Compléments d'intégration et séries de Fourier 2017, Feuille d'exercice 1

1. Un peu de topologie
Soit $A \subset \mathbb{R}$ tel que chaque point de A est isolé, montrer que A est au plus dénombrable $Indication: constuire une injection de A dans \mathbb{Q}.$
2. Application uniformément continue et application Lipschitzienne
a) L'application $x \mapsto x^2$ est-elle uniformément continue sur \mathbb{R} ?
b) L'application $x \mapsto \sqrt{x}$ est-elle uniformément continue sur $[0,1]$? sur \mathbb{R}_+ ?
c) L'application $x \mapsto \sqrt{x}$ est-elle Lipschitzienne sur $[0,1]$?
d) L'application $x \mapsto \sin(x)$ est-elle uniformément continue sur \mathbb{R} ?
e) L'application $x \mapsto \sin\left(\frac{1}{x}\right)$ est-elle uniformément continue sur $]0,1]$?
3. Suites de fonctions
Soit $\alpha \geqslant 0$ fixé, On pose pour $n \in \mathbb{N}$ et $x \in [0,1]$: $f_n(x) = n^{\alpha}(1-x)x^n$.
a) Etudier la convergence simple de f_n .
b) Montrer qu'il y a convergence uniforme sur $[0, a]$ avec $0 < a < 1$.
c) Pour quelles valeurs de α y a-t-il convergence uniforme sur $[0,1]$?
d) Etudier la limite de $\int_0^1 f_n(t) dt$ en fonction de α .
4. Suites de Polynôme
Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes convergeant uniformément sur \mathbb{R} vers une fonction f Montrer que f est un polynôme.
5. Séries de fonctions
Etudier (convergence simple, convergence absolue, convergence uniforme, convergence normale) les séries de fonctions de termes généraux :
a) $f_n(x) = nx^2 e^{-x\sqrt{n}} \operatorname{sur} \mathbb{R}_+$
b) $f_n(x) = \frac{1}{n+n^3x^2} \text{ sur } \mathbb{R}_+^*$
c) $f_n(x) = (-1)^n \frac{x}{(1+x^2)^n}$.
6. Approximation de l'exponentielle
Donner une suite de polynôme qui converge uniformément vers $x\mapsto e^x$ sur $[0,1]$.
7. Théorème de Dini

Soit [a, b] un intervalle et (f_n) une suite monotone d'applications continues qui converge simplement vers une application continue f. Soit $\varepsilon > 0$, on note

$$F_n = \{ x \in [a, b] \text{ t.q. } |f_n(x) - f(x)| \ge \varepsilon \}.$$

- a) Montrer que (F_n) est une suite décroissante de fermé et que $\cap_{n\in\mathbb{N}}F_n=\emptyset$.
- b) En déduire qu'il existe n tel que $F_n=\emptyset$ et conclure.

8.	Approximation	par	des	fonctions	affines
----	---------------	-----	-----	-----------	---------

Montrer que toute application continue de [a, b] dans \mathbb{R} , est limite uniforme d'une suite d'applications continues et affines par morceaux.