf{Sch}_{/\mathbb{F}_p})$, ce qui implique les résultats suivants : soit E un \mathbb{F}_p -foncteur, c'est-à-dire un objet de $(\widehat{\mathbf{Sch}}_{/\mathbb{F}_p})$; l'application qui associe à tout \mathbb{F}_p -schéma S l'endomorphisme E(fr(S)) de E(S), est un endomorphisme fonctoriel de E que nous noterons fr(E) ou fr; cette notation est compatible avec l'identification de $(\mathbf{Sch}_{/\mathbb{F}_p})$ à une sous-catégorie de $(\widehat{\mathbf{Sch}}_{/\mathbb{F}_p})$; de plus, l'application $E \mapsto fr(E)$ est un endomorphisme du foncteur identique de $(\widehat{\mathbf{Sch}}_{/\mathbb{F}_p})$ (que nous noterons encore fr).

Pour tout schéma S de caractéristique p et tout S-foncteur $q: X \to S$, nous notons $X^{(p/S)}$ ou $X^{(p)}$ l'image réciproque $S \underset{fr,q}{\times} X$ de X par le changement de base fr(S). Le carré commutatif

$$\begin{array}{c|c} X & \xrightarrow{fr(X)} & X \\ \downarrow^q & & \downarrow^q \\ S & \xrightarrow{fr(S)} & S \end{array}$$

induit alors un S-morphisme Fr(X/S) ou Fr de X dans $X^{(p/S)}$ tel que $fr(X) = pr_2 \circ Fr(X/S)$. Nous dirons que Fr(X/S) est le morphisme de Frobenius de X relativement à S; il est clair que l'application $Fr: X \mapsto Fr(X/S)$ est un homomorphisme fonctoriel.

D'après les définitions, pour tout S-schéma $K:T\to S$, l'application Fr(X/S)(K) peut donc être caractérisée par la commutativité du triangle



Par exemple, si X est le sous-schéma de S défini par un Idéal quasi-cohérent \mathscr{I} , alors $X^{(p)}$ est le sous-schéma de S défini par l'Idéal $\mathscr{I}^{\{p\}}$ engendré par les puissances p-ièmes des sections de \mathscr{I} ; en outre, $\operatorname{Fr}(X/S)$ est alors l'immersion canonique de $\operatorname{Spec}(\mathscr{O}_X/\mathscr{I})$ dans $\operatorname{Spec}(\mathscr{O}/\mathscr{I}^{\{p\}})$.

4.1.1. — Considérons maintenant un changement de base $t: T \to S$. Comme le carré

$$\begin{array}{ccc}
T & \xrightarrow{fr(T)} & T \\
\downarrow t & & \downarrow t \\
S & \xrightarrow{fr(S)} & S
\end{array}$$

est commutatif, l'image réciproque de $X \times T$ par fr(T) s'identifie à l'image réciproque 435 de $X \times S$ par t; autrement dit, on a un isomorphisme canonique de $X_T^{(p/T)}$ sur $(X^{(p/S)})_T$. Il est clair que, dans cette identification, $Fr(X_T/T)$ s'identifie à l'image réciproque $Fr(X/S)_T$ de Fr(X/S).

En particulier, si S est le spectre du corps premier \mathbb{F}_p , $X^{(p/S)}$ est égal à X et Fr(X/S) à fr(X). Par conséquent, $X_T^{(p/T)}$ s'identifie à X_T et $Fr(X_T/T)$ à $fr(X)_T$. Soient par exemple E un ensemble et E_T le T-schéma constant de type E; on a alors $E_T^{(p/T)} \simeq E_T$ et $Fr(E_T/T) \simeq Id E_T$.

4.1.2. — Le foncteur $X \mapsto X^{(p/S)}$ commute évidemment aux produits; il transforme donc un S-groupe G en un S-groupe $G^{(p/S)}$; de plus, comme Fr est un homomorphisme fonctoriel, Fr(G/S) est un homomorphisme de S-groupes. Nous noterons FrG le noyau de cet homomorphisme: si $q: T \to S$ est un schéma au-dessus de S, il résulte de 4.1 que la valeur de FrG en G est le noyau de l'homomorphisme $G(fr(T)): G(g) \to G(g \circ fr(T))$. Par exemple, lorsque G est le schéma G0 est nombres duaux sur un G1 est le schéma G2 fr(G3) se factorise comme suit

$$I_R \xrightarrow{\operatorname{can.}} R \xrightarrow{\operatorname{fr}(R)} R \xrightarrow{\operatorname{can.}} I_R.$$

Ceci montre que $(F_rG)(I_R)$ contient le noyau du morphisme $G(I_R) \to G(R)$ et qu'on a Lie $G/S = Lie(F_rG/S)$.

4.1.3. — Plus généralement, pour tout S-foncteur X, nous définissons le S-foncteur $X^{(p^n)}$ par récurrence sur n à l'aide des formules

$$X^{(p)} = X^{(p/S)}$$
 et $X^{(p^n)} = (X^{(p^{n-1})})^{(p)}$.

De même, $\operatorname{Fr}^n(\mathbf{X}/\mathbf{S})$ ou Fr^n désignent l'homomorphisme fonctoriel composé

$$\mathbf{X} \xrightarrow{\mathrm{Fr}(\mathbf{X}/\mathbf{S})} \mathbf{X}^{(p)} \xrightarrow{\mathrm{Fr}(\mathbf{X}^{(p)}/\mathbf{S})} \mathbf{X}^{(p^2)} \cdots \mathbf{X}^{(p^{n-1})} \xrightarrow{\mathrm{Fr}(\mathbf{X}^{(p^{n-1})}/\mathbf{S})} \mathbf{X}^{(p^n)}.$$

Si G est un S-foncteur en groupes, $G^{(p^n)}$ en est un également et $Fr^n(G/S)$ est un homomorphisme de S-foncteurs en groupes. Nous noterons Fr^nG le noyau de $Fr^n(G/S)$ et nous dirons que G est de hauteur $\leq n$ si $Fr^n(G/S)$ est nul, c'est-à-dire si $Fr^nG = G$.

Le sous-foncteur en groupes $F_{r^n}G$ de G est caractéristique, en ce sens que, pour tout S-schéma T, tout endomorphisme f du T-foncteur en groupes G_T induit un endomorphisme de $(F_{r^n}G)_T$: en effet, comme la construction de $G^{(p^n)}$ et de $F_{r^n}(G/S)$ commute aux changements de base d'après 4.1.1, on peut supposer T = S; dans ce cas, l'assertion résulte de ce que $F_{r^n}(G/S)$ est un homomorphisme fonctoriel.

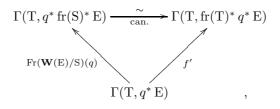
On notera enfin que $F(X^{(p)}/S)$ coïncide avec $F(X/S)^{(p)}$.

4.1.4. — Voici quelques exemples :

- a) Considérons d'abord un groupe abélien « abstrait » M et le groupe diagonalisable $G = D_S(M)$ de type M (I 4.4) : pour tout S-schéma T, G(T) est donc le groupe abélien $Hom_{(Ab)}(M, \Gamma(T, \mathcal{O}_T)^{\times})$. Comme G est l'image réciproque du groupe diagonalisable D(M) sur \mathbb{F}_p , $G^{(p)}$ s'identifie à G et Fr(G/S)(T) s'identifie à l'endomorphisme $x \mapsto x^p$ de G(T) (4.1.1). En particulier, lorsque M est égal à \mathbb{Z} , on a $D_S(M) = \mathbb{G}_{m,S}$, de sorte que $Fr(G_m)$ est le S-groupe $\mu_{p,S}$ qui associe à tout S-schéma T le groupe des racines p-ièmes de l'unité de $\Gamma(T, \mathcal{O}_T)$.
- b) Considérons maintenant un schéma S de caractéristique p et un faisceau de modules E sur S. D'après I 4.6.2, on a un isomorphisme canonique

$$\mathbf{W}(\mathbf{E})^{(p)} \simeq \mathbf{W}(\mathbf{E}^{(p)}),$$

où $E^{(p)}$ est l'image réciproque de E par fr(S). De plus, d'après 4.1, l'application $Fr(\mathbf{W}(E))(q)$ est déterminée pour tout S-schéma T par le triangle commutatif



où f' est l'application induite par fr(T).

En particulier, si E est égal à \mathscr{O}_{S} , $\mathbf{W}(E)$ s'identifie au groupe additif $\mathbb{G}_{a,S}$. Dans ce cas, on a $E^{(p)} = E = \mathscr{O}_{S}$ et le morphisme de Frobenius $Fr(\mathbb{G}_{a,S}/S)$ applique $x \in \Gamma(T, \mathscr{O}_{T})$ sur x^{p} . Le noyau $\alpha_{p,S}$ du morphisme de Frobenius de $\mathbb{G}_{a,S}$ associe donc à tout S-schéma T l'ensemble des sections x de \mathscr{O}_{T} telles que $x^{p} = 0$.

c) On verrait de même que, pour toute \mathscr{O}_{S} -Algèbre quasi-cohérente \mathscr{A} , (Spec \mathscr{A})^(p) s'identifie au spectre Spec $\mathscr{A}^{(p)}$ de l'image réciproque de \mathscr{A} par fr(S). Si π désigne l'endomorphisme $x \mapsto x^p$ du faisceau d'anneaux \mathscr{O}_{S} , on a donc $\mathscr{A}^{(p)} = \mathscr{A} \otimes_{\pi} \mathscr{O}_{S}$ et il est clair que $\operatorname{Fr}((\operatorname{Spec}\mathscr{A})/S)$ est induit par l'homomorphisme $a \otimes_{\pi} x \mapsto a^p x$ de $\mathscr{A} \otimes_{\pi} \mathscr{O}_{S}$ dans \mathscr{A} .

Pour tout \mathcal{O}_S -Module quasi-cohérent E enfin, on a des isomorphismes canoniques

$$V(E)^{(p)} \simeq V(E^{(p)})$$
 et $S(E)^{(p)} \simeq S(E^{(p)}),$

où $\mathcal{S}(E)$ désigne l'Algèbre symétrique du \mathscr{O}_S -Module E.

d) Soient \mathscr{U} une \mathscr{O}_{S} -Coalgèbre (3.1) et T un schéma de caractéristique p. Si $\mathscr{U}^{(p/S)}$ ou $\mathscr{U}^{(p)}$ désignent l'image réciproque de la Coalgèbre \mathscr{U} par f(S), on a comme en b) un isomorphisme canonique :

438

$$(\operatorname{Spec}^* \mathscr{U})^{(p)} \simeq \operatorname{Spec}^* \mathscr{U}^{(p)}.$$

Si \mathscr{U} est une Coalgèbre en groupes, la valeur de $_{Fr}(\operatorname{Spec}^*\mathscr{U})$ pour un S-schéma T est donc l'ensemble des éléments γ de $\Gamma(T,\mathscr{U}_T)$ tels que

$$varepsilon_{\mathscr{U}_{\mathbf{T}}}(x) = 1, \quad \Delta_{\mathscr{U}_{\mathbf{T}}}x = x \otimes x, \quad \text{et} \quad \gamma otimes_{\mathrm{fr}(\mathbf{T})}1 = 1.$$

4.2. — Nous allons maintenant nous occuper d'une construction voisine de la précédente : soient S un schéma de caractéristique p, X un S-schéma et X_S^p le produit dans la catégorie ($\mathbf{Sch}_{/S}$) de p exemplaires de X. Nous désignons alors par $U^p(X)$ le sous-schéma ouvert de X_S^p qui est la réunion des produits U_S^p , lorsque U parcourt les ouverts affines de X. Un point x de X_S^p appartient donc à $U^p(X)$ si et seulement si les projections $\operatorname{pr}_i x$ de x sur les facteurs de X_S^p appartiennent à un même ouvert affine de X. Par exemple, si toute partie finie de X est contenue dans un ouvert affine, on a $U^p(X) = X_S^p$.

Le groupe symétrique \mathscr{S}_p d'ordre p opère sur X^p_S par permutation des facteurs et laisse stable l'ouvert $U^p(X)$. Nous appellerons produit symétrique p-uple de X et nous noterons $\Sigma^p X$ le quotient de X^p_S par \mathscr{S}_p dans la catégorie de tous les espaces annelés. La projection canonique $q:X^p_S\to \Sigma^p X$ applique $U^p(X)$ sur un ouvert $V^p(X)$ du produit symétrique, qu'on peut décrire comme suit (confer V 4.1) : le faisceau structural de $\Sigma^p X$ induit sur $V^p(X)$ une structure de schéma; le morphisme $q':U^p(X)\to V^p(X)$ induit par q est affine et même entier; lorsque U parcourt les ouverts affines de X qui se projettent dans un ouvert affine variable V de S, les $\Sigma^p U$ forment un recouvrement affine de $V^p(X)$; si k désigne l'algèbre affine de V et A celle de U, $\Sigma^p U$ a pour algèbre affine la sous-algèbre $\Sigma^p A$ de $\bigotimes_k^p A$ formé des tenseurs symétriques.

Considérons maintenant le morphisme diagonal δ de X dans $U^p(X)$. La restriction de δ à l'ouvert U ci-dessus est définie par l'homomorphisme d'algèbres $\eta: a_1 \otimes \cdots \otimes a_p \mapsto a_1 \cdot a_2 \cdots a_p$ de $\bigotimes_k^p A$ dans A. On a donc, si N est l'opérateur de symétrisation

$$\eta(N(a_1 \otimes \cdots \otimes a_p)) = \eta(\sum_{\sigma \in \mathscr{S}_p} a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(p)}) = p! \ a_1 \cdots a_p = 0.$$

Autrement dit, η s'annule sur le sous-espace $\mathcal{N}(\bigotimes_k^p \mathcal{A})$ de $\Sigma^p \mathcal{A}$ formé des tenseurs symétrisés. De plus, si f est un tenseur symétrique, on a évidemment $\mathcal{N}(fa) = f\mathcal{N}(a)$, ce qui montre que $\mathcal{N}(\bigotimes_k^p \mathcal{A})$ est un idéal de $\Sigma^p \mathcal{A}$.

Nous noterons désormais $U^{[p/S]}$ le spectre premier de l'algèbre $\Sigma^p A/N(\otimes_k^p A)$. Ce spectre est un sous-schéma fermé de $\Sigma^p(U) = V^p(U)$ et la réunion des $U^{[p/S]}$ est un sous-schéma fermé $X^{[p/S]}$ de $V^p(X)$.

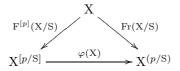
De plus, si i(X) désigne l'inclusion de $X^{[p/S]}$ dans $V^p(X)$, nous venons de voir que $q' \circ \delta$ se factorise à travers $X^{[p/S]}$:

439

Il est clair que $X^{[p/S]}$ est fonctoriel en X et que l'application $F^{[p]}: X \mapsto F^{[p]}(X/S)$ est un homomorphisme fonctoriel.

4.2.1. Les schémas $X^{[p/S]}$ et $X^{(p/S)}$ sont évidemment reliés : soient V un ouvert affine de S d'anneau affine k et U un ouvert affine de X au-dessus de V ; soit A l'algèbre affine de U. Si π désigne l'endomorphisme $x \mapsto x^p$ de k, $X^{(p/S)}$ a alors $k_\pi \otimes A$ pour algèbre affine. On vérifie en outre que l'application $\lambda \otimes a \mapsto (\lambda a \otimes \cdots \otimes a \mod N(\otimes^p A))$ définit un homomorphisme de k-algèbres de $A \otimes_{\pi} k$ dans $\Sigma^p A / N(\bigotimes^p A)$; cet homomorphisme induit un morphisme $\varphi(U) : U^{[p/S]} \to U^{(p/S)}$ tel que $\varphi(U) \circ F'(U/S) = F(U/S)$.

« Recollant les morceaux », on obtient alors un triangle commutatif

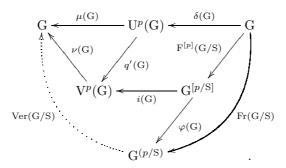


Par exemple, si X est le sous-schéma de S défini par un Idéal quasi-cohérent \mathscr{I} , $F^{[p]}(X/S)$ s'identifie au morphisme identique de X, de sorte que $\varphi(X)$ est l'immersion canonique de $\operatorname{Spec}(\mathscr{O}_S/\mathscr{I})$ dans $\operatorname{Spec}(\mathscr{O}_S/\mathscr{I}^{\{p\}})$. On voit ainsi que $\varphi(X)$ n'est pas un isomorphisme en général. Toutefois, lorsque M est un k-module libre, il est clair que l'application $\lambda \otimes m \mapsto (\lambda m \otimes \cdots \otimes m \pmod{N(\bigotimes_k^p M)})$ de $k_\pi \otimes M$ dans $\Sigma^p M/N(\bigotimes_k^p M)$ est bijective; cette application reste donc bijective lorsque M est k-plat, parce que tout module plat est une limite inductive filtrante de modules libres (LAZARD (*)). Il s'ensuit que $\varphi(X): X^{[p/S]} \to X^{(p/S)}$ est un isomorphisme lorsque X est un S-schéma plat.

4.3. — Considérons enfin un S-schéma en groupes abéliens G. Alors, le morphisme composé $\mu(G): U^p(G) \xrightarrow{\text{incl.}} G_S^p \to G$, qui est défini par la multiplication, se factorise

^(*) D. LAZARD GR. Acad. Sc. Paris 258, 1964, p. 6313-6316.

à travers $V^p(G)$, de sorte qu'on a le diagramme commutatif suivant :



Lorsque G est S-plat, $\varphi(G)$ est un isomorphisme et l'on peut définir un morphisme 441 (dit Verschiebung)

$$Ver(G/S): G^{(p/S)} \longrightarrow G$$

à l'aide de la formule $Ver(G/S) = \nu(G) \circ i(G) \circ \varphi(G)^{-1}$. Lorsque G parcourt les S-schémas plats en groupes abéliens, l'application $Ver: G \mapsto Ver(G/S)$ est évidemment un homomorphisme fonctoriel; par conséquent, Ver(G/S) est un homomorphisme de groupes. Pour tout S-schéma T enfin, l'application composée

$$G(T) \xrightarrow{\delta(G)(T)} U^p(G)(T) \xrightarrow{\mu(G)(T)} G(T)$$

applique $x \in G(T)$ sur $p \cdot x$. Nous pouvons écrire $p \cdot id_G$ au lieu de $\mu(G) \circ \delta(G)$, obtenant ainsi la formule classique :

(*)
$$\operatorname{Ver}(G/S) \circ \operatorname{Fr}(G/S) = p \cdot \operatorname{id}_{G}.$$

4.3.1. — Par exemple, lorsque G est un S-schéma constant en groupes abéliens, nous savons que Fr(G/S) s'identifie au morphisme identique de G (4.1.1). On a donc Ver(G/S) = p.

Lorsque G est le S-groupe diagonalisable de type M, Fr(G/S) est égal à p d'après 4.1.2; on voit facilement que Ver(G/S) est le morphisme identique de G.

Lorsque E est un \mathscr{O}_S -Module plat et que G est le S-groupe $\mathbb{V}(\mathscr{E})$, le morphisme $\mathrm{Ver}(G/S)$ est nul ainsi que $p\cdot\mathrm{id}_G$. On verra dans l'exposé VII_B qu'un groupe algébrique commutatif G sur un corps k est « unipotent » si et seulement si l'homomorphisme composé

$$\mathbf{G}^{(p^n)} \xrightarrow{\mathrm{Ver}(\mathbf{G}^{(p^{n-1})}/\mathbf{S})} \mathbf{G}^{(p^{n-1})} \dots \mathbf{G}^{(p)} \xrightarrow{\mathrm{Ver}(\mathbf{G}/\mathbf{S})} \mathbf{G}$$

est nul pour un certain n (on a posé $G^{(p^n)} = (G^{(p^{n-1})})^{(p)}$).

4.3.2. — Comme l'application Ver : $G \mapsto Ver(G/S)$ est un homomorphisme fonctoriel lorsque G parcourt les S-schémas plats en groupes commutatifs, le carré

$$G^{(p)} \xrightarrow{\operatorname{Ver}(G/S)} G$$

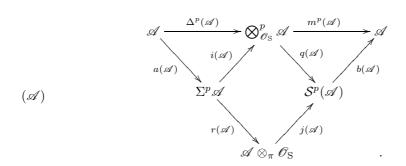
$$\operatorname{Fr}(G/S)^{(p)} \downarrow \qquad \qquad \downarrow \operatorname{Fr}(G/S)$$

$$G^{(p^2)} \xrightarrow{\operatorname{Ver}(G^{(p)}/S)} G^{(p)}$$

est commutatif (où $Fr(G/S)^{(p)}$ désigne l'image réciproque de Fr(G/S) pour le changement de base fr(S)). Comme il résulte directement des définitions que $Fr(G/S)^{(p)}$ est égal à $Fr(G^{(p)}/S)$, on a aussi

$$(**) \qquad \operatorname{Fr}(G/S) \circ \operatorname{Ver}(G/S) = \operatorname{Ver}(G^{(p)}/S) \circ \operatorname{Fr}(G^{(p)}/S) = p \cdot \operatorname{id}_{G^{(p)}}.$$

4.3.3. — Supposons enfin que G soit un S-groupe commutatif, fini et localement libre; soient A la \mathscr{O}_S -Algèbre affine de G et π l'endomorphisme du faisceau d'anneaux \mathscr{O}_S qui envoie une section x de \mathscr{O}_S sur x^p . On a alors un diagramme commutatif



où les différentes lettres ont les significations suivantes : $m^p(A)$ est induit par la multiplication de A ; le morphisme $\Delta^p(A)$ est associé au morphisme $\mu(G)$ dont il est question plus haut (il est donc défini par le morphisme diagonal de la Coalgèbre A) ; on désigne par $\Sigma^p A$ la sous-Algèbre de $\bigotimes_{\mathcal{O}_S}^p A$ formée des sections invariantes sous l'action du groupe symétrique, par i(A) l'inclusion de $\Sigma^p A$ dans le produit tensoriel ; de même, $\mathcal{S}^p(A)$ est la composante de degré p de l'algèbre symétrique de A et q(A) est la projection canonique. Comme $\Sigma^p A$ est l'algèbre affine de $V^p(A)$ avec les notations ci-dessus, le morphisme composé $i(G) \circ \varphi(G)^{-1}$ induit un homomorphisme d'Algèbres r(A); cet homomorphisme s'annule sur les sections de la forme

$$\sum_{\sigma \in \mathscr{S}_p} a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(p)}$$

et envoie $x \otimes \cdots \otimes x$ sur $1 \otimes x$. De même, j(A) est le morphisme de \mathscr{O}_S -Modules $1 \otimes x \mapsto q(x \otimes \cdots \otimes x)$. Le composé $r(A) \circ a(A)$ est donc associé au morphisme Verschiebung Ver(G/S), tandis que $b(A) \circ j(A)$ est associé au morphisme de Frobenius Fr(G/S) (a(A) et b(A) sont tels que $i(A) \circ a(A) = \Delta^p(A)$ et $b(A) \circ q(A) = m^p(A)$).

Le diagramme commutatif (A) ci-dessus est autodual; soit en effet D le foncteur qui associe à tout \mathcal{O}_S -Module M le \mathcal{O}_S -Module dual $\mathcal{H}om_{\mathcal{O}_S}(M,\mathcal{O}_S)$; il est clair que l'image de (A) par le foncteur D n'est autre que le diagramme (DA), les morphismes Dr(A), Da(A), Dj(A) et Db(A) s'identifiant respectivement à j(DA), b(DA), r(DA) et a(DA). On voit donc que la dualité de Cartier (3.3.1) échange morphisme de Frobenius et Verschiebung.

5. p-Algèbres de Lie

Rappelons d'abord quelques résultats du Séminaire Sophus Lie :

5.1. — Soient p un nombre premier, R un anneau commutatif de caractéristique p et A une R-algèbre associative, mais non nécessairement commutative. Si a et b sont deux éléments de A, nous posons [a,b]=ab-ba et $ab=L_a(b)=R_b(a)$. On a alors:

$$(\operatorname{ad} x^p)(y) = [x^p, y] = (L_x^p - R_x^p)(y) = (L_x - R_x)^p(y) = (\operatorname{ad} x)^p(y)$$

d'où la première formule de Jacobson

(i)
$$ad(x^p) = (ad x)^p$$

De même, si a_1,\dots,a_p sont p éléments arbitraires de A on a (confer 4.2) :

$$(*) \qquad \mathcal{N}(a_1 \otimes \cdots \otimes a_p) = \sum_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(p)} = \sum_{\tau} [a_{\tau(1)}[a_{\tau(2)}[\cdots [a_{\tau(p-1)}, a_p] \cdots]]]$$

où σ par court les permutations de p lettres et τ celles de (p-1) lettres. Le deuxième membre vaut en effet

$$\sum_{\tau} \sum_{r=0}^{p-1} (-1)^s a_{\tau(i_1)} a_{\tau(i_2)} \cdots a_{\tau(i_r)} a_p a_{\tau(j_s)} \cdots a_{\tau(j_1)}$$

où τ parcourt les permutations de p-1 lettres, i_1,\ldots,i_r les suites strictement croissantes d'entiers de l'intervalle [1,p-1] et où j_1,\ldots,j_s désigne la suite strictement croissante dont les valeurs sont les entiers de [1,p-1] différents de i_1,\ldots,i_r . Pour une valeur fixée de r, la somme des termes $(-1)^s a_{\tau(i_1)} \cdots a_{\tau(i_r)} a_p a_{\tau(j_s)} \cdots a_{\tau(j_1)}$ vaut évidemment

$$(-1)^s \binom{p-1}{s} \sum_{\rho} a_{\rho(1)} \cdots a_{\rho(r)} a_p a_{\rho(r+1)} \cdots a_{\rho(p-1)}$$

où ρ parcourt les permutations de p-1 lettres. Les égalités

$$(x-1)^p = x^p - 1 = (x-1)(x^{p-1} + \dots + 1)$$
 et $(x-1)^{p-1} = x^{p-1} + \dots + 1$

montrent d'autre part que $(-1)^s \binom{p-1}{s}$ est égal à 1 en caractéristique p, ce qui prouve (*).

En particulier, si x_0 et x_1 sont deux éléments de A, on a

$$(x_0 + x_1)^p = x_0^p + x_1^p + \sum_{z_{(1)}} x_{z_{(2)}} \cdots x_{z_{(p)}},$$

444

445

447

où z parcourt les applications non constantes de [1, p] dans $\{0, 1\}$. On en tire

$$(x_0 + x_1)^p = x_0^p + x_1^p + \sum_{0 < r < p} \frac{1}{r!(p-r)!} N(x_0, x_0, \dots, x_0, x_1, \dots, x_1),$$

d'où la deuxième formule de Jacobson

(ii)
$$(x_0 + x_1)^p = x_0^p + x_1^p - \sum_{0 \le r \le p} \sum_{t} \frac{1}{r} \left[x_{t(1)} \left[x_{t(2)} \left[\cdots \left[x_{t(p-1)}, x_1 \right] \cdots \right] \right] \right]$$

où t parcourt les applications $[1, p-1] \rightarrow \{0, 1\}$ prenant r fois la valeur 0.

5.2. — Soit maintenant \mathfrak{g} une R-algèbre de Lie. On dit qu'une application $x \mapsto x^{(p)}$ de g dans g fait de g une p-algèbre de Lie sur R si les conditions suivantes sont vérifiées :

(0)
$$(\lambda x)^{(p)} = \lambda^p \cdot x^{(p)}$$
 , $\lambda \in \mathbb{R}, x \in \mathfrak{g}$

(i) ad
$$x^{(p)} = (\operatorname{ad} x)^p$$
 , $x \in \mathfrak{g}$

$$\begin{aligned} & \text{(ii) } (x_0 + x_1)^{(p)} = x_0^{(p)} + x_1^{(p)} - \sum_{0 < r < p} \sum_t \frac{1}{r} \left[x_{t(1)} \left[x_{t(2)} \left[\cdots \left[x_{t(p-1)}, x_1 \right] \cdots \right] \right] \right] \\ & \text{où } t \text{ parcourt les applications } [1, p-1] \to \{0, 1\} \text{ prenant } r \text{ fois la valeur } 0 \ (x_0, x_1 \in \mathfrak{g}). \end{aligned}$$

Par exemple, si A est une R-algèbre, nous avons vu en 5.1 qu'on obtenait une $p\text{-}\mathrm{alg\`ebre}$ de Lie $\mathbf{A}_{\mathfrak{g}}$ en prenant le R-module sous-jacent à A et en posant

$$[x, y] = xy - yx$$
 , $x^{(p)} = x^p$, $x, y \in A$

Nous dirons que $A_{\mathfrak{g}}$ est la *p-algèbre de Lie sous-jacente* à A.

Dans la suite nous considèrerons surtout des sous-p-algèbres de Lie de p-algèbres de la forme $A_{\mathfrak{q}}$; en voici un exemple : soient S un schéma de caractéristique p>0 et X un S-schéma. On rappelle qu'une dérivation de X sur S est un endomorphisme D du faisceau en groupes abéliens \mathcal{O}_X tel que

$$D(\lambda \cdot s) = \lambda \cdot D(s)$$
 et $D(s \cdot t) = (Ds)t + s(Dt)$

lorsque λ parcourt les sections de \mathcal{O}_{S} , s et t les sections de \mathcal{O}_{X} sur des ouverts tels que les formules aient un sens. La formule de Leibniz

$$\mathbf{D}^{n}(s \cdot t) = \sum_{i=0}^{n} \binom{n}{i} (\mathbf{D}^{i} s) (\mathbf{D}^{n-i} t)$$

montre que D^p est encore une dérivation de X sur S, compte-tenu de l'égalité $\binom{p}{i} \equiv 0$ \pmod{p} pour $i \neq 0$, p. Il s'ensuit que l'Algèbre Dér_{X/S} des dérivations de X sur S est une p-sous-algèbre de Lie de l'algèbre sur $\Gamma(S, \mathscr{O}_S)$ des opérateurs différentiels de X sur S.

5.2.1. — Si \mathfrak{g} et \mathfrak{h} sont deux *p*-algèbres de Lie, un homomorphisme $h:\mathfrak{g}\to\mathfrak{h}$ est une application R-linéaire de $\mathfrak g$ dans $\mathfrak h$ telle que h([x,y]) = [h(x),h(y)] et $h(x^{(p)}) =$ $h(x)^{(p)}$ si $x, y \in \mathfrak{g}$. L'application composée de deux homomorphismes est encore un homomorphisme, de sorte que nous pourrons parler de la catégorie des p-algèbres de Lie sur R. De même, si (X, \mathcal{R}) est un espace annelé, nous dirons qu'un \mathcal{R} -Module \mathfrak{g} est muni d'une structure de p-Alqèbre de Lie sur \mathcal{R} si, pour tout ouvert U, $\Gamma(U,\mathfrak{g})$ est muni d'une structure de p-algèbre de Lie sur $\Gamma(U, \mathcal{R})$ et si les restrictions sont des homomorphismes.

5.3. — Nous nous intéressons maintenant au foncteur adjoint à gauche du foncteur $A \mapsto A_{\mathfrak{g}}$ de 5.2 : soient \mathfrak{g} une p-algèbre de Lie sur l'anneau R de caractéristique p, $U(\mathfrak{g})$ l'algèbre enveloppante de l'algèbre de Lie sous-jacente à \mathfrak{g} (cf. Bourbaki, algèbre de Lie, $\S 2$) et $i_{\mathfrak{g}}$ ou $i:\mathfrak{g} \to U(\mathfrak{g})$ l'application canonique. On sait que tout homomorphisme d'algèbres de Lie h de \mathfrak{g} dans l'algèbre de Lie sous-jacente à une R-algèbre unitaire A, se prolonge d'une manière et d'une seule en un homomorphisme de R-algèbres unitaires g de $U(\mathfrak{g})$ dans A (gi = h). En outre, h est un homomorphisme de p-algèbres de Lie si et seulement si p s'annule sur les éléments p d'une p d'idéal bilatère engendré par les éléments p ou p désigne le quotient de p de l'application composée de p d'une seule en un homomorphisme de p-algèbres de Lie de p dans p se prolonge d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une manière et d'une seule en un homomorphisme d'algèbres unitaires p et p d'une p d'une

On dit que $U_p(\mathfrak{g})$ est l'algèbre enveloppante restreinte de \mathfrak{g} .

5.3.1. — Avec les notations de 5.3, posons maintenant $\underline{p}(x) = i(x)^p - i(x^{(p)})$. Pour tout élément y de \mathfrak{g} , on a

$$\underline{p}(x)i(y) = i(y)\underline{p}(x) + [\underline{p}(x), i(y)]
= i(y)\underline{p}(x) + i((\operatorname{ad} x)^{p}y) - (\operatorname{ad} i(x))^{p}(i(y))
= i(y)\underline{p}(x),$$

de sorte que $\underline{p}(x)$ appartient au centre de $\mathrm{U}(\mathfrak{g})$; en particulier, l'idéal à gauche engendré par les éléments $\underline{p}(x)$ est déjà bilatère. De plus, on a $\underline{p}(\lambda x) = \lambda^p \underline{p}(x)$ et $\underline{p}(x+y) = \underline{p}(x) + \underline{p}(y)$, si $\lambda \in \mathrm{R}$ et $x, y \in \mathfrak{g}$; en particulier, si (x_α) est une famille de générateurs du R-module \mathfrak{g} , l'idéal à gauche engendré par les éléments $\underline{p}(x)$ est déjà engendré par les $p(x_\alpha)$.

5.3.2. — Lorsque $\mathfrak g$ est une R-algèbre de Lie dont le R-module sous-jacent est libre de base (x_{α}) , on peut définir comme suit une structure de p-algèbre de Lie sur $\mathfrak g$: identifions $\mathfrak g$ à un sous-module de $\mathrm{U}(\mathfrak g)$ au moyen de i (Bourbaki, Alg. de Lie, I, $\S 2.7$) et soit π l'application $r\mapsto r^p$ de R dans R. Si (y_{α}) est une famille quelconque d'éléments de $\mathfrak g$ tels que ad $y_{\alpha}=(\operatorname{ad} x_{\alpha})^p$, il existe alors une application R-linéaire $\underline q$ de R $\otimes_{\pi} \mathfrak g$ dans $\mathrm{U}(\mathfrak g)$ qui envoie $1\otimes x_{\alpha}$ sur $x_{\alpha}^p-y_{\alpha}$; de plus, comme on a

$$(\operatorname{ad} x_{\alpha}^{p})(x) = (\operatorname{ad} x_{\alpha})^{p}(x) = (\operatorname{ad} y_{\alpha})(x)$$

pour tout $x \in \mathfrak{g}$, q applique $\mathfrak{g}^{(p)}$ dans le centre de $U(\mathfrak{g})$.

Posant alors $x^{\overline{\{p\}}} = x^p - \underline{q}(1 \otimes x)$ pour tout $x \in \mathfrak{g}$, on vérifie sans peine que $x^{\{p\}}$ appartient à \mathfrak{g} et que l'application $x \mapsto x^{\{p\}}$ fait de \mathfrak{g} une p-algèbre de Lie. Autrement dit, si (x_{α}) est une base du module sous-jacent à une algèbre de Lie \mathfrak{g} sur R, les structures de p-algèbre de Lie sur \mathfrak{g} correspondent biunivoquement aux familles (y_{α}) de \mathfrak{g} telles que ad $y_{\alpha} = (\operatorname{ad} x_{\alpha})^p$.

448

450

5.3.3. Proposition. — Soit $\mathfrak g$ une p-algèbre de Lie sur R dont le module sous-jacent est libre de base (x_{α}) . Alors l'application $j: \mathfrak g \to U_p(\mathfrak g)$ est injective et, si l'on pose $z_{\alpha}=j(x_{\alpha}),\,U_p(\mathfrak g)$ a pour base les monômes $\prod_{\alpha} z^{n_{\alpha}} \ (0 \leqslant n_{\alpha}$

Soit en effet $n=(n_{\alpha})$ une famille d'entiers naturels qui sont nuls hormis un nombre fini d'entre eux. Identifions \mathfrak{g} à un sous-module de l'algèbre enveloppante $\mathrm{U}(\mathfrak{g})$ au moyen de l'application canonique i; posons $|n|=\sum_{\alpha}n_{\alpha},\, x^n=\prod_{\alpha}x^{n_{\alpha}}$ et soit U^r le sous-module de $\mathrm{U}(\mathfrak{g})$ qui est engendré par les x^n tels que $|n|\leqslant r$. Posons enfin s=|n|, $n_{\alpha}=m_{\alpha}+p\ell_{\alpha},$ avec $0\leqslant m_{\alpha}< p,$ et $\mathrm{T}n=\prod_{\alpha}x^{m_{\alpha}}\underline{p}(x_{\alpha})^{\ell_{\alpha}}$ (confer 5.3.1). Il est clair que $\mathrm{T}n-\prod_{\alpha}x^{n_{\alpha}}$ appartient à U^{s-1} . D'après le théorème de Poincaré-Birkhoff-Witt, les $\mathrm{T}n$ tels que |n|=s forment donc une base de U^s modulo U^{s-1} . Lorsque s=|n| varie, les $\mathrm{T}n$ forment une base de $\mathrm{U}(\mathfrak{g})$. Or le noyau J de l'application canonique de $\mathrm{U}(\mathfrak{g})$ dans $\mathrm{U}_p(\mathfrak{g})$ est l'idéal à gauche de $\mathrm{U}(\mathfrak{g})$ qui est engendré par les éléments centraux $\underline{p}(x_{\alpha})$ (5.3.1); par conséquent, les $\mathrm{T}n$ tels que $\ell=(\ell_{\alpha})\neq 0$ forment une base de J ; les $\mathrm{T}n$, tels que $n_{\alpha}< p$ pour tout α , forment une base de $\mathrm{U}(\mathfrak{g})$ modulo J , cqfd

5.3.3 bis. — Soient $\mathfrak g$ une p-algèbre de Lie sur R et $f:R\to R'$ une extension de l'anneau de base. Je dis qu'il existe sur le R'-module $R'\otimes_R \mathfrak g$ une structure de p-algèbre de Lie et une seule telle que

$$[\lambda \otimes x, \mu \otimes y] = \lambda \mu \otimes [x, y]$$
 et $(\lambda \otimes x)^{(p)} = \lambda^p \otimes x^{(p)}$.

Il en résultera en particulier, que le foncteur $\mathfrak{g}\mapsto R'\otimes_R\mathfrak{g}$ est adjoint à gauche au foncteur « restriction des scalaires de R' à R ».

L'unicité de la structure de p-algèbre de Lie de R' $\otimes_{\mathbf{R}} \mathfrak{g}$ étant claire, prouvons l'existence : lorsque \mathfrak{g} est libre de base (x_{α}) il existe d'après 5.3.1 une et une seule structure de p-algèbre de Lie sur l'algèbre de Lie R' $\otimes_{\mathbf{R}} \mathfrak{g}$ telle que $(1 \otimes x_{\alpha})^{(p)} = 1 \otimes (x_{\alpha}^{(p)})$; cette structure est celle que nous cherchons.

Lorsque $\mathfrak g$ est une p-algèbre de Lie arbitraire, il existe une p-algèbre de Lie libre (en tant que R-module) L_0 et un homomorphisme surjectif $q_0: L_0 \to \mathfrak g$; il suffit par exemple de prendre pour L_0 la p-algèbre de Lie $R \otimes_{\mathbb{F}_p} \mathfrak g$, où \mathbb{F}_p désigne le corps premier de caractéristique p, pour q_0 l'homomorphisme $\lambda \otimes x \mapsto \lambda \cdot x$ ($\mathfrak g$ est libre sur \mathbb{F}_p !). Le noyau de q_0 est alors un p-idéal de L_0 , c'est-à-dire un idéal de l'algèbre de Lie L_0 qui est stable pour l'endomorphisme $x \mapsto x^{(p)}$; il y a donc également une p-algèbre de Lie libre (en tant que R-module) L_1 et un homomorphisme $q_1: L_1 \to L_0$ dont l'image est $\ker q_0:$

$$L_1 \xrightarrow{q_1} L_0 \xrightarrow{q_0} \mathfrak{g} \longrightarrow 0.$$

On en déduit une suite exacte de R'-algèbres de Lie

$$R' \otimes_R L_1 \xrightarrow{R' \otimes_R q_1} R' \otimes_R L_0 \xrightarrow{R' \otimes_R q_0} R' \otimes_R \mathfrak{g} \longrightarrow 0.$$

Comme $R' \otimes_R q_1$ est manifestement un homomorphisme de p-algèbres de Lie, le noyau de $R' \otimes_R q_0$ est un p-idéal, de sorte que l'opération puissance p-ième symbolique de $R' \otimes_R L_0$ induit par passage au quotient une application de $R' \otimes_R \mathfrak{g}$ dans $R' \otimes_R \mathfrak{g}$

(utiliser la formule (ii) de 5.2.); cette dernière munit $\mathfrak g$ de la structure de p-algèbre de Lie cherchée.

5.3.4. — L'application canonique $j_{\mathfrak{g}}$ de \mathfrak{g} dans l'algèbre enveloppante restreinte $U_p(\mathfrak{g})$ induit, pour toute extension $f: \mathbb{R} \to \mathbb{R}'$ de l'anneau de base, un homomorphisme

$$R' \otimes_R j_{\mathfrak{g}} : R' \otimes_R \mathfrak{g} \longrightarrow R' \otimes_R U_p(\mathfrak{g}),$$

d'où un homomorphisme h de $U_p(R' \otimes_R \mathfrak{g})$ dans $R' \otimes_R U_p(\mathfrak{g})$ tel que $h \circ j_{R' \otimes \mathfrak{g}} = R' \otimes_R j_{\mathfrak{g}}$. Il résulte évidemment des propriétés universelles de $R' \otimes_R \mathfrak{g}$ et de l'algèbre enveloppante restreinte que h est un *isomorphisme*, ce qui nous permettra d'identifier $U_p(R' \otimes_R \mathfrak{g})$ à $R' \otimes_R U_p(\mathfrak{g})$.

En particulier, si r est un élément de R et si R' est l'anneau localisé R_r , on voit que $\mathfrak{g}_r \simeq R_r \otimes_R \mathfrak{g}$ est muni canoniquement d'une structure de p-algèbre de Lie sur R_r , de sorte que le faisceau $\widetilde{\mathfrak{g}}$ sur Spec R est une p-Algèbre de Lie quasi-cohérente sur Spec R. De plus, l'algèbre enveloppante restreinte $U_p^{R_r}(\mathfrak{g}_r)$ s'identifie à $U_p^R(\mathfrak{g})_r$ de sorte que le faisceau associé au préfaisceau $V \mapsto U_p(\Gamma(V,\mathfrak{g}))$ est quasi-cohérent. Plus généralement, si S est un schéma de caractéristique p et \mathscr{G} une p-Algèbre de Lie quasi-cohérente sur \mathscr{O}_S , le faisceau associé au préfaisceau $V \mapsto U_p(\Gamma(V,\mathscr{G}))$ est quasi-cohérent; il sera noté $\mathscr{U}_p(\mathscr{G})$ et appelé l'Algèbre enveloppante restreinte de \mathscr{G} . Si V est affine, $U_p(\Gamma(V,\mathscr{G}))$ s'identifie à l'ensemble des sections de $\mathscr{U}_p(\mathscr{G})$ sur V.

- **5.4.** Le caractère universel de $U_p(\mathfrak{g})$ entraı̂ne que $U_p(\mathfrak{g})$ est fonctoriel en \mathfrak{g} : tout homomorphisme de p-algèbres de Lie $h:\mathfrak{g}\to\mathfrak{h}$ induit un homomorphisme d'algèbres unitaires $U_p(h)$ et un seul tel que $j_{\mathfrak{h}}\circ h=U_p(h)\circ j_{\mathfrak{g}}$. Voici quelques exemples :
- a) Si $\mathfrak{h} = 0$, $U_p(\mathfrak{h})$ s'identifie à l'anneau de base et $U_p(h)$ est un homomorphisme d'algèbres $\varepsilon_{\mathfrak{g}} : U_p(\mathfrak{g}) \to \mathbb{R}$ appelé augmentation.
- b) Prenons maintenant pour \mathfrak{h} l'algèbre \mathfrak{g}° opposée à $\mathfrak{g}:\mathfrak{g}^{\circ}$ a même module sousjacent que \mathfrak{g} , même puissance p-ième symbolique, le crochet de deux éléments dans \mathfrak{g}° étant l'opposé du crochet dans \mathfrak{g} . Il est clair que nous pouvons identifier $U_p(\mathfrak{g}^{\circ})$ à l'algèbre opposée à $U_p(\mathfrak{g})$. De plus, l'isomorphisme $x \mapsto -x$ de \mathfrak{g} sur \mathfrak{g}° induit un isomorphisme $c_{\mathfrak{g}}$ de $U_p(\mathfrak{g})$ sur $U_p(\mathfrak{g}^{\circ}) \simeq U_p(\mathfrak{g})^{\circ}$. On dit que $c_{\mathfrak{g}}$ est l'antipodisme de $U_p(\mathfrak{g})$.
- c) Soient enfin \mathfrak{f} et \mathfrak{g} deux p-algèbres de Lie et \mathfrak{h} la p-algèbre de Lie produit $\mathfrak{f} \times \mathfrak{g}$ qui a pour R-module sous-jacent le produit direct $\mathfrak{f} \times \mathfrak{g}$, le crochet et la puissance symbolique étant définis par les formules

$$[(x,y),(x',y')] = ([x,x'],[y,y'])$$
 et $(x,y)^{(p)} = (x^{(p)},y^{(p)}).$

Si $h_1:\mathfrak{f}\to\mathfrak{k}$ et $h_2:\mathfrak{g}\to\mathfrak{k}$ sont deux homomorphismes de p-algèbres de Lie tels que $[h_1(x),h_2(y)]=0$ pour tout x de \mathfrak{f} et tout y de \mathfrak{g} , l'application $h_1+h_2:(x,y)\to h_1(x)+h_2(y)$ est un homomorphisme de p-algèbres de Lie; réciproquement, tout homomorphisme de $\mathfrak{f}\times\mathfrak{g}$ dans \mathfrak{k} est de ce type, ce qui permet de caractériser $\mathfrak{f}\times\mathfrak{g}$ comme solution d'un problème universel. Par exemple, les applications $h_1:x\mapsto i_{\mathfrak{f}}(x)\otimes 1$ et $h_2:y\mapsto 1\otimes i_{\mathfrak{g}}(y)$ induisent un homomorphisme h_1+h_2 de $\mathfrak{f}\times\mathfrak{g}$ dans la p-algèbre de Lie sous-jacente à $U_p(\mathfrak{f})\otimes U_p(\mathfrak{g})$. Il résulte des caractères universels de $\mathfrak{f}\times\mathfrak{g}$ et des

algèbres enveloppantes restreintes que $h_1 + h_2$ se prolonge en un isomorphisme φ de $U_p(\mathfrak{f} \times \mathfrak{g})$ sur le produit tensoriel $U_p(\mathfrak{f}) \otimes U_p(\mathfrak{g})$.

Si $\mathfrak{f} = \mathfrak{g}$, l'application diagonale $\delta : x \mapsto (x, x)$ de \mathfrak{g} dans $\mathfrak{g} \times \mathfrak{g}$ induit un homomorphisme de $U_p(\mathfrak{g})$ dans $U_p(\mathfrak{g} \times \mathfrak{g})$. Nous noterons $\Delta_{\mathfrak{g}}$ le composé de cet homomorphisme avec φ ; on voit facilement que $\Delta_{\mathfrak{g}}$ et la multiplication de l'algèbre $U_p(\mathfrak{g})$ font de $U_p(\mathfrak{g})$ une R-coalgèbre en groupes (3.2) qui a $\varepsilon_{\mathfrak{g}}$ pour augmentation et $c_{\mathfrak{g}}$ pour antipodisme.

5.4.1. — De même, soient S un schéma de caractéristique p et \mathscr{G} une \mathscr{O}_{S} -p-Algèbre de Lie. Lorsque V parcourt les ouverts de S, les structures de coalgèbres en groupes définies précédemment sur les ensembles $U_p(\Gamma(V,\mathscr{G}))$ induisent sur l'algèbre enveloppante restreinte $\mathscr{U}_p(\mathscr{G})$ une structure de \mathscr{O}_S -p-Coalgèbre en groupes. D'après 5.3.1, le S-foncteur en groupes correspondant Spec* $\mathscr{U}_p(\mathscr{G})$ associe à tout S-schéma T l'ensemble des sections x de $\mathscr{U}_p(\mathscr{G} \otimes_{\mathscr{O}_S} \mathscr{O}_T)$ telles que

$$\varepsilon(x) = 1$$
 et $\Delta x = x \otimes x$.

Ici ε désigne l'augmentation de $\mathscr{U}_p(\mathscr{G} \otimes_{\mathscr{O}_S} \mathscr{O}_T)$, Δ le morphisme diagonal, et $x \otimes x$ l'image canonique de (x,x) dans $\Gamma(T,\mathscr{U}_p(\mathscr{G}_T) \otimes_{\mathscr{O}_T} \mathscr{U}_p(\mathscr{G}_T))$.

Lorsque \mathscr{G} est localement libre de type fini en tant que \mathscr{O}_S -Module, $\operatorname{Spec}^* \mathscr{U}_p(\mathscr{G})$ est représentable par un S-schéma fini, localement libre (5.3.3 et 3.1.2).

6. p-Algèbre de Lie d'un S-schéma en groupes

Soit S un schéma de caractéristique p>0. Au paragraphe 5 nous avons associé à toute \mathscr{O}_{S} -p-Algèbre de Lie quasi-cohérente \mathscr{G} un S-foncteur en groupes Spec* $\mathscr{U}_{p}(\mathscr{G})$. Nous allons voir maintenant que, pour tout S-schéma en groupes G, l'Algèbre de Lie Lie(G/S) définie en II 4.11 est munie naturellement d'une structure de \mathbf{O}_{S} -p-algèbre de Lie.

6.1. — Identifions tout d'abord $\underline{\text{Lie}}(G/S)(S)$ et $\underline{\text{Lie}}(\text{Aut}\,G/S)(S)$ respectivement à des sous-algèbres de Lie de U(G) et $\text{Dif}_{G/S}$ au moyen des injections α et β de 2.5. L'Algèbre de Lie de $\underline{\text{Aut}}\,G$ est donc identifiée à l'algèbre de Lie des S-dérivations de \mathscr{O}_{X} . D'après 5.2, cette dernière est une sous-p-algèbre de Lie de $\text{Dif}_{G/S}$.

D'autre part, d'après II 4.1.4, l'image de $L = \underline{\text{Lie}}(G/S)(S)$ par la translation à droite $r: U(G) \to \text{Dif}_{G/S}$ est formée des dérivations invariantes à droite. Si x appartient à L, $r(x)^p$ n'est autre que $r(x^p)$ d'après 2.2. Comme $r(x)^p$ est encore une dérivation, on voit que x^p appartient à $\underline{\text{Lie}}(G/S)(S)$, qui est donc une sous-p-algèbre de Lie de l'algèbre infinitésimale U(G).

6.1.1. — Soit $h: G \to H$ un homomorphisme de S-schémas en groupes. Il est clair que les homomorphismes $\underline{\operatorname{Lie}}(h/S)(S)$ et U(h) sont compatibles avec les identifications de $\underline{\operatorname{Lie}}(G/S)(S)$ et $\underline{\operatorname{Lie}}(H/S)(S)$ à des sous-p-algèbres de Lie de U(G) et U(H). Comme U(h) est un homomorphisme d'algèbres, on voit donc que $\underline{\operatorname{Lie}}(h/S)(S)$ est un homomorphisme de p-algèbres de Lie.

De même, si $s: T \to S$ est un changement de base, l'application de <u>Lie(G/S)(S)</u> dans <u>Lie(G/S)(T)</u>, qui est induite par s, est un homomorphisme de p-algèbres de Lie.

On peut traduire cela en disant que le foncteur $\underline{\text{Lie}}(G/S)$ est muni d'une structure de \mathbf{O}_{S} -p-algèbre de Lie. En particulier, lorsque T parcourt les ouverts de S, on voit que le faisceau $\mathscr{L}ie(G/S)$ est muni d'une structure de \mathscr{O}_{S} -p-algèbre de Lie.

6.2. — Suivant une idée de Demazure, nous allons maintenant généraliser ce qui précède à certains S-foncteurs en groupes non nécessairement représentables. Pour cela, nous allons d'abord donner une autre définition de la puissance p-ième symbolique dans l'algèbre de Lie d'un S-schéma en groupes G.

Soit D une dérivation de G à l'origine, c'est-à-dire la déviation de l'origine obtenue en composant la déviation canonique $\delta: S \to I_S$ de 1.5 avec un prolongement x à I_S de la section unité $\varepsilon: S \to G$. D'après la définition que nous avons donnée en 2.1, D^p est la déviation composée suivante

$$\mathbf{S} \simeq \underbrace{\mathbf{S} \times \mathbf{S} \times \cdots \times \mathbf{S}}_{p} \xrightarrow{\delta \times \cdots \times \delta} \mathbf{I}_{\mathbf{S}} \times \cdots \times \mathbf{I}_{\mathbf{S}} \xrightarrow{x \times \cdots \times x} \mathbf{G} \times \cdots \times \mathbf{G} \xrightarrow{m^{(p)}} \mathbf{G}$$

où $m^{(p)}$ est le morphisme induit par la multiplication $m: G \times G \to G$. Comme $I_S \times \cdots \times I_S$ est affine sur S et a pour Algèbre affine $\mathscr{O}_S[d_1, \ldots, d_p]/(d_1^2, \ldots, d_p^2)$, la déviation $\delta \times \cdots \times \delta$ est définie par un morphisme de \mathscr{O}_S -Modules

$$\mathscr{O}_{\mathrm{S}}[d_1,\ldots,d_p]/(d_1^2,\ldots,d_p^2)\longrightarrow\mathscr{O}_{\mathrm{S}}$$

qui applique le monôme $d_1d_2\cdots d_p$ sur 1 et les autres monômes $d_{i_1}\cdots d_{i_r}$ sur 0 (r < p). D'autre part, si pr_i désigne la projection de I_S^p sur le i-ième facteur et si x_i est l'image de x dans $\operatorname{G}(\operatorname{I}_S^p)$ par $\operatorname{G}(\operatorname{pr}_i)$, le morphisme composé $m^{(p)} \circ (x \times \cdots \times x)$ n'est autre que le produit $x_1x_2\cdots x_p$. Par conséquent, D^p est aussi la déviation composée suivante

$$S \xrightarrow{\delta \times \cdots \times \delta} I_S \times \cdots \times I_S \xrightarrow{x_1 x_2 \cdots x_p} G.$$

Cette description nous permet de redémontrer que D^p est une dérivation de G à l'origine : en effet, comme G est un très bon groupe (II 4.11), les images $G(pr_1)(x)$ et $G(pr_2)(x)$ de x dans $G(I_S \times I_S)$ commutent entre elles. Il s'ensuit que les éléments x_i de $G(I_S^p)$ commutent deux à deux, autrement dit que, pour toute permutation σ des facteurs de I_S^p , on a $(x_1 \cdots x_p) \circ \sigma = x_1 \cdots x_p$; il s'ensuit que $x_1 \cdots x_p$ se factorise à travers la projection canonique de I_S^p dans le produit symétrique $\Sigma^p I_S$ (4.2).

Le produit symétrique $\Sigma^p I_S$ a pour Algèbre affine une sous-Algèbre A de $\mathscr{O}_S[d_1,\ldots,d_p]/(d_1^2,\ldots,d_p^2)$ qui a pour base sur \mathscr{O}_S les fonctions symétriques élémentaires $1=\sigma_0,\,\sigma_1,\ldots,\sigma_p$ de d_1,\ldots,d_p . Nous désignons par q l'homomorphisme de A dans $\mathscr{O}_S[d]/(d^2)$ qui annule $\sigma_1,\ldots,\sigma_{p-1}$ et envoie σ_p sur d, par i l'immersion fermée de I_S dans $\Sigma^p I_S$ qui est associée à q. On a alors un diagramme commutatif :



454

457

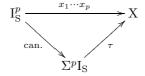
qui montre que D^p est de la forme $y \circ \delta$, cqfd

6.3. — Soient \mathscr{S}_p le groupe symétrique d'ordre p et $\mathrm{I}_\mathrm{S}^p \times \mathscr{S}_p$ la somme directe d'une famille d'exemplaires de I_S^p indexés par \mathscr{S}_p . Nous notons $\pi: \mathrm{I}_\mathrm{S}^p \times \mathscr{S}_p \to \mathrm{I}_\mathrm{S}^p$ la projection canonique et $k: \mathrm{I}_\mathrm{S}^p \times \mathscr{S}_p \to \mathrm{I}_\mathrm{S}^p$ le morphisme définissant l'opération de \mathscr{S}_p sur I_S^p (si σ est un élément de \mathscr{S}_p , la restriction de k à $\mathrm{I}_\mathrm{S}^p \times \sigma$ a pr $_{\sigma_j}$ pour j-ième composante). Ceci étant, nous disons qu'un foncteur $\mathrm{X}: (\mathbf{Sch}_{/\mathrm{S}})^\circ \to (\mathbf{Ens})$ vérifie la condition (F) si X transforme les sommes directes finies en produits directs et si, pour tout S-schéma T, la suite

$$X(T \times_{S} \Sigma^{p} I_{S}) \xrightarrow{X(T \times_{S} I_{S}^{p})} X(T \times_{S} I_{S}^{p}) \xrightarrow{X(T \times_{S} \pi)} X(T \times_{S} I_{S}^{p} \times \mathscr{S}_{p})$$

est exacte. Tout S-schéma vérifie (F); si \mathscr{F} est un \mathscr{O}_S -Module, $\mathbf{W}(\mathscr{F})$ vérifie (F); toute limite projective de foncteurs vérifiant (F), vérifie aussi (F); si \underline{Y} vérifie (F) et si X est un S-foncteur quelconque, $\underline{\operatorname{Hom}}_S(X,Y)$ vérifie (F).

Soit X un très bon groupe (II 4.10) vérifiant la condition (F). Désignant par $x: I_S \to X$ un morphisme qui prolonge la section unité de X et reprenant les notations de 6.2, on voit comme ci-dessus que $x_1 \cdots x_p: I_S^p \to X$ se factorise à travers $\Sigma^p I_S:$



et définit par composition un morphisme

$$x^{(p)}: I_S \xrightarrow{i} \Sigma^p I_S \xrightarrow{\tau} X$$

que nous appellerons la puissance p-ième symbolique de x.

L'endomorphisme $x \mapsto x^{(p)}$ de <u>Lie(G/S)(S)</u> est évidemment compatible avec les changements de base et est fonctoriel en G. Il serait intéressant de savoir pour quels G cet endomorphisme fait de <u>Lie(G/S)(S)</u> une p-algèbre de Lie.

- **6.4.** La dernière définition de la puissance *p*-ième symbolique, que nous venons de donner, est particulièrement bien adaptée au calcul. Voici quelques exemples :
 - **6.4.1.** Soient M un groupe abélien « abstrait » et $D_S(M)$ le S-groupe diagonalisable de type M (I 4.4.2). Pour tout S-schéma T, on a donc $D_S(M)(T) = Hom_{(Ab)}(M, \mathbf{O}(T)^*)$. Soit x un élément de $\underline{Lie}(D_S(M)/S)(S)$, c'est-à-dire un homomorphisme de groupes abéliens

$$M \xrightarrow{x} \Gamma(S, \mathscr{O}_S + d\mathscr{O}_S)^*$$

de la forme $m \mapsto 1 + d\xi(m)$, où $\xi \in \text{Hom}_{(Ab)}(M, \mathbf{O}(S))$. Avec les notations de 6.2 et 6.3, le produit $x_1 \cdots x_p$ associe à un élément m de M l'expression

$$(1+d_1\,\xi(m))\cdots(1+d_p\,\xi(m))$$

c'est-à-dire $1 + \sigma_1 \xi(m) + \sigma_2(\xi(m))^2 + \cdots + \sigma_n(\xi(m))^p$.

Cette expression appartient bien à $\mathbf{O}(\Sigma^p \mathbf{I}_S)$. Projetant l'Algèbre affine A de $\Sigma^p \mathbf{I}_S$ dans $\mathscr{O}_S[d]/(d^2)$ en annulant $\sigma_1, \ldots, \sigma_{p-1}$ et en envoyant σ_p sur d, on voit que $x^{(p)}$ est l'homomorphisme

$$m \mapsto 1 + d(\xi(m))^p$$

de M dans $\Gamma(S, \mathcal{O}_S + d\mathcal{O}_S)$.

En résumé, si l'on identifie $\underline{\text{Lie}}(D_S(M)/S)(S)$ à $\text{Hom}_{(Ab)}(M, \mathbf{O}(S)^*)$ comme en 5.1, la puissance p-ième symbolique associe à ξ l'homomorphisme $\xi^{(p)}: m \mapsto \xi(m)^p$.

6.4.2. — Soient \mathscr{F} un \mathscr{O}_S -Module et G le S-foncteur en groupes abéliens $\mathbf{W}(\mathscr{F})$ (cf. I 4.6). Soient y un élément de $\mathbf{W}(\mathscr{F})(S) = \Gamma(S,\mathscr{F})$ et y' l'image canonique de y dans $\mathbf{W}(\mathscr{F})(I_S)$. On sait que l'application $y \mapsto dy'$ est une bijection de $\mathbf{W}(\mathscr{F})(S)$ sur $\underline{\text{Lie}}(\mathbf{W}(\mathscr{F})/S)(S)$. Si l'on pose x = dy', la quantité x_i de 6.2 n'est autre que $d_i y''$, où y'' désigne l'image canonique de x dans $\mathbf{W}(\mathscr{F})(I_S^p)$. Par conséquent le produit $x_1 \cdots x_p$ est égal à $(d_1 + \cdots + d_p)y''$ et appartient à $\mathbf{W}(\mathscr{F})(\Sigma^p I_S)$. Comme l'application de $\mathbf{O}(\Sigma^p I_S)$ dans $\mathbf{O}(I_S)$, qui définit le morphisme i de 6.1, annule $d_1 + \cdots + d_p$, on voit que $x^{(p)}$ est nul.

Pour tout \mathscr{O}_S -Module \mathscr{F} , l'opération puissance p-ième symbolique dans l'algèbre de Lie de $\mathbf{W}(\mathscr{F})$ est donc nulle.

6.4.3. — Soient X un S-schéma, G le S-foncteur en groupes $\underline{\operatorname{Aut}}_{S}$ X et D une S-dérivation du faisceau structural \mathscr{O}_{X} . D'après 6.1, D peut être identifié à un I_{S} -automorphisme x de $X_{I_{S}}$ qu'on peut décrire comme suit : si s est une section de $\mathscr{O}_{S}[d]/(d^{2})$ de la forme a+db, posons $D_{I_{S}}s=Da+d(Db)$; autrement dit, $D_{I_{S}}$ est déduit de D par le changement de base $I_{S} \to S$; l'automorphisme en question de $X_{I_{S}}$ est alors associé à l'endomorphisme $s \mapsto s+d(D_{I_{S}}s)$ de $\mathscr{O}_{S}[d]/(d^{2})$.

De même, soit $D_{I_S^p}$ l'opérateur différentiel de $X_{I_S^p}$ déduit de D par le changement de base $I_S^p \to S$. Avec les notations de 6.2, l'automorphisme x_i de $X_{I_S^p}$ est alors associé à l'endomorphisme $s \mapsto s + d_i(D_{I_S^p}(s))$ de $\mathscr{O}_S[d_1, \ldots, d_p]/(d_1^2, \ldots, d_p^2)$. Le produit $x_1 \cdots x_p$ est donc associé à l'endomorphisme

$$(1 + d_1 D_{I_S^p})(1 + d_2 D_{I_S^p}) \cdots (1 + d_p D_{I_S^p})$$

c'est-à-dire à $1 + \sigma_1 D_{I_S^p} + \sigma_2 (D_{I_S^p})^2 + \cdots + \sigma_p (D_{I_S^p})^p$.

Le coefficient de σ_p est $(D_{I_S^p})^p$, ce qui signifie que la bijection $D \mapsto x$ de l'algèbre de Lie des S-dérivations de \mathscr{O}_X sur l'algèbre de Lie de $\underline{\mathrm{Aut}}_S X$ est un isomorphisme de p-algèbres de Lie.

6.4.4. — En utilisant la même méthode, on voit que, pour tout \mathscr{O}_S -Module \mathscr{F} , la bijection décrite en II 4.5 est un isomorphisme de p-algèbres de Lie de End_{O_S-mod}. $\mathbf{W}(\mathscr{F})$ sur $\underline{\mathrm{Lie}(\mathrm{Aut}_{\mathbf{O}_S\text{-mod}}.\mathbf{W}(\mathscr{F})/S)(S)}$.

De même, si \mathscr{U} est une \mathscr{O}_S -Coalgèbre en groupes quasi-cohérente, et si G est le foncteur en groupes $\operatorname{Spec}^*\mathscr{U}$, on voit facilement que l'injection canonique de $\operatorname{\underline{Lie}}(G/S)(S)$ dans $\Gamma(S,\mathscr{U})$, qui identifie $\operatorname{\underline{Lie}}(G/S)(S)$ à l'ensemble des éléments primitifs de $\Gamma(S,\mathscr{U})$, est compatible avec la puissance p-ième.

461

7. Groupes radiciels de hauteur 1

Soit S un schéma de caractéristique p>0. Nous dirons qu'une \mathscr{O}_S -Algèbre \mathscr{A} (resp. une \mathscr{O}_S -p-algèbre de Lie \mathscr{L}) est finie localement libre si le \mathscr{O}_S -Module sousjacent à \mathscr{A} (resp. \mathscr{L}) est localement libre et de type fini. Si \mathscr{L} est une \mathscr{O}_S -p-algèbre de Lie finie localement libre, nous savons que le S-foncteur en groupes

$$G_p(\mathcal{L}) = \operatorname{Spec}^* \mathscr{U}_p(\mathcal{L})$$

est représentable par un S-schéma fini, localement libre (5.4.1). Nous allons voir que ce S-schéma est solution d'un problème universel et nous allons caractériser les S-schémas en groupes de la forme $\operatorname{Spec}^* \mathscr{U}_p(\mathscr{L})$.

7.1. — Considérons d'abord une \mathscr{O}_S -p-Algèbre de Lie quasi-cohérente \mathscr{L} . Lorsque V parcourt les ouverts de S, les applications $j:\Gamma(V,\mathscr{L})\to U_p(\Gamma(V,\mathscr{L}))$ de 5.3 définissent un morphisme $\underline{j}:\mathscr{L}\to\mathscr{W}_p(\mathscr{L})$. D'autre part, d'après 3.2.3, la \mathscr{O}_S -Algèbre de Lie du S-foncteur en groupes $G_p(\mathscr{L})$ est le noyau du morphisme

$$\Delta - \operatorname{in}_1 - \operatorname{in}_2 : \mathscr{U}_p(\mathscr{L}) \longrightarrow \mathscr{U}_p(\mathscr{L}) \otimes_{\mathscr{O}_S} \mathscr{U}_p(\mathscr{L}),$$

où Δ désigne le morphisme diagonal et où in₁, in₂ sont les injections $x \mapsto x \otimes 1$ et $x \mapsto 1 \otimes x$. Il est clair que l'image de \underline{j} est contenue dans le noyau $\mathscr{L}ie \, G_p(\mathscr{L})$ de $\Delta - \operatorname{in}_1 - \operatorname{in}_2$; c'est pourquoi nous noterons $\underline{j}_{\mathscr{L}} : \mathscr{L} \to \underline{\operatorname{Lie}} \, \mathcal{G}_p(\mathscr{L})$ le morphisme de $\mathscr{O}_{\operatorname{S}}$ -p-Algèbres de Lie qui est induit par j (6.4.4).

Considérons maintenant un très bon S-foncteur en groupes G vérifiant la condition (F) de 6.3 et soit $h: G_p(\mathcal{L}) \to G$ un homomorphisme de S-foncteurs en groupes. D'après 6.3, le morphisme $\mathcal{L}ie\ h: \mathcal{L}ie\ G_p(\mathcal{L}) \to \mathcal{L}ie\ G$ est un homomorphisme de \mathcal{O}_S -Algèbres de Lie qui est compatible avec l'élévation à la puissance p-ième symbolique. Il en va donc de même pour le morphisme composé $(\mathcal{L}ie\ h) \circ \underline{j}_{\mathcal{L}}$. Si nous notons $\operatorname{Hom}_p(\mathcal{L}, \mathcal{L}ie\ G)$ l'ensemble des homomorphismes de \mathcal{O}_S -Algèbres de Lie, qui sont compatibles avec l'élévation à la puissance p-ième symbolique, on a donc une application $J(\mathcal{L}, G): h \mapsto (\mathcal{L}ie\ h) \circ \underline{j}_{\mathcal{L}}$ de $\operatorname{Hom}_{S\text{-Gr.}}(\mathcal{G}_p(\mathcal{L}), G)$ dans $\operatorname{Hom}_p(\mathcal{L}, \underline{\operatorname{Lie}}\ G)$.

7.2. Théorème. — Si $\mathscr L$ est une $\mathscr O_S$ -p-Algèbre de Lie finie localement libre, l'application

$$J(\mathcal{L}, G) : \operatorname{Hom}_{S-\operatorname{gr.}}(G_p(\mathcal{L}), G) \longrightarrow \operatorname{Hom}_p(\mathcal{L}, \mathcal{L}ie G)$$

est bijective dans chacun des cas suivants :

- (i) G est un S-schéma en groupes;
- (ii) G est de la forme Auts X, où X est un S-schéma;
- (iii) G est de l'une des formes $\mathbf{W}(\mathscr{F})$ ou $\underline{\mathrm{Aut}}_{\mathbf{O}_S\text{-}\mathrm{mod}}\mathbf{W}(\mathscr{F})$, où \mathscr{F} désigne un $\mathscr{O}_S\text{-}Module quasi-cohérent.$

La démonstration du théorème s'appuie sur le lemme suivant :

Lemme. — $Si \mathcal{L}$ est une \mathcal{O}_S -p-Algèbre de Lie finie localement libre, le S-groupe $G_p(\mathcal{L})$ est annulé par le morphisme de Frobenius de $G_p(\mathcal{L})$ relativement à S.

Soient en effet \mathscr{U} l'Algèbre enveloppante restreinte de \mathscr{L} et posons $\mathscr{A} = \mathscr{U}^* = \mathscr{H}om_{\mathscr{O}_{\mathbb{S}}}(\mathscr{U},\mathscr{O}_{\mathbb{S}})$. Alors \mathscr{A} est l'Algèbre affine de $G_p(\mathscr{L})$. De plus, si \mathscr{J} est l'idéal d'augmentation de \mathscr{U} , c'est-à-dire l'Idéal engendré par l'image de $\underline{j}_{\mathscr{L}} : \mathscr{L} \to \mathscr{U}$, nous notons \mathscr{I} l'orthogonal de \mathscr{J} dans \mathscr{A} . On a donc $\mathscr{A}/\mathscr{I} \simeq \mathscr{O}_{\mathbb{S}}$ et l'Idéal \mathscr{I} définit la section unité de $G_p(\mathscr{L})$.

Si π est l'endomorphisme $x \mapsto x^p$ de \mathscr{O}_S , nous devons montrer que le morphisme $\Phi : a \otimes x \mapsto ax^p$ de $\mathscr{O}_S \otimes_{\pi} \mathscr{A}$ dans \mathscr{A} s'annule sur $\mathscr{O}_S \otimes_{\pi} \mathscr{I}$. Or Φ n'est autre que le composé suivant

$$\mathscr{O}_{\mathrm{S}} \otimes_{\pi} \mathscr{A} \xrightarrow{j(\mathscr{A})} \mathrm{S}^{p} \mathscr{A} \xrightarrow{b(\mathscr{A})} \mathscr{A},$$

où $b(\mathscr{A})$ et $j(\mathscr{A})$ sont définis comme en 4.3.3. Comme le $\mathscr{O}_{\mathbb{S}}$ -Module dual de $\mathscr{S}^p\mathscr{A}$ n'est autre que le sous-Module $\Sigma^p\mathscr{U}$ de $\bigotimes^p\mathscr{U}$ formé des sections invariantes sous l'action du groupe symétrique d'ordre p, on voit que le transposé Φ^* de Φ est le morphisme composé suivant :

$$\mathscr{U} \xrightarrow{a(\mathscr{U})} \Sigma^p \mathscr{U} \xrightarrow{r(\mathscr{U})} \mathscr{U} \otimes_{\pi} \mathscr{O}_{S}$$

où $a(\mathscr{U})$ est induit par le morphisme $(\Delta\otimes\mathscr{U}\otimes\cdots\otimes\mathscr{U})\cdots(\Delta\otimes\mathscr{U})\Delta$ de \mathscr{U} dans $\bigotimes^p\mathscr{U}$ (Δ est le morphisme diagonal de \mathscr{U}); de même, $r(\mathscr{U})$ s'annule sur les tenseurs symétrisés et applique une section $x\otimes\cdots\otimes x$ sur $x\otimes_\pi 1$ (confer 4.3.3). Il reste maintenant à montrer que Φ^* annule l'idéal d'augmentation \mathscr{J} . Comme Φ^* est un homomorphisme d'Algèbres, il suffit de voir que Φ^* s'annule sur $\operatorname{Im} \underline{j}_{\mathscr{L}}$. Ceci résulte de la formule $\Delta s = s\otimes 1 + 1\otimes s$, lorsque $s\in \operatorname{Im} \underline{j}_{\mathscr{L}}$.

7.2.1. — Posons $G_p = G_p(\mathscr{L})$. Nous allons d'abord prouver l'assertion (ii) du théorème 7.2 en conservant les notations ci-dessus. Comme tout élément de \mathscr{I} a une puissance p-ième nulle et que \mathscr{I} est un \mathscr{O}_S -Module de type fini, \mathscr{I} est localement nilpotent. On a donc $(G_p)_{r\text{\'ed}} = S_{r\text{\'ed}}$. Or les homomorphismes h de G_p dans $\underline{\text{Aut}} \, X$ correspondent biunivoquement aux opérations à gauche $h' : G_p \times X \to X$ de G_p sur X. Pour une telle opération, si ε est la section unité de G_p , le morphisme composé

$$X \simeq S \times X \xrightarrow{\varepsilon \times X} G_p \times X \xrightarrow{h'} X$$

doit être l'identité. Comme $(G_p \times X)_{réd}$ s'identifie à $X_{réd}$, on voit que h' doit induire l'identité sur les schémas réduits associés. En particulier, h' induit une opération de G_p sur tous les ouverts de X, de sorte qu'on se ramène facilement au cas où S et X sont affines, ou plus généralement au cas où X est affine au-dessus de S. Dans ce dernier cas, on applique le lemme suivant :

Lemme. — Soient X un S-schéma affine d'Algèbre \mathscr{C} et G_p un S-schéma en groupes fini localement libre d'Algèbre \mathscr{A} . Si nous posons $\mathscr{U} = \mathscr{A}^* = \mathscr{H}om_{\mathscr{O}_S}(\mathscr{A}, \mathscr{O}_S)$, les opérations de G_p à gauche sur X correspondent biunivoquement aux représentations de l'algèbre \mathscr{U} dans le \mathscr{O}_S -Module \mathscr{C} telles qu'on ait

$$u(1_{\mathscr{C}}) = \varepsilon(u) \cdot 1_{\mathscr{C}}$$

$$et \qquad u(xy) = \sum_{i} v_{i}(x)w_{i}(y) \quad si \quad \Delta u = \sum_{i} v_{i} \otimes w_{i}.$$

465

Dans ces formules, u désigne une section que lconque de $\mathscr U$ sur un ouvert affine V, x et y des sections de $\mathscr C$ sur V; on désigne par $1_{\mathscr C}$ la section unité de $\mathscr C$, par ε et Δ l'augmentation et le morphisme diagonal de $\mathscr U$. Une opération h' de G à gauche sur X est définie par un homomorphisme d'Algèbres $\lambda:\mathscr C\to\mathscr A\otimes_{\mathscr O_{\mathbb S}}\mathscr C$. Nous noterons μ le morphisme composé

$$\mathscr{U}\otimes_{\mathscr{O}_{\mathtt{S}}}\mathscr{C} \xrightarrow{\mathscr{U}\otimes\lambda} \mathscr{U}\otimes_{\mathscr{O}_{\mathtt{S}}}\mathscr{A}\otimes_{\mathscr{O}_{\mathtt{S}}}\mathscr{C} \xrightarrow{\gamma\otimes\mathscr{C}} \mathscr{O}_{\mathtt{S}}\otimes_{\mathscr{O}_{\mathtt{S}}}\mathscr{C} \simeq \mathscr{C}$$

où γ est la « contraction » de $\mathscr{A}^* \otimes_{\mathscr{O}_{\mathbb{S}}} \mathscr{A}$ dans $\mathscr{O}_{\mathbb{S}}$. On sait que l'application $\lambda \mapsto (\gamma \otimes \mathscr{C})(\mathscr{U} \otimes \lambda)$ est une bijection de $\operatorname{Hom}_{\mathscr{O}_{\mathbb{S}}}(\mathscr{C}, \mathscr{A} \otimes \mathscr{C})$ sur $\operatorname{Hom}_{\mathscr{O}_{\mathbb{S}}}(\mathscr{U} \otimes \mathscr{C}, \mathscr{C})$. De plus, on voit facilement que λ est un homomorphisme d'Algèbres unitaires définissant une opération de G_p sur X si et seulement si μ satisfait aux conditions du lemme.

Il est d'ailleurs clair que, pour toute représentation de $\mathscr U$ dans le $\mathscr O_S$ -Module $\mathscr C$, les sections u de $\mathscr U$ qui vérifient les conditions du lemme précédent forment une sous-Algèbre de $\mathscr U$. Dans le cas particulier qui nous intéresse, ces conditions sont donc satisfaites pour toutes les sections u, si elles sont vraies pour les sections u de $\operatorname{Im} j_{\mathscr L}$. Si u est une section de $\operatorname{Im} j_{\mathscr L}$, ces conditions signifient que $u(1_{\mathscr C})=0$ et que u(xy)=u(x)y+xu(y). Tout homomorphisme h de $G_p=G_p(\mathscr L)$ dans $\operatorname{Aut} X$ définit donc un homomorphisme H de $\mathscr U$ dans $\operatorname{Hom}_{\mathscr O_S}(\mathscr C,\mathscr C)$ qui envoie $\operatorname{Im} j_{\mathscr L}$ dans l'ensemble des $\mathscr O_S$ -dérivations de $\mathscr C$. L'application $H\circ j_{\mathscr L}$ est un homomorphisme de p-Algèbres de Lie de $\mathscr L$ dans le faisceau $\operatorname{Dér}_{X/S}$ des $\mathscr O_S$ -dérivations de $\mathscr C$. De plus, l'application $h\mapsto H\circ j_{\mathscr L}$ est évidemment bijective; il resterait à vérifier qu'en identifiant $\operatorname{Dér}_{X/S}$ à $\operatorname{Lie}(\operatorname{Aut} X/S)$ comme en 2.5 , on identifie l'application $h\mapsto H\circ j_{\mathscr L}$ à celle du théorème 7.2.

7.2.2. — Montrons maintenant comment l'assertion (i) du théorème 7.2 résulte de (ii) : si T est un S-schéma et x un élément de G(T), nous notons ℓ_x^T (resp. r_x^T) la translation à gauche (resp. à droite) de G_T qui est définie par x. Les applications $\ell^T: x \mapsto \ell_x^T$ déterminent donc un homomorphisme ℓ de G dans $\underline{Aut} G$. Soit d'autre part f un T-automorphisme de G_T ; on définit alors xf comme étant égal à $(r_x^T)^{-1}fr_x^T$; de cette façon G opère à gauche sur le S-foncteur $\underline{Aut} G$, donc aussi sur les foncteurs $\underline{T} \mapsto \mathrm{Hom}_{T\text{-}G_T}(G_p(\mathcal{L}_T), \underline{Aut} X_T)$ et $\underline{T} \mapsto \mathrm{Hom}_p(\mathcal{L}_T, \mathcal{L}ie(\underline{Aut} X_T/T))$. D'autre part, l'homomorphisme ℓ induit des carrés commutatifs

$$\operatorname{Hom}_{\operatorname{T-Gr.}}(\operatorname{G}_p(\mathscr{L}_{\operatorname{T}}),\operatorname{G}_{\operatorname{T}}) \xrightarrow{\hspace{1cm}} \operatorname{Hom}_p(\mathscr{L}_{\operatorname{T}},\mathscr{L}ie(\operatorname{G}_{\operatorname{T}}/\operatorname{T}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_{\operatorname{T-Gr.}}(\operatorname{G}_p(\mathscr{L}_{\operatorname{T}}),\operatorname{\underline{Aut}}\operatorname{G}_{\operatorname{T}}) \xrightarrow{\hspace{1cm}} \operatorname{Hom}_p(\mathscr{L}_{\operatorname{T}},\mathscr{L}ie(\operatorname{\underline{Aut}}\operatorname{G}_{\operatorname{T}}/\operatorname{T}))$$

Les images des deux flèches verticales sont les sous-foncteurs formés des invariants sous l'action du S-groupe G. Comme la deuxième flèche horizontale est inversible d'après 7.2.1 et qu'elle est compatible avec l'action de G, la première flèche horizontale est aussi inversible.

7.2.3. — Considérons enfin le cas de $\underline{\mathrm{Aut}}_{\mathbf{O}_{\mathbb{S}}\text{-}\mathrm{mod}}$. $\mathbf{W}(\mathscr{F})$ (le cas de $\mathbf{W}(\mathscr{F})$ est analogue). Posons $\mathrm{G}_p = \mathrm{G}_p(\mathscr{L})$. Un homomorphisme de G_p dans $\underline{\mathrm{Aut}}_{\mathbf{O}_{\mathbb{S}}\text{-}\mathrm{mod}}$. $\mathbf{W}(\mathscr{F})$

est un homomorphisme multiplicatif de G_p dans $\operatorname{\underline{End}}_{\mathbf{O}_S\text{-mod}}$. $\mathbf{W}(\mathscr{F})$ qui est compatible avec les sections unités de G_p et de $\operatorname{\underline{End}}_{\mathbf{O}_S\text{-mod}}$. $\mathbf{W}(\mathscr{F})$. Or un morphisme de S-foncteurs $h: G_p \to \operatorname{\underline{End}}_{\mathbf{O}_S\text{-mod}}$. $\mathbf{W}(\mathscr{F})$ est par définition un endomorphisme de $\mathbf{W}(\mathscr{O}_{G_p} \otimes_{\mathscr{O}_S} \mathscr{F})$; d'après I 4.6.2 (ii), un tel endomorphisme est induit par un endomorphisme de $\mathscr{O}_{G_p} \otimes_{\mathscr{O}_S} \mathscr{F}$, c'est-à-dire par un endomorphisme \mathscr{A} -linéaire du faisceau $\mathscr{A} \otimes_{\mathscr{O}_S} \mathscr{F}$, où \mathscr{A} est la \mathscr{O}_S -Algèbre affine de G_p . Un tel endomorphisme est de la forme $a \otimes x \mapsto a\lambda(x)$, où λ est un morphisme de \mathscr{O}_S -Modules de \mathscr{F} dans $\mathscr{A} \otimes_{\mathscr{O}_S} \mathscr{F}$. Si l'on pose $\mu = (\gamma \otimes \mathscr{F})(\mathscr{U} \otimes \lambda)$ comme en 7.2.1, h est finalement déterminé par $\mu: \mathscr{U} \otimes_{\mathscr{O}_S} \mathscr{F} \to \mathscr{F}$. Les hypothèses faites sur h se traduisent en disant que μ définit une structure de \mathscr{U} -Module sur \mathscr{F} . Une telle structure de Module est définie par un homomorphisme de p-Algèbres de Lie de \mathscr{L} dans $\mathscr{E}nd_{\mathscr{O}_S}(\mathscr{F})$, qui égale $\mathscr{L}ie(\underline{\mathrm{Aut}}_{\mathbf{O}_S\text{-mod}}, \mathbf{W}(\mathscr{F}))$.

7.3. Lemme. — Si \mathscr{L} est une \mathscr{O}_S -p-algèbre de Lie finie localement libre, le morphisme $j_{\mathscr{L}}: \mathscr{L} \to \mathscr{L}ie \ G_p(\mathscr{L})$ de 7.1 est inversible.

Le problème est en effet local sur S. Nous pouvons donc supposer que S est affine d'anneau R et que $\mathscr L$ est le faisceau associé à une R-p-algèbre de Lie de base x_1,\ldots,x_r . Nous pouvons alors utiliser les notations de 5.3.3 et poser $z^n=\prod_i z^{n_i}$ pour tout r-uplet (n_1,\ldots,n_r) formés d'entiers naturels tels que $0\leqslant n_i < p$. Posant en outre $n!=\prod_i (n_i)!$ et munissant le monoïde $\mathbb N^r$ de l'ordre produit, on voit facilement qu'on

$$\Delta \frac{z^n}{n!} = \sum \frac{z^m}{m!} \otimes \frac{z^{n-m}}{(n-m)!}$$

la somme étant étendue à tous les m de \mathbb{N}^r tels que $0 \le m \le n$ (Δ est le morphisme diagonal de \mathscr{U}). Comme les z^n forment une base de $\mathscr{U}_p(\mathfrak{g})$, il est clair qu'on a $\Delta x = x \otimes 1 + 1 \otimes x$ si et seulement si x est combinaison linéaire de z_1, \ldots, z_r , cqfd

7.4. — Pour terminer l'exposé, nous allons donner une caractérisation des S-schémas en groupes de la forme $G_p(\mathcal{L})$, où \mathcal{L} est une \mathscr{O}_S -p-Algèbre de Lie finie localement libre.

Soient G un S-schéma en groupes, ε_G la section unité et \mathscr{I} le noyau du morphisme de $\varepsilon_G^{-1}(\mathscr{O}_G)$ dans \mathscr{O}_S qui définit ε_G . L'image canonique de $\underline{\operatorname{Lie}}(G/S)(S)$ dans U(G) (2.5) s'identifie d'après 1.3 aux morphismes de \mathscr{O}_S -Modules de $\varepsilon_G^{-1}(\mathscr{O}_G)$ dans \mathscr{O}_S qui s'annulent sur la section unité de $\varepsilon_G^{-1}(\mathscr{O}_G)$ et sur \mathscr{I}^2 . On retrouve ainsi l'isomorphisme canonique de $\underline{\operatorname{Lie}}(G/S)(S)$ sur $\operatorname{Hom}_{\mathscr{O}_S}(\mathscr{I}/\mathscr{I}^2,\mathscr{O}_S)$ de l'exposé II. Nous poserons d'ailleurs $\omega_{G/S} = \mathscr{I}/\mathscr{I}^2$ comme dans l'exposé II, de sorte que le faisceau $\mathscr{L}ie(G/S)$ s'identifie à $\mathscr{H}om_{\mathscr{O}_S}(\omega_{G/S},\mathscr{O}_S)$.

Théorème. — Si G est un schéma en groupes sur un schéma S de caractéristique p > 0, les assertions suivantes sont équivalentes :

(i) Il existe une \mathcal{O}_S -p-Algèbre de Lie finie localement libre \mathscr{L} telle que G soit isomorphe à $G_p(\mathscr{L})$.

- (ii) G est affine sur S; $\omega_{G/S}$ est un \mathscr{O}_S -Module localement libre de type fini et l'Algèbre affine de G est localement isomorphe au quotient de l'Algèbre symétrique $\mathscr{S}_{\mathscr{O}_S}(\omega_{G/S})$ par l'Idéal engendré par les puissances p-ièmes des sections de $\omega_{G/S}$.
- (iii) G est localement de présentation finie sur S, de hauteur ≤ 1 (4.1.3) et $\omega_{G/S}$ est localement libre. (*)
- **7.4.1.** L'implication (ii) \Rightarrow (iii) étant claire, montrons d'abord que (i) entraı̂ne (ii) : nous considérons pour cela la suite exacte

(*)
$$0 \longrightarrow \mathcal{L} \xrightarrow{j_{\mathcal{L}}} \mathcal{J} \xrightarrow{\delta} \mathcal{J} \otimes_{\mathcal{C}_{S}} \mathcal{J},$$

où \mathscr{J} est l'Idéal d'augmentation de $\mathscr{U} = \mathscr{U}_p(\mathscr{L})$ et où δ est le morphisme induit par $\Delta - \operatorname{in}_1 - \operatorname{in}_2$. Si q est la projection de \mathscr{U} sur \mathscr{J} qui s'annule sur la section unité de \mathscr{U} , δ peut aussi être caractérisé par le carré commutatif

$$\begin{array}{ccc} \mathscr{U} & \stackrel{\Delta}{\longrightarrow} \mathscr{U} \otimes_{\mathscr{O}_{\mathbf{S}}} \mathscr{U} \\ \downarrow q & & \downarrow q \otimes q \\ & & & \downarrow q \otimes q \\ & & & & \downarrow S \otimes_{\mathscr{O}_{\mathbf{S}}} \mathscr{J} \end{array}$$

De plus, la suite (*) reste exacte après tout changement de base; par conséquent (Bourb., Alg. Comm. II § 3, prop. 6), la suite (*) se scinde et donne par dualité une suite exacte

$$\mathscr{I} \otimes_{\mathscr{O}_{\mathcal{S}}} \mathscr{I} \xrightarrow{m} \mathscr{I} \longrightarrow \mathscr{H}om_{\mathscr{O}_{\mathcal{S}}}(\mathscr{L}, \mathscr{O}_{\mathcal{S}}) \longrightarrow 0,$$

où $\mathscr I$ désigne toujours l'Idéal d'augmentation de l'algèbre affine $\mathscr A$ de $\mathrm{G}_p(\mathscr L)$ et où m est induit par la multiplication de $\mathscr A$. Ceci montre que $\omega_{\mathrm{G/S}}$ est le dual de $\mathscr L$, donc est fini localement libre.

Supposons maintenant S affine. Il y a alors une section $\sigma: \omega_{G/S} \to \mathscr{I}$ de la projection canonique de \mathscr{I} sur $\mathscr{I}/\mathscr{I}^2$; une telle section induit (lemme 7.2) un homomorphisme d'algèbres $h: S_{\mathscr{O}_S}[\omega_{G/S}]/(x^p)_{x\in\omega_{G/S}} \to \mathscr{A}$. Si l'on filtre \mathscr{A} (resp. $\underline{S}_{\mathscr{O}_S}[\omega]/(x^p)_{x\in\omega}$) par les puissances de \mathscr{I} (resp. de l'Idéal engendré par $\omega_{G/S}$), il est clair que h induit un épimorphisme des gradués associés. Donc h est un épimorphisme de \mathscr{O}_S -Modules localement libres de même rang; donc h est un isomorphisme.

7.4.2. — Montrons enfin que (iii) entraine (i) : comme le morphisme de Frobenius annule G, il est clair que la section unité de G induit un homéomorphisme de l'espace topologique sous-jacent à S sur l'espace sous-jacent à G. Nous pouvons donc identifier S au sous-schéma fermé de G défini par un certain Idéal $\mathscr I$ de $\mathscr O_G$. Comme G est localement de présentation finie sur S et que toute section de $\mathscr I$ a une puissance p-ième nulle, $\mathscr I$ est localement nilpotent et G est affine sur S (EGA I, 5.1.9), donc fini sur S.

 $^{^{(*)}}$ La condition sur $\omega_{G/S}$ est en fait inutile, comme on voit aisément en se ramenant au cas où S est local de corps résiduel k, et en appliquant le théorème au cas du Groupe G_k .

Soit donc \mathscr{A} la \mathscr{O}_{S} -Algèbre affine de G; posons $\mathscr{L}=\mathscr{L}ie(G/S), \mathscr{A}_{p}=\mathscr{U}_{p}(\mathscr{L})^{*}$ et soit $G_{p}=G_{p}(\mathscr{L})$ le spectre de \mathscr{A}_{p} . D'après le théorème 7.2, l'identité de \mathscr{L} est définie par un homomorphisme de groupes $h:G_{p}(\mathscr{L})\to G$, donc par un homomorphisme de \mathscr{O}_{S} -Algèbres $a:\mathscr{A}\to\mathscr{A}_{p}$. Il s'agit de montrer que a, qui induit par définition un isomorphisme de $\omega_{G/S}$ sur $\omega_{G_{p}/S}$, est un isomorphisme :

Pour cela, on peut se restreindre au cas où S est affine. Il y a alors une section τ de la projection canonique de \mathscr{I} sur $\omega_{G/S}$. Comme toute section de \mathscr{I} a une puissance p-ième nulle, τ induit un homomorphisme de \mathscr{O}_S -Algèbres

$$b: \mathcal{S}_{\mathscr{O}_{\mathbf{S}}}(\omega_{\mathbf{G}/\mathbf{S}})/\mathscr{K} \longrightarrow \mathscr{A}.$$

Il est clair que b est un épimorphisme de \mathcal{O}_S -Modules (confer 7.4.1). D'autre part, nous avons vu en 7.4.1 que ab est un isomorphisme. Il en va donc de même pour a, cqfd

8. Cas d'un corps de base

469

8.1. — Résumons maintenant les résultats obtenus dans le cas où S est le spectre d'un corps k de caractéristique p > 0. Disons alors qu'un S-schéma en groupes est algébrique si le schéma sous-jacent est de type fini sur S : d'après le théorème 7.2 le foncteur G_p , qui associe à toute k-p-algèbre de Lie \mathcal{L} de dimension finie sur k le k-groupe $G_p(\mathcal{L})$, est alors adjoint à gauche au foncteur qui associe à tout k-groupe algébrique sa p-algèbre de Lie sur k. D'après 7.3 et le théorème 7.4.1, le foncteur $G_p: \mathcal{L} \mapsto G_p(\mathcal{L})$ induit une équivalence de la catégorie des k-p-algèbres de Lie de dimension finie, sur celle des k-groupes algébriques de hauteur ≤ 1 . Comme G_p est un foncteur adjoint à gauche, il commute aux limites inductives; comme l'inclusion de la catégorie des k-groupes algébriques de hauteur ≤ 1 dans celle de tous les groupes algébriques commute manifestement aux limites projectives finies, on voit finalement que G_p est un foncteur exact : par exemple, si $i: \mathcal{L}_0 \to \mathcal{L}_1$ et $q: \mathcal{L}_1 \to \mathcal{L}_2$ sont des homomorphismes de k-p-algèbres de Lie et si la suite

$$0 \longrightarrow \mathcal{L}_0 \xrightarrow{i} \mathcal{L}_1 \xrightarrow{q} \mathcal{L}_2 \longrightarrow 0$$

formée par les espaces vectoriels sous-jacents, est exacte, alors $G_p(i)$ est un isomorphisme de $G_p(\mathcal{L}_0)$ sur le noyau de $G_p(q)$; l'image de $G_p(i)$ est donc un sous-groupe distingué de $G_p(\mathcal{L}_1)$ et $G_p(q)$ induit un isomorphisme du quotient de $G_p(\mathcal{L}_1)$ par ce sous-groupe distingué sur $G_p(\mathcal{L}_2)$.

8.2. Proposition. — Considérons une suite exacte de groupes algébriques sur un corps k de caractéristique p>0

$$1 \longrightarrow G' \xrightarrow{v} G \xrightarrow{u} G'' \longrightarrow 1$$

et les assertions suivantes :

- (i) Le morphisme u est lisse.
- (ii) G' est lisse.

(iii) Pour tout entier n > 0, la suite

$$1 \longrightarrow {}_{\operatorname{Fr}^n} G' \xrightarrow{{}_{\operatorname{Fr}^n} v} {}_{\operatorname{Fr}^n} G \xrightarrow{{}_{\operatorname{Fr}^n} u} {}_{\operatorname{Fr}^n} G'' \longrightarrow 1$$

 $est\ exacte.$

471

- (iv) Le morphisme $F_ru: F_rG \to F_rG''$ est un épimorphisme.
- (v) Le morphisme $\mathcal{L}ie(u): \mathcal{L}ie(G) \to \mathcal{L}ie(G'')$ est surjectif (II 4.11).

Alors on a les implications $(i) \Leftrightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v)$ et toutes les assertions sont équivalentes lorsque G est lisse sur k.

En effet, (i) équivaut à (ii) d'après l'exposé VI : rappelons en effet que (i) entraı̂ne (ii) d'après SGA II 1.3; d'autre part (ii) signifie que u est lisse à l'origine (SGA II 2.1; u est plat parce que épimorphique), donc partout.

De même, l'équivalence de (iv) et (v) résulte de l'équivalence définie en 8.1 entre la catégorie des k-groupes algébriques de hauteur ≤ 1 et celle des p-algèbres de Lie de dimension finie sur k.

L'implication (ii) ⇒ (iii) résulte du diagramme

$$1 \xrightarrow{\qquad \qquad } G' \xrightarrow{\qquad v \qquad } G \xrightarrow{\qquad u \qquad } G'' \xrightarrow{\qquad } 1$$

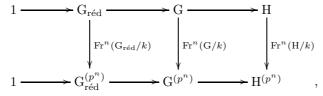
$$\text{Fr}^{n}(G'/k) \downarrow \qquad \text{Fr}^{n}(G/k) \downarrow \qquad \text{Fr}^{n}(G''/k) \downarrow \qquad \qquad \\ 1 \xrightarrow{\qquad \qquad } G'^{(p^{n})} \xrightarrow{\qquad \qquad } G^{(p^{n})} \xrightarrow{\qquad \qquad } G''^{(p^{n})} \xrightarrow{\qquad } 1$$

dont les deux lignes sont exactes : comme $\operatorname{Fr}^n(G'/k)$ est un épimorphisme d'après le corollaire 8.3.1 ci-dessous, u induit un épimorphisme de Fr^nG sur Fr^nG'' (généraliser le lemme du serpent aux faisceaux en groupes non nécessairement commutatifs).

Enfin, lorsque G est lisse sur k, $\operatorname{Fr}(G/k)$ est un épimorphisme. Si, de plus, $\operatorname{Fr} u$ est un épimorphisme, le même lemme du serpent appliqué au diagramme ci-dessus pour n=1 montre que $\operatorname{Fr}(G'/k)$ est un épimorphisme, donc que G' est lisse sur k (8.3.1 ci-dessous).

8.3. Proposition. — Si G est un groupe algébrique sur un corps k de caractéristique p > 0, il existe un entier n_0 tel que $G/_{Fr^n}G$ soit lisse sur k pour $n \ge n_0$.

Comme la construction de $G/_{Fr^n}G$ commute à l'extension du corps de base (4.1.1 et VI_A , 4.7), nous pouvons supposer k parfait (SGA II 5.5). Dans ce cas, $G_{r\acute{e}d}$ est un sous-groupe algébrique de G (VI_A 0.2) et l'on a le diagramme commutatif et exact



où l'on a posé $H = G_{réd} \setminus G$. Or H est le spectre d'une k-algèbre finie, locale, de corps résiduel k (VI_B). Par conséquent, il existe un entier n_0 tel que $Fr^n(H/k)$ se factorise

à travers l'unique section de Spec k dans $\mathbf{H}^{(p^n)}$, lorsque $n \geqslant n_0$. Il s'ensuit que, pour $n \geqslant n_0$, $\mathrm{Fr}^n(\mathbf{G}/k)$ se factorise à travers $\mathbf{G}^{(p^n)}_{\mathrm{r\acute{e}d}}$; l'homomorphisme $h: \mathbf{G}/\mathrm{Fr}^n\mathbf{G} \to \mathbf{G}^{(p^n)}_{\mathrm{r\acute{e}d}}$, qui est défini par cette factorisation, est un monomorphisme (VI_A 5.4) et induit un homéomorphisme des espaces topologiques sous-jacents; c'est donc un isomorphisme (VI_B, $\mathbf{G}^{(p^n)}_{\mathrm{r\acute{e}d}}$) est réduit. Comme $\mathbf{G}^{(p^n)}_{\mathrm{r\acute{e}d}}$ est lisse sur k (VI_A, 1.3.1), $\mathbf{G}/\mathrm{Fr}^n\mathbf{G}$ est lisse sur k, lorsque $n \geqslant n_0$.

8.3.1. Corollaire. — Soit n un entier $\geqslant 1$. Alors G est lisse sur k si et seulement si $\operatorname{Fr}^n(G/k)$ est un épimorphisme.

Si G est lisse sur k, G est réduit et $\operatorname{Fr}^n(G/k)$ est surjectif, donc est un épimorphisme. Réciproquement, comme $\operatorname{Fr}^n(G/k)^{(p^n)}$ coı̈ncide avec $\operatorname{Fr}^n(G^{(p^n)}/k)$ (confer 4.1.3), alors $\operatorname{Fr}^{nm}(G/k)$ est un épimorphisme pour tout m si $\operatorname{Fr}^n(G/k)$ en est un. On a alors $G/_{\operatorname{Fr}^{nm}}G \simeq G^{(p^{nm})}$. Comme $G/_{\operatorname{Fr}^{nm}}G$ est lisse sur k pour m grand, $G^{(p^{nm})}$ et G le sont également.

8.4. — Dans les deux énoncés qui terminent cet exposé, nous revenons au cas d'un corps k de caractéristique quelconque.

Lorsque k est de caractéristique 0 (resp. p>0), soit n un entier $\geqslant 1$ (resp. un entier $\geqslant 1$ et premier à p): dans les deux cas, nous disons simplement que n est premier à la caractéristique de k. De plus, si G est un schéma en groupes sur k, nous notons $n_G: G \to G$ le morphisme de k-schémas qui applique un élément x de G(T) sur $x^n \in G(T)$, lorsque T est un k-schéma.

Proposition. — Soient G un groupe algébrique sur un corps k et n un entier premier à la caractéristique de k. Alors $n_G : G \to G$ est un morphisme étale à l'origine.

Soient en effet A l'anneau local de G à l'origine et I l'idéal maximal de A. D'après II 3.9, l'application Lie $n_{\rm G}$: Lie G \rightarrow Lie G, qui est induite par $n_{\rm G}$, est l'homothétie de rapport n. C'est donc un isomorphisme ainsi que l'endomorphisme induit par $n_{\rm G}$ sur I/I². Si k est de caractéristique 0, G est lisse sur k (VI_B 1.6.1; voir aussi VII_B § 3); donc A est régulier et n induit un automorphisme du gradué associé à A, donc aussi un automorphisme du complété \widehat{A} de A.

Si la caractéristique est p>0 et si G est de hauteur $\leqslant 1$ A est isomorphe au quotient de l'algèbre symétrique de $\omega_{G/k}=I/I^2$ par l'idéal engendré par les puissances p-ièmes des éléments de $\omega_{G/k}$ (7.4); on peut appliquer alors le « même » raisonnement qu'en caractéristique 0.

Si G est de hauteur $\leq r$ et si nous supposons notre assertion démontrée pour les groupes de hauteur $\leq r-1$, soient B, A et C les algèbres affines de $_{Fr}$ G, G et $_{GFr} = _{Fr}$ G\G. Appelons n_{B} , n_{A} et n_{C} les morphismes de B, A et C qui sont induits par n_{Fr} G, n_{G} et n_{GFr} . Comme n_{C} est un isomorphisme d'après l'hypothèse de récurrence et que A est plat sur C (VI_A 3.2), n_{A} est une bijection si et seulement si $n_{A} \otimes_{C} (C/\mathfrak{r})$ en est une (\mathfrak{r} désigne le radical de C); or $n_{A} \otimes_{C} (C/\mathfrak{r})$ n'est autre que n_{B} !

Enfin, lorsque G est un groupe algébrique quelconque sur un corps de caractéristique p>0, ce qui précède montre que $n_{\rm G}$ induit des automorphismes des k-schémas

472

474

 $_{\mathrm{Fr}^r}\mathrm{G}$; ces schémas sont affines sur k et ont pour algèbres les quotients de l'algèbre locale A par l'idéal $\mathrm{I}^{\{p^r\}}$ engendré par les puissances p^r -ièmes des éléments de I. Comme n_{G} définit des automorphismes des algèbres $\mathrm{A}/\mathrm{I}^{\{p^r\}}$, on voit par passage à la limite projective, que n induit un automorphisme de $\widehat{\mathrm{A}}$.

8.5. Proposition. — Soit G un groupe algébrique fini, de rang n sur le corps k. Alors $n_G: G \to G$ est le morphisme nul de G (confer 8.4).

Soit F un sous-groupe distingué de G de rang m sur k. Avec les notations de VI_A , 3.2 le carré

$$F \times G \xrightarrow{\lambda} G$$

$$\operatorname{pr}_{2} \downarrow \operatorname{can.}$$

$$G \xrightarrow{\operatorname{can.}} F \backslash G$$

est cartésien. Comme $G \to F \backslash G$ est fidèlement plat, quasi-compact (VI_A 3.2), et que pr₂ est localement libre de rang m, il résulte de EGA IV 2.5.2, que $G \to F \backslash G$ est localement libre de rang m. On a donc $rg_k(F \backslash G) \times rg_k F = rg_k G$.

D'un autre côté, on a une suite exacte de groupes « abstraits »

$$1 \longrightarrow F(T) \longrightarrow G(T) \longrightarrow (F \backslash G)(T)$$

quel que soit le k-schéma T; il est donc clair que $n_{\rm G}$ est nul si $m_{\rm F}$ et $(nm^{-1})_{\rm F\backslash G}$ le sont. Si F est la composante connexe de l'origine de G, F\G est étale (VI_B), de sorte qu'on peut supposer G étale sur k ou connexe.

Si G est étale, on se ramène, par extension du corps de base, au cas où k est algébriquement clos. Dans ce cas, G est un groupe constant (I 4.1), et l'énoncé est classique.

Si G est connexe et non nul, la caractéristique p de k est nécessairement > 0 (VI_B; VII_B § 3); les sous-groupes $_{Fr^n}$ G forment alors une suite de composition de G, dont les quotients sont de hauteur ≤ 1 .

Ceci nous ramène au cas où G est de hauteur ≤ 1 : soient alors A l'algèbre affine de G et L son algèbre de Lie; si [L:k]=r, le rang de G sur k est p^r (VII_A 5.3.3); nous allons donc étudier le morphisme $p_G:G\to G$ défini par l'élévation à la puissance $p^{\text{ième}}$.

Ce morphisme p_G définit des endomorphismes p_A et p_U de A et de l'algèbre enveloppante restreinte $U = U_p(L)$ de L. L'application p_U se décompose comme suit :

$$U \xrightarrow{\Delta_U^p} \bigotimes_k^p U \xrightarrow{m_U^p} U$$

où Δ_{U}^p désigne l'homomorphisme d'algèbres qui applique $x \in \mathrm{L} \subset \mathrm{U}$ sur $x \otimes 1 \otimes \cdots \otimes 1 + 1 \otimes x \otimes \cdots \otimes 1 + \cdots + 1 \otimes 1 \otimes \cdots \otimes x$, tandis que m_{U}^p est l'application linéaire qui envoie $u_1 \otimes u_2 \otimes \cdots \otimes u_p$ sur le produit $u_1 u_2 \cdots u_p$. Si x_1, x_2, \ldots, x_t sont t éléments de $\mathrm{L} \subset \mathrm{U}$, on a donc

$$p_{\mathrm{U}}(x_1x_2\cdots x_t)=m_{\mathrm{U}}^p\left(\prod_{j=1}^t\sum_{i=1}^p1\otimes\cdots\otimes\stackrel{i}{x_j}\otimes\cdots\otimes1\right)$$

Il est clair que l'expression $\prod_j \sum_i 1 \otimes \cdots \otimes x_j \otimes \cdots \otimes 1$ est une somme de p^t termes x_h indexés par les applications h de $\{1,2,\ldots,t\}$ dans $\{1,2,\ldots,p\}$. Une telle application définit un préordre sur $\{1,2,\ldots,t\}$ tel qu'on ait $i \leqslant j$ si et seulement si $h(i) \leqslant h(j)$; de plus, on a $m_{\mathrm{U}}^p(x_h) = m_{\mathrm{U}}^p(x_\ell)$ si h et ℓ définissent le même préordre, de sorte que nous pouvons écrire $m_{\mathrm{U}}^p(x_h) = x_{\mathfrak{o}}$, où \mathfrak{o} est le préordre défini par h. On a par conséquent

$$p_{\mathrm{U}}(x_1x_2\cdots x_t) = \sum_{\mathbf{o}} \begin{pmatrix} p \\ s(\mathbf{o}) \end{pmatrix} \cdot x_{\mathbf{o}},$$

où \mathfrak{o} parcourt les relations de préordre sur $\{1,\ldots,t\}$ telles que l'ensemble ordonné associé ait au plus p éléments, et où $s(\mathfrak{o})$ est le cardinal de l'ensemble ordonné associé à \mathfrak{o} .

Lorsque t < p, tous les termes $\binom{p}{s(\mathfrak{o})}$, sont nuls, de sorte que $p_{\mathrm{U}}(x_1 \cdots x_t) = 0$. Autrement dit, p_{U} s'annule sur le sous-espace vectoriel U_{p-1}^+ de U, qui est engendré par les produits $x_1 \cdots x_t$, t < p, $x_i \in \mathrm{L}$. Or, il résulte facilement de 7.3 que l'isomorphisme canonique du dual U* sur A, qui est décrit en 7.4, identifie l'orthogonal de U_{p-1}^+ à $\mathrm{I}_{\mathrm{A}}^p$ ($\mathrm{I}_{\mathrm{A}} = \mathrm{id\acute{e}al}$ d'augmentation de A; confer aussi VII_B 1.3.6 et 4.3). L'isomorphisme de U* sur A, permet aussi d'identifier p_{A} à l'application transposée de p_{U} , de sorte que l'application composée

$$I_A \xrightarrow{p_A} I_A \xrightarrow{\operatorname{can.}} I_A/I_A^p$$

est nulle. Donc p_A applique I_A dans I_A^p et $(p_A)^r$ applique I_A dans I_A^{pr} . Comme $I^{r(p-1)+1}A$ est nul d'après le théorème 7.4, l'égalité $p^r > r(p-1)$ montre que p_A^r annule I_A , cqfd