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Resumé

La but du cours est d’expliquer la lien entre les équations différentielles algébriques
linéaires (les connexions méromorphes sur les fibrés vectoriels sur les courbes com-
plexes lisses) et quelques exemples des équations différentielles non-linéaires.

L’idée de base, centrale dans la théorie de jauge, est que l’inconnu dans l’équation
différentielle nonlineaire est mieux compris comme un connexion linéaire. Ici on utilise
la même principe mais pour les connexions algébriques méromorphes.

Ceci donne l’opportunité d’étudier quelques exemples des jolies variétés algébriques
(hyperkahlerienne) qui apparaissent comme espaces de modules dans cette histoire.

Contenu
• Espaces de modules de connexions additifs et multiplicatifs (géométrie symplec-

tique holomorphe)

• Systèmes locaux de Stokes, variétés de caractères sauvages
• Application de Riemann-Hilbert-Birkhoff, théorie de Lie globale

• Équations de Yang-Mills autodual, équations de Hitchin, fibrés harmoniques sur
les surfaces de Riemann non-compact (rotation hyperkahlerienne, correspondance de
Hodge nonabelienne sauvage)

• Systèmes d’isomondromie (Painlevé, Schlesinger, Jimbo-Miwa-Mori-Sato, sim-
plement lacé,...), connexions d’Ehresmann nonlineaires et lien avec les groupes de
tresse
• Fibres de Higgs méromorphes et systèmes intégrables algèbro-géométriques (Gar-

nier, Mumford, Hitchin, Bottacin-Markman, ...)



4 M2 COURS SPÉCIALISÉ 2023 PHILIP BOALCH

List of key points:

Lecture 1: Definition of meromorphic connection. View as global/intrinsic lin-
ear differential systems. Gauge transformations, gauge action. Algebraic versions.
Definition of meromorphic Higgs bundles and ζ-connections.

Sketch of big picture (at symbolic level). Two key correspondences.

Start list of key examples: Painlevé’s discovery of natural deformations of the
theory of elliptic functions (simplification of PI, PII). Link to gauge theory (R. Fuchs):
First steps in description of geometry of Painlevé VI.

Lecture 2: Definition of curvature. Flatness in terms of commuting operators.
Holomorphic structures via ∂-operators and Koszul–Malgrange statement. Definition
of local system of sets and of vector spaces, relation to covering spaces. Transport
and monodromy of a local system. Equivalence of five viewpoints on connections in
the compact case (no poles).

Representation varieties R as framed moduli spaces, and as affine varieties. Clas-
sification of solutions of the flatness equation. Character variety/Betti moduli space.

Dimension counting in the Riemann problem (Hilbert 21). Relation to matrix
exponential map. The question that Birkhoff’s invariants answered ⇝ global Lie
theory. Example of Painlevé 2 wild character variety (Flaschka–Newell surface).
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1. Lecture 1: Basic examples, questions and definitions

1.1. What is a meromorphic connection?

We will need several different flavours (categories) of connections, and some confu-
sion in the subject comes from different authors having different default definitions.
The relation between various definitions will be crucial to understand. Thus we’ll
start with the central notions we will use, and then later discuss variations and their
relation.

The starting point is a first order linear differential operator of the form

d

dz
−B(z)

where B(z) is an n × n matrix of holomorphic functions on an open subset U ⊂ C.
As a first example one might consider a polynomial system:

(1.1) d

dz
− (A0 + A1z + · · ·Amz

m)

for n× n matrices Ai. As a second example one might consider:

(1.2) d

dz
−
(

A1

z − a1
+ · · ·+ Am

z − am

)
for n×n matrices Ai, away from the poles (these are often called “Fuchsian systems”).

This yields the linear system of differential equations

dv

dz
= Bv

where v is a length n column vector of holomorphic functions. The coordinate-free
version of this operator is got by “multiplying by dz”, to get the connection

∇ = d− A, A = B(z)dz

so that A is a matrix of holomorphic one-forms and d is the exterior derivative.
This is a connection on the trivial rank n holomorphic vector bundle on U , i.e. on
E = Cn × U → U . Solutions v are now called horizontal sections and the equation
dv/dz = Bv is rewritten ∇(v) = 0, i.e. dv = Av. We can remove the condition that
E is trivial and consider connections on non-trivial vector bundles, leading to the
following definition, first in the case with no poles.

Let Σ be a compact Riemann surface.

Definition 1.1. A holomorphic connection is a pair (E,∇) where E → Σ is a holo-
morphic vector bundle, and

∇ : E → E ⊗ Ω1(D)
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is a C-linear operator, from the sheaf of sections E of E to the sections of E twisted
by holomorphic one-forms, such that the Leibniz rule is satisfied:
(1.3) ∇(fs) = (df)s+ f∇(s)
for all local sections s of E and functions f .

This is a completely standard definition, going back to Koszul. A connection is a
way to differentiate sections of E: If X is a vector field on Σ and s is a section of E
then

∇X(s) := 〈X,∇(s)〉
is again a section of E, the derivative by ∇ of s along X. Here the brackets 〈 · , ·〉
denote the natural pairing between the tangent bundle and the cotangent bundle.

In a local trivialisation of E, over some open subset U ⊂ Σ the operator ∇ takes
the form

∇ = d− A

for an n× n matrix of holomorphic one-forms A, where n is the rank of E. If z is a
local coordinate on U this means we can write A = Bdz for a matrix B of holomorphic
functions on U . Thus a connection ∇ = d−Bdz is really just a global, coordinate-free
version of the matrix differential operators d

dz
−B we first considered.

If we change the choice of local trivialisation of E then A changes by a gauge
transformation:

(1.4) A 7→ g[A] := gAg−1 + (dg)g−1

where g : U → GLn(C) is a holomorphic map. Our conventions are set-up such that
this is a group action:

Exercise 1.2. Show that (g ◦ h)[A] = g[h[A]].

Exercise 1.3. Show that if e = (e1, . . . , en) is the initial basis of E and e′ = (e′1, . . . , e
′
n)

is the new basis, and g is such that e = e′ ◦ g, then we do indeed get the formula
(1.4) for g[A].

Exercise 1.4. Choose an open covering Σ =
⋃

i∈I Ui of Σ and a trivialisation ei of E
over Ui for each i, and so the connection takes the form d−Ai on Ui. Let Uij = Ui∩Uj

and define gij : Uij → GLn(C) so that ei = ej ◦ gji on Uij. Show that gij[Aj] = Ai for
all i, j ∈ I. Show that the connection (E,∇) is completely determined by the cover,
the clutching maps gij and the matrices Ai for all i, j ∈ I. How does this data change
if we change trivialisation over each open set: ei 7→ ei◦hi for some hi : Ui → GLn(C)?

Write G = GLn(C), let ∆ ⊂ C be an open disk, and let G = Maphol(∆, G) be the
group of all holomorphic maps from ∆ to G. Also write g = gln(C) = End(Cn) and
let

A = {A = B(z)dz
∣∣ B : U → g}
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be the space of all holomorphic connections on the trivial bundle on the open disk ∆,
so that B is a holomorphic map. Thus by the exercise above the group G acts on the
space A by gauge transformations:

G ×A → A; (g, A) 7→ g[A] = gAg−1 + (dg)g−1.

Holomorphic connections are not interesting locally since they are all isomorphic:

Lemma 1.5. G acts transitively on A. In particular for any A ∈ A there is a g ∈ G
such that g[A] = 0 (every holomorphic connection is locally isomorphic to the trivial
connection).

Proof. Given A we wish to find g so that gAg−1 + (dg)g−1 = 0. In other words
gA+(dg) = 0. If we write h = g−1 and use the useful fact that d(g−1) = −g−1(dg)g−1

then we want h : U → G so that
dh

dz
= B(z)h

where B = A/dz as usual. In classical language this equation just says that h is
a “fundamental solution” (or “fundamental matrix”) of the linear system d/dz − B.
(By definition this means that the columns of h make up a basis of solutions of the
system.) It is a classical fact (Cauchy?) that holomorphic systems have fundamental
solutions1. In fact its easy to construct a series solution term by term, and then one
proves the resulting series solution converges. □

Let E = Cn × ∆ denote the trivial bundle. Note that a fundamental solution h
is the same thing as an isomorphism (E, d = d − 0) → (E, d − A) from the trivial
connection to the connection d − A. This just says h[0] = A, i.e. A = (dh)h−1 or
dh = Ah.

In general an isomorphism from (E, d − A1) → (E, d − A2) is a section h of
Hom(E,E) that is invertible and satisfies h[A1] = A2 i.e.

hA1h
−1 + (dh)h−1 = A2

or in other words:
dh = A2h− hA1.

Indeed it is natural to define a connection Hom(∇1,∇2) on Hom(E,E), whose hori-
zontal sections are given by this equation. Similarly if there are two different vector
bundles, and one can thus define dual connections etc.

Of course we can consider holomorphic connections on punctured Riemann surfaces
but that won’t capture most of the properties of the first (polynomial) example, and

1See e.g. classical ODE books by Hartman, Coddington–Levinson, Ince, Hille, ...



8 M2 COURS SPÉCIALISÉ 2023 PHILIP BOALCH

not all the properties of the second (Fuchsian) example. Instead we proceed as follows
to encompass them.

Now let Σ be a compact Riemann surface and a = (a1, . . . , am) ⊂ Σ a finite subset.
Let D =

∑
ni(ai) be an effective divisor on Σ supported on a, so that ni ≥ 1 are

integers.

Definition 1.6. A meromorphic connection with poles bounded by D is a pair (E,∇)
where E → Σ is a holomorphic vector bundle, and

∇ : E → E ⊗ Ω1(D)

is a C-linear operator, from the sheaf of sections E of E to the sections of E twisted
by meromorphic one-forms with poles bounded by D, such that the Leibniz rule is
satisfied:

(1.5) ∇(fs) = (df)s+ f∇(s)

for all local sections s of E and functions f .

In a local trivialisation of E, over some open subset U ⊂ Σ the operator ∇ takes
the form

∇ = d− A

for a matrix of meromorphic one-forms A (with poles bounded by D). E.g. if a1 ∈ U
and z is a local coordinate vanishing at a1 then

∇ = d− B(z)dz

zn1

in a neighbourhood of a1, where B is holomorphic across a1.

Remark 1.7. Note that:
1) E → Σ is a holomorphic vector bundle on the compact surface, so this is a

genuine generalisation of a holomorphic connection.

2) this notion is well defined, but it would not be if D was not effective. The point
is that the Leibniz rule tacitly uses the inclusion Ω1 ⊂ Ω1(D) of the holomorphic one
forms into the meromorphic one forms. If D was not effective, say n1 < 0, then the
Leibniz rule would not make sense (as there is then no such inclusion: df would not
necessarily be a section of Ω1(D)).

3) this is not a completely standard definition (although we have been happily
using it since 1999 or so). One can also define the notion of “meromorphic connection
on a meromorphic bundle”, where a “meromorphic bundle” is a locally free O(∗D)
module. In practice this means that one allows meromorphic gauge transformations
with any order pole at the points of D. This definition is also useful, but is less
convenient for gauge theory or moduli theory.
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Remark 1.8. The nonabelian cohomology set H1(Σ,GLn(O)) is slick notation for the
set of isomorphism classes of rank n holomorphic vector bundles on Σ. Here O is the
sheaf of holomorphic functions and GLn(O) is the sheaf of holomorphic maps in to
the the group GLn(C). The (Cech) definition of H1(Σ,GLn(O)) involves equivalence
classes of 1-cocycles, and this really is the same thing as expressing a vector bundle
in terms of clutching maps, by choosing local trivialisations on each open set of
an open covering (and the equivalence relation comes from changing the choice of
trivialisation). See for example J. Frenkel’s 1957 paper Cohomologie non abélienne et
espaces fibrés:

Figure 1. The definition of H1(Σ,G) in Frenkel 1957.

Later on we will need H1(Σ,GLn(C)), which is slick notation for the set of iso-
morphism classes of local systems of n-dimensional complex vector spaces on Σ; the
clutching maps on double intersections are now constant maps to GLn(C). Of course
it is very suggestive notation, and leads to the idea that moduli spaces of local sys-
tems should have other motivic incarnations analogous to the De Rham and Dolbeault
approaches in the abelian case.

1.2. Some variations: algebraicity. Suppose Σ is actually a smooth compact com-
plex algebraic curve.
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•v1) Algebraic connections (E,∇) (if E is algebraic and ∇ is algebraic). Thus there
is a Zariski open covering Σ =

⋃
Ui so that the restriction of E to each open set

Ui is trivialisable. (Recall Zariski open subset are just the complements of finite
subsets of points.) Then by choosing such trivialisations the bundle E is determined
by algebraic clutching maps gij : Uij → G, where Uij = Ui ∩ Uj. Then on Ui we have
∇ = d− Ai where Ai is a matrix of regular differentials (algebraic one-forms) on Ui.
On the double intersections the Ai are related by gauge transformations as usual

gij[Aj] = Ai.

These are just the algebraic version of holomorphic connections. In fact some form of
GAGA implies the analytification functors gives an equivalence of categories (Alge-
braic connections) → (holomorphic connections), in this setting where Σ is compact.

•v2) Similarly there is a notion of “Algebraic meromorphic connections”, as above but
allowing the Ai to be matrices of rational differentials (algebraic one-forms with poles),
with poles bounded by the fixed effective divisor D. Again a version of GAGA implies
the analytification functors gives an equivalence (to the meromorphic connections
on holomorphic vector bundles). These will actually be the realm for most of our
examples, with nonlinear differential equations flowing in their spaces of coefficients.

•v3) If we now take Σ◦ = Σ \ a to be an open curve (in fact any smooth complex
algebraic curve takes this form for some finite set a). Then we can consider algebraic
connections (E,∇) → Σ◦ on the open curve. This category is actually very close
to being a subcategory of the category of meromorphic connections on holomorphic
vector bundles on Σ with poles on a (if we allow any pole orders). There is in
fact a version of GAGA that shows this category is equivalent to the “meromorphic
connections on meromorphic bundles” on Σ with any order poles on a.

In the next lecture we will consider holomorphic connections on vector bundles on
Σ◦ = Σ \ a; this is relatively trivial and all the extra structure “hidden” in the poles
at the punctures is lost. However we won’t get to hermitian metrics for some time so
its worth noting here:

The relevance in “hardcore analytic” gauge theory (on the punctured surface),
of having (meromorphic connections on) holomorphic vector bundles on the
compact surface, comes from the fact that the addition of a hermitian metric
controls the growth of sections at the punctures, leading to preferred extensions
across the punctures, and thus holomorphic vector bundles (or parabolic vector
bundles) on the compact surface, and in turn this leads to algebraicity.

1.3. Some more variations: Higgs bundles and ζ-connections.
Definition 1.9. A meromorphic Higgs bundle with poles bounded by D is a pair
(E,Φ) where E → Σ is a holomorphic vector bundle and Φ ∈ H0(Σ,End(E)⊗Ω1(D))
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is the Higgs fields, a meromorphic one-form with values in End(E), with poles bounded
by D.

Thus locally we can write Φ = Bdz for a matrix B of meromorphic functions on
U .

In a sense Higgs bundles have two origins: just as an operator d/dz − B led
to a connection d − Bdz, any matrix L(z) of rational functions (aka a “rational
Lax matrix”) leads to a Higgs field L(z)dz (on the trivial vector bundle on P1).
On the other hand holomorphic Higgs fields on higher genus Riemann surfaces were
introduced by Hitchin and Simpson. These two viewpoints were “put together” in
the definition of meromorphic Higgs bundle (Nitsure, Bottacin, Markman, ...).
Exercise 1.10. Suppose ∇1,∇2 are meromorphic connections on E → Σ with poles
on D. Show that Φ := ∇1 −∇2 is a meromorphic Higgs field.

Now choose a complex number ζ ∈ C.
Definition 1.11. A meromorphic ζ-connection with poles bounded by D is a pair
(E,∇) where E → Σ is a holomorphic vector bundle, and

∇ : E → E ⊗ Ω1(D)

is a C-linear operator, from the sheaf of sections E of E to the sections of E twisted
by meromorphic one-forms with poles bounded by D, such that the ζ-Leibniz rule is
satisfied:
(1.6) ∇(fs) = ζ(df)s+ f∇(s)
for all local sections s of E and functions f .
Exercise 1.12. Study ζ-connections in a local trivialisation, and show that the gauge
action is modified to: g[A]ζ = gAg−1 + ζ(dg)g−1.

Exercise 1.13. Show that for ζ = 0 a meromorphic ζ-connection is the same thing as
a meromorphic Higgs bundle.
Exercise 1.14. Show that for ζ = 1 a meromorphic ζ-connection is the same thing as
a meromorphic connection.

Thus there is a “continuous deformation” from connections to Higgs bundles.
Exercise 1.15. Write down the algebraic versions of the definitions of Higgs bundles
and ζ-connections.

This is often referred to as the “autonomous limit” in the integrable systems lit-
erature. We will eventually see it is the same as the “Painlevé simplification” of the
Painlevé equations, and see it as a hyperkähler rotation.

Of course, physicists have been putting numbers (like ~) in front of their differential
operators for a long time.
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And it is essentially the same as the deformation from loop algebras into affine
Kac–Moody algebras (although in the full story there is also a central extension, dual
to this deformation).

Remark 1.16. Note that for any line bundle L → Σ one can define a L-valued Higgs
bundle as pair (E,Φ) with Φ a section of End(E)⊗L. However unless this is secretly
a meromorphic Higgs bundle (i.e. there is an isomorphism L ∼= Ω1(D) for some
effective D) then there is no analogous notion of “L-valued connections” (Rmk. 1.7
2).
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2. Sketch of big picture

2.1. Three algebraic worlds: Before delving into the details lets try to signpost
where we want go (at least symbolically for the moment). Much of the story we want
to describe can be summarised in the (slightly oversimplified) diagram:

Dolbeault De Rham Betti

Rational Lax matrices L

L̇ = [P,L]
Rational diff. op.s

d
dz
−B

Stokes and
monodromy data⋂ ⋂ ⋂

Mero. Higgs bundles
(E,Φ)

wnAbH←→ Mero. connections
(E,∇)

RHB←→ Stokes local
systems⋃ ⋃ ⋃

Holom. Higgs bundles
(E,Φ)

nAbH←→ Holom. connections
(E,∇)

RH←→ Local systems/
π1-rep.s

The main aim is to describe the central row, and, as the diagram indicates, it
is set-up to include both the rich class of examples of rational Lax matrices and
the sophisticated nonabelian Hodge setting of holomorphic Higgs bundles (no poles),
related to the Hitchin integrable systems.

Just as an operator d
dz
−B becomes a connection by multiplying by dz (and one can

study its isomonodromic deformations), a rational Lax matrix L(z) becomes a Higgs
field Ldz by multiplying by a rational one-form, such as dz. The Lax matrices appear
in Lax equations, which are equation of the form L̇ = [P,L] controlling isospectral
deformations of L, and are the bread and butter of the theory of integrable systems;
the solution of the system comes from a straight line flow on the Jacobian of the
spectral curve defined by det(L − λ) = 0. We will discuss some examples in detail
but for now note there are lots, as listed for example in the book of Babelon et al, or
basic sources such as:

Adler and van Moerbeke (1980) Completely integrable systems, Euclidean Lie al-
gebras, and curves, Adv. in Math. 38, no. 3, 267-317.

Reyman and Semenov-Tian-Shansky (1994) Integrable systems II group theoretical
methods in the theory of finite dimensional integrable systems

Phillip Griffiths (1985) Linearizing Flows and a Cohomological Interpretation of
Lax Equations
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Mumford (1984) “Tata Lectures on Theta II, Jacobi theta functions and differential
equations” (this book is devoted to a class of examples involving 2× 2 Lax matrices).

Dubrovin–Krichever–Novikov (1985) Integrable systems I

Adams–Harnad–Previato (1988) Isospectral flows in finite and inifinite dimensions

The first large class of examples seems to be due to Garnier 1919 (and we will
discuss the “Painlevé simplification” method he used to discover them, taking the
autonomous limit of the Schlesinger equations):

Garnier (1919) Sur une classe de systèmes différentiels abéliens déduits de la théorie
des équations linéaires, (Rendiconti del Circolo Matematico di Palermo 43, pp.155-
191).

Several of the key ideas of Garnier’s paper were rediscovered as an offshoot of soli-
ton theory, before Garnier’s work was rediscovered and widely disseminated2, around
1980.

2E.g. there is a section on it in the well-known paper of Flaschka-Newell on isomonodromy
(Comm. Math. Phys. 76 (1980), 65-116), and it is mentioned in Dubrovin’s 1981 paper on theta
functions, the 1980 Krichever-Novikov review ( Russian Math. Surveys 35:6 (1980), 53-79 ) and in
the footnote p.156 of the 1980 paper of Jimbo-Miwa-Mori-Sato. D.V. Chudnovsky wrote a paper
on it (Let. Nuovo Cimento 26 (14) 1979), and M. Gaudin cited that in his 1983 book (La fonction
d’onde de Bethe), having discovered the quantum version in 1976.
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2.2. Two organisational diagrams. Mathematically this story leads to an interest-
ing class of moduli spaces, i.e. spaces whose points correspond to isomorphism classes
of certain meromorphic connections (or Higgs bundles, or Stokes local systems). This
goes slightly beyond the objects usually studied by algebraic geometers, and one of
the main inputs is to write down the moduli problem that encompasses this picture.

In particular we will fix a Riemann surface, some marked points and some pre-
cisely defined boundary data. This will determine a hyperkähler manifold M with
three preferred algebraic structures, corresponding to the three columns of the above
table. We label the columns “Dolbeault, De Rham, Betti” as they are precise ana-
logues of the Dolbeault, De Rham and Betti approaches to linear cohomology (it
was first abstracted to the context of nonabelian cohomology by Simpson, and then
later extended to the meromorphic case relevant to Lax matrices). The result, to be
explained, is a diagram as follows:

Figure 2. Nonabelian Hodge space M, with three preferred algebraic structures.

However this does not capture the full story and in practice people work with
simpler open partsM∗ of the moduli spaces in genus zero, where things can be made
explicit, and actual nonlinear differential equations can be obtained. We will explain
that the classical Riemann–Hilbert map is a holomorphic map

(2.1) M∗ ↪→MB

whereM∗ =M∗
DR ⊂MDR is the open part of the full De Rham moduli space where

the bundles E are trivial. As we will see the spaces M∗ have the flavour of the “Lie
algebra” of the full nonabelian Hodge space M ∼= MB, and the Riemann–Hilbert
map is a natural generalisation of the exponential map.

However this still does not capture the full story as we also wish to vary the
modular parameters, changing the complex structure on the Riemann surface, the pole
positions, and the “irregular class” of the connections at each pole. These parameters
will lead to the independent variables (“times”) in the isomonodromy equations.
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3. Glimpses of the elephant

The next few sections will describe a few simple pieces of the full picture, that
provided motivation.

3.1. Painlevé’s deformation of the theory of elliptic functions.
Painlevé discovered most of the Painlevé equations as deformations of differential

equations for elliptic functions, i.e. as equations that limit to equations for elliptic
functions. He used the term “simplification” (simplifié) for the limiting differential
equation, solvable in terms of elliptic functions.

In more detail Painlevé was looking for new special functions, defined as solutions
to non-linear algebraic differential equations. He looked for equations whose solutions
had good meromorphic continuation properties: outside a fixed critical set, any local
solution should have arbitrary meromorphic continuation. If D ⊂ C is the fixed
critical set (a finite set in all examples here), then any local solution y(t) should

extend to a meromorphic function on the universal cover C̃ \D. This is known as
the Kowalevski–Painlevé (KP) property (and can also be expressed as saying there
are no “movable singularities” apart from poles).

The KP property is preserved under any deformation of the differential equation3.
Thus to rule out many possible forms of differential equations, Painlevé would add pa-
rameters by hand and then take limits to get simpler equations (Painlevé’s α method).
If he could recognise or prove the limiting equation did not have the KP property
then he could ignore the putative equation, and thus get a short list of possibilities,
that then could be proved to have the KP property directly.

For example PI, the first Painlevé equation, y′′ = 6y2 + t is a deformation of the
equation for the Weierstrass ℘ function:

First recall the standard differential equation satisfied by ℘ is

(℘′)2 = 4℘3 − g2℘− g3

for constants g2, g3 ∈ C. Thus 2℘′℘′′ = 12℘2℘′ − g2℘
′ so that

℘′′ = 6℘2 − g2/2

Lemma 3.1 (cf. Painlevé 1900 p.226, Ince [] pp.321 and 329). Suppose y(t) satisfies
PI so that y′′ = 6y2 + t. If t = αx, y = w(x)/α2 for a constant α then

(3.1) w′′ = 6w2 + α5w.

In particular if α5 = 1 then this is a symmetry of PI. If we take the limit α → 0

then we get w′′ = 6w2. This integrates once to (w′)2 = 4w3 + c, which can be solved

3see e.g. paragraph 1 p.319 in Ince’s book “ordinary differential equations” [?].
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in terms of the Weierstrass ℘ function: w = ℘(x+ k) (where ℘ has g2 = 0, g3 = −c,
and k ∈ C is arbitrary).

Proof. Write v = y′ so that dy = vdt, dv = (6y2 + t)dt. Now put t = αx, y = w/α2

(as on Painlevé 1900 p.226, Ince p.329 [], or Valiron p.410 []). Thus dt = αdx, dy =

dw/α2, so w′ = dw/dx = α3dw/dz = α3v. Thus

dv = (6y2 + t)dt = α(6w2/α4 + αw)dx

and so w′′ = α3v′ = α5w+ 6w2 which is (3.1). The last statement is straightforward,
recalling that in general (℘′)2 = 4℘3 − g2℘− g3 for constants g2, g3. □

Thus Painlevé discovered a natural deformation of the theory of elliptic functions!
—see Alves https://arxiv.org/abs/2103.02697v1 §3 for a recent discussion of

this story.
The next example is the case of Painlevé II:

Lemma 3.2. Suppose y(t) satisfies the PII equation y′′ = 2y3+ ty+α. If t = γx, y =

w(x)/γ for a constant γ then

(3.2) w′′ = 2w3 + γ3xw + γ2α.

Thus if we now take the limit γ = 0 then w′′ = 2w3, which integrates once to (w′)2 =

w4+ c, and can be solved in terms of the Jacobi sn function: w = c1sn(c1(ix+ c2), i).

Proof. Write v = y′ so that dy = vdt, dv = (2y3 + ty + α)dt. Now put t = γx, y =

w/γ. Thus dt = γdx, dy = dw/γ, so w′ = dw/dx = γ2dw/dz = γ2v. Thus

dv = (2y3 + ty + α)dt = γ(2w3/γ3 + xw + α)dx

and so w′′ = γ2v′ = 2w3 + γ3xw + γ2α which is (3.2). The last statement is straight-
forward. □

In this way Painlevé discovered some very interesting nonlinear differential equa-
tions, the Painlevé equations 1,2,3,4.

Later on (late 1970s) the Painlevé equations, and their solutions, the Painleve
transcendents, started appearing in physics problems such as the Ising model4 (in
some sense physics got sufficiently nonlinear to catch up with the mathematics...).

Note that so-far these equations have no link to gauge theory: there are no linear
differential equations in the story. That link came about via a 1905 paper of R. Fuchs
where he discovered a new Painlevé equation, called Painlevé six, PVI, controlling the

4E.g. Wu-McCoy-Tracy-Barouch (1976) “Spin-spin correlation functions for the two-dimensional
Ising model, Exact theory in the scaling region”

https://arxiv.org/abs/2103.02697v1
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isomonodromic deformations of a linear differential equation. This is a completely
different way to get nonlinear differential equations5.

One can find the standard list of Painlevé equations in many places (e.g. wikipedia),
but we really want to think of them as geometric objects, and this is obscure in their
explicit expression. They will each lead to a deformation class of nonabelian Hodge
spaces of complex dimension two, the minimal possible nonzero dimension, so they
give the simplest examples.

The basic features are summarised in the table below:

Painlevé equation: 1 2 3 4 5 6

Domain of t: C C C∗ C C∗ C \ {0, 1}

No. of constant parameters: 0 1 2 2 3 4

(Affine Dynkin) Diagram : Â0 Â1 D̂2 Â2 Â3 = D̂3 D̂4

Okamoto Diagram : Ê8 Ê7 D̂6 Ê6 D̂5 D̂4

Table 1. Basic data for Painlevé equations

(Here we have omitted two degenerate versions of Painlevé 3.)

The diagrams can be drawn as follows (the number of nodes is one plus the number
of constants):

Figure 3. The diagrams of the six Painlevé equations.

5R.Fuchs’ isomonodromy approach was extended to the original Painlevé equations by Garnier
1912 (so they too, in fact, are gauge theoretic equations).
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3.2. Towards the Painlevé VI connections.
The 1905 paper of R. Fuchs6, should probably be viewed as the true “start of 2d

gauge theory” where a nonlinear differential equation arose naturally, controlling a
linear differential equation (i.e. where the “unknown” is really a linear differential
equation ∼ a meromorphic connection on a rank two vector bundle on P1). The
underlying idea can be traced back to a suggestion of Riemann 1857.7

What is Painlevé VI, the Fuchsian Painlevé equation?

Definition 3.3. Given constants α, β, γ, δ ∈ C, the corresponding Painlevé VI
equation PVI (α, β, γ, δ) is the algebraic differential equation:

y′′ =

(
1

y
+

1

y − 1
+

1

y − t

)
(y′)2

2
−
(
1

t
+

1

t− 1
+

1

y − t

)
y′

+
y(y − 1)(y − t)

t2(t− 1)2

(
α +

βt

y2
+

γ(t− 1)

(y − 1)2
+

δt(t− 1)

(y − t)2

)
for a meromorphic function y(t) where t ∈ C \ {0, 1}.

This frankly horrific expression does not express very well the true beauty of
the underlying geometric object. The simplest encoding of it seems to be the
following time-dependent Hamiltonian formulation, due to Malmquist 1922.

Proposition 3.4 (cf. [?] p.86). If a1, a2, a3, b ∈ C then the function H(q, p, t)
defined by

t(t− 1)H(q, p, t) = q(q − t)(q − 1)

(
p2 + p

(
a1
q

+
a2

q − t
+

a3
q − 1

))
+ b · q

is a time-dependent Hamiltonian function for PVI (α, β, γ, δ), in the sense that
if

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
then y = q(t) is a solution to PVI (α, β, γ, δ) where

α = (a1 + a2 + a3)
2/2− 2b, β = −a21/2, γ = a23/2, δ = −a2(a2 − 2)/2.

Proof. These are a pair of coupled first order nonlinear differential equations.
The first equation gives a direct relation between p and q′ = dq/dt, and using
this the second equation then yields a second order non-linear differential
equation for q′′. A direct computation (best done with a computer algebra
package) shows this is PVI (α, β, γ, δ), with y replaced by q. □

6https://webusers.imj-prg.fr/~philip.boalch/files/fuchs.r_1905_
surquelquesequationsdifferentielleslineairesdusecondeordre_CRAS

7see the historical discussion in Jimbo–Miwa–Ueno 1981.

https://webusers.imj-prg.fr/~philip.boalch/files/fuchs.r_1905_sur quelques equations differentielles lineaires du seconde ordre_CRAS
https://webusers.imj-prg.fr/~philip.boalch/files/fuchs.r_1905_sur quelques equations differentielles lineaires du seconde ordre_CRAS
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The modern geometric viewpoint on this (Schlesinger, Jimbo–Miwa–Ueno, Mal-
grange, Okamoto) goes as follows8:

Let G = SL2(C), g = sl2(C) (using GL2(C) gives nothing extra)

t ∈ B := C \ {0, 1}

Thus the choice of t determines a four-tuple of points: a = a(t) = (0, t, 1,∞) ∈
(P1)4 \ diagonals, where P1 is the Riemann sphere.

We want to consider simple moduli spacesM∗ =M∗
DR of meromorphic connections

on trivial vector bundles on P1 with poles at D := a. They are Fuchsian systems, of
the form

∇ = d− A, A =

(
A1

z
+

A2

z − t
+

A3

z − 1

)
dz

where Ai ∈ sl2(C) are trace-less 2 × 2 matrices. This has a further pole at ∞ with
residue A4 := −(A1 + A2 + A3), so that

(3.3)
4∑
1

Ai = 0.

Two such Fuchsian systems are isomorphic if they are related by a global gauge
transformation g : P1 → GL2(C). Any such holomorphic map is constant so the set
of isomorphism classes is just the quotient by the conjugation action: g[A] = gAg−1.
Generically the projective group PGL2(C) = PSL2(C) acts freely so a rough dimension
count shows the space of isomorphism classes of such Fuchsian systems should have
dimension 3.3− 3 = 6 (there are 3 independent residues, and dim(PSL2(C)) = 3).

To reduce the dimension we notice the action is really just conjugating the residues
Ai, so we can fix their adjoint orbits.

Choose λi ∈ C for i = 1, 2, 3, 4. and let

Oi =
{
g
(
λi 0
0 −λi

)
g−1

∣∣ g ∈ SL2(C)
}
⊂ g

be the adjoint orbit of matrices with eigenvalues ±λi. We will assume 2λi is not an
integer, so in particular Oi has complex dimension 2.

Then we can look at the set of isomorphism classes of such Fuchsian systems with
Ai ∈ Oi for i = 1, 2, 3, 4.

M∗(t) := {A
∣∣ Ai ∈ Oi}/SL2(C)

8rewritten in terms of moduli spaces, and Ehresmann connections, as in P.B. Adv. Math. 2001:
https://webusers.imj-prg.fr/~philip.boalch/files/smid.pdf.

https://webusers.imj-prg.fr/~philip.boalch/files/smid.pdf
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It turns out that if the constants λλλ = {λi} ∈ C4 are off of some hyperplanes then
the projective group PSL2(C) acts freely and the quotient is an algebraic variety of
dimension

4× 3− 2× 3 = 2

so it is a complex surface9 . Of course really this space does not depend on t and is
described directly in terms of the residues.

Define a map

µ : O1 × · · · × O4 → g; (A1, . . . , A4) 7→
∑

Ai.

Then we can write:

M∗ ∼= µ−1(0)/G =: (O1 × · · · × O4)//G

where the double slash // is just notation for the subquotient µ−1(0)/G, i.e. we
consider the subvariety µ−1(0) inside O1×· · ·×O4 and then quotient that by G. (We
will later see this is an example of a holomorphic symplectic quotient.)

Now we vary t ∈ B := C \ {0, 1} and look at the relative situation. Thus we define
a fibre bundle

M∗ → B
such that the fibre over t ∈ B is the space M∗(t). This fibre bundle is trivial, it is
just the productM∗ =M∗×B, since as we saw above the spacesM∗ do not depend
on t.

Now, geometrically, the Painevé VI equation that R. Fuchs discovered is a (non-
linear) Ehresmann connection on this bundleM∗, and the independent variable (the
time) is the parameter t running over B. It is a second order nonlinear differential
equation, as the fibres have dimension 2.

—Quick aside on Ehresmann connections:
Suppose B is a complex manifold and π : M → B is a fibre bundle, with fibres

Mt = π−1(t) for t ∈ B.

Definition 3.5. A (holomorphic) Ehresmann connection on the bundle M is the
choice, for any p ∈ M of a linear subspace Hp ⊂ TpM that is transverse to the
vertical subspace Vp, the tangent space of the fibres Vp = Ker(dπp) ⊂ TpM , so that

Hp ⊕ Vp = TpM

for all p ∈ M . These subspace should vary holomorphically (so the Hp form a holo-
morphic vector bundle on M , a subbundle of the tangent bundle TM).

9more on these hyperplanes (and surfaces) later, but the impatient could read section 2 of https:
//arxiv.org/pdf/0706.2634

https://arxiv.org/pdf/0706.2634
https://arxiv.org/pdf/0706.2634
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If U ⊂ B then a local section s : U →M is horizontal if it is tangent to the Ehres-
mann connection, i.e. for any t ∈ U and tangent vector v ∈ TtB the corresponding
vector ds(v) ∈ TpM is actually in the subspace Hp ⊂ TpM , where p = s(t) ∈M .

In brief whereas a Koszul connection on a vector bundle encodes linear differential
systems in an intrinsic way, the notion of Ehresmann connection encodes non-linear
differential equations. An Ehresmann connection is “complete” if any path in B
between any two points t1, t2 ∈ B has a unique horizontal lift to a path in M starting
at any point p ∈Mt1 . Some authors put this condition in the definition of Ehresmann
connection, but we will not.)

—
In our setting we can thus speak of the Painlevé VI connections, and then choose

explicit coordinates to get the explicit differential equation. It is really the Ehresmann
connection (or rather its extension from M∗ to MDR) that is the geometric object
we want to understand.

There are two ways to get the Painlevé VI connection, and we’ll just mention them
here, and explain the details once we have set up the background:

1) De Rham approach, via Schlesinger’s equations.

2) Betti approach passing to the other side of Riemann–Hilbert. In brief the
corresponding character varieties MB also form a bundle MB → B. However this
bundle is not naturally trivial, but it is canonically locally trivial: if we choose any
disk ∆ ⊂ B then there is a canonical identification of the fibres MB(t1) ∼= MB(t2)

for t1, t2 ∈ ∆ (this identification depends on the choice of the disk). This structure is
encoded in the sentence:

“The spaces MB(t) form a local system of varieties over B”.

This will be spelt out in great detail, but for now we just note that implies that the
bundleMB → B has a natural complete flat Ehresmann connection. We can transfer
this to the bundle M∗ → B and rewrite it in carefully chosen algebraic coordinates
there to get a nonlinear differential equation, PVI.
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4. Lecture 2: Flat connections and the compact case

As we explained the general notion of meromorphic connection is essentially the
simplest context that contains the three basic classes of connections, namely
• the polynomial connections,
• the Fuchsian systems, and
• the holomorphic connections on higher genus compact Riemann surfaces.

In this lecture we will discuss this last case in detail, and the corresponding mon-
odromy data. This case is especially nice since it avoids discussing boundary condi-
tions.

4.1. The example of compact Riemann surfaces (no poles). Our first aim is
to explain all the definitions and sketch some of the ideas of the proof the following
statement:

Theorem 4.1. Suppose Σ is a smooth compact complex algebraic curve. The follow-
ing categories are equivalent (via specific functors that we will describe):

1) Algebraic connections on algebraic vector bundles on Σ,

2) Holomorphic connections on holomorphic vector bundles on Σ,

3) Flat C∞ connections on C∞ complex vector bundles on Σ,

4) Local systems of finite dimensional complex vector spaces on Σ,

5) For any fixed basepoint b ∈ Σ, the category of finite dimensional complex π1(Σ, b)
representations.

This has numerous consequences, for example: The equivalence 1) ⇐⇒ 5) gives a
purely algebraic way to access the topological fundamental group (this is an example
of the change in algebraic structure given by Riemann–Hilbert). The equivalence 3)
⇐⇒ 5) gives a completely explicit way to classify the set of solutions of a nonlinear
differential equation. For example we will deduce the corollary:

Corollary 4.2. For any integer n ≥ 1 the set of isomorphism classes of rank n objects
(in any of the five categories in the theorem) is naturally in bijection with the set of
orbits of an action of the complex algebraic group G = GLn(C) on an affine algebraic
variety R. Explicitly G acts by conjugation on the representation variety:

R = Hom(π1(Σ, b), G).

By performing this quotient in an algebraic fashion, this will lead to the first
example of Betti moduli space MB (the character variety), and thus will give the
simplest instance of the association of a variety MB with the choice of a surface Σ
and a group G (no boundary conditions).
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What is an equivalence of categories?
A functor F : X → Y between two categories is an equivalence of categories
if 1) it is essentially surjective, and 2) it is fully faithful. This gives a conve-
nient/precise/flexible language to see some things are “more or less the same”.

1) means that for each object y ∈ Y there exists is an object x ∈ X and an
isomorphism y ∼= F (x).

2) means that for any x1, x2 ∈ X the functor F maps the space HomX(x1, x2) of
morphisms (in X) bijectively onto the space of morphisms HomY (F (x1), F (x2))
between their images in Y .

In particular the choice of an equivalence F induces a bijection between the sets
of isomorphism classes in X and Y . For more details and other formulations,
see e.g. p.71 of Gelfand–Manin (Methods of homological algebra []).

The definitions of 1) and 2) have already been covered. The functor 1) → 2) is
analytification (E,∇) 7→ (Ean,∇an) (An algebraic vector bundle is a special type of
holomorphic vector bundle; algebraic clutching maps are in particular holomorphic.
In terms of sheaves of sections we just take the holomorphic sections of the algebraic
bundle E. Then the action of ∇an on holomorphic sections is completely determined
by the Leibniz rule ∇(fs) = (df)s + f∇(s) for holomorphic f and algebraic s).
The equivalence between them is a version of GAGA, since Σ is compact (see e.g.
Malgrange [?] p.152).

For 3), the definition of C∞ connections is straightforward but it is worth noting
that there is now an integrability condition: the connections should be flat, i.e. have
vanishing curvature.

This is actually one of the central ideas (probably the central idea) in the subject of
integrable systems, that the vanishing of curvature is a nonlinear differential equation,
and this is the key mechanism how linear connections lead to nonlinear differential
equations.

Given a connection ∇ = d + A on a trivial vector bundle, then its curvature is
the matrix of two-forms Ω = ∇2 = dA + A2. Here in the gln(C) setting A2 is well
defined as a matrix of two-forms. In general (for other Lie algebras) we just define
A2 = [A,A]/2 and use the same notation. But we really want to see what this means:

Suppose the base is two-dimensional with coordinates x, y, and we write

A = X(x, y)dx+ Y (x, y)dy

for matrix valued functions X,Y .
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Then the key computation to do is to compute the commutator:

(4.1)
[
∂

∂x
+X,

∂

∂y
+ Y

]
=

∂Y

∂x
− ∂X

∂y
+ [X,Y ]

and note that the connection d+ A is flat if and only if this commutator is zero:

Exercise 4.3. Show that dA + A2 is proportional to the commutator above times
dx ∧ dy.

Thus the flatness condition is a nonlinear (quadratic) differential equation:
∂X

∂y
=

∂Y

∂x
+ [X,Y ].

For example, as we will see, all the isomonodromy equations arise from such cur-
vature equations, and the isospectral (Lax) equation are autonomous limits of them
(passing via ζ connections in one direction, to remove one of the derivatives).

Now to pass from 2) to 3) we just take the underlying C∞ vector bundle, and use
the Leibniz rule to define the action of ∇ on any C∞ section ∇(fs) = (df) + f∇(s)
for C∞ function f and holomorphic sections s. Here d is the full exterior derivative
on Σ and will have both dz, dz terms in general. Any local C∞ section can be written
as
∑

fisi for C∞ functions and holomorphic sections. The resulting connection is
clearly flat as any holomorphic connection on a Riemann surface is flat (and thus any
gauge transformation of it too: Ω 7→ gΩg−1 under a gauge transformation g).

To go backwards we need to see how a flat C∞ connection determines the structure
of holomorphic vector bundle. Locally such a connection has the form:

d− α = (∂ − α1,0) + (∂ − α0,1)

so the 0, 1 part is D := ∂ − α0,1 = ∂ −Bdz for some matrix B of C∞ functions.
A theorem of Koszul–Malgrange says that this determines the structure of holo-

morphic vector bundle, with the “holomorphic sections” defined to be the sections in
the kernel of D:
Theorem 4.4 ([?]). If B is an n × n matrix of complex C∞ functions on a disk ∆

and D := ∂ − Bdz, then there is a basis of sections s1, . . . , sn in the kernel of D.
This implies the kernel of D is the sheaf of sections of a holomorphic vector bundle;
a [locally] free O-module, where O is the sheaf of holomorphic functions.

If g : ∆→ G is the matrix with columns s1, . . . , sn then ∂g = Bgdz so that

g[0]0,1 := g(0)g−1 + (∂g)g−1 = (∂g)g−1 = Bdz,

i.e. the inverse of g gives a gauge transformation converting D into ∂, the “trivial”
∂-operator.
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If we pass to such a holomorphic basis then the flat connection will become a
connection with zero 0, 1 part, so of the form

∇ = d− Cdz

for a matrix C of C∞ functions: since it is still flat the matrix C is actually holo-
morphic: ∇2 = (dC)dz = (∂C)dz and the vanishing of this means that C is holo-
morphic. So we get a holomorphic connection on the holomorphic bundle determined
by D = ∇0,1. This is how to pass back and forth between holomorphic and flat C∞

connections.
Of course in the current setting of flat connection we could bypass this and note

that flatness implies that any flat connection d − α is locally trivial and has a basis
of horizontal sections (the clutching map between such bases will be constant and so
in particular holomorphic). This is the nonabelian Poincaré lemma (with one-forms
replaced by connections and closedness by flatness):

Theorem 4.5. Any flat connection has a fundamental solution (basis of horizontal
sections) when restricted to any disk. In other words a (nonsingular) connection is
flat if and only if it is locally isomorphic to the trivial connection. Explicitly in the
current setting: If B,C are n×n matrices of complex C∞ functions on a disk ∆ and

∇ := d− α = ∂ − Cdz + ∂ −Bdz

is a C∞ connection that is flat, then there is a basis of horizontal sections s1, . . . , sn on
∆. This implies the kernel of ∇ is a locally constant sheaf of n dimensional complex
vector spaces.

This can be proved directly (see e.g. [?]), or by passing to a holomorphic basis
by Koszul–Malgrange, and then constructing a fundamental solution of the resulting
holomorphic connection as we did before.

This leads to item 4) in the list, the local systems.

4.2. Local systems.

Noter que revêtement et faisceau localement constant sont synonymes ([?] p.231)

Now we get to the intrinsic, purely topological, description of connections. A
convenient framework to phrase this is covering spaces (often with uncountable fibres),
or equivalently locally constant sheaves (with open sets in the usual topological sense).

Definition 4.6. Suppose B is a topological manifold. A local system (of sets) on B
is a locally constant sheaf of sets, and in turn it is the same thing as (the sheaf of
sections of) a covering space of B.
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This is really two definitions and an enlightening exercise shows they are the same.
In practice we can choose an open covering and a local system is then a bundle

with local trivialisations (to a product with a fixed “standard fibre”), that can be
defined by constant clutching maps on the double intersections of open sets in the
covering.

Here, from flat connections, we have a local system of vector spaces, i.e. a locally
constant sheaf of n dimensional complex vector spaces. This just means that the
clutching maps are constant linear maps.

Exercise 4.7. Show that, by definition in the Cech approach, the set of isomorphism
classes of local systems of n dimensional complex vector spaces on Σ is the nonabelian
cohomology set H1(Σ,GLn(C)).

Thus the passage from 3) to 4) is just to go from a flat connection (E,∇) to its
sheaf of horizontal sections V defined by

V (U) = {sections s : U → E
∣∣ ∇(s) = 0}.

This is the desired local system.

To recover (E,∇) from V we just tensor: the sheaf E of sections of E is

E(U) = V (U)⊗C C∞

and the connection can be defined on these sections via Leibniz, since V (U) are the
horizontal sections:

∇(vf) = (df)v + f∇(v) = (df)v

for C∞ functions f . Similarly we could go directly back to a holomorphic vector
bundle by tensoring with holomorphic functions E(U) := V (U) ⊗C O is the sheaf of
sections of a holomorphic vector bundle, and this gets a holomorphic connection in
the same way: ∇(vf) = (df)v for holomorphic functions f .

4.3. Monodromy of local systems. Finally we can discuss monodromy and how
to pass to representations of the fundamental group.

First of all there is a general statement.

Suppose B is a connected manifold and π : C → B is any covering space (the fibres
may be uncountable etc). Thus the sheaf of sections of C is a local system of sets.

For any two points a, b ∈ B the choice of a path γ : [0, 1] → B in B from a to b,
determines a bijection

Tγ(a, b) : Ca
∼= Cb

the transport isomorphism, from the fibre Ca = π−1(a) of C at a, to the fibre Cb at b.

The transport map is defined as follows: For any point c ∈ Ca the path γ has a
unique lift to a path γ̃ : [0, 1]→ C in C starting at c. This follows from the definition
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of covering space. Then Tγ(a, b)(c) is defined to be the end point γ̃(1) ∈ C of this
lifted path. From the definition of γ̃ it is in Cb, i.e. it lies over b.

The map Tγ(a, b) only depends on the homotopy class of γ (with fixed endpoints).
Indeed any continuous deformation of γ cannot move Tγ(a, b)(c) since it is constrained
to be in the fibre Cb and the fibres are discrete.

Exercise 4.8. Rewrite this definition of transport in terms of locally constant sheaves
of sections, and their clutching/restriction maps (passing from one open set to the
next, via their intersection, covering the path γ), without first passing to the equiv-
alent notion of covering spaces. If the local system is in fact the sheaf of horizontal
sections of a holomorphic connection on a trivial vector bundle, show that this is the
same thing as the analytic continuation of solutions.

In particular, considering loops based at b, this construction gives a homomorphism

ρ : π1(B, b)→ Aut(Cb); ρ(γ) = Tγ(b, b)

from the fundamental group of the base into the group of automorphisms of the fibre.
This is just transport around loops. Said differently this is an action of π1(B, b) on
the fibre Cb, the monodromy action.

In the case that we started with a local system of vector spaces V (and not just sets)
on B = Σ then this yields the monodromy representation ρ : π1(B, b) → Aut(Vb) =

GL(Vb) ∼= GLn(C). In other words the fibre Vb is a representation of the fundamental
group. Thus the covering space and the basepoint determine a pair (Vb, ρ) consisting
of a complex vector space equipped with a representation of π1(B, b). This is an object
of the category in 5), and this construction defines the desired functor 4) → 5).

Now we just need to check that this gives an equivalence. The key step is to define
the inverse construction, from 5) to 4), which goes as follows.

Given b ∈ B let pr : B̃→ B be the universal cover, based at b. By definition B̃ is the
set of homotopy classes of paths in B starting at b, i.e. maps γ : [0, 1]→ B such that
γ(0) = b. Two such paths are identified if there is a homotopy between them, fixing
both end points. The map pr takes the free end point of the path, pr(γ) = γ(1) ∈ B.

Write π1 = π1(B, b) for the fundamental group. This group acts on the fibres of
B̃→ B freely and transitively, in other words:

Lemma 4.9. The universal covering space B̃ is a principal π1 bundle over B.

Proof. π1 acts on B̃ in the natural way, composing a loop and a path: If g ∈ π1 is
a loop based at b and γ ∈ B̃ is a path starting at b then γ ◦ g ∈ B̃ since it is clearly
another path starting at b. The ordering of the composition γ ◦ g means “go around
g and then go along γ”.
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Now it is easy to see that two paths γ1, γ2 ∈ B̃ have the same endpoint (γ1(1) =
γ2(1)) if and only if they are related in this way by a loop based at b. Moreover two
paths with the same end point are homotopic if and only if the loop relating them
is contractible, so represents the identity in π1. This says that π1 acts freely and
transitively on the fibre

B̃c := pr−1(c) ⊂ B̃

of the universal covering map, for any c ∈ B̃.
□

Now for any representation of π1 we can form the associated bundle (of the principal
π1 bundle B̃). If ρ : π1 → V then the associated bundle is the quotient

B̃×ρ V := (B̃× V )/π1

where g ∈ π1 acts on a pair (c, v) ∈ B̃× V as

g · (c, v) = (cg−1, ρ(g)v).

Since the action on B̃ is free, this quotient is well-defined, and it comes equipped with
a map:

(4.2) B̃×ρ V → B = B̃/π1

by projecting onto the first factor, with each fibre isomorphic to a copy of V .

Now we leave it as an exercise to check that the map (4.2) is a covering map (giving
the fibres ∼= V the discrete topology), defining a local system of vector spaces, and
moreover that its monodromy representation based at b is given by ρ.

4.4. Representation varieties. Let G = GLn(C) = GL(Cn) the group of linear
automorphisms of a fixed (standard) copy of Cn.

Let π1 = π1(Σ, b) and suppose we are given a representation V of π1, i.e. we are
given a homomorphism

ρ : π1 → GL(V ).

Now if we choose a basis of V , i.e. an isomorphism φ : Cn
∼=−→V with our standard

copy of Cn, then we get a “concrete” representation π1 → G = GLn(C), into a fixed
copy of the general linear group.

Lemma 4.10. Let R = Hom(π1, G) be the set of group homomorphisms π1 → G.
Consider the enriched category of triples (V, ρ, φ) where (V, ρ) is a π1 representation
as in 5), and φ : Cn

∼=−→V is a framing of V . Then the set of isomorphism classes of
such triples is naturally in bijection with the points of R.
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Proof. This is a straightforward unwinding of the definitions. (The map ρ becomes
a point of R once we use φ to identify V and Cn.) □

Now R is naturally a complex affine algebraic variety. The easiest way to see this
is to choose a presentation of π1. The standard presentation is as follows (where g is
the genus of Σ):

π1(Σ, b) ∼= 〈a1, . . . , ag, b1, . . . , bg
∣∣ [a1, b1] · · · [ag, bg] = 1〉

where [a, b] = aba−1b−1 is the multiplicative commutator. Given this presentation, it
follows that R has the following presentation as an affine variety:

(4.3) R ∼= {(A1, . . . , Ag, B1, . . . , Bg) ∈ G2g
∣∣ [A1, B1] · · · [Ag, Bg] = 1} ⊂ G2g

where [A,B] = ABA−1B−1 is the multiplicative commutator in the group G. Each
matrix entry of the relation here is an algebraic equation, and so this defines R as
a subvariety of G2g. Of course G = GLn(C) is itself an affine variety, for example
defined by the equation:

GLn(C) ∼= {(g, a) ∈ End(Cn)× C
∣∣ a det(g) = 1} ⊂ Cn2+1.

Thus R is an affine variety, defined by the matrix equation in (4.3). A point of the
right-hand side of (4.3) determines a unique representation ρ since it specifies where
ρ sends generators of π1, in GLn(C).

Observe that G acts on R by diagonal conjugation of the matrices. This action
corresponds to changing the choice of framing φ : Cn

∼=−→V ; an element of g ∈ G acts
ion φ by pre-composition: φ 7→ φ ◦ g−1.

Corollary 4.11. The set of isomorphism classes of π1 representation (V, ρ) of rank
n, is naturally in bijection with the set of G orbits in R.

Proof. This now comes down to observing that (V1, ρ1) ∼= (V2, ρ2) if and only if we
can choose framings φ1 : Cn ∼= V1 and φ2 : Cn ∼= V2 so that the two triples (V1, ρ1, φ1)

and (V2, ρ2, φ2) determine the same point of R. □

We are now in a very good position of a complex reductive group G acting on a
complex affine variety R and there are standard tools (geometric invariant theory) to
take the quotient of R by G in an algebraic way, thereby constructing the character
variety MB.

Let C[R] denote the ring of regular functions on the affine variety R and let
C[R]G ⊂ C[R] denote the subring of G invariant functions, where G acts by diagonal
conjugation as above. Since G is reductive it is known that this ring is finitely
generated and so determines an algebraic variety.
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Definition 4.12. The character variety (or Betti moduli space) MB(Σ, G) deter-
mined by the pair (Σ, G) is the variety associated to the ring C[R]G of G invariant
functions on the representation variety R. By construction the points of MB(Σ, G)
correspond bijectively to the closed G-orbits in R.

We will writeMB = Rps/G where Rps ⊂ R is the subset of points whose G-orbits
are closed (since the closed orbits are often called the polystable point).

The book [] of Lubotzky–Magid “Varieties of representations of groups”, studies
the construction of character varieties of any finitely presented group in detail.

4.5. Classification of solutions of the zero curvature equation. As an appli-
cation of the previous theorem, we can see that it gives a precise finite dimensional
description of the space of equivalence classes of solutions of a nontrivial nonlinear
differential equation in infinite dimensions.

Let E = Cn × Σ → Σ be the trivial complex vector bundle (that we view here as
a C∞ bundle).

Let
A = {d− α

∣∣ α ∈ Γ(Σ,End(E)⊗ (Ω1,0 ⊕ Ω0,1))}
be the set of connections on E, so that α is an arbitrary n× n matrix of global C∞

one-forms. Thus A is isomorphic to an infinite dimensional vector space.

Let G = C∞(Σ,GLn(C)) be the group of global gauge transformations of E, i.e.
the C∞ maps from Σ to GLn(C). Thus G acts on A by gauge transformations as
usual: g[α] = gαg−1 + (dg)g−1.

Now consider the subset of connections which are flat, so α satisfies the nonlinear
differential equation dα = α2:

Aflat = {d− α
∣∣ dα = α2} ⊂ A.

This subset is preserved by the gauge action and the previous theorem implies the
following classification of gauge orbits.

Corollary 4.13. The set of G orbits in Aflat is naturally in bijection with the set of
G orbits in the representation variety R.

Proof. Given what was proven in the theorem this amounts to observing that
Aflat/G is the set of isomorphisms classes of flat connections on C∞ vector bundles of
rank n. This in turn follows from the fact that Chern-Weil theory implies any C∞

complex vector bundle on a compact Riemann surface that admits a flat connection
is trivial (in brief, it has degree zero). Thus if we choose a trivialisation, we see they
all appear as points of Aflat. Moreover the notion of isomorphism of connections then
comes down to the gauge action of G on A. □
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This may seem like it is just a tricky exercise in rephrasing the definitions but we
will see below that this C∞ viewpoint enables us to see, following Narasimhan and
Atiyah–Bott, that the character variety has a holomorphic symplectic structure.

For now let us just quote a theorem that appears in Gunning’s 1967 book “Lectures
on vector bundles on Riemann surfaces”:

Theorem 4.14 (Gunning [] p.196). Let Ms
B ⊂ MB be the subset of the character

variety consisting of representations that are irreducible. Then Ms
B is a (smooth)

complex analytic manifold, of dimension 2gn2 − 2(n2 − 1).

We won’t prove this statement yet, as one of our aims will be to show how to
prove that it has an algebraic symplectic structure at the same time, as well as many
generalisations of it.

As a first step note that it is easy to explain the dimension formula since it is a
subquotient of G2g: it is the quotient of the subvariety µ−1(1)irr by G where

µ : G2g → G; (A1, . . . , Ag, B1, . . . , Bg) 7→ [A1, B1] · · · [Ag, Bg]

and µ−1(1)irr is the subset of µ−1(1) that are irreducible representations. The point
is that µ−1(1)irr has codimension (n2 − 1) (since the determinant is already fixed to
be 1), and PGLn(C) acts freely on it, and that has dimension (n2 − 1) as well, so we
see the dimension is obtained by subtracting (n2 − 1) twice from 2gn2 = dim(G2g).

Remark 4.15. Note that the equivalences between 2),3),4),5) work verbatim over any
Riemann surface, not necessarily compact. This will be used to give part of the
topological data of any meromorphic connection (E,∇)→ Σ with poles on a. Namely
the restriction of (E,∇) to Σ◦ = Σ \ a is a holomorphic connection and we can take
the local system V → Σ◦ of horizontal sections of that. We will see this is really only
a very small part of the topological data attached to any meromorphic connection.
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5. The Riemann problem (Hilbert 21)

We will take the point of view that the Betti spaces (and eventually the whole
nonabelian Hodge space) is like a “global version” of a Lie group, attached to a Lie
group plus a surface (with suitable boundary condtions). This comes more into focus
if we look at the genus zero case with poles, as, in effect, we then see the Lie algebra
of the space as well. These are the additive moduli spaces M∗ and the simplest
(Fuchsian) examples motivated the famous Riemann problem appearing in Hilbert’s
21st problem (the Riemann–Hilbert problem).

There is some controversy over the exact statement of the question, but the basic
idea is very simple and clear, and comes down to the following matching of dimensions.

Choose an integer n > 0 and m distinct points a = (a1, . . . , am) ⊂ C in the complex
plane.

On one hand consider the set of rank n Fuchsian systems with poles at these points:

M̃∗ =

{
∇ = d− A

∣∣ A =
m∑
1

Ai

z − ai
dz, Ai ∈ End(Cn)

}
∼=
{
(A1, . . . , Am)

∣∣ Ai ∈ End(Cn)
}
.(5.1)

On the other hand, given any such connection we can restrict it to the complement
of the poles to get a holomorphic connection on Σ◦ := C \ a, noting that in general
the connection will have a further pole at ∞. Then we can take the local system
of horizontal sections of that and in turn get a representation of the fundamental
group π1 = π1(Σ

◦, b) in GLn(C), for any choice of basepoint b ∈ Σ◦. (It comes with
a framing as the underlying bundle is the trivial bundle.) Thus we get a point of the
representation variety

R = Hom(π1,GLn(C))
∼=
{
(M1, . . . ,Mm)

∣∣ Mi ∈ GLn(C)
}

(5.2)

where the last isomorphism arises by choosing a suitable presentation of π1, with m
loops around the points in a, freely generating π1.

The spaces (5.1) and (5.2) are clearly both of the same dimension mn2, and (5.2)
looks like the multiplicative version of (5.1), with the Lie algebra replaced by the
corresponding Lie group, and the sum replaced by the product (in a certain fixed
order).

Moreover the Riemann–Hilbert map

M̃∗ νa−→ R
taking a connection to its monodromy representation is a holomorphic map, which
generalises the matrix exponential map, that appears in the case m = 1:
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Exponential map as a simple Riemann–Hilbert map.
Given X ∈ g = End(Cn) then the connection d− A where

A =
1

2πi
X
dz

z
has monodromy given by

exp(X) ∈ GLn(C).
Proof. For any Y ∈ g, the connection d − Y dz/z has fundamental solution
zY on any open sector at zero (using any choice of branch of log(z)). This has
monodromy exp(2πiY ) around zero. □

Thus it is tempting to study this map, for example can it be upgraded to a precise
bijective correspondence? What happens if we move the points a?
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6. Birkhoff’s generalised Riemann problem

There is of course a more basic question that one can ask:

Suppose we have an arbitrary effective divisor D =
∑

ni(ai) where a = (a1, . . . , am) ⊂
P1 and ni > 0.

Then we can consider the finite dimensional space M̃∗(D) consisting of all the
meromorphic connections

d− A

where A is a matrix of rational one-forms with poles bounded by the divisor D.
Counting coefficients and using the residue theorem shows that

dim(M̃∗) = n2

(
m∑
1

ni

)
− n2

Question: Can one define invariants of such connections with any order poles,
thereby defining a space R of dimension equal to dim(M̃∗) and a holomorphic map

M̃∗ →R,

generalising the Riemann–Hilbert map taking the monodromy representation?

Birkhoff (1909, 1913) found that this can indeed be done for a dense open subset
of M̃∗. He imposed a genericity condition on the connection (“Birkhoff-generic”)10

and then constructed some invariants making up a space of the desired dimension.

These data and their generalisation/modification leading up to the definition of the
general notion of Stokes data and wild character varieties are what we want to study
in detail. In a sense they are the general notions of global Lie groups that appear in
this way.

As a simple example to illustrate how this goes, suppose n = 2 and D = 4(∞) so
we look at rank two connections with one pole of order 4 at infinity

∇ = d− A, A = (A0 + A1z + A2z
2)dz.

We suppose that the leading term A2 is diagonal with distinct eigenvalues and is
fixed, so there are 8 remaining free parameters in A0, A1. The monodromy-type data
this leads to have the following form: first we restrict ∇ to the formal disk at ∞ and
find it can be put uniquely in the form:

∇̂ = d− Â, Â = dQ+ Λ
dz

z
, Q = B3z

3 +B2z
2 +B1z

10that the leading term at each pole has n distinct eigenvalues, and further that the eigenvalues
are off of some real codimension one walls.
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via a formal (not necessarily convergent) gauge transformation, for some diagonal
matrices Bi,Λ, with B3 = A2/3 and Tr(Λ) = 0. This gives 5 parameters, in Λ, B1, B2.
The remaining parameters are more mysterious and can be understood in several
ways. One way (essentially that of Birkhoff) is that there are “wild monodromy
data” S1, . . . S6 that obey a wild monodromy relation:
(6.1) S6S5 · · ·S1 = h, h := exp(2πiΛ).

Moreover the Si are constrained to be in alternating unipotent groups:

S1, S3, S5 ∈ U+ =

(
1 ∗
0 1

)
, S2, S4, S6 ∈ U− =

(
1 0
∗ 1

)
.

These unipotent groups have a total dimension of 6 and the relation (6.1) imposes 3

constraints on them (as the determinant is 1), and so this yields the desired remaining
three parameters, making up 8 in total. This example in fact leads to the wild
character variety (of complex dimension two) underlying the Painlevé II equation,
that takes the form of the affine surface (the Flaschka–Newell surface):

x y z + x+ y + z = c

for a constant c ∈ C (directly related to the constant α in PII).

This is of course, all incredibly strange and mysterious, and begs many questions
(that we will endeavour to answer in the rest of the course): what are these matrices
Si? Why are they triangular? Why are there 6 of them? Are we really generalising
the fundamental group? What is the generalisation of the intrinsic topological notion
of local system? Why has no-one told me about this before? (etc)
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