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1. Introduction

The aim of this course is to introduce some aspects of the geometry of hyperkähler
manifolds (and more general complex symplectic manifolds) focusing on basic ideas
and examples.

The principal motivation is to give some of the background material for further
study of complex symplectic and hyperkähler manifolds and their applications. Some
examples of such applications that we have in mind (but will not be covered here!)
include:

• Nakajima’s work on the representation theory of quantum algebras [Nak94,

Nak98, Nak01],

• The approach of Witten and collaborators [KW07, GW06, Wit08] to the geo-
metric Langlands program.

• The approach of Gaiotto–Moore–Neitzke [GMN08] to certain “wall-crossing for-

mulae” of Kontsevich–Soibelman [KS08], as consistency conditions for the existence
of a hyperkähler metric.
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Indeed for the most part we will try to be as down to earth as possible and focus
on basic examples. (A surprisingly large number of features of the more complicated

spaces appear even in the simplest cases.)

Berger’s List.

From a mathematical perspective hyperkähler manifolds first appeared in M.Berger’s
work on Riemannian holonomy groups, which we will now briefly recall. Given a
Riemannian manifold (M, g) and a point p ∈ M we can associate an orthogonal
transformation

τ(γ) ∈ O(TpM)

of the tangent space TpM to any loop γ : S1 → M in M based at p (i.e. so that

γ(1) = p). This is defined by restricting (pulling back) the tangent bundle of M to

the loop S1. The Levi-Civita connection of g then becomes a flat connection over

S1 and we may use it to parallel translate any vector v ∈ TpM around the loop and

back to TpM . This defines an orthogonal transformation τ(γ) of TpM . The holonomy
group Holp is then defined to be the group generated by all these transformations as
the loop γ varies:

Holp = 〈τ(γ)
∣∣ γ : S1 → M,γ(1) = p〉 ⊂ O(TpM).

If we change base points then the holonomy groups are identified, once we make a
choice of path between the two points, and we may speak of “the” holonomy group
Hol.

The holonomy groups were classified as follows:

Theorem 1.1 (M. Berger 1955). Let (M, g) be an oriented simply connected Rie-
mannian manifold of dimension n which is neither locally a product nor symmetric.
Then Hol is one of:

G2

SU(n

2
)

Spin(7)

Sp(n

4
)U(n

2
)

SO(n)
n = 7 n = 8

Hyperkähler Ricci flatCalabi-Yau

Quaternionic Kähler
Kähler

Spin(9)

Sp(n

4
)Sp(1)

n = 16

Thus hyperkähler manifolds are those lying in the intersection of all the boxes: they
have dimension divisible by 4 and holonomy group the compact symplectic group (the

quaternionic unitary group). The first example was constructed in dimension 4 in 1978
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by Eguchi–Hanson, and then in 1979 Calabi found examples in every dimension (and

coined the name “hyperkähler” for them). These examples will be described in some
detail later on.

The emphasis on the noncompact case is mainly because that is what arises in the
applications we are interested in (namely quiver varieties in [Nak94, Nak98, Nak01],

moduli spaces of Higgs bundles in [KW07, GW06, Wit08], and a certain hyperkähler

four manifold in [GMN08]). Also there are many more known examples and construc-

tions. Indeed in the compact case one has the K3 surfaces, the abelian surfaces (with

the flat metric), two infinite families constructed out of Hilbert schemes of points

on these hyperkähler surfaces, and two other (deformation classes of) examples of

complex dimension 6 and 10 due to O’Grady [O’G99, O’G03]. See Beauville [Bea84]
for the construction of the families, which rests on Yau’s solution of the Calabi con-
jecture for the existence of the metric. In the noncompact case there are other ways
of obtaining hyperkähler manifolds (i.e. constructive methods), which often give a
lot more information about the hyperkähler metric than just an existence theorem.

2. Basic examples: Calogero–Moser spaces and Hilbert schemes

One of the key features of hyperkähler geometry is that hyperkähler manifolds have
families of complex structures. In other words one may have two non-isomorphic com-
plex manifolds, which are naturally isomorphic as real manifolds, due to the fact that
they are the same hyperkähler manifold simply viewed in two different complex struc-
tures. Thus we are able to see relations between certain complex manifolds which are
simply “hidden” from a purely complex viewpoint. In this section we will describe two
classes of complex manifolds of independent interest (one from integrable systems and

the other from algebraic geometry). We will see they are not isomorphic as complex
manifolds, but later in the course we will see they are the same hyperkähler manifold
viewed in two different complex structures. This gives some concrete motivation for
a lot of the course.

Calogero–Moser spaces.

Let V = C
n and consider the space

Cn = {(X,Z) ∈ End(V ) × End(V )
∣∣ [X,Z] + IdV has rank one}/GLn(C)

consisting of two square matrices X,Z whose commutator [Z,X] differs from the

identity by a rank one matrix. Note (by taking the trace) that it is impossible to find
two square matrices whose commutator is the identity. Thus we are asking, in some
sense, for the “best approximation”. [Here GLn(C) is acting by conjugation, and the

quotient means simply taking the set of orbits.]
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An alternative description will also be useful. Consider the space

{(X,Z, v, α) ∈ End(V )2 × V × V ∗
∣∣ [X,Z] + IdV = v ⊗ α}/GLn(C)

where g ∈ GLn(C) acts in the natural way, as

g(X,Z, v, α) = (gXg−1, gZg−1, gv, α ◦ g−1).

It is easy to show that this action is free and one may show (cf. [Wil98] p.5) the

result is a smooth (connected) affine variety of dimension 2n—it is the affine variety
associated to the ring of invariant functions.

To go between the two descriptions consider the map from the second description
to the first got by forgetting v, α. This is clearly surjective, and moreover (since the

rank one matrix is always nonzero—having trace n) v1 ⊗ α1 = v2 ⊗ α2 iff there is

a nonzero scalar relating the pairs (v, α). Now the scalar subgroup of GLn(C) acts
trivially on the pair X,Z so we see the map on orbits is bijective.

Let us describe a big open subset of Cn. (We will later relate it to the Calogero–

Moser integrable system.) Consider the subset C ′
n ⊂ Cn where X is diagonaliz-

able. Then, moving within the orbit we may assume X is diagonal, and write
X = diag(x1, . . . , xn). Thus

[X,Z]ij = (xi − xj)zij

which should equal the ij entry of −IdV + vα. Taking i = j we see viαi = 1, so no
components of v or α vanish. Thus if i 6= j we see (xi − xj)zij = viαj 6= 0 so xi 6= xj,

i.e. X is regular semisimple (its stabilizer is the diagonal maximal torus). Within

the orbits of this torus action there is a unique point with vi = 1 for all i (and then

since viαi = 1 we will also have αi = 1). [Then vα is the rank one matrix with a 1

in every entry.] Now note that the off-diagonal parts of Z are determined uniquely:

zij = 1/(xi − xj). Thus if we let pi = Zii we have coordinates (xi, pj) on C ′
n defined

upto permutation of the indices, i.e. the map

(Cn \ diagonals) × C
n → C ′

n

(xi, pj) 7→
(
diag(xi), Z, (1, . . . , 1)T , (1, . . . , 1)

)

is a covering with group Symn, where Z is as above with diagonal part diag(pj) and

offdiagonal entries 1/(xi − xj).

Thus C ′
n
∼= ((Cn \ diagonals) × C

n)/ Symn = T ∗((Cn \ diagonals)/ Symn) is the
cotangent bundle of the configuration space of n-identical particles on the complex
plane C, i.e. the phase space for n distinct identical particles, and so Cn is a partial
compactification of this. This is interesting since Cn contains the trajectories as the
particle collide: As will be explained later (Exercise 3.28), if we consider n particles
on C with an inverse square potential, then for real initial positions there are no
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collisions, but on the complex plane there can be collisions, where the flows enter
Cn \ C ′

n: the flows are incomplete on C ′
n, but complete on Cn.

Hilbert Scheme of points on C
2.

Now let us describe the algebraic geometer’s way to partially compactify the set

of n-tuples of distinct unordered point of C
2 (this will contain the collisions, but not

points tending to infinity in C
2).

Set X = C
2. Given n distinct points xi ∈ X we can consider the corresponding

subscheme Z ⊂ X. This has structure sheaf

OZ =
n⊕

i=1

Ci

where Ci is the skyscraper sheaf supported at xi, and corresponds to the ideal

I = {f ∈ C[z1, z2]
∣∣ f(x1) = · · · = f(xn) = 0} ⊂ C[z1, z2]

of functions vanishing at these points. Such an ideal is an example of an ideal “of
colength n” i.e. such that the C-vector space

C[z1, z2]/I

has dimension n. Thus the natural algebro-geometric partial compactification of
(Xn\ diagonals)/ Symn is to consider the set of all such ideals:

X [n] := { ideals I ⊂ C[z1, z2]
∣∣ dimC(C[z1, z2]/I) = n }.

Such an ideal corresponds to a subscheme of X with fixed (constant) Hilbert poly-

nomial P (t) = n (and so justifies the name “Hilbert scheme”). In general P (m) =

χ(OZ ⊗OX(m)).

Consider a point x ∈ X and a tangent vector v ∈ TxX to X at x. Then we may
define an ideal

I = {f
∣∣ f(x) = 0, dfx(v) = 0}

of functions vanishing at x and having zero derivative in the direction v. This is

an ideal of colength 2, so represents a point of X [2]. In particular we see that the
Hilbert scheme retains more information than just the positions of the points as they
collide–e.g. this ideal determines the direction of v as well.

Some basic properties (due to Fogarty in general) of the Hilbert scheme of points
on X are as follows:

1) X [n] is smooth and has dimension 2n,
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2) There is a map (the Hilbert–Chow morphism) π : X [n] → SnX to the symmetric
product given by

Z 7→
∑

x∈X

dimC(OZ,x)[x]

where Z is the subscheme corresponding to an ideal I. We will give a direct definition
of the multiplicities for this situation below, here we just define it as the dimension

over C of the stalk at x of the structure sheaf of Z. The symmetric product1 SnX =
Xn/ Symn is singular (if n > 1) and we have that:

3) π is a resolution of singularities (in particular it is an isomorphism away from

the singularities).

A point to note is that X [n] is not affine. For example in the case n = 2 we have

X [n] ∼= C
2 × T ∗

P
1 (which has a compact complex submanifold, P

1).

Let us give a more explicit description of X [n]. Given a point I of X [n] we can asso-
ciate an n-dimensional complex vector space V = C[z1, z2]/I. This has the following
properties:

1) The action of zi (by multiplication) on C[z1, z2] yields elements

Bi ∈ End(V )

for i = 1, 2.

2) The elements Bi commute: [B1, B2] = 0.

3) The element 1 ∈ C[z1, z2] maps to a vector v ∈ V

4) v is a cyclic vector: any element of V is a linear combination of elements of the
form wv where w is a word in the Bi.

In other words V is a “cyclic C[z1, z2]-module”. Now the fact is that this data

determines I: Given data (V,B1, B2, v) satisfying these conditions we may define a

map ϕ : C[z1, z2] → V by setting

ϕ(f) = f(B1, B2) · v ∈ V.

Since v is cyclic this is surjective and we take I to be the kernel of ϕ. It is an ideal
of colength n. This establishes the following [cf. [Nak99], chapter 1]:

Proposition 2.1. X [n] is isomorphic to the set of GLn(C) orbits in the space of
matrices



(B1, B2, v) ∈ End(V )2 × V

∣∣∣
[B1, B2] = 0, and if

U ⊂ V with v ∈ U and
Bi(U) ⊂ U, i = 1, 2, then U = V





1which can be viewed as the set of degree n formal linear combination of points of X i.e. finite
formal sums of the form

∑
x∈X

nx[x] with nx ∈ Z≥0.
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where V = C
n.

Thus Cn and X [n] are both smooth (algebraic) complex manifolds of dimension
2n and both involve “adding extra material to account for collisions” in one sense or
another. But they are not isomorphic as complex manifolds, since one is affine and
the other is not. Later in this course we will see however that they are in fact the
same hyperkähler manifold viewed in two different complex structures. One may say
there is a “hidden” symmetry group changing the complex structure moving from one
space to the other.

To end this section we will make some aspects more explicit in terms of this “matri-
cial” description of the Hilbert scheme. In terms of this description the Hilbert–Chow
map (to the symmetric product) is as follows. Given commuting matrices B1, B2

we may simultaneously put them in upper triangular form, with diagonal entries
λ1, . . . , λn and µ1, . . . , µn respectively say. The corresponding point of SnX is then

n∑

i=1

[(λi, µi)].

Note that if all these n points of X are distinct then (in the basis in which they

are upper triangular) both B1, B2 are necessarily diagonal matrices (stabilized by

the maximal diagonal torus of GLn(C)). In this basis, each component of the cyclic
vector v must be nonzero, and so there is a unique element of the torus mapping

v to the vector (1, 1, . . . , 1)T . This shows the open part of X [n] where both B1, B2

are diagonal maps isomorphically onto the smooth locus of the symmetric product
(where the points are distinct).

Let us look at the simplest case where two points coincide, in X [2]. Let us consider

the locus lying over the point 2[(0, 0)] ∈ S2X. These will be represented by matrices
of the form

B1 =

(
0 α
0 0

)
, B2 =

(
0 β
0 0

)

for some α, β ∈ C. Clearly if α = β = 0 then v is not cyclic (whatever v is). Otherwise

one easily sees the set of cyclic vectors is {( p
q )} with q 6= 0. The subgroup stabilizing

B1, B2 is {g = ( x y
0 x )} with x nonzero, and this acts simply transitively on the set of

cyclic vectors. The larger group {h = ( x y
0 z )} with both x, z nonzero preserves the

form of the matrices B1, B2 (i.e. maps them to a pair of matrices of the same form).
This larger group acts on the pair α, β as follows:

h(α, β) = (tα, tβ)

where t = x/z ∈ C
∗ for h = ( x y

0 z ). This shows that the set of orbits of such matrices

(the fibre of π : X [2] → S2X) is a projective line P
1(C), with homogeneous coordinates

[α : β]. By definition (after choosing v = ( 0
1 )) the corresponding ideal is the kernel
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of the map

f ∈ C[z1, z2] 7→ f(B1, B2)

(
0
1

)

Expanding such f in a Taylor expansion at 0 we see (easily) that the kernel I consists

of functions f with f(0) = 0 and first derivatives at zero constrained so that:

α
∂f

∂z1

(0) + β
∂f

∂z2

(0) = 0.

The left hand side of this is 〈α ∂
∂z1

+ β ∂
∂z2

, df〉 and so [α : β] should be viewed as a

(complex) tangent direction; i.e. a point of the projectivised tangent space PT0X to

X = C
2 at the origin; it corresponds to the ray in T0X ∼= C

2 through the vector

α
∂

∂z1

+ β
∂

∂z2

.

A little bit more work will enable us to identify X [2] ∼= C
2 ×T ∗

P
1. First note there

is a free action of the additive group C
2 on X [2] by translating z1, z2. Quotienting by

this action amounts to restricting to the subset X
[2]
0 ⊂ X [2] (the “punctual” Hilbert

scheme) where the points have centre of mass zero. One has X [2] ∼= C
2 × X

[2]
0 (and

similarly on the symmetric products). Then one observes that S2
0X is just C

2/{±1}.
This is the A1 singularity and the resolution of this (got by simply blowing up the

singular point once) is the total space of the bundle O(−2) → P
1, which is isomorphic

to the cotangent bundle of P
1.

Exercise 2.2 (Nakajima [Nak99]). Suppose we have B1, B2 ∈ End(V ), a cyclic vector
v ∈ V and an element φ ∈ V ∗ such that

[B1, B2] + v ⊗ φ = 0.

Show, as follows, that φ = 0, so in fact [B1, B2] = 0.

1) Show that φ(v) = 0,

Suppose now that φ(wv) = 0 for all products (words) w of the Bi of length < k.

2) Deduce that φ ◦ w1B2B1w2 = φ ◦ w1B1B2w2 for any words w1, w2 such that w1

has length < k.

3) Deduce that φ ◦ w = φ ◦ Bk1

1 Bk2

2 for any word w of length k, where ki is the

number of Bi’s occuring in w (for i = 1, 2).

4) Verify that [Xk, Y ] =
∑k−1

l=0 X l[X,Y ]Xk−l−1 for any square matrices X,Y .

5) Use 4) to show that

φwv = Tr(wv ⊗ φ) = −Tr(w[B1, B2])
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= −Tr(Bk1

1 [Bk2

2 , B1]B2) = · · · = −
k2−1∑

l=0

φBk2−l
2 Bk1

1 Bl
2v

where w = Bk1

1 Bk2

2 as in 3),

6) Deduce from 3) and 5) that φwv = −k2φwv, so φwv = 0

7) Deduce that φ = 0.

This immediately yields the following alternative description of the Hilbert scheme,
looking a little more like the definition of the Calogero–Moser spaces.

Corollary 2.3. X [n] is isomorphic to the set of GLn(C) orbits in the space


(B1, B2, v, φ) ∈ End(V )2 × V × V ∗

∣∣∣
[B1, B2] + v ⊗ φ = 0, and if

U ⊂ V with v ∈ U and
Bi(U) ⊂ U, i = 1, 2, then U = V





where V = C
n.
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3. Real and complex symplectic geometry

We will quickly cover the basics of symplectic (and holomorphic symplectic) geom-
etry. The aim is to get to the definition of the moment map, consider some examples
and define the symplectic quotient construction.

Symplectic vector spaces.

First it is useful to recall (from basic linear algebra) the canonical form of a skew-
symmetric bilinear form on a vector space.

Lemma 3.1. Let V be a finite dimensional vector space (over a field of characteristic

not equal to 2) and let ω be a skew-symmetric bilinear form on V . Then there is a
basis

u1, . . . , uk, v1, . . . , vk, e1, . . . , el

of V such that

ω(ui, vi) = 1 = −ω(vi, ui)

for i = 1, . . . , k and ω is zero on all other pairs of basis vectors.

Proof. If ω 6= 0 then there are u, v ∈ V such that ω(u, v) 6= 0 and we may scale

u such that ω(u, v) = 1. Clearly u, v are linearly independent (since ω(u, u) = 0 if

char6= 2), so we may set u1 = u, v1 = v. Let V1 ⊂ V be the span of u1, v1, and set

U = V ⊥
1 = {x ∈ V

∣∣ ω(x, u) = ω(x, v) = 0}.

If x ∈ V then x′ := x − u1ω(x, v1) + v1ω(x, u1) is in U , and so V = V1 ⊕ U . Now if

ω|U 6= 0 we may iterate until we find V = V1 ⊕ · · ·Vk ⊕ U and ω|U = 0. �

Here we are only interested in the real and complex cases.

A (real) symplectic vector space (V, ω) is a real vector space V together with a
skew-symmetric bilinear form

ω : V ⊗ V → R

which is nondegenerate in the sense that the associated linear map

(3.1) ω♭ : V → V ∗; v 7→ ιvω = ω(v, ·)
from V to its dual space, is an isomorphism. By Lemma 3.1 we may then find a basis
p1, . . . , pn, q1, . . . , qn of V ∗ such that

ω =
n∑

1

dpi ∧ dqi

for some integer n. In particular V has even real dimension 2n.
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Similarly a complex symplectic vector space (V, ωC) is a complex vector space V
together with a skew-symmetric C-bilinear form

ωC : V ⊗ V → C

which is nondegenerate in the sense that the associated linear map

(3.2) ω♭
C

: V → V ∗; v 7→ ιvωC = ωC(v, ·)
from V to its dual space, is an isomorphism. (Beware now V ∗ denotes the complex

dual space, of C-linear maps V → C.) Again by Lemma 3.1 we can find a basis
p1, . . . , pn, q1, . . . , qn of V ∗ such that

ωC =
n∑

1

dpi ∧ dqi

for some integer n. In particular V has even complex dimension 2n.

A simple example should clarify the distinction between real and complex symplec-
tic vector spaces (the simplest examples of real and complex symplectic manifolds).

Take V = C
2 ∼= R

4 with complex (linear) coordinates z, w ∈ HomC(V, C). Then
ωC = dz ∧ dw is a complex symplectic form. If we write z = x + iy, w = u + iv for
real coordinates x, y, u, v ∈ HomR(V, R) then

ωC = dx ∧ du + dv ∧ dy + i(dy ∧ du + dx ∧ dv),

and we see that both the real and imaginary parts of ωC are real symplectic forms on

R
4.

Basic definitions for symplectic manifolds.

Definition 3.2. A (real) symplectic manifold is a pair (M,ω) consisting of a differ-
entiable manifold M and a real two-form ω, such that:

• ω is closed: i.e. dω = 0, and

• ω is nondegenerate: the associated linear map TmM → T ∗
mM ; v 7→ ωm(v, ·) from

the tangent space to the cotangent space, is an isomorphism at each point m ∈ M .

Thus firstly the tangent space TmM to a symplectic manifold is a symplectic vector
space at each point m ∈ M , but there is also the nonalgebraic condition that ω is
closed.

In the holomorphic (or complex algebraic) category one uses a different notion

(and one should not confuse the two), as follows:

Definition 3.3. A complex symplectic manifold is a pair (M,ωC) consisting of a

complex manifold M and a holomorphic two-form ωC (of type (2, 0)) such that:

• ωC is closed: i.e. dωC = 0, and
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• ωC is nondegenerate: the associated linear map TmM → T ∗
mM ; v 7→ (ωC)m(v, ·)

from the holomorphic tangent space to the holomorphic cotangent space, is an iso-
morphism at each point m ∈ M .

These are sometimes also referred to as holomorphic symplectic manifolds. (Note

that if one just stipulates that ωC is a C∞ global (2, 0) form, then requiring it to be

closed implies it is in fact holomorphic.)

Basic examples of symplectic manifolds.

Example 3.4 (Cotangent bundles). Let N be a manifold and let M = T ∗N be
the total space of its cotangent bundle. This has a natural symplectic structure,
which may be defined locally as follows. Choose local coordinates x1, . . . , xn on N .
Then the one-forms dx1, . . . , dxn provide a local trivialisation of T ∗N , so we obtain
local coordinate functions p1, . . . pn on the fibres of T ∗N (fixing the values of these

determine the point
∑

pidxi of the fibre). Thus M has local coordinates xi, pi. We
may define a one form

θ =
n∑

1

pidxi

locally on M and it turns out that this local definition in fact defines a global one-form
(the “Liouville form”) on M . The exterior derivative

ω = dθ

is a natural symplectic form on M . Clearly it is closed (since it is exact), and it is
nondegenerate because in local coordinates it is just

n∑

1

dpi ∧ dxi.

This is the basic class of symplectic manifolds crucial to classical mechanics and much
else, and indeed any symplectic manifold is locally of this form (the Darboux theo-

rem). However there are many other symplectic manifolds which are not cotangent
bundles globally.

The intrinsic definition of the Liouville form θ is as follows. Given a point m =
(p, x) ∈ M = T ∗N (with x ∈ N, p ∈ T ∗

xN) and a tangent vector v ∈ TmM the one

form θ should produce a number 〈θ, v〉m. This number is obtained from v as follows:
the derivative at m of the projection π : M → N is a map dπm : TmM → TxN , and
we simply pair the image of v with p:

〈θ, v〉m := 〈p, dπm(v)〉.

This example may be read in both a real fashion (to obtain a real symplectic

form) or in a complex fashion, if M is a complex manifold, using the holomorphic
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(co)tangent bundles and coordinates, to get a complex symplectic form on the total
space of the holomorphic cotangent bundle.

Example 3.5 (Coadjoint orbits). Let G be a Lie group and let g = TeG be its
Lie algebra. Let g∗ = T ∗

e G be the dual vector space to g. If G acts on itself by
conjugation, this fixes the identity e ∈ G and so we have an induced action on g and
g∗, the adjoint action Ad and the coadjoint action Ad∗. These are related as follows,
where X ∈ g, α ∈ g∗, g ∈ G:

〈Ad∗
g(α), X〉 = 〈α, Adg−1(X)〉,

where the brackets denote the natural pairing between g and g∗. Infinitesimally
(writing g = exp(Xt) for X ∈ g and taking the derivaive at t = 0) yields the
corresponding Lie algebra actions:

adX : g → g; Y 7→ adX(Y ) = [X,Y ]

ad∗
X : g∗ → g∗; α 7→ ad∗

X(α)

which in turn are related by:

〈ad∗
X(α), Y 〉 = −〈α, adX(Y )〉.

It follows immediately from these definitions that if O ⊂ g is an arbitrary orbit for

the adjoint action, and Y ∈ O then the tangent space to O at Y is {adX(Y )
∣∣ X ∈ g}.

E.g. for G = GLn(C) the orbit through Y is just the set of conjugate n×n matrices:

O = {gY g−1
∣∣ g ∈ G} ⊂ gln(C).

Then writing g = exp(Xt) for X ∈ g and taking the derivaive at t = 0 yields

TY O = {XY − Y X
∣∣ X ∈ g} ⊂ gln(C)

as stated, since here adX(Y ) = [X,Y ] agrees with the commutator XY − Y X of
matrices. Indeed in general one has

d

dt

(
Adexp(Xt)(Y )

) ∣∣
t=0

= [X,Y ] ∈ g.

Similarly (basically by definition) if O ⊂ g∗ is an arbitrary orbit for the coadjoint
action, and α ∈ O then the tangent space to O at α is

TαO = {ad∗
X(α)

∣∣ X ∈ g}.

An important fact about coadjoint orbits is the following:

Theorem 3.6 (Kostant–Kirillov–Souriau). Coadjoint orbits are symplectic mani-
folds: Any coadjoint orbit O ⊂ g∗ has a natural G-invariant symplectic structure,
given by the formula:

ωα(ad∗
X(α), ad∗

Y (α)) = 〈α, [X,Y ]〉 = α([X,Y ])

for all α ∈ O ⊂ g∗, X, Y ∈ g.
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Proof. To simplify notation, for X ∈ g and α ∈ g∗, write [X,α] := ad∗
X(α) ∈ g∗.

First we check ω is well defined and nondegenerate. Note that

[X1, α] = [X2, α] ⇔ 〈[X1, α], Y 〉 = 〈[X2, α], Y 〉 for all Y ∈ g

⇔ α([Y,X1]) = α([Y,X2]) for all Y ∈ g.

Thus ω is independent of the choice of X,Y representing the tanget vectors. Moreover
(putting X2 = 0) we see ω is nondegenerate. It is straightforward to see ω is G
invariant, so we need just check it is closed. Given X ∈ g write vX for the vector field
on O taking the value vX,α := −[X,α] ∈ TαO at α for each α ∈ O. Also let HX be

the function on O defined by HX(α) = α(X). We then claim that

dHX = ω(·, vX)

as one-forms on O, for all X ∈ g. Indeed any tangent vector is of the form vY for
some Y ∈ g and

ω(vY , vX) = α([Y,X]) = −〈[Y, α], X〉 = HX(−[Y, α])

which equals the derivaive of HX at α along vY (since it is linear). Now since ω is

G-invariant and the infinitesimal G-action maps X ∈ g to (minus) the vector field vX

(it is the “fundamental vector field” of the action, to be defined below) we have

0 = LvX
ω = (dιvX

+ ιvX
d)ω = −d(dHX) + ιvX

dω = ιvX
dω.

But the vector fields of the form vX span the tangent space to O at each point so we
deduce dω = 0. �

This becomes more explicit in the case where g admits a nondegenerate invariant
symmetric bilinear form B. Then the adjoint orbits and coadjoint orbits may be
identified, with α ∈ g∗ corresponding to A ∈ g such that α = B(A, ·). The adjoint
and coadjoint actions then correspond to each other. It follows then that the adjoint
orbits obtain a symplectic structure, and this may be written as

ωA([X,A], [Y,A]) = B(A, [X,Y ])

for A ∈ O ⊂ g.

For example taking G = SO3(R) we have g ∼= R
3 (with Lie bracket given by the

cross-product) and the adjoint action corresponds to the standard action of G on R
3.

The orbits are two-spheres of fixed radius (and the origin). These have a symplectic

structure since B(A,B) = Tr(AB) is a nondegenerate invariant symmetric bilinear
form on g the 3 × 3 real skew-symmetric matrices.

These are compact so clearly not isomorphic to cotangent bundles.

Exercise 3.7. Check that so3(R) ∼= R
3 (with Lie bracket given by the cross-product).
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Another example is to choose n real numbers λ1, . . . , λn and consider the set O
of n × n Hermitian matrices with these eigenvalues. Multiplying by i identifies the
Hermitian matrices with the skew-Hermitian matrices, the Lie algebra of the unitary
group U(n). This has nondegenerate invariant symmetric bilinear form B(A,B) =

Tr(AB). Moreover the adjoint action is simply given by matrix conjugation, so O is
indeed an adjoint orbit and thus a symplectic manifold.

Exercise 3.8 (*). Show that one obtains the projective spaces P
n−1 (the space of

lines in C
n) and the Grassmannians Grk(C

n) (the spaces of k-dimensional subspaces

of C
n) as examples of adjoint orbits of U(n). Identify the other adjoint orbits of U(n)

with flag manifolds.

If G is a complex Lie group then we obtain a complex symplectic structure on
its coadjoint orbits. For example take G = GLn(C), so g is just the set of n × n

complex matrices. The pairing B(A,B) = Tr(AB) is a nondegenerate invariant sym-
metric complex bilinear form, and the adjoint action is given by matrix conjugation:

Adg(A) = gAg−1 (and [X,A] = XA − AX). (Beware that this is not the Killing

form, which is degenerate for GLn(C).) Thus the orbit O ⊂ g of a matrix A ∈ g

is simply the set of matrices with the same Jordan normal form as A. This has a
complex symplectic structure, given by the same formula as above:

ωA([X,A], [Y,A]) = Tr(A[X,Y ]).

These are basic examples of complex symplectic manifolds.

Exercise 3.9. Take G = SL2(C), so g ∼= C
3 is the space of of 2× 2 tracefree complex

matrices. Set B(A,B) = Tr(AB). (Co)adjoint orbits of G are the simplest nontrivial
examples of complex symplectic manifolds.

1) Choose a diagonal matrix A ∈ g and consider its orbit O. Write down an

algebraic equation for O ⊂ C
3, showing it is a (smooth) affine surface (i.e. a real

four-manifold). Show, by considering the holomorphic map O → P
1 taking the first

eigenspace (or otherwise), that O is not isomorphic to C
2.

2) Choose a nonzero nilpotent matrix A ∈ g and consider its orbit O. Write down

an equation satisfied by the points of O ⊂ C
3, and observe that zero is also a point

of the zero locus of this equation. Deduce that O is the smooth locus of a singular

affine surface. (This is the A1 surface singularity ∼= {xy = z2} ⊂ C
3.)

One motivation for coadjoint orbits is the (heuristic) “orbit method” of representa-
tion theory: one would like to quantise coadjoint orbits of G to obtain representations
(see e.g. [Kir99, Vog00]). For example for a compact group Borel–Weil theory may be
viewed as saying that any irreducible representation arises by geometric quantisation
of the coadjoint orbit through the highest weight. Our direct motivation is however
more geometric: complex coadjoint orbits will provide basic examples of hyperkähler
manifolds.
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Hamiltonian vector fields and Poisson brackets.

Given a function f on a symplectic manifold (M,ω), we obtain a vector field vf , by
taking the derivative of f and then using the isomorphism between the tangent and
cotangent bundle furnished by the symplectic form. This is the Hamiltonian vector
field of the function f . Explicitly vf is defined by the formula:

df = ω(·, vf ).

In other words df = −ιvf
ω = −ω♭(vf ). (The minus sign is put so that Lemma 3.11

below holds—i.e. we get a Lie algebra morphism.) Thus we obtain a map from the
functions on M to the Lie algebra of vector fields on M . Not all vector fields arise in
this way, since for example we have:

Lemma 3.10. The flow of a Hamiltonian vector field preserves the symplectic form.

Proof. This follows from Cartan’s formula:

Lvf
ω = (dιvf

+ ιvf
d)ω

= dιvf
ω

= −d(df)

= 0

�

However in many instances the vector fields we are interested in are Hamiltonian,
and so their study is essentially reduced to studying functions. Indeed the notion of
Poisson bracket lifts the Lie algebra structure from the vector fields to the functions
on M . More precisely, the symplectic form determines a bilinear bracket operation
on the functions

{·, ·} : Fun(M) ⊗ Fun(M) → Fun(M)

defined by

{f, g} = ω(vf , vg).

This is the Poisson bracket associated to ω. In the real symplectic case we may take
Fun(M) = C∞(M). In the complex symplectic case we should take the holomorphic

functions, or better (since there may not be many global holomorphic functions), the
sheaf of holomorphic functions. In this setting the Poisson bracket provides, for any
open subset U ⊂ M , an operation

{·, ·} : Fun(U) ⊗ Fun(U) → Fun(U)
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where Fun(U) denotes the holomorphic functions on U . (Since the proofs are the

same we will generally omit this extra level of complexity from the notation/statements.)
The main properties of the Poisson bracket are as follows.

Lemma 3.11. 0) {f, g} = −{g, f},
1) vf = {f, ·} as derivations acting on functions,

2) The map f → vf from functions to vector fields satisfies v{f,g} = [vf , vg],

3) The Poisson bracket makes the functions Fun(M) on M into a Lie algebra (and

Fun(·) in to a sheaf of Lie algebras).

Proof. 0) is clear, and 1) is immediate since:

vf (g) = 〈vf , dg〉 = 〈vf , ω(·, vg)〉 = ω(vf , vg) = {f, g}.
For 2) we need to show ω(·, [vf , vg]) = d{f, g}, i.e. that ι[vf ,vg ]ω = −d{f, g}. However

the standard formula [LX , ιY ] = ι[X,Y ] combined with the Cartan formula LX =

dιX + ιXd for the Lie derivative acting on forms implies:

ι[X,Y ] = dιXιY − ιXdιY − ιY dιX + ιXιY d

as operators acting on forms for any vector fields X,Y . Thus in our situation we
obtain

ι[vf ,vg ]ω = d(ω(vg, vf )) = −d{f, g}
as required (since the other terms vanish).

For 3) we need just to check the Jacobi identity. This now follows directly from 1)

and 2):

{{f, g}, h} = v{f,g}(h) = [vf , vg](h) = vf (vg(h))−vg(vf (h)) = {f, {g, h}}−{g, {f, h}}.

�

Thus the map from function to vector fields f 7→ vf is a Lie algebra homomorphism.

Note that the Poisson bracket is only bilinear over the base field (R or C); indeed 1)

here implies that {f, gh} = {f, h}g + {f, g}h.

Lie group actions on symplectic manifolds.

Suppose a Lie group G acts on a manifold M . Let g denote the Lie algebra of G.
For any X ∈ g we denote by vX the fundamental vector field of X. By definition this
is obtained by taking (minus) the tangent vector to the flow on M generated by X.

Explicitly X determines a one-parameter subgroup eXt of G, and we act with this on
M :

m 7→ eXt · m.
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The derivative of this at t = 0 is a vector field on M , and (by convention) we define
vX to be minus this vector field:

vX = − d

dt

(
eXt · m

) ∣∣
t=0

.

The reason for the sign added here is as follows:

Lemma 3.12. The map g → X (M); X 7→ vX from the Lie algebra of g to the
set of global vector fields on M is a Lie algebra homomorphism. In other words
[vX , vY ] = v[X,Y ] for all X,Y ∈ g.

Sketch. Suppose X ∈ g and g ∈ G. Then the action of G on M enables us to view
g as an automorphism of M , and the induced action on vector fields will be denoted
g · v (for v a vector field on M). First one may show directly that

(3.3) vAdg(X) = g · vX .

(this is basically the chain rule). Then, from the definition of the Lie bracket of vector
fields, we have:

[vX , vY ] =
d

dt

∣∣∣
t=0

g · vY where g = eXt

=
d

dt

∣∣∣
t=0

vAdg(Y ) by (3.3)

= v[X,Y ]

as required. The point is that there is a minus sign in the definition of the Lie bracket
of two vector fields v, w:

[v, w]m = Lv(w)m =
d

dt

∣∣∣
t=0

dΦ−t(wΦt(m))

(where Φt is the (local) flow of v and m ∈ M). We put a minus sign in the definition

of vX so that Φ−t is the action of eXt when v = vX . �

On the other hand recall that given a function f on a symplectic manifold (M,ω),
we obtain a Hamiltonian vector field vf which preserves the symplectic form.

Now suppose a Lie group G acts on a symplectic manifold (M,ω) preserving the
symplectic form. The role of a moment map is to combine the above two situations,
i.e. we would like a collection of (Hamiltonian) functions, one for each element of the
Lie algebra of G, whose Hamiltonian vector fields are the corresponding fundamental
vector fields. This is encompassed by the following definition.

Definition 3.13. A moment map for the G action on (M,ω) is a G-equivariant map

µ : M → g∗
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from M to the dual of the Lie algebra of G, such that:

d〈µ,X〉 = ω(·, vX) for all X ∈ g.

Here G acts on g∗ by the coadjoint action.

Thus for any X ∈ g we obtain a function µX := 〈µ,X〉 on M , the X-component
of µ, and we demand that this has Hamiltonian vector field equal to the fundamental
vector field vX of X.

Said differently the Poisson bracket makes the functions Fun(M) on M into a Lie

algebra. Taking Hamiltonian vector fields yields a Lie algebra map Fun(M) → X (M)

to the vector fields on M . The moment map provides a lift of the map g → X (M)

to a Lie algebra morphism g → Fun(M).

We will see the notion of moment map is crucial for many reasons (in particular

for constructing hyperkähler manifolds).

Remark 3.14 (Shifting moment maps). Note that if µ : M → g∗ is a moment map

and we choose any element λ ∈ g∗ which is preserved by the coadjoint action (i.e.

Ad∗
g(λ) = λ for all g ∈ G), then the map µ − λ:

m 7→ µ(m) − λ

is also a moment map, since it is still equivariant and has the same derivative.

Exercise 3.15. Suppose G acts on (M,ω) with moment map µ, and that H ⊂ G is
a Lie subgroup. Thus the derivative at the identity of the inclusion is a map h → g,
and the dual linear map is a map π : g∗ → h∗. Show that π ◦ µ is a moment map for
the action of the subgroup H on M .

Exercise 3.16. Suppose G acts on two symplectic manifold (Mi, ωi) with moment
maps µi, for i = 1, 2. Show that

(3.4) µ1 + µ2 : M1 × M2 → g∗; (m1,m2) 7→ µ1(m1) + µ2(m2)

is a moment map for the diagonal action of G on the product M1 × M2, defined by
g(m1,m2) = (g · m1, g · m2).

Examples of moment maps.

Lemma 3.17. Let O ⊂ g∗ be a coadjoint orbit of a Lie group G. Let µ be inclusion
map

µ : O → g∗.

Then µ is a moment map for the coadjoint action of G on O.
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Proof. This was established in the proof of Theorem 3.6. In any case it is a straight-
forward (if confusing) unwinding of the definitions: given X ∈ g we must show

d〈µ,X〉 = ωα(·, vX) at each point α ∈ O. In other words

〈β, d〈µ,X〉〉 = ωα(β, vX)

for any β ∈ TαO ⊂ g∗. Since µ is the inclusion, the left-hand side is just β(X). On

the other hand vX = −ad∗
X(α) and so by definition the right-hand side is

ωα(ad∗
X(α), β) = 〈α, [X,Y ]〉

for any Y ∈ g such that β = ad∗
Y (α). Now 〈α, [X,Y ]〉 = −〈α, adY (X)〉 = 〈ad∗

Y (α), X〉 =

β(X) as required. �

Lemma 3.18. Let (V, ω) be a symplectic vector space and let G = Sp(V ) be the group
of linear automorphisms of V preserving the symplectic form. Then the map

µ : V → g∗; v 7→ “A 7→ 1

2
ω(Av, v)”

is a moment map for the action of G = Sp(V ) on V .

Proof. Given A ∈ g we should verify that d〈µ,A〉 = ω(·, vA). Since ω is closed the
left hand side is

1

2
(ω(Adv, v) + ω(Av, dv)) = ω(Av, dv)

since A is in the Lie algebra of Sp(V ). Thus we must show ω(Av,w) = ω(w, vA) for

any w ∈ V . Now at v ∈ V the vector field vA takes the value −Av (which is minus

tangent to the flow), so the result follows by skew-symmetry. �

Example 3.19. The name “moment map” (or momentum map), comes from the
following example. Suppose G acts on a manifold N . Then there is an induced action
on the symplectic manifold M = T ∗N , the cotangent lift of the action on N . The
action of G on M is then Hamiltonian and the moment map is given by pairing the
momentum (the fibre coordinates in M → N) with the fundamental vector field for
the G action on N . More precisely:

Lemma 3.20. The map

µ : M = T ∗N → g∗; (p, x) 7→ “X 7→ 〈p, vN
X 〉”

is a moment map for the action of G on M , where x ∈ N, p ∈ T ∗
xN and vN

X ∈ Γ(TN)
is the fundamental vector field for the action of G on N .

Proof. More generally suppose we are in the situation where the symplectic form
ω is exact: ω = dθ, and the G action preserves θ (so LvX

θ = 0 for all X ∈ g). Then
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consider the map µ : M → g∗ defined by

m 7→ “X 7→ 〈θ, vX〉m”

where vX is the fundamental vector field on M . This is a moment map since, by
Cartan’s formula

ιvX
ω = ιvX

dθ = LvX
θ − dιvX

θ = −d〈µ,X〉.
(See e.g. [LM87] p.192 for proof of equivariance, omitted here.) Now in our situation,

where θ =
∑

pidxi is the Liouville form, we must check this definition of µ coincides
with that above, i.e. that

〈θ, vX〉(p,x) = 〈p, vN
X 〉x

where x ∈ N, p ∈ T ∗
xN . This however is immediate by definition of θ, and the fact

that vX is a lift of vN
X . (θ the projection of vX to N , and pairs it with p.) �

For example let V be a complex vector space, and take G = GL(V ) acting on
N = V in the natural way. Then M = T ∗V ∼= V ∗ × V and the moment map is
µ(α, v)(X) = −α(Xv) where α ∈ V ∗, X ∈ g = End(V ). If we identify g with g∗ using

the pairing Tr(AB) then we have:

(3.5) µ(α, v) = −v ⊗ α ∈ End(V ).

Similarly if G = GL(V ) acts on N = End(V ) by conjugation. Then M =

T ∗ End(V ) ∼= End(V ) × End(V ) and the moment map is

(3.6) µ(B1, B2)(X) = −Tr(B1[X,B2]) = Tr(X[B1, B2])

where Bi ∈ End(V ) (B2 ∈ N,B1 ∈ T ∗
B1

End(V )), X ∈ g = End(V ). If we identify g

with g∗ using the pairing Tr(AB) then we have:

µ(B1, B2) = [B1, B2] ∈ End(V ),

i.e. the moment map is given by the commutator.

Symplectic Quotient Construction.

The aim of this subsection is to define a way construct new symplectic manifolds
from old ones. Note that in general the quotient of a symplectic manifold by a Lie

group may not be even dimensional (e.g. S2/S1 is an interval, where the circle acts

by rotation), so cannot be symplectic in general. The following construction shows
how the use of the moment map guides the way to obtain symplectic manifolds.

First some linear algebra. Let (V, ω) be a symplectic vector space and W ⊂ V a

subspace. Define the symplectic orthogonal W⊥ ⊂ V as

W⊥ = {v ∈ V
∣∣ ω(w, v) = 0 for all w ∈ W} ⊂ V
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and the annihilator W ◦ ⊂ V ∗ as

W ◦ = {α ∈ V ∗
∣∣ α(w) = 0 for all w ∈ W} ⊂ V ∗.

Let ω♭ : V → V ∗ be the linear map determined by ω:

ω♭(v) = ιvω = “u 7→ ω(v, u)”

where u, v ∈ V . The following easy observation will be useful:

Lemma 3.21. Let V be a symplectic vector space and W ⊂ V a subspace. Then

ω♭(W ) = (W⊥)◦

as subspaces of V ∗.

Proof. Clearly ω♭ is bijective, and if α = ω♭(w) for some w ∈ W , then α(u) =

ω(w, u) = 0 for any u ∈ W⊥. Thus ω♭(W ) ⊂ (W⊥)◦, so they must be equal as they
have the same dimension. �

The basic idea of symplectic quotients is as follows. Suppose a Lie group G acts
on a symplectic manifold (M,ω) and this action admits a moment map µ. Let

Z = µ−1(0) = {m ∈ M
∣∣ µ(m) = 0}

be the inverse image of zero under the moment map. Since the moment map is
equivariant and zero is preserved by the coadjoint action, then Z is G invariant and
we can consider the quotient

M//G := Z/G = µ−1(0)/G.

The point is that under some mild conditions this is again a symplectic manifold, the
symplectic quotient (or Marsden–Weinstein quotient) of M by G.

First we will explain how the quotient inherits a symplectic form. Let us denote
by ι the inclusion ι : Z →֒ M and by π the projection π : Z → M//G.

Choose a point m ∈ Z. If Z is a submanifold of M then the tangent space to Z is

Ker(dµm) = TmZ ⊂ TmM.

Moreover the G-orbit through m is within Z, so we can consider the tangent space
to the orbit. Since the action is Hamiltonian this tangent space is simply the span of
the Hamiltonian vector fields at m. We will denote it by gm:

gm = {vX

∣∣ X ∈ G} ⊂ TmZ ⊂ TmM.

Now the quotient Z/G parameterises the set of G orbits in Z, so if it is a manifold (and

we have a local slice to the action) then its tangent space at π(m) will be isomorphic

to the quotient TmZ/gm. Thus the main step is to show that this vector space inherits
a symplectic form from that on TmM . Clearly we can restrict ω to TmZ, where it
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will become degenerate. We need to show that the subspace we quotient by (gm)
coincides with the degenerate directions, i.e. that

Proposition 3.22. gm = (Ker dµm)⊥.

Proof. This is equivalent to showing g⊥
m = Ker dµm, or in turn that (g⊥

m)◦ =

(Ker dµm)◦. Now by definition the dual linear map to the map dµm : TmM →
T0g

∗ = g∗ is the map g → T ∗
mM ; X 7→ ω(·, vX). In general the kernel of a linear map

is the annihilator of the image of the dual map, so (taking annihilators) we have

(Ker dµm)◦ = {ω(·, vX)
∣∣ X ∈ g}

= {ω(·, v)
∣∣ v ∈ gm}

= ω♭(gm) ⊂ T ∗
mM

Now we use Lemma 3.21 (with W = gm) to see ω♭(gm) = (g⊥
m)◦ and so the result

follows. �

Thus TmZ/gm is a symplectic vector space. Moreover since ω is G invariant, for

any g ∈ G the action of G yields a symplectic isomorphism TmZ/gm
∼= Tg(m)Z/gg(m)

and so we get a well defined nondegenerate two-form ω on Z/G. To see it is closed
we argue as follows. It is defined such that

π∗ω = ι∗ω.

Moreover π∗dω = dπ∗ω = dι∗ω = ι∗dω = 0. But this forces dω = 0 since π is
surjective on tangent vectors.

This establishes the following:

Theorem 3.23. Suppose a Lie group G acts on a symplectic manifold (M,ω) with

moment map µ such that Z = µ−1(0) is a smooth submanifold of M , and the quotient

Z/G is a smooth manifold. Then M//G := Z/G = µ−1(0)/G is a symplectic manifold.

There are various conditions that may be added to ensure the various criteria are
met, for example if G is a compact group acting freely and 0 is a regular value of the
moment map. Note in this case one has:

dim(M//G) = dim(M) − 2 dim(G).

The same argument works in the complex symplectic category (with the words

holomorphic/complex added throughout):

Theorem 3.24. Suppose a complex Lie group G acts holomorphically on a complex

symplectic manifold (M,ωC) with moment map µC such that Z = µ−1
C

(0) is a smooth

complex submanifold of M , and the quotient Z/G is a smooth complex manifold. Then

M//G := Z/G = µ−1
C

(0)/G is a complex symplectic manifold.
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Remark 3.25. Recall from Remark 3.14 that the moment map is not uniquely de-
termined: if µ : M → g∗ is a moment map then so is ν := µ− λ for any λ ∈ g∗ which
is fixed by the coadjoint action. Now

ν−1(0)/G = µ−1(λ)/G

so we see that we may perform symplectic reduction at any invariant value λ of the
moment map and not necessarily at zero (provided the various conditions hold to

ensure the quotient is smooth).

Remark 3.26. More generally we may perform “symplectic reduction at any coad-
joint orbit”, as follows. Let O ⊂ g∗ be a coadjoint orbit. Let O− denote the orbit O
with the symplectic form negated. Then

µ−1(O)/G = {(m,x) ∈ M ×O
∣∣ µ(m) = x}/G

= {(m,x) ∈ M ×O
∣∣ µ(m) + (−x) = 0}/G

= (M ×O−)//G

is the symplectic quotient by G of the product of M and O−, so is again symplectic
in general. (An invariant element λ ∈ g∗ is the simplest example of a coadjoint

orbit—just a single point.)

Example 3.27. We can now obtain the Calogero–Moser spaces as complex symplectic
quotients. Let V = C

n and consider N = End(V ) × V , with the natural action of

G = GL(V ). Let M = T ∗N ∼= End(V ) × End(V ) × V × V ∗ be the total space of the
holomorphic cotangent bundle of N with its standard complex symplectic form. By
(3.4), (3.5) and (3.6) this has moment map

(X,Z, v, α) 7→ [X,Z] − v ⊗ α ∈ End(V ).

Clearly the complex symplectic quotient µ−1
C

(−Id)/G is the Calogero–Moser space
Cn, which we thus see has a natural complex symplectic structure.

Exercise 3.28 (Calogero–Moser flows).

1) Compute the restriction of this symplectic form to the open part C ′
n of Cn where

X is diagonalisable (explicitly in terms of the eigenvalues of X). Show it agrees with

the standard symplectic structure on T ∗((Cn \ diagonals)/ Symn).

2) Consider the function H = Tr(Z2)/2 on M . Show (upto signs) that the flow of
the corresponding Hamiltonian vector field on M is given by

(3.7) (X,Z, v, α) 7→ (X + tZ, Z, v, α)

for t ∈ C. Observe that this flow commutes with the action of G and preserves the

level set µ−1
C

(−Id) of the moment map.
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3) Show that the restriction of H to µ−1
C

(−Id) descends to a function on Cn, and

on the open part C ′
n equals

H = Tr(Z2)/2 =
∑

i

1

2
p2

i −
∑

i<j

(xi − xj)
2

(where pi, xi are the coordinates on C ′
n). This is the Calogero–Moser Hamiltonian,

modelling the flows of n identical particles on the complex plane with an inverse
square potential. Whilst on C ′

n the flows are complicated and incomplete, we see by

“unwinding” the symplectic quotient the flows become as in (3.7) very simple (and

thus complete on the partial compactification Cn).2

2This “unwinding” is due to Kazhdan–Kostant–Sternberg [KKS78] and this complex case has
been studied by G. Wilson [Wil98].
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4. Quick review of Kähler geometry

We will quickly review (mostly without proof) some of the basics of Kähler geom-
etry. This will be useful to highlight the analogies with the hyperkähler case later.

Linear algebra.

A complex structure on a real vector space V is an real linear endomorphism whose

square is minus the identity: I : V → V, I2 = −1. This enables to view V as a complex
vector space, with i ∈ C acting on V as I (this entails that V has even real dimension).

A Kähler vector space is a real vector space V together with a real symplectic form

ω ∈ ∧2V ∗ and a complex structure I such that:

a) the complex structure preserves the symplectic form

ω(Iv, Iw) = ω(v, w)

and

b) the associated real bilinear form g defined by

g(v, w) := ω(v, Iw)

is positive definite (i.e. a metric—it is necessarily symmetric due to the invariance

and antisymmetry of ω).

Now let V be a finite dimensional complex vector space. Recall that a (positive

definite) Hermitian form on V associates a complex number h(v, w) to a pair of
v, w ∈ V . It is C-linear in the first slot and is such that

h(v, w) = h(w, v)

for all v, w ∈ V , and such that h(v, v) > 0 for all nonzero v ∈ V . Note that this

implies h(Iv, Iw) = h(v, w), i.e. the complex structure preserves the Hermitian form.

Note that the real part of a positive definite Hermitian form is a real metric (i.e.

a positive definite real symmetric bilinear form):

g(v, w) := Re h(v, w) = Re h(v, w) = Re h(w, v) = g(w, v).

Also the imaginary part (and any nonzero real multiple of it) is a (real) symplectic
form:

Im h(v, w) = − Im h(v, w) = − Im h(w, v) .

To check this skew-form is nondegenerate note that

(4.1) Im h(v, w) = −Re
(
ih(v, w)

)
= −Re h(Iv, w) = −g (Iv, w)

so Im h(Iv, v) = g(v, v) is zero only if v = 0.
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Note that (4.1) also shows that specifying a positive definite Hermitian form is the

same as specifying a real metric g such that g(Iv, Iw) = g(v, w). Such a real metric is
called a Hermitian metric; this may cause some confusion since it is not a Hermitian
form, however little confusion is possible since the corresponding Hermitian form h is
determined by g (from (4.1): if g = Re(h) and ω(v, w) = g(Iv, w) then ω = − Im h):

h = g −
√
−1ω

ω(v, w) = g(Iv, w), g(v, w) = ω(v, Iw)

Said differently a Kähler vector space is the same thing as a (positive definite)

Hermitian vector space (i.e. a finite dimensional Hilbert space).

Standard/Example Formulae: V = C
n, Real coordinates xi, yi (in real dual),

with derivatives dxi, dyi. Complex coordinates zi = xi +
√
−1yi.

Standard symplectic form:

ω =
∑

dxi ∧ dyi =

√
−1

2

∑
dzi ∧ dzi

since dzi ∧ dzi = 2
√
−1dxi ∧ dyi. Hermitian form

h =
∑

dzi ⊗ dzi

so h(v, w) =
∑

viwi where vi = zi(v), wi = zi(w). Now

dz ⊗ dz = dxdx + dydy + idydx − idxdy

so the real part of the Hermitian form is

g =
∑

dx2
i + dy2

i

and the imaginary part is

−ω =
∑

dyi ∧ dxi

i.e. ω is minus the imaginary part of the Hermitian form, as expected.

Some group theory I.

The unitary group U(n) is the subgroup of GLn(C) preserving the standard positive
definite Hermitian form on C

n. This is equivalent to preserving both the real and
imaginary parts, so we have

U(n) = O2n(R) ∩ Sp2n(R)
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(since the real part is the standard positive definite bilinear form on R
2n and the

imaginary part is the standard real symplectic form, and moreover these parts de-
termine the complex structure). Note that the real symplectic group Sp2n(R) is not

compact, e.g for n = 1 it is just SL2(R) (since a symplectic form on a real two dimen-

sional vector space is just a volume form). Do not confuse it with the compact group

Sp(n), the “quaternionic unitary group” to be defined below—they are two different

real forms of the complex symplectic group Sp2n(C).

Since the real symplectic form is preserved, a real volume form is preserved (an

orientation—here the top exterior power of the symplectic form), i.e. Sp2n(R) ⊂
SL2n(R), so in fact

U(n) ⊂ SO2n(R).

The complexification of this fact will be important below.

Kähler manifolds.

Recall that an almost-complex structure on a real manifold M is an endomorphism

I ∈ End(TM) of the tangent bundle such that I2 = −1. (Thus each tangent space

is a complex vector space via the action of I.) A complex structure on M is an

integrable almost-complex structure, i.e. M is a complex manifold (we can find local

I-holomorphic coordinates etc.)

A Kähler manifold is a complex manifold M together with a (real) symplectic
form ω on M which is compatible with the complex structure and induces a metric:
if I ∈ End(TM) is the complex structure, then

ω(Iv, Iw) = ω(v, w)

and such that the associated real (symmetric) bilinear form

g(v, w) = ω(v, Iw)

is positive definite, at each point of M . (One may easily check that the skew-symmetry

of ω and the invariance of ω under I implies the symmetry of g.) Thus g is a Rie-
mannian metric and is invariant under I.

Note that Theorem 4.3 on p.148 of [KN69] (combined with the Newlander–Nirenberg

theorem) says that:

Theorem 4.1. If M is a Riemannian manifold with metric g and a global section I ∈
Γ(End(TM)) such that I2 = −1, g(Iu, Iv) = g(u, v) then the following are equivalent:

a) ∇I = 0,

b) I is an integrable complex structure (making M into a complex manifold) and

the associated two form ω (defined by ω(·, ·) = g(I·, ·)) is closed.
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If either of these hold then M is a Kähler manifold.

Corollary 4.2. Let M be a complex manifold with complex structure I ∈ End(TM)

and with a Hermitian metric g. Then g is Kähler (i.e. the associated (1, 1)-form ω

is closed) iff the complex structure I is parallel for the Levi-Civita connection.

Kähler manifolds arise in abundance since complex submanifolds of Kähler mani-
folds are Kähler:

Proposition 4.3. Let M be a Kähler manifold with Kähler two-form ω and let N be
a complex manifold. Suppose that

f : N → M

is a complex immersion (holomorphic map injective on tangent vectors). Then N is
a Kähler manifold with two-form f ∗ω.

Proof. Clearly f ∗ω is closed. The holomorphicity of f means that df∗ intertwines
the complex structures. The corresponding symmetric bilinear form is gN(v, w) =

(f ∗ω)(v, Iw) = ω(df∗v, df∗(Iw)) and this equals ω(df∗v, Idf∗(w)) = gM(df∗v, df∗w) =

f ∗(gM)(v, w) since f is holomorphic. Thus gN = f ∗gM is positive definite since f is

an immersion. This also shows f ∗ω is nondegenerate (by setting w = v for example).
Again since f is holomorphic gN is preserved by the complex structure on N . �

Kähler quotients.

The main result is the following

Theorem 4.4 (see [HKLR87]). If M//G is a symplectic manifold obtained as the

(real) symplectic quotient of a Kähler manifold M , by the action of a group G that

preserves the Kähler structure on M , then M//G is also naturally Kähler.

The proof is similar to the hyperkähler case we will give in detail below. Let us
discuss some aspects of this situation which will be helpful later. Suppose G is a

compact group acting freely and 0 is a regular value of µ so that Z = µ−1(0) is a

smooth submanifold of M . Choose a point m ∈ Z, and write π : Z → N := Z/G =

M//G for the quotient. Thus the tangents to the action (the span of the fundamental

vector fields at m) gm is a subspace of TmZ isomorphic to g, via the map X 7→ (vX)m.

Since we now have a metric, we can define the orthogonal subspace Hm = g⊥
m ⊂ TmZ

to gm (using the metric, not the symplectic form). Thus

TmZ = Hm ⊕ gm

and the projection π identifies Hm with the tangent space Tπ(m)N of the quotient.

On the other hand using the metric we can consider the normal directions to Z in M :
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these arise as the gradient vector fields gradµX of components µX of µ (for X ∈ g).
If Y is any vector field, since µ is a moment map, we have

g(gradµX , Y ) = dµX(Y ) = −ω(vX , Y ) = −g(IvX , Y )

so gradµX = −IvX ; the gradients are obtained by rotating the fundamental vector
fields by −I. Thus Igm is the set of normal directions to TmZ in TmM , and we have
a decomposition:

TmM = Hm ⊕ gm ⊕ Igm.

Clearly the last two factors make up a complex vector space ∼= gC = g ⊗ C and in
particular Hm is identified with the quotient of two complex vector spaces TmM/gC

so is complex itself. [It follows that the metric on N (defined by restricting from

TmM to Hm) is Kähler since the Levi-Civita connection is obtained by orthogonal

projection to Hm, and this commutes with the complex structures.] The point we
wish to emphasize here is that Hm arises by quotienting TmM by gm ⊗ C. Thus N
appears as a quotient by a local (Lie algebra) action of GC (the complexification of

G). If this comes from an action of GC then we expect that

N = M ss/GC

where M ss ⊂ M is the union GC · Z of the GC orbits in M which meet Z. In other
words we obtain an alternate viewpoint on the Kähler quotient as the quotient of an
(open) subset M ss ⊂ M by the complexified group. This will be made precise when
we discuss GIT quotients later. For now we will give a simple example.

The simplest examples come from Kähler vector spaces. Let V be a complex vector
space with a positive definite Hermitian form (·, ·). Let ω be minus the imaginary

part of this Hermitian form. Let G = U(V ) be the group of linear automorphisms
of V preserving the Hermitian form. Clearly this is a subgroup of the group of sym-
plectic automorphisms of V . The Lie algebra g of G consists of the skew-Hermitian
endomorphisms, i.e. those satisfying

(Av,w) + (v, Aw) = 0

for all v, w ∈ V .

Lemma 4.5. The map

µ : V → g∗; v 7→ “A 7→ i

2
(Av, v)”

is a moment map for the action of G = U(V ) on V .

Proof. This is immediate from Lemma 3.18 and Exercise 3.15. Here is the direct
verification anyway: First note that i(Av, v) is indeed real, since A satisfies (Av, v) +

(v, Av) = 0 and (v, Av) = (Av, v) so (Av, v) is pure imaginary. Thus µ indeed maps
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V to the real dual of g. Given A ∈ g we should verify that d〈µ,A〉 = ω(·, vA). The

left hand side is i
2
((Adv, v) + (Av, dv)), so we must show

i

2
((Aw, v) + (Av,w)) = ω(w, vA)

for any w ∈ V . Now at v ∈ V the vector field vA takes the value −Av (which is minus

tangent to the flow), so the right hand side is: Im(w,Av) = 1
2i

((w,Av) − (Av,w))

which indeed equals the left-hand side, since A is skew Hermitian. �

Note that if we use the standard Hermitian structure h(v, w) = vT w on V = C
n

and use the pairing (A,B) 7→ Tr(AB) to identify g with its dual, then the moment
map is given by

µ : V → g; µ(v) =
i

2
v ⊗ v†

(where † dentoes the conjugate transpose) since i
2
Tr(Av ⊗ v†) = i

2
v†Av = i

2
vT AT v =

i
2
(Av, v).

Example 4.6. Take M = C
n with its standard Kähler structure. Let S1 ⊂ U(n) be

the circle subgroup of diagonal scalar unitary matrices, acting on M . Since U(n) has

moment map v 7→ i
2
v ⊗ v†, and the dual of the derivative of the inclusion S1 ⊂ U(n)

is given by the trace, this action has moment map v ∈ M 7→ i
2
‖v‖2. Now since the

coadjoint action of S1 is trivial we may perform reduction at any value of the moment
map (all coadjoint orbits are points). Taking the value i/2 we find

µ−1(i/2) = {v ∈ M
∣∣ ‖v‖ = 1}

is the unit sphere in C
n, and the symplectic quotient is

M//S1 = µ−1(i/2)/S1 ∼= P
n−1

the complex projective space of dimension n− 1, since each complex one dimensional

subspace of C
n intersects the sphere in a circle, and this circle is an S1 orbit. Thus the

projective space inherits a Kähler structure. This is the (well-known) Fubini–Study
Kähler structure; the key point here is that we have obtained a nontrivial Kähler
structure from the standard Kähler structure on a vector space. In this example the
complexified group GC = C

∗ does indeed act holomorphically (by scalar multiplica-

tion), and M ss, the union of the C
∗ orbits which meet µ−1(i/2), is just V \ {0}. Thus

in this case it is easy to see

M//S1 = M ss/C
∗ = (V \ {0})/C

∗

which is closer to the usual description of the projective space as the space of one
dimensional subspaces of V .

Let us record another example of moment map for later use:



32 M2 COURS SPÉCIALISÉ 2009 PHILIP BOALCH

Example 4.7. Take V = End(Cn) with the Hermitian form (X,Y ) = Tr(XY †), with

G = U(n) acting by conjugation (we are thus embedding U(n) in U(n2)). Then a
moment map µ : V → g is given by

µ(X) =
i

2
[X,X†]

(where again we use (A,B) 7→ Tr(AB) to identify g with its dual) since for X ∈
V,A ∈ g, the adjoint action of A on X is [A,X], so we just observe that

µ(X)(A) =
i

2
Tr(A[X,X†]) =

i

2
Tr([A,X]X†) =

i

2
([A,X], X)

as in Lemma 4.5.

5. Quaternions and hyperkähler vector spaces

Quaternions.

The quaternions are the real (noncommutative) algebra

H = {q = x0 + x1i + x2j + x3k
∣∣ xi ∈ R} ∼= R

4

where i, j,k satisfy the quaternion identities:

i2 = j2 = k2 = ijk = −1.

Thus each generator i, j,k is a square root of −1, and we have ij = k = −ji, jk =
i,ki = j etc. Given a quaternion q ∈ H we define its real part to be x0 and its
imaginary part to be x1i + x2j + x3k, so that

Im H = {x1i + x2j + x3k
∣∣ xi ∈ R} ∼= R

3.

An important property is the existence of a conjugation on H:

q = q − 2 Im q, x0 + x1i + x2j + x3k = x0 − x1i − x2j − x3k

negating the imaginary part. Thus q is real iff q = q. Moreover the conjugation

satisfies (pq) = (q)(p) so that qq is real. This enables us to define a norm:

|q|2 = qq = x2
0 + x2

1 + x2
2 + x2

3.

The nonzero quaternions are precisely those with nonzero norm which in turn are

precisely those with a multiplicative inverse q−1 = q/|q|2. They constitute a four
dimensional Lie group

GL1(H) = {q ∈ H
∣∣ q 6= 0} = H

∗.
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The unit quaternions (those of norm one) clearly constitute a three sphere, and more-
over they form a subgroup:

Sp(1) = {q ∈ H
∣∣ |q| = 1} ∼= SU(2) ∼= S3.

Note that the generators i, j,k of H are not really distinguished: there are lots of
ordered triples of mutually orthogonal elements of norm one with the same algebraic

properties: Their choice amounts to choosing an orthonormal basis of Im H ∼= R
3;

the set of such choices is a torsor for SO3(R) ∼= Sp(1)/{±1}. Indeed any such triple
is of the form

q(i, j,k)q−1 = (qiq−1, qjq−1, qkq−1)

for some unit quaternion q and the stabiliser of (i, j,k) is {±1} ⊂ Sp(1). In particular

any element of the form qiq−1 is a square root of −1; the set of such constitutes the

orbit of SO3(R) through (the nonzero vector) i ∈ R
3, so is a two-sphere:

{x1i + x2j + x3k
∣∣ x2

1 + x2
2 + x2

3 = 1} ⊂ Im H.

In the sequel this will be the two-sphere of complex structures on a hyperkähler
manifold (and in general they will not all be equivalent).

If we use the norm to define the constant flat metric g(p, q) = Re(pq) on H we

then get a triple of symplectic form ωi, ωj, ωk defined as usual: ωi(v, w) = g(iv, w)
etc. The formulae are as follows:

g =
3∑

0

dx2
i

ωi = dx0 ∧ dx1 + dx2 ∧ dx3,

ωj = dx0 ∧ dx2 + dx3 ∧ dx1,

ωk = dx0 ∧ dx3 + dx1 ∧ dx2.

Given that C with coordinate z = x+ iy has symplectic structure dx∧dy, one can
“see” these formulae directly by writing:

q = x0 + x1i + x2j + x3k = (x0 + x1i) + (x2 + x3i)j

= (x0 + x2j) + (x3 + x1j)k

= (x0 + x3k) + (x1 + x2k)i

respectively, since then the action of the complex structures (acting by left multipli-

cation on H) is clear, decomposing H ∼= C × C in three different ways.

Note that this may be encoded succinctly as:

g − iωi − jωj − kωk = dq ⊗ dq

and using the quaternion multiplication to expand the right-hand side. This should

be compared to h = g −
√
−1ω.
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Exercise: Check this, and show g + iωi + jωj + kωk 6= dq ⊗ dq.

Remark 5.1. Recall the Hodge star operator, acting on forms, defined by the equa-
tion a ∧ ∗b = (a, b) vol. This squares to one when restricted to two-forms on a four
dimensional space, so the two-forms break up in to the ±1 eigenspaces. The three real

two forms appearing here are a basis of the self-dual two forms on R
4, i.e. they are

preserved by the Hodge star. This enables us to identify the imaginary quaternions
with the self-dual two forms.

Suppose we work in the complex structure i, and write q = z + wj with z =
x0 + ix1, w = x2 + ix3 (so z, w : H → C are now holomorphic coordinates on H).
Then we claim that

ωC := ωj +
√
−1ωk ∈

∧2
(H ⊗R C)∗

is a complex symplectic form (i.e. of type (2, 0)). Indeed it is just

dz ∧ dw = (dx0 +
√
−1dx1) ∧ (dx2 +

√
−1dx3)

= (dx0 ∧ dx2 − dx1 ∧ dx3) +
√
−1(dx0 ∧ dx3 + dx1 ∧ dx2).

This will be seen much more generally below. Note that this corresponds to viewing

H ∼= C
2 as the cotangent bundle of the w-line: H = T ∗

Cw (since this has symplectic

form d(zdw)).

Moreover the quaternionic Hermitian form

dq ⊗ dq = g − iωi − jωj − kωk = (g − iωi) − (ωj + iωk)j = h − ωCj

is the sum of a (usual) Hermitian form minus j times a complex symplectic form.

(This is the quaternionic analogue/complexification of the relation h = g − iω.) In
particular preserving dq⊗ dq is equivalent to preserving both h and ωC. In particular
we see

Sp(1) = U(2) ∩ Sp2(C)

is the intersection of the unitary group (preserving h) and the complex symplectic

group Sp2(C) = SL2(C) preserving ωC (which here is a holomorphic volume form).
This will be extended below.

Note that when working in complex structure i the extra structure of the quater-

nions on the complex vector space C
2 is all encoded in the action of j by left mul-

tiplication (since k = ij). Explicitly this extra complex structure on C
2 is given as

follows
j(z, w) = (−w, z)

(as is easily seen by computing j · (z + wj), given that jz = zj etc.)

2 × 2 Matrices. Under the isomorphism C
2 ∼= H; (z, w) 7→ q = z + wj the right

action of H on itself (x(q) = qx), translates into a (right) action of H on C
2 by C-

linear maps. In this way we get an embedding H →֒ End(C2) of algebras. Viewing
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(z, w) ∈ C
2 as row vectors, one may readily verify that the elements 1, i, j,k ∈ H

become the matrices
(

1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)
∈ End(C2)

respectively (e.g. the computation (z + wj)k = iw + (iz)j, yields the formula for the

image of k). In particular Im H corresponds to the set of skew-Hermitian matrices

with trace zero—the Lie algebra of su(2) ∼= sp(1).

Quaternionic vector spaces, some group theory 2.

More generally let V = H
n ∼= R

4n be a “quaternionic vector space”. We view it as
a left H-module by left multiplication. Thus V has three complex structures I,J,K
given by left (component-wise) multiplication by i, j,k respectively. Then we obtain
a group

GLn(H) ⊂ GL2n(C) ⊂ GL4n(R)

of invertible quaternionic matrices (having real dimension 4n2 < 8n2 < 16n2). If we

let g ∈ GL4n(R) act on q ∈ V as qg−1 (where we view q as a row vector), then

the action of GLn(H) commutes with the action of the complex structures, i.e. it is
“quaternionic-linear”.

We may define a standard “quaternionic Hermitian product”

((p,q)) = pq† =
∑

piqi ∈ H

where p ∈ V has components p1, . . . pn,∈ H etc. Note that ((p,q)) = ((q,p)). Equiv-

alently ((·, ·)) = dq ⊗ dq† =
∑

dqi ⊗ dqi. This decomposes as above in the n = 1
case

dq ⊗ dq† = g − iωi − jωj − kωk = (g − iωi) − (ωj + iωk)j = h − ωCj

yielding the flat metric g, Kähler forms, Hermitian metric and complex symplectic
form. (Compare with the relation h = g − iω.) In local holomorphic coordinates (for

I) we have ωC =
∑

dzi ∧ dwi.

More abstractly one may define a hyperkähler vector space V to be a free left
H-module together with a (positive definite) quaternionic Hermitian form (i.e. an

R-bilinear map ((·, ·)) : V ⊗R V → H, which is H linear in the first slot, satisfies

((p,q)) = ((q,p)), and is such that the real number ((q,q)) is positive unless q = 0).

We define the quaternionic unitary group Sp(n) to be

Sp(n) = {g ∈ Mn(H)
∣∣ gg† = 1}

where g† is the transpose of the quaternionic conjugate matrix. This is the group
preserving the quaternionic inner product, if we make g ∈ GLn(H) act on q ∈ V as
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qg−1, where we view q, as a row vector of quaternions. Thus g ∈ Sp(n) iff
((
pg−1,qg−1

))
= ((p,q))

for all p,q ∈ V . The Lie algebra of Sp(n) is thus the set of quaternionic skew-adjoint
matrices:

sp(n) = {X ∈ Mn(H)
∣∣ X + X† = 0}.

In particular we deduce that dimR(Sp(n)) = 3n + 4n(n − 1)/2 = 2n2 + n.

Since dq ⊗ dq† = h − ωCj is the sum of a Hermitian form minus the complex

symplectic form (times j), preserving dq ⊗ dq† is equivalent to preserving both h

and ωC. It follows that the quaternionic unitary group of H
n ∼= C

2n = T ∗
C

n is the
intersection

Sp(n) = U(2n) ∩ Sp2n(C)

of the unitary group (stabilising h) and the complex symplectic group (stabilising ωC).

Moreover clearly Sp2n(C) ⊂ SL2n(C) (since the top exterior power of the complex

symplectic form is a holomorphic volume form) so that in fact

Sp(n) ⊂ SU(2n).

This means that hyperkähler manifolds are Ricci flat—they are Calabi–Yau manifolds
of even complex dimension

Note also that Sp(1) ∼= SU(2), but (e.g. by comparing dimensions 2n2 + n and

4n2 − 1 resp.) this inclusion is strict if n > 1.
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6. Hyperkähler manifolds

Let M be a manifold of dimension 4n.

Definition 6.1. M is a hyperkähler manifold if it is equipped with

1) A triple of global sections I,J,K ∈ Γ(End(TM)) of the tangent bundle, satisfy-
ing the quaternion identities:

I2 = J2 = K2 = IJK = −1,

2) A Riemannian metric g such that

g(Iu, Iv) = g(Ju,Jv) = g(Ku,Kv) = g(u, v)

for all tangent vectors u, v ∈ TmM for all m ∈ M , and moreover I,J,K are covariant
constant, i.e.

∇I = ∇J = ∇K = 0,

where ∇ is the covariant derivative of the Levi-Civita connection of g.

Thus on a hyperkähler manifold, given three real numbers ai whose squares sum
one, we may define

Ia = a1I + a2J + a3K ∈ Γ (End(TM))

and verify that ∇Ia = 0, I2
a = −1, g(Iau, Iav) = g(u, v) so that, by Theorem 4.1

(M, g, Ia) is a Kähler manifold for any a = (a1, a2, a3) ∈ S2

i.e. it has a whole S2 family of Kähler structure, hence the name.

Let us denote the triple of Kähler forms as follows:

ωI(u, v) = g(Iu, v), ωJ(u, v) = g(Ju, v), ωK(u, v) = g(Ku, v),

and we will also sometime write ω1 = ωI, ω2 = ωJ, ω3 = ωK.

A trivial example of hyperkähler manifold is a hyperkähler vector space, i.e. the
flat metric and triple of complex structures on the H

n described earlier.

If we view M as a complex manifold using the complex structure I then we claim
that the the complex two-form

ωC = ω
(IJK)
C

:= ωJ +
√
−1ωK

is a complex symplectic form. (Note that this depends the choice of the triple I,J,K,

an orthonormal basis of Im H ∼= R
3, and not just I.) We will first check it is of type
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(2, 0). Indeed

ωC(Ip, q) = g(JIp, q) +
√
−1g(KIp, q)

= −g(Kp, q) +
√
−1g(Jp, q)

=
√
−1

(
g(Jp, q) +

√
−1g(Kp, q)

)

=
√
−1ωC(p, q)

which means that ωC is of type (2, 0). [Immediately this shows that the complex

one-form p 7→ ωC(p, q) is (1, 0) for any fixed q. Then by skew-symmetry ωC is (2, 0).]

Clearly ωC is closed and it is nondegenerate since e.g. the above shows ωC(Ip,Kp)

has nonzero real part whenever p is nonzero. Thus (M, I) is a complex symplectic

manifold. (Similarly, for example, (M,J) and (M,K) are complex symplectic with

complex symplectic forms ωJKI
C

, ωKIJ
C

.) Thus the notion of hyperkähler manifold is
an enrichment of the notion of complex symplectic manifold. This is a useful viepoint
since most examples arise in the first instance as complex symplectic manifolds.

It turns out that one obtains the same structure (of hyperkähler manifold on M) by
asking for apparently weaker conditions: First note that the metric and the complex
structures are determined by the three Kähler two-forms alone: For example since we
have

(6.1) ωJ(u, v) = g(Ju, v) = g(KIu, v) = ωK(Iu, v).

it follows that I = (ω♭
K)−1 ◦ω♭

J ∈ End(TM) and similarly we may obtain J,K. These

now yield the metric also since e.g. g(u, v) = ωI(u, Iv). Thus we can ask for conditions
in terms of the triple of forms to determine the hyperkähler structure:

Lemma 6.2 ([Hit87]). Suppose (M, g, I,J,K) is a Riemannian manifold with a triple
of skew-adjoint endomorphism of the tangent bundle satisfying the quaternion iden-
tities. Then M is hyperkähler iff the corresponding triple of two-forms are closed.

Proof. Clearly if it is hyperkähler then the forms are closed. Conversely by Theorem
4.1 it is sufficient to show the almost complex structures are integrable. For this we
will use the Newlander–Nirenberger theorem in the following form: an almost-complex
structure is integrable iff the Lie bracket of any two vector fields of type (1, 0) is again

of type (1, 0) (see [KN69], Theorems 2.8 and 2.7 pp.124-126). Now if u, v are sections

of the complexified tangent bundle of M then from (6.1) we see u is of type (1, 0) in

the complex structure I (i.e. Iu = +
√
−1u) iff ιuωJ =

√
−1ιuωK i.e. iff

ιuωC = 0
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where ωC = ωJ −
√
−1ωK. Thus if v, w are both of type (1, 0) for I we must show

ι[v,w]ωC = 0. This is now straightforward:

ι[v,w]ωC = [Lv, ιw]ωC

= −ιwLvωC since w is (1, 0)

= −ιw(d ◦ ιv)ωC by the Cartan formula and dωC = 0

= 0 since v is (1, 0)

Thus I is integrable and similarly for J,K. �

This will be useful since often it is easier to check if forms are closed than complex
structures being covariant constant.

Hyperkähler quotients.

In this section we will define the hyperkähler quotient—a generalization of the
symplectic (and Kähler) quotient, enabling lots of new examples of noncompact hy-
perkähler manifolds to be constructed.

Let (M, g, I,J,K) be a hyperkähler manifold. Suppose G is a compact Lie group
acting on M preserving the metric and the triple of complex structures. Thus G
preserves the triple of Kähler forms and we suppose further that there is a triple of
equivariant moment maps µI, µJ, µK : M → g∗. More invariantly these constitute the
components of a single map, the hyperkähler moment map:

µ : M → g∗ ⊗ R
3.

Theorem 6.3 ([HKLR87]). Let ζ ∈ g∗ ⊗ R
3 be a G-invariant point (where G acts

by the coadjoint action component-wise). Suppose that G acts freely on the subset

µ−1(ζ) ⊂ M . Then the quotient

M ///
ζ

G := µ−1(ζ)/G

is a (smooth) manifold with a natural hyperkähler structure induced from that of M .

Its real dimension is dimR(M) − 4 dimR(G). If M is complete then so is M ///
ζ

G.

Proof. First we check it is a smooth manifold. For this it is sufficient to check
the derivative of µ is surjective at each point of Z := µ−1(ζ) (so that Z is a smooth

submanifold) and then the slice theorem implies the quotient, by a free action of a
compact group, exists and is smooth.

Choose m ∈ Z. Given X ∈ g let vX denote the corresponding fundamanetal vector
field on M and let gm ⊂ TmM denote the tangent space to the orbit through m. Since

the action is free g ∼= gm; X 7→ (vX)m. We wish to show that dµm : TmM → g∗ ⊗ R
3

is surjective. This follows from the following.
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Lemma 6.4. dµm maps Igm ⊂ TmM onto (∗, 0, 0) ⊂ g∗⊗R
3, and similarly dµm(Jgm) =

(0, ∗, 0) etc. Moreover the four subspaces gm, Igm,Jgm,Kgm are orthogonal.

Proof. The second statement follows from the moment map property: Clearly
dµm(vX) = 0 for all X ∈ g (since µ maps the orbit though m onto the point ζ).

Given Y ∈ g let µY = 〈µ, Y 〉 : M → R
3 be the Y -component of µ. The moment map

condition implies that, for all X,Y ∈ g:

0 = dµY
m(vX) =

(
ωI(vX , vY ), ωJ(vX , vY ), ωK(vX , vY )

)

=
(
g(IvX , vY ), g(JvX , vY ), g(KvX , vY )

)
.

Thus gm is orthogonal to each of Igm,Jgm,Kgm and the full statement follows by
invariance of g.

Now for the first part. Choose X ∈ g. We will show dµm(IvX) = (−g(v(·), vX), 0, 0) ∈
g∗ ⊗ R

3. Indeed for any Y ∈ g (replacing vX by −IvX above):

−dµY
m(IvX) =

(
ωI(vY , IvX), ωJ(vY , IvX), ωK(vY , IvX)

)

=
(
g(IvY , IvX), g(JvY , IvX), g(KvY , IvX)

)

= (g(vY , vX), 0, 0) .

Now the bilinear form (X,Y ) 7→ gm(vX , vY ) on g ⊗ g is nondegenerate (being the

restriction of g to gm composed with the action isomorphism g → gm) so the first
statement follows. �

Thus Z = µ−1(ζ) is a smooth manifold. At m ∈ Z its tangent space Ker dµm may
be characterised as the orthogonal complement to Igm ⊕ Jgm ⊕ Kgm since we have

−dµY
m(v) =

(
ωI(vY , v), ωJ(vY , v), ωK(vY , v)

)

=
(
g(IvY , v), g(JvY , v), g(KvY , v)

)

for all v ∈ TmM,Y ∈ g.

Since the action is free Z/G is a manifold and the tangent space to a point [G·m] ∈
Z/G is given by the orthogonal complement Hm of gm in TmZ (for any m in the fibre).
This is the same as the orthogonal complement to gm ⊕ Igm ⊕ Jgm ⊕ Kgm in TmM .
As such it is preserved by I,J,K (so has a quaternionic triple of almost complex

structures) and the metric g may be restricted. By Lemma 6.2 it is sufficient now to

check that the corresponding triple of two-forms ω′
I, ω

′
J, ω

′
K are closed.

Let ι : Z → M be the inclusion and let π : Z → Z/G be the quotient map. Then

by definition ι∗(ωI) = π∗(ω′
I) so we have

π∗(dω′
I) = dπ∗(ω′

I) = dι∗(ωI) = ι∗(dωI) = 0
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by the naturality of the exterior derivative. It follows that dω′
I = 0 since π is surjective

on tangent vectors (by definition). Similarly for ωJ, ωK, so we have ideed constructed
a hyperkähler manifold.

Finally we briefly discuss completeness. Suppose M is complete and we have a
(maximal) geodesic γ : [0, T ) → N := Z/G with γ(0) = π(m). Then we may lift γ

to a curve γ̃ : [0, T ) → Z based at m, and tangent to the horizontal subspace Hz

(orthogonal to gz) at each point. By definition of the metric on N the length along

γ̃ is the same as the length along γ. This lifted curve may be extended in M (as M

is complete) so has a limit at t = T . This limit is in Z since Z is closed in M , so
projects to a point of N , so γ can in fact be extended. �

Remark 6.5. Suppose that we write a hyperkähler moment map µ as (µR, µC) where

µR = µI : M → g∗ and µC = µJ +
√
−1µK : M → C⊗ g∗ are built out of µ. Then µC

is a holomorphic map on M (in complex structure I), since for all X ∈ g and vector
fields Y :

d〈µC, X〉(IY ) = g(JIY, vX) +
√
−1g(KIY, vX)

= −g(KY, vX) +
√
−1g(JY, vX)

=
√
−1(g(JY, vX) +

√
−1g(KY, vX))

=
√
−1d〈µC, X〉(Y ).

Thus, if we write ζ = (ζR, ζC) similarly, then µ−1
C

(ζC) ⊂ M is a complex submanifold

(in complex structure I) so inherits the induced Kähler structure, and we may view
the hyperkähler quotient as the Kähler quotient of it by the action of G with moment
map µR:

M ///
ζ

G = µ−1(ζ)/G = (µ−1
R

(ζR) ∩ µ−1
C

(ζC))/G = µ−1
C

(ζC) //
ζR

G.

Note also that if the action of G extends to a holomorphic action of the complex-
ification GC of G then this action will have moment map µC. (with respect to the

complex symplectic form ωC). Later on, once we have studied quotients by such (non-

compact) complex algebraic groups GC we will relate this to the complex symplectic

quotient µ−1
C

(ζC)/GC. For now we will just look at an example where everything can
be computed by hand.

The most basic example of a hyperkähler moment map is for Sp(n) acting on the

hyperkähler vector space H
n (with quaternionic Hermitian form ((p,q)) = pq† ∈ H):

g(q) := q · g−1, q ∈ H
n, g ∈ Sp(n)

where as usual we view q as a row vector (a 1 × n quaternionic matrix), and †
denotes the quaternionic conjugate of the transposed quaternionic matrix. This action
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preserves the hyperkähler structure of H
n (since, for example the complex structures

were defined in terms of left multiplication).

Lemma 6.6. A hyperkähler moment map for the above action is given by

µ(q)(X) =
1

2
((qX,q)) =

1

2
Im(qXq†) ∈ Im H

where q ∈ H
n, X ∈ sp(n) (so that µ(q) ∈ sp(n)∗ ⊗ Im H) and we identify R

3 ∼= Im H

via (µ1, µ2, µ3) = iµ1 + jµ2 + kµ3.

Proof. This is clearly equivariant, i.e. µ(qg−1)(gXg−1) = µ(q)(X). Write ĥ =

((·, ·)) for the quaternionic form. Since ĥ = g − iω1 − jω2 − kω3, the first component
of µ is µ1 where

µ1(q)(X) = −1

2
ω1(qX,q) ∈ R.

By Lemma 3.18 this is indeed a moment map for the action of Sp(n) on (Hn, ω1) since

−qX is the derivative of the flow q exp(−tX) generated by X. Similarly for the other

components. Observe that for X ∈ sp(n) (i.e. X = −X†) the expression qXq† ∈ H

is automatically in Im H (since it equals minus its quaternionic conjugate). �

Note (more abstractly) that the same proof shows µ(q)(X) = 1
2
((vX(q),q)) is a mo-

ment map for the natural action of the compact symplectic group of any hyperkähler
vector space V with form ((·, ·)).

Now we will give a first example of hyperkähler quotient.

Example 6.7. Let V = C
n be a complex vector space of dimension n, equipped with

the standard Hermitian inner product. Let

V = V × V ∗ ∼= H
n.

On V × V ∗ the structure of hyperkähler vector space is determined by the action of

j given by j(v, α) = (α†,−v†), and the metric, given by ‖(v, α)‖2 = ‖v‖2 + ‖α‖2 =

v†v + αα†. (Equivalently by convention (v, α) ∈ V × V ∗ corresponds to the point of

H
n with components vi−αij.) We consider the action of the circle S1 on V as follows:

g(v, α) = (gv, α/g)

for (v, α) ∈ V ×V ∗, and g ∈ S1. A moment map for this action is µ = (µR, µC) where

µR(v, α) =
i

2

(
‖v‖2 − ‖α‖2

)
∈ iR = Lie(S1)

µC(v, α) = −α(v) ∈ C = Lie(C∗).

This may be checked directly, or deduced from the previous example (it will also

follow from more general examples below).
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Thus the hyperkähler quotient at the value ζ = (i/2, 0, 0) of the moment map is
thus {

(v, α) ∈ V × V ∗
∣∣ ‖v‖2 − ‖α‖2 = 1, α(v) = 0

}
/S1.

It is easy to see this is equal to the complex quotient
{
(v, α) ∈ V × V ∗

∣∣ v 6= 0, α(v) = 0
}

/C
∗,

since C
∗ ∼= S1 × R

×
>0, and for any pair (v, α) with v nonzero there is a unique real

t > 0 such that t2‖v‖2 − t−2‖α‖2 = 1. In turn this is the standard description of

the cotangent bundle T ∗
P(V ) of the projective space of V . This follows from the

following more general fact:

Lemma 6.8. Let M = Grk(V ) be the Grassmannian of k dimensional complex sub-
spaces of V . Let W ⊂ V be such subspace. Then the tangent space to M at W is
naturally TW M = Hom(W,V/W ) = W ∗ ⊗ (V/W ) and in turn

T ∗
W M = W ⊗ (V/W )∗ = W ⊗ W ◦

where W ◦ ⊂ V ∗ is the annihilator of W : W ◦ = {α ∈ V ∗
∣∣ α(W ) = 0}.

Assuming this, and setting k = 1 so M = P(V ), we have

T ∗
P(V ) = {(L, v ⊗ α) ∈ P(V ) × V ⊗ V ∗

∣∣ v ∈ L, α ∈ L◦}
which agrees with the above description of the hyperkähler quotient (the map (v, α) 7→
([v], v ⊗ α) is surjective with the C

∗ orbits as fibres).

Thus the total space of the holomorphic cotangent bundle to any projective space

is a complete hyperkähler manifold. In the case V = C
2 we obtain the cotangent

bundle T ∗
P

1 to the Riemann sphere, of real dimension 4. This hyperkähler four-
manifold is the Eguchi–Hanson space, discovered in 1978 [EH78], and was the first
nontrivial example of a hyperkähler manifold. The hyperkähler metrics on the higher
dimensional cotangent bundles of projective spaces were constructed in 1979 by Calabi
[Cal79] (by a different method to that above), who coined the term “hyperkähler”.
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