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Résumé

La but du cours est d’expliquer la lien entre les équations différentielles algébriques
linéaires (les connexions méromorphes sur les fibrés vectoriels sur les courbes com-
plexes lisses) et quelques exemples des équations différentielles non-linéaires.

L’idée de base, centrale dans la théorie de jauge, est que l’inconnu dans l’équation
différentielle nonlineaire est mieux compris comme un connexion linéaire. Ici on utilise
la même principe mais pour les connexions algébriques méromorphes.

Ceci donne l’opportunité d’étudier quelques exemples des jolies variétés algébriques
(hyperkahlerienne) qui apparaissent comme espaces de modules dans cette histoire.

Contenu
• Espaces de modules de connexions additifs et multiplicatifs (géométrie symplec-

tique holomorphe)

• Systèmes locaux de Stokes, variétés de caractères sauvages
• Application de Riemann-Hilbert-Birkhoff, théorie de Lie globale

• Équations de Yang-Mills autodual, équations de Hitchin, fibrés harmoniques sur
les surfaces de Riemann non-compact (rotation hyperkahlerienne, correspondance de
Hodge nonabelienne sauvage)

• Systèmes d’isomondromie (Painlevé, Schlesinger, Jimbo-Miwa-Mori-Sato, sim-
plement lacé,...), connexions d’Ehresmann nonlineaires et lien avec les groupes de
tresse
• Fibres de Higgs méromorphes et systèmes intégrables algèbro-géométriques (Gar-

nier, Mumford, Hitchin, Bottacin-Markman, ...)
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0.1. Setting the scene. In his 1991 Bourbaki talk Nigel Hitchin suggested a guid-
ing principle for constructing hyperkähler manifolds, starting with a space that is
known, a priori, to be a holomorphic symplectic manifold, and then to seek a hyper-
kähler structure on this underlying manifold. This suggests a more refined, two-step,
procedure for finding hyperkähler manifolds:

(1) find a new holomorphic symplectic manifold, and then

(2) seek a hyperkähler structure on this underlying manifold.

The aim of this course is to firstly describe the new topological symplectic struc-
tures that occur on moduli spaces of meromorphic connections on Riemann surfaces
(and on their corresponding spaces of Betti data, the wild character varieties). These
topological symplectic structures generalise the symplectic structures on character
varieties due to Narasimhan, Atiyah–Bott and Goldman. The simplest example in-
volving irregular connections, that is not captured by the topological fundamental
group, was shown to underlie the Drinfeld–Jimbo quantum group in 2001 [6], im-
mediately following the generalisation of the Atiyah–Bott approach to the context
of irregular connections [5]. The famous Seiberg–Witten integrable systems fall into
this irregular context too (if ≤ 3 “flavors”), as do most classical integrable systems.

As a preliminary step we will spend some time giving the topological description
of irregular connections, in a form convenient to describe the wild character varieties
explicitly in terms of wild monodromy relations, such as the following (in the case of
a connection with one pole on a genus g Riemann surface):
(0.1) hSr · · ·S2S1[Ag, Bg] · · · [A1, B1] = 1

for matrices h, Si, Aj, Bk ∈ G = GLn(C) where [A,B] = ABA−1B−1, and the Stokes
matrices Si are confined to specific unipotent subgroups of G, and h ∈ G, the formal
monodromy, is confined to a specific subvariety H(∂) ⊂ G. Such presentations gener-
alise those of the character varieties, i.e. spaces of representations of the fundamental
group of a Riemann surface, and were first considered by Birkhoff in 1909,1913. The
general case we will describe is a rephrasing of the Riemann–Hilbert–Birkhoff corre-
spondence due to Malgrange, Sibuya, Jurkat, Deligne around 1980.

In turn we will describe the purely algebraic approach to the topological symplec-
tic structures, that enables us to view wild monodromy relations such as (0.1) as
multiplicative symplectic quotients involving Lie group-valued moment maps. This
approach was initiated by Alekseev et al [2] in the tame case, then extended to generic
irregular connections in 2002 [9], culminating in the general case in 2015 [12, 14, 17].

Then we will vary the “modular parameters” in this story to get many nonlinear flat
connections. Finally we will switch gears and describe some of the results of [4] putting
complete hyperkähler metrics on these spaces, and giving three descriptions of many
infinite energy harmonic metrics, in terms of meromorphic connections, meromorphic
Higgs bundles and purely topologically in terms of Stokes local systems.
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List of key points:

Lecture 1: Definition of meromorphic connection. View as global/intrinsic lin-
ear differential systems. Gauge transformations, gauge action. Algebraic versions.
Definition of meromorphic Higgs bundles and ζ-connections.

Sketch of big picture (at symbolic level). Two key correspondences.

Start list of key examples: Painlevé’s discovery of natural deformations of the
theory of elliptic functions (simplification of PI, PII). Link to gauge theory (R. Fuchs):
First steps in description of geometry of Painlevé VI.

Lecture 2: Definition of curvature. Flatness in terms of commuting operators.
Holomorphic structures via ∂-operators and Koszul–Malgrange statement. Definition
of local system of sets and of vector spaces, relation to covering spaces. Transport
and monodromy of a local system. Equivalence of five viewpoints on connections in
the compact case (no poles).

Representation varieties R as framed moduli spaces, and as affine varieties. Clas-
sification of solutions of the flatness equation. Character variety/Betti moduli space.

Dimension counting in the Riemann problem (Hilbert 21). Relation to matrix
exponential map. The question that Birkhoff’s invariants answered ⇝ global Lie
theory. Example of Painlevé 2 (Â1) wild character variety (Flaschka–Newell surface).

Lecture 3: Surface groups. Geometric local systems (linear and nonlinear); Local
systems of character varieties. Hurwitz action and Fricke–Klein–Vogt example.

Dubrovin’s Markoff example (braiding of BPS states). Klein example (nonlinear
representation theory).

Abelian example: Legendre family, explicit equation for flat sections. (*)

Lecture 4: Basic definitions: Logarithmic, generic and very good connections.
Nonresonant and generic (formal) residues. Exponential local system, Stokes cir-
cles. Modular parameters (irregular types, irregular classes) ⇝ notion of rank n wild
Riemann surface.

Dominance orderings, Stokes/oscillating directions, points of maximal decay, sin-
gular directions, Stokes arrows.

Stokes diagrams of one-level irregular classes (simple examples such as Airy, Bessel,
Weber). Fabry’s theorem. (*)
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Lecture 5: Defining the wild character varieties. Wild/auxiliary surface, tangen-
tial punctures, Stokes local systems on Σ. Wild surface groups, wild representation
varieties, Stokes representations.

Review link to algebraic connections on Σ◦. Local systems and regular singular
connections. Sufficient condition for connection to be irregular.

Wild surface groupoids.
Direct spanning isomorphisms.

Lecture 6: Examples 1. Basic wild representation varieties: Fission spaces A,
reduced fission spaces B

Revisit Birkhoff’s dimension count, “deeper conjugacy classes” C.
Compare O ⊂ g∗r to C, and thus M∗ and MB in genus zero.

Lecture 7: Examples 2. (A/G) ∼ G∗ the Poisson Lie group underlying Uq(g).

Fricke–Klein–Vogt surfaces as wild character varieties for GL3(C).

Rank two examples: Sibuya spaces and Euler continuants. Subdominant solutions
and points on the Riemann sphere. Brief discussion of Stokes filtrations and Deligne–
Malgrange filtrations.

Explicit presentation of R in general.
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1. Lecture 1: Basic examples, questions and definitions

1.1. What is a meromorphic connection?

We will need several different flavours (categories) of connections, and some confu-
sion in the subject comes from different authors having different default definitions.
The relation between various definitions will be crucial to understand. Thus we’ll
start with the central notions we will use, and then later discuss variations and their
relation.

The starting point is a first order linear differential operator of the form

d

dz
−B(z)

where B(z) is an n × n matrix of holomorphic functions on an open subset U ⊂ C.
As a first example one might consider a polynomial system:

(1.1) d

dz
− (A0 + A1z + · · ·Amz

m)

for n× n matrices Ai. As a second example one might consider:

(1.2) d

dz
−
(

A1

z − a1
+ · · ·+ Am

z − am

)
for n×n matrices Ai, away from the poles (these are often called “Fuchsian systems”).

This yields the linear system of differential equations

dv

dz
= Bv

where v is a length n column vector of holomorphic functions. The coordinate-free
version of this operator is got by “multiplying by dz”, to get the connection

∇ = d− A, A = B(z)dz

so that A is a matrix of holomorphic one-forms and d is the exterior derivative.
This is a connection on the trivial rank n holomorphic vector bundle on U , i.e. on
E = Cn × U → U . Solutions v are now called horizontal sections and the equation
dv/dz = Bv is rewritten ∇(v) = 0, i.e. dv = Av. We can remove the condition that
E is trivial and consider connections on non-trivial vector bundles, leading to the
following definition, first in the case with no poles.

Let Σ be a compact Riemann surface.

Definition 1.1. A holomorphic connection is a pair (E,∇) where E → Σ is a holo-
morphic vector bundle, and

∇ : E → E ⊗ Ω1
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is a C-linear operator, from the sheaf of sections E of E to the sections of E twisted
by holomorphic one-forms, such that the Leibniz rule is satisfied:
(1.3) ∇(fs) = (df)s+ f∇(s)
for all local sections s of E and functions f .

This is a completely standard definition, going back to Koszul. A connection gives
a way to differentiate sections of E: If X is a vector field on Σ and s is a section of
E then

∇X(s) := 〈X,∇(s)〉
is again a section of E, the derivative by ∇ of s along X. Here the brackets 〈 · , ·〉
denote the natural pairing between the tangent bundle and the cotangent bundle.

In a local trivialisation of E, over some open subset U ⊂ Σ the operator ∇ takes
the form

∇ = d− A

for an n× n matrix of holomorphic one-forms A, where n is the rank of E. If z is a
local coordinate on U this means we can write A = Bdz for a matrix B of holomorphic
functions on U . Thus a connection ∇ = d−Bdz is really just a global, coordinate-free
version of the matrix differential operators d

dz
−B we first considered.

If we change the choice of local trivialisation of E then A changes by a gauge
transformation:

(1.4) A 7→ g[A] := gAg−1 + (dg)g−1

where g : U → GLn(C) is a holomorphic map. Our conventions are set-up such that
this is a group action:

Exercise 1.2. Show that (g ◦ h)[A] = g[h[A]].

Exercise 1.3. Show that if e = (e1, . . . , en) is the initial basis of E and e′ = (e′1, . . . , e
′
n)

is the new basis, and g is such that e = e′ ◦ g, then we do indeed get the formula
(1.4) for g[A].

Exercise 1.4. Choose an open covering Σ =
⋃

i∈I Ui of Σ and a trivialisation ei of E
over Ui for each i, and so the connection takes the form d−Ai on Ui. Let Uij = Ui∩Uj

and define gij : Uij → GLn(C) so that ei = ej ◦ gji on Uij. Show that gij[Aj] = Ai for
all i, j ∈ I. Show that the connection (E,∇) is completely determined by the cover,
the clutching maps gij and the matrices Ai for all i, j ∈ I. How does this data change
if we change trivialisation over each open set: ei 7→ ei◦hi for some hi : Ui → GLn(C)?

Write G = GLn(C), let ∆ ⊂ C be an open disk, and let G = Maphol(∆, G) be the
group of all holomorphic maps from ∆ to G. Also write g = gln(C) = End(Cn) and
let

A = {A = B(z)dz
∣∣ B : U → g}
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be the space of all holomorphic connections on the trivial bundle on the open disk ∆,
so that B is a holomorphic map. Thus by the exercise above the group G acts on the
space A by gauge transformations:

G ×A → A; (g, A) 7→ g[A] = gAg−1 + (dg)g−1.

Holomorphic connections are not interesting locally since they are all isomorphic:

Lemma 1.5. G acts transitively on A. In particular for any A ∈ A there is a g ∈ G
such that g[A] = 0 (every holomorphic connection is locally isomorphic to the trivial
connection).

Proof. Given A we wish to find g so that gAg−1 + (dg)g−1 = 0. In other words
gA+(dg) = 0. If we write h = g−1 and use the useful fact that d(g−1) = −g−1(dg)g−1

then we want h : U → G so that
dh

dz
= B(z)h

where B = A/dz as usual. In classical language this equation just says that h is
a “fundamental solution” (or “fundamental matrix”) of the linear system d/dz − B.
(By definition this means that the columns of h make up a basis of solutions of the
system.) It is a classical fact (Cauchy?) that holomorphic systems have fundamental
solutions1. In fact its easy to construct a series solution term by term, and then one
proves the resulting series solution converges. □

Let E = Cn × ∆ denote the trivial bundle. Note that a fundamental solution h
is the same thing as an isomorphism (E, d = d − 0) → (E, d − A) from the trivial
connection to the connection d − A. This just says h[0] = A, i.e. A = (dh)h−1 or
dh = Ah.

In general an isomorphism from (E, d − A1) → (E, d − A2) is a section h of
Hom(E,E) that is invertible and satisfies h[A1] = A2 i.e.

hA1h
−1 + (dh)h−1 = A2

or in other words:
dh = A2h− hA1.

Indeed it is natural to define a connection Hom(∇1,∇2) on Hom(E,E), whose hori-
zontal sections are given by this equation. Similarly if there are two different vector
bundles, and one can thus define dual connections etc.

Of course we can consider holomorphic connections on punctured Riemann surfaces
but that won’t capture most of the properties of the first (polynomial) example, and

1See e.g. classical ODE books by Hartman, Coddington–Levinson, Ince, Hille, ...
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not all the properties of the second (Fuchsian) example. Instead we proceed as follows
to encompass them.

Now let Σ be a compact Riemann surface and a = (a1, . . . , am) ⊂ Σ a finite subset.
Let D =

∑
ni(ai) be an effective divisor on Σ supported on a, so that ni ≥ 1 are

integers.

Definition 1.6. A meromorphic connection with poles bounded by D is a pair (E,∇)
where E → Σ is a holomorphic vector bundle, and

∇ : E → E ⊗ Ω1(D)

is a C-linear operator, from the sheaf of sections E of E to the sections of E twisted
by meromorphic one-forms with poles bounded by D, such that the Leibniz rule is
satisfied:

(1.5) ∇(fs) = (df)s+ f∇(s)

for all local sections s of E and functions f .

In a local trivialisation of E, over some open subset U ⊂ Σ the operator ∇ takes
the form

∇ = d− A

for a matrix of meromorphic one-forms A (with poles bounded by D). E.g. if a1 ∈ U
and z is a local coordinate vanishing at a1 then

∇ = d− B(z)dz

zn1

in a neighbourhood of a1, where B is holomorphic across a1.

Remark 1.7. Note that:
1) E → Σ is a holomorphic vector bundle on the compact surface, so this is a

genuine generalisation of a holomorphic connection.

2) this notion is well defined, but it would not be if D was not effective. The point
is that the Leibniz rule tacitly uses the inclusion Ω1 ⊂ Ω1(D) of the holomorphic one
forms into the meromorphic one forms. If D was not effective, say n1 < 0, then the
Leibniz rule would not make sense (as there is then no such inclusion: df would not
necessarily be a section of Ω1(D)).

3) this is not a completely standard definition (although we have been happily
using it since 1999 or so). One can also define the notion of “meromorphic connection
on a meromorphic bundle”, where a “meromorphic bundle” is a locally free O(∗D)
module. In practice this means that one allows meromorphic gauge transformations
with any order pole at the points of D. This definition is also useful, but is less
convenient for gauge theory or moduli theory.
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Remark 1.8. The nonabelian cohomology set H1(Σ,GLn(O)) is slick notation for the
set of isomorphism classes of rank n holomorphic vector bundles on Σ. Here O is the
sheaf of holomorphic functions and GLn(O) is the sheaf of holomorphic maps in to the
group GLn(C). The (Cech) definition of H1(Σ,GLn(O)) involves equivalence classes of
1-cocycles, and this really is the same thing as expressing a vector bundle in terms of
clutching maps, by choosing local trivialisations on each open set of an open covering
(and the equivalence relation comes from changing the choice of trivialisation). See
for example J. Frenkel’s 1957 paper Cohomologie non abélienne et espaces fibrés:

Figure 1. The definition of H1(Σ,G) in Frenkel 1957.

Later on we will need H1(Σ,GLn(C)), which is slick notation for the set of iso-
morphism classes of local systems of n-dimensional complex vector spaces on Σ; the
clutching maps on double intersections are now constant maps to GLn(C). Of course
it is very suggestive notation, and leads to the idea that moduli spaces of local sys-
tems should have other motivic incarnations analogous to the De Rham and Dolbeault
approaches in the abelian case.

1.2. Some variations: algebraicity. Suppose Σ is actually a smooth compact com-
plex algebraic curve.



12 M2 COURS SPÉCIALISÉ 2023 PHILIP BOALCH

•v1) Algebraic connections (E,∇) (if E is algebraic and ∇ is algebraic). Thus there
is a Zariski open covering Σ =

⋃
Ui so that the restriction of E to each open set

Ui is trivialisable. (Recall Zariski open subset are just the complements of finite
subsets of points.) Then by choosing such trivialisations the bundle E is determined
by algebraic clutching maps gij : Uij → G, where Uij = Ui ∩ Uj. Then on Ui we have
∇ = d− Ai where Ai is a matrix of regular differentials (algebraic one-forms) on Ui.
On the double intersections the Ai are related by gauge transformations as usual

gij[Aj] = Ai.

These are just the algebraic version of holomorphic connections. In fact some form of
GAGA implies the analytification functor gives an equivalence of categories (Algebraic
connections) → (holomorphic connections), in this setting where Σ is compact.

•v2) Similarly there is a notion of “Algebraic meromorphic connections”, as above but
allowing the Ai to be matrices of rational differentials (algebraic one-forms with poles),
with poles bounded by the fixed effective divisor D. Again a version of GAGA implies
the analytification functors gives an equivalence (to the meromorphic connections
on holomorphic vector bundles). These will actually be the realm for most of our
examples, with nonlinear differential equations flowing in their spaces of coefficients.

•v3) If we now take Σ◦ = Σ \ a to be an open curve (in fact any smooth complex
algebraic curve takes this form for some finite set a). Then we can consider algebraic
connections (E,∇) → Σ◦ on the open curve. This category is actually very close
to being a subcategory of the category of meromorphic connections on holomorphic
vector bundles on Σ with poles on a (if we allow any pole orders). There is in
fact a version of GAGA that shows this category is equivalent to the “meromorphic
connections on meromorphic bundles” on Σ with any order poles on a.

In the next lecture we will consider holomorphic connections on vector bundles on
Σ◦ = Σ \ a; this is relatively trivial and all the extra structure “hidden” in the poles
at the punctures is lost. However we won’t get to hermitian metrics for some time so
its worth noting here:

The relevance in “hardcore analytic” gauge theory (on the punctured surface),
of having (meromorphic connections on) holomorphic vector bundles on the
compact surface, comes from the fact that the addition of a hermitian metric
controls the growth of sections at the punctures, leading to preferred extensions
across the punctures, and thus holomorphic vector bundles (or parabolic vector
bundles) on the compact surface, and in turn this leads to algebraicity.

1.3. Some more variations: Higgs bundles and ζ-connections.
Definition 1.9. A meromorphic Higgs bundle with poles bounded by D is a pair
(E,Φ) where E → Σ is a holomorphic vector bundle and Φ ∈ H0(Σ,End(E)⊗Ω1(D))
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is the Higgs fields, a meromorphic one-form with values in End(E), with poles bounded
by D.

Thus locally we can write Φ = Bdz for a matrix B of meromorphic functions on
U .

In a sense Higgs bundles have two origins: just as an operator d/dz − B led
to a connection d − Bdz, any matrix L(z) of rational functions (aka a “rational
Lax matrix”) leads to a Higgs field L(z)dz (on the trivial vector bundle on P1).
On the other hand holomorphic Higgs fields on higher genus Riemann surfaces were
introduced by Hitchin and Simpson. These two viewpoints were “put together” in
the definition of meromorphic Higgs bundle (Nitsure, Bottacin, Markman, ...).
Exercise 1.10. Suppose ∇1,∇2 are meromorphic connections on E → Σ with poles
on D. Show that Φ := ∇1 −∇2 is a meromorphic Higgs field.

Now choose a complex number ζ ∈ C.
Definition 1.11. A meromorphic ζ-connection with poles bounded by D is a pair
(E,∇) where E → Σ is a holomorphic vector bundle, and

∇ : E → E ⊗ Ω1(D)

is a C-linear operator, from the sheaf of sections E of E to the sections of E twisted
by meromorphic one-forms with poles bounded by D, such that the ζ-Leibniz rule is
satisfied:
(1.6) ∇(fs) = ζ(df)s+ f∇(s)
for all local sections s of E and functions f .
Exercise 1.12. Study ζ-connections in a local trivialisation, and show that the gauge
action is modified to: g[A]ζ = gAg−1 + ζ(dg)g−1.

Exercise 1.13. Show that for ζ = 0 a meromorphic ζ-connection is the same thing as
a meromorphic Higgs bundle.
Exercise 1.14. Show that for ζ = 1 a meromorphic ζ-connection is the same thing as
a meromorphic connection.

Thus there is a “continuous deformation” from connections to Higgs bundles.
Exercise 1.15. Write down the algebraic versions of the definitions of Higgs bundles
and ζ-connections.

This is often referred to as the “autonomous limit” in the integrable systems lit-
erature. We will eventually see it is the same as the “Painlevé simplification” of the
Painlevé equations, and see it as a hyperkähler rotation.

Of course, physicists have been putting numbers (like ~) in front of their differential
operators for a long time.
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And it is essentially the same as the deformation from loop algebras into affine
Kac–Moody algebras (although in the full story there is also a central extension, dual
to this deformation).

Remark 1.16. Note that for any line bundle L → Σ one can define a L-valued Higgs
bundle as pair (E,Φ) with Φ a section of End(E)⊗L. However unless this is secretly
a meromorphic Higgs bundle (i.e. there is an isomorphism L ∼= Ω1(D) for some
effective D) then there is no analogous notion of “L-valued connections” (Rmk. 1.7
2).
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2. Sketch of big picture

2.1. Three algebraic worlds: Before delving into the details lets try to signpost
where we want go (at least symbolically for the moment). Much of the story we want
to describe can be summarised in the (slightly oversimplified) diagram:

Dolbeault De Rham Betti

Rational Lax matrices L

L̇ = [P,L]
Rational diff. op.s

d
dz
−B

Stokes and
monodromy data⋂ ⋂ ⋂

Mero. Higgs bundles
(E,Φ)

wnAbH←→ Mero. connections
(E,∇)

RHB←→ Stokes local
systems⋃ ⋃ ⋃

Holom. Higgs bundles
(E,Φ)

nAbH←→ Holom. connections
(E,∇)

RH←→ Local systems/
π1-rep.s

The main aim is to describe the central row, and, as the diagram indicates, it
is set-up to include both the rich class of examples of rational Lax matrices and
the sophisticated nonabelian Hodge setting of holomorphic Higgs bundles (no poles),
related to the Hitchin integrable systems.

Just as an operator d
dz
−B becomes a connection by multiplying by dz (and one can

study its isomonodromic deformations), a rational Lax matrix L(z) becomes a Higgs
field Ldz by multiplying by a rational one-form, such as dz. The Lax matrices appear
in Lax equations, which are equation of the form L̇ = [P,L] controlling isospectral
deformations of L, and are the bread and butter of the theory of integrable systems;
the solution of the system comes from a straight line flow on the Jacobian of the
spectral curve defined by det(L − λ) = 0. We will discuss some examples in detail
but for now note there are lots, as listed for example in the book of Babelon et al, or
basic sources such as:

Adler and van Moerbeke (1980) Completely integrable systems, Euclidean Lie al-
gebras, and curves, Adv. in Math. 38, no. 3, 267-317.

Reyman and Semenov-Tian-Shansky (1994) Integrable systems II group theoretical
methods in the theory of finite dimensional integrable systems

Phillip Griffiths (1985) Linearizing Flows and a Cohomological Interpretation of
Lax Equations
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Mumford (1984) “Tata Lectures on Theta II, Jacobi theta functions and differential
equations” (this book is devoted to a class of examples involving 2× 2 Lax matrices).

Dubrovin–Krichever–Novikov (1985) Integrable systems I

Adams–Harnad–Previato (1988) Isospectral flows in finite and inifinite dimensions

The first large class of examples seems to be due to Garnier 1919 (and we will
discuss the “Painlevé simplification” method he used to discover them, taking the
autonomous limit of the Schlesinger equations):

Garnier (1919) Sur une classe de systèmes différentiels abéliens déduits de la théorie
des équations linéaires, (Rendiconti del Circolo Matematico di Palermo 43, pp.155-
191).

Several of the key ideas of Garnier’s paper were rediscovered as an offshoot of soli-
ton theory, before Garnier’s work was rediscovered and widely disseminated2, around
1980.

2E.g. there is a section on it in the well-known paper of Flaschka-Newell on isomonodromy
(Comm. Math. Phys. 76 (1980), 65-116), and it is mentioned in Dubrovin’s 1981 paper on theta
functions, the 1980 Krichever-Novikov review ( Russian Math. Surveys 35:6 (1980), 53-79 ) and in
the footnote p.156 of the 1980 paper of Jimbo-Miwa-Mori-Sato. D.V. Chudnovsky wrote a paper
on it (Let. Nuovo Cimento 26 (14) 1979), and M. Gaudin cited that in his 1983 book (La fonction
d’onde de Bethe), having discovered the quantum version in 1976.
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2.2. Two organisational diagrams. Mathematically this story leads to an interest-
ing class of moduli spaces, i.e. spaces whose points correspond to isomorphism classes
of certain meromorphic connections (or Higgs bundles, or Stokes local systems). This
goes slightly beyond the objects usually studied by algebraic geometers, and one of
the main inputs is to write down the moduli problem that encompasses this picture.

In particular we will fix a Riemann surface, some marked points and some pre-
cisely defined boundary data. This will determine a hyperkähler manifold M with
three preferred algebraic structures, corresponding to the three columns of the above
table. We label the columns “Dolbeault, De Rham, Betti” as they are precise ana-
logues of the Dolbeault, De Rham and Betti approaches to linear cohomology (it
was first abstracted to the context of nonabelian cohomology by Simpson, and then
later extended to the meromorphic case relevant to Lax matrices). The result, to be
explained, is a diagram as follows:

Figure 2. Nonabelian Hodge space M, with three preferred algebraic structures.

However this does not capture the full story and in practice people work with
simpler open partsM∗ of the moduli spaces in genus zero, where things can be made
explicit, and actual nonlinear differential equations can be obtained. We will explain
that the classical Riemann–Hilbert map is a holomorphic map

(2.1) M∗ ↪→MB

whereM∗ =M∗
DR ⊂MDR is the open part of the full De Rham moduli space where

the bundles E are trivial. As we will see the spaces M∗ have the flavour of the “Lie
algebra” of the full nonabelian Hodge space M ∼= MB, and the Riemann–Hilbert
map is a natural generalisation of the exponential map.

However this still does not capture the full story as we also wish to vary the
modular parameters, changing the complex structure on the Riemann surface, the pole
positions, and the “irregular class” of the connections at each pole. These parameters
will lead to the independent variables (“times”) in the isomonodromy equations.
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3. Glimpses of the elephant

The next few sections will describe a few simple pieces of the full picture, that
provided motivation.

3.1. Painlevé’s deformation of the theory of elliptic functions.
Painlevé discovered most of the Painlevé equations as deformations of differential

equations for elliptic functions, i.e. as equations that limit to equations for elliptic
functions. He used the term “simplification” (simplifié) for the limiting differential
equation, solvable in terms of elliptic functions.

In more detail Painlevé was looking for new special functions, defined as solutions
to non-linear algebraic differential equations. He looked for equations whose solutions
had good meromorphic continuation properties: outside a fixed critical set, any local
solution should have arbitrary meromorphic continuation. If D ⊂ C is the fixed
critical set (a finite set in all examples here), then any local solution y(t) should

extend to a meromorphic function on the universal cover C̃ \D. This is known as
the Kowalevski–Painlevé (KP) property (and can also be expressed as saying there
are no “movable singularities” apart from poles).

The KP property is preserved under any deformation of the differential equation3.
Thus to rule out many possible forms of differential equations, Painlevé would add pa-
rameters by hand and then take limits to get simpler equations (Painlevé’s α method).
If he could recognise or prove the limiting equation did not have the KP property
then he could ignore the putative equation, and thus get a short list of possibilities,
that then could be proved to have the KP property directly.

For example PI, the first Painlevé equation, y′′ = 6y2 + t is a deformation of the
equation for the Weierstrass ℘ function:

First recall the standard differential equation satisfied by ℘ is

(℘′)2 = 4℘3 − g2℘− g3

for constants g2, g3 ∈ C. Thus 2℘′℘′′ = 12℘2℘′ − g2℘
′ so that

℘′′ = 6℘2 − g2/2

Lemma 3.1 (cf. Painlevé 1900 p.226, Ince [28] pp.321 and 329). Suppose y(t) satisfies
PI so that y′′ = 6y2 + t. If t = αx, y = w(x)/α2 for a constant α then

(3.1) w′′ = 6w2 + α5w.

In particular if α5 = 1 then this is a symmetry of PI. If we take the limit α → 0

then we get w′′ = 6w2. This integrates once to (w′)2 = 4w3 + c, which can be solved

3see e.g. paragraph 1 p.319 in Ince’s book “ordinary differential equations” [28].
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in terms of the Weierstrass ℘ function: w = ℘(x+ k) (where ℘ has g2 = 0, g3 = −c,
and k ∈ C is arbitrary).

Proof. Write v = y′ so that dy = vdt, dv = (6y2 + t)dt. Now put t = αx, y = w/α2

(as on Painlevé 1900 p.226, Ince p.329 [28]). Thus dt = αdx, dy = dw/α2, so w′ =

dw/dx = α3dw/dz = α3v. Thus

dv = (6y2 + t)dt = α(6w2/α4 + αw)dx

and so w′′ = α3v′ = α5w+ 6w2 which is (3.1). The last statement is straightforward,
recalling that in general (℘′)2 = 4℘3 − g2℘− g3 for constants g2, g3. □

Thus Painlevé discovered a natural deformation of the theory of elliptic functions!
—see Alves https://arxiv.org/abs/2103.02697v1 §3 for a recent discussion of

this story.
The next example is the case of Painlevé II:

Lemma 3.2. Suppose y(t) satisfies the PII equation y′′ = 2y3+ ty+α. If t = γx, y =

w(x)/γ for a constant γ then

(3.2) w′′ = 2w3 + γ3xw + γ2α.

Thus if we now take the limit γ = 0 then w′′ = 2w3, which integrates once to (w′)2 =

w4+ c, and can be solved in terms of the Jacobi sn function: w = c1sn(c1(ix+ c2), i).

Proof. Write v = y′ so that dy = vdt, dv = (2y3 + ty + α)dt. Now put t = γx, y =

w/γ. Thus dt = γdx, dy = dw/γ, so w′ = dw/dx = γ2dw/dz = γ2v. Thus

dv = (2y3 + ty + α)dt = γ(2w3/γ3 + xw + α)dx

and so w′′ = γ2v′ = 2w3 + γ3xw + γ2α which is (3.2). The last statement is straight-
forward. □

In this way Painlevé discovered some very interesting nonlinear differential equa-
tions, the Painlevé equations 1,2,3,4.

Later on (late 1970s) the Painlevé equations, and their solutions, the Painleve
transcendents, started appearing in physics problems such as the Ising model4 (in
some sense physics got sufficiently nonlinear to catch up with the mathematics...).

Note that so-far these equations have no link to gauge theory: there are no linear
differential equations in the story. That link came about via a 1905 paper of R. Fuchs
where he discovered a new Painlevé equation, called Painlevé six, PVI, controlling the

4E.g. Wu-McCoy-Tracy-Barouch (1976) “Spin-spin correlation functions for the two-dimensional
Ising model, Exact theory in the scaling region”

https://arxiv.org/abs/2103.02697v1
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isomonodromic deformations of a linear differential equation. This is a completely
different way to get nonlinear differential equations5.

One can find the standard list of Painlevé equations in many places (e.g. wikipedia),
but we really want to think of them as geometric objects, and this is obscure in their
explicit expression. They will each lead to a deformation class of nonabelian Hodge
spaces of complex dimension two, the minimal possible nonzero dimension, so they
give the simplest examples.

The basic features are summarised in the table below:

Painlevé equation: 1 2 3 4 5 6

Domain of t: C C C∗ C C∗ C \ {0, 1}

No. of constant parameters: 0 1 2 2 3 4

(Affine Dynkin) Diagram : Â0 Â1 D̂2 Â2 Â3 = D̂3 D̂4

Okamoto Diagram : Ê8 Ê7 D̂6 Ê6 D̂5 D̂4

Table 1. Basic data for Painlevé equations

(Here we have omitted two degenerate versions of Painlevé 3.)

The diagrams can be drawn as follows (the number of nodes is one plus the number
of constants):

Figure 3. The diagrams of the six Painlevé equations.

5R.Fuchs’ isomonodromy approach was extended to the original Painlevé equations by Garnier
1912 (so they too, in fact, are gauge theoretic equations).
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3.2. Towards the Painlevé VI connections.
The 1905 paper of R. Fuchs6, should probably be viewed as the true “start of 2d

gauge theory” where a nonlinear differential equation arose naturally, controlling a
linear differential equation (i.e. where the “unknown” is really a linear differential
equation ∼ a meromorphic connection on a rank two vector bundle on P1). The
underlying idea can be traced back to a suggestion of Riemann 1857.7

What is Painlevé VI, the Fuchsian Painlevé equation?

Definition 3.3. Given constants α, β, γ, δ ∈ C, the corresponding Painlevé VI
equation PVI (α, β, γ, δ) is the algebraic differential equation:

y′′ =

(
1

y
+

1

y − 1
+

1

y − t

)
(y′)2

2
−
(
1

t
+

1

t− 1
+

1

y − t

)
y′

+
y(y − 1)(y − t)

t2(t− 1)2

(
α +

βt

y2
+

γ(t− 1)

(y − 1)2
+

δt(t− 1)

(y − t)2

)
for a meromorphic function y(t) where t ∈ C \ {0, 1}.

This frankly horrific expression does not express very well the true beauty of
the underlying geometric object. The simplest encoding of it seems to be the
following time-dependent Hamiltonian formulation, due to Malmquist 1922.

Proposition 3.4 (cf. [38] p.86). If a1, a2, a3, b ∈ C then the function H(q, p, t)
defined by

t(t− 1)H(q, p, t) = q(q − t)(q − 1)

(
p2 + p

(
a1
q

+
a2

q − t
+

a3
q − 1

))
+ b · q

is a time-dependent Hamiltonian function for PVI (α, β, γ, δ), in the sense that
if

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
then y = q(t) is a solution to PVI (α, β, γ, δ) where

α = (a1 + a2 + a3)
2/2− 2b, β = −a21/2, γ = a23/2, δ = −a2(a2 − 2)/2.

Proof. These are a pair of coupled first order nonlinear differential equations.
The first equation gives a direct relation between p and q′ = dq/dt, and using
this the second equation then yields a second order non-linear differential
equation for q′′. A direct computation (best done with a computer algebra
package) shows this is PVI (α, β, γ, δ), with y replaced by q. □

6https://webusers.imj-prg.fr/~philip.boalch/files/fuchs.r_1905_
surquelquesequationsdifferentielleslineairesdusecondeordre_CRAS

7see the historical discussion in Jimbo–Miwa–Ueno 1981.

https://webusers.imj-prg.fr/~philip.boalch/files/fuchs.r_1905_sur quelques equations differentielles lineaires du seconde ordre_CRAS
https://webusers.imj-prg.fr/~philip.boalch/files/fuchs.r_1905_sur quelques equations differentielles lineaires du seconde ordre_CRAS
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The modern geometric viewpoint on this (Schlesinger, Jimbo–Miwa–Ueno, Mal-
grange, Okamoto) goes as follows8:

Let G = SL2(C), g = sl2(C) (using GL2(C) gives nothing extra)

t ∈ B := C \ {0, 1}

Thus the choice of t determines a four-tuple of points: a = a(t) = (0, t, 1,∞) ∈
(P1)4 \ diagonals, where P1 is the Riemann sphere.

We want to consider simple moduli spacesM∗ =M∗
DR of meromorphic connections

on trivial vector bundles on P1 with poles at D := a. They are Fuchsian systems, of
the form

∇ = d− A, A =

(
A1

z
+

A2

z − t
+

A3

z − 1

)
dz

where Ai ∈ sl2(C) are trace-less 2 × 2 matrices. This has a further pole at ∞ with
residue A4 := −(A1 + A2 + A3), so that

(3.3)
4∑
1

Ai = 0.

Two such Fuchsian systems are isomorphic if they are related by a global gauge
transformation g : P1 → GL2(C). Any such holomorphic map is constant so the set
of isomorphism classes is just the quotient by the conjugation action: g[A] = gAg−1.
Generically the projective group PGL2(C) = PSL2(C) acts freely so a rough dimension
count shows the space of isomorphism classes of such Fuchsian systems should have
dimension 3.3− 3 = 6 (there are 3 independent residues, and dim(PSL2(C)) = 3).

To reduce the dimension we notice the action is really just conjugating the residues
Ai, so we can fix their adjoint orbits.

Choose λi ∈ C for i = 1, 2, 3, 4. and let

Oi =
{
g
(
λi 0
0 −λi

)
g−1

∣∣ g ∈ SL2(C)
}
⊂ g

be the adjoint orbit of matrices with eigenvalues ±λi. We will assume 2λi is not an
integer, so in particular Oi has complex dimension 2.

Then we can look at the set of isomorphism classes of such Fuchsian systems with
Ai ∈ Oi for i = 1, 2, 3, 4.

M∗(t) := {A
∣∣ Ai ∈ Oi}/SL2(C)

8rewritten in terms of moduli spaces, and Ehresmann connections, as in P.B. Adv. Math. 2001:
https://webusers.imj-prg.fr/~philip.boalch/files/smid.pdf.

https://webusers.imj-prg.fr/~philip.boalch/files/smid.pdf
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It turns out that if the constants λλλ = {λi} ∈ C4 are off of some hyperplanes then
the projective group PSL2(C) acts freely and the quotient is an algebraic variety of
dimension

4× 3− 2× 3 = 2

so it is a complex surface9 . Of course really this space does not depend on t and is
described directly in terms of the residues.

Define a map

µ : O1 × · · · × O4 → g; (A1, . . . , A4) 7→
∑

Ai.

Then we can write:

M∗ ∼= µ−1(0)/G =: (O1 × · · · × O4)//G

where the double slash // is just notation for the subquotient µ−1(0)/G, i.e. we
consider the subvariety µ−1(0) inside O1×· · ·×O4 and then quotient that by G. (We
will later see this is an example of a holomorphic symplectic quotient.)

Now we vary t ∈ B := C \ {0, 1} and look at the relative situation. Thus we define
a fibre bundle

M∗ → B
such that the fibre over t ∈ B is the space M∗(t). This fibre bundle is trivial, it is
just the productM∗ =M∗×B, since as we saw above the spacesM∗ do not depend
on t.

Now, geometrically, the Painevé VI equation that R. Fuchs discovered is a (non-
linear) Ehresmann connection on this bundleM∗, and the independent variable (the
time) is the parameter t running over B. It is a second order nonlinear differential
equation, as the fibres have dimension 2.

—Quick aside on Ehresmann connections:
Suppose B is a complex manifold and π : M → B is a fibre bundle, with fibres

Mt = π−1(t) for t ∈ B.

Definition 3.5. A (holomorphic) Ehresmann connection on the bundle M is the
choice, for any p ∈ M of a linear subspace Hp ⊂ TpM that is transverse to the
vertical subspace Vp, the tangent space of the fibres Vp = Ker(dπp) ⊂ TpM , so that

Hp ⊕ Vp = TpM

for all p ∈ M . These subspace should vary holomorphically (so the Hp form a holo-
morphic vector bundle on M , a subbundle of the tangent bundle TM).

9more on these hyperplanes (and surfaces) later, but the impatient could read section 2 of https:
//arxiv.org/pdf/0706.2634

https://arxiv.org/pdf/0706.2634
https://arxiv.org/pdf/0706.2634
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If U ⊂ B then a local section s : U →M is horizontal if it is tangent to the Ehres-
mann connection, i.e. for any t ∈ U and tangent vector v ∈ TtB the corresponding
vector ds(v) ∈ TpM is actually in the subspace Hp ⊂ TpM , where p = s(t) ∈M .

In brief whereas a Koszul connection on a vector bundle encodes linear differential
systems in an intrinsic way, the notion of Ehresmann connection encodes non-linear
differential equations. An Ehresmann connection is “complete” if any path in B
between any two points t1, t2 ∈ B has a unique horizontal lift to a path in M starting
at any point p ∈Mt1 . Some authors put this condition in the definition of Ehresmann
connection, but we will not.

—
In our setting we can thus speak of the Painlevé VI connections, and then choose

explicit coordinates to get the explicit differential equation. It is really the Ehresmann
connection (or rather its extension from M∗ to MDR) that is the geometric object
we want to understand.

There are two ways to get the Painlevé VI connection, and we’ll just mention them
here, and explain the details once we have set up the background:

1) De Rham approach, via Schlesinger’s equations.

2) Betti approach passing to the other side of Riemann–Hilbert. In brief the
corresponding character varieties MB also form a bundle MB → B. However this
bundle is not naturally trivial, but it is canonically locally trivial: if we choose any
disk ∆ ⊂ B then there is a canonical identification of the fibres MB(t1) ∼= MB(t2)

for t1, t2 ∈ ∆ (this identification depends on the choice of the disk). This structure is
encoded in the sentence:

“The spaces MB(t) form a local system of varieties over B”.

This will be spelt out in great detail, but for now we just note that implies that the
bundleMB → B has a natural complete flat Ehresmann connection. We can transfer
this to the bundle M∗ → B and rewrite it in carefully chosen algebraic coordinates
there to get a nonlinear differential equation, PVI.
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4. Lecture 2: Flat connections and the compact case

As we explained the general notion of meromorphic connection is essentially the
simplest context that contains the three basic classes of connections, namely
• the polynomial connections,
• the Fuchsian systems, and
• the holomorphic connections on higher genus compact Riemann surfaces.

In this lecture we will discuss this last case in detail, and the corresponding mon-
odromy data. This case is especially nice since it avoids discussing boundary condi-
tions.

4.1. The example of compact Riemann surfaces (no poles). Our first aim is
to explain all the definitions and sketch some of the ideas of the proof the following
statement:

Theorem 4.1. Suppose Σ is a smooth compact complex algebraic curve. The follow-
ing categories are equivalent (via specific functors that we will describe):

1) Algebraic connections on algebraic vector bundles on Σ,

2) Holomorphic connections on holomorphic vector bundles on Σ,

3) Flat C∞ connections on C∞ complex vector bundles on Σ,

4) Local systems of finite dimensional complex vector spaces on Σ,

5) For any fixed basepoint b ∈ Σ, the category of finite dimensional complex π1(Σ, b)
representations.

This has numerous consequences, for example: The equivalence 1) ⇐⇒ 5) gives a
purely algebraic way to access the topological fundamental group (this is an example
of the change in algebraic structure given by Riemann–Hilbert). The equivalence 3)
⇐⇒ 5) gives a completely explicit way to classify the set of solutions of a nonlinear
differential equation. For example we will deduce the corollary:

Corollary 4.2. For any integer n ≥ 1 the set of isomorphism classes of rank n objects
(in any of the five categories in the theorem) is naturally in bijection with the set of
orbits of an action of the complex algebraic group G = GLn(C) on an affine algebraic
variety R. Explicitly G acts by conjugation on the representation variety:

R = Hom(π1(Σ, b), G).

By performing this quotient in an algebraic fashion, this will lead to the first
example of Betti moduli space MB (the character variety), and thus will give the
simplest instance of the association of a variety MB with the choice of a surface Σ
and a group G (no boundary conditions).



26 M2 COURS SPÉCIALISÉ 2023 PHILIP BOALCH

What is an equivalence of categories?
A functor F : X → Y between two categories is an equivalence of categories
if 1) it is essentially surjective, and 2) it is fully faithful. This gives a conve-
nient/precise/flexible language to see some things are “more or less the same”.

1) means that for each object y ∈ Y there exists is an object x ∈ X and an
isomorphism y ∼= F (x).

2) means that for any x1, x2 ∈ X the functor F maps the space HomX(x1, x2) of
morphisms (in X) bijectively onto the space of morphisms HomY (F (x1), F (x2))
between their images in Y .

In particular the choice of an equivalence F induces a bijection between the sets
of isomorphism classes in X and Y . For more details and other formulations,
see e.g. p.71 of Gelfand–Manin (Methods of homological algebra []).

The definitions of 1) and 2) have already been covered. The functor 1) → 2) is
analytification (E,∇) 7→ (Ean,∇an) (An algebraic vector bundle is a special type of
holomorphic vector bundle; algebraic clutching maps are in particular holomorphic.
In terms of sheaves of sections we just take the holomorphic sections of the algebraic
bundle E. Then the action of ∇an on holomorphic sections is completely determined
by the Leibniz rule ∇(fs) = (df)s + f∇(s) for holomorphic f and algebraic s).
The equivalence between them is a version of GAGA, since Σ is compact (see e.g.
Malgrange [19] p.152).

For 3), the definition of C∞ connections is straightforward but it is worth noting
that there is now an integrability condition: the connections should be flat, i.e. have
vanishing curvature.

This is actually one of the central ideas (probably the central idea) in the subject of
integrable systems, that the vanishing of curvature is a nonlinear differential equation,
and this is the key mechanism how linear connections lead to nonlinear differential
equations.

Given a connection ∇ = d + A on a trivial vector bundle, then its curvature is
the matrix of two-forms Ω = ∇2 = dA + A2. Here in the gln(C) setting A2 is well
defined as a matrix of two-forms. In general (for other Lie algebras) we just define
A2 = [A,A]/2 and use the same notation. But we really want to see what this means:

Suppose the base is two-dimensional with coordinates x, y, and we write

A = X(x, y)dx+ Y (x, y)dy

for matrix valued functions X,Y .
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Then the key computation to do is to compute the commutator:

(4.1)
[
∂

∂x
+X,

∂

∂y
+ Y

]
=

∂Y

∂x
− ∂X

∂y
+ [X,Y ]

and note that the connection d+ A is flat if and only if this commutator is zero:

Exercise 4.3. Show that dA + A2 is proportional to the commutator above times
dx ∧ dy.

Thus the flatness condition is a nonlinear (quadratic) differential equation:
∂X

∂y
=

∂Y

∂x
+ [X,Y ].

For example, as we will see, all the isomonodromy equations arise from such cur-
vature equations, and the isospectral (Lax) equation are autonomous limits of them
(passing via ζ connections in one direction, to remove one of the derivatives).

Now to pass from 2) to 3) we just take the underlying C∞ vector bundle, and use
the Leibniz rule to define the action of ∇ on any C∞ section ∇(fs) = (df) + f∇(s)
for C∞ function f and holomorphic sections s. Here d is the full exterior derivative
on Σ and will have both dz, dz terms in general. Any local C∞ section can be written
as
∑

fisi for C∞ functions and holomorphic sections. The resulting connection is
clearly flat as any holomorphic connection on a Riemann surface is flat (and thus any
gauge transformation of it too: Ω 7→ gΩg−1 under a gauge transformation g).

To go backwards we need to see how a flat C∞ connection determines the structure
of holomorphic vector bundle. Locally such a connection has the form:

d− α = (∂ − α1,0) + (∂ − α0,1)

so the 0, 1 part is D := ∂ − α0,1 = ∂ −Bdz for some matrix B of C∞ functions.
A theorem of Koszul–Malgrange says that this determines the structure of holo-

morphic vector bundle, with the “holomorphic sections” defined to be the sections in
the kernel of D:
Theorem 4.4 ([37]). If B is an n × n matrix of complex C∞ functions on a disk
∆ and D := ∂ − Bdz, then there is a basis of sections s1, . . . , sn in the kernel of D.
This implies the kernel of D is the sheaf of sections of a holomorphic vector bundle;
a [locally] free O-module, where O is the sheaf of holomorphic functions.

If g : ∆→ G is the matrix with columns s1, . . . , sn then ∂g = Bgdz so that

g[0]0,1 := g(0)g−1 + (∂g)g−1 = (∂g)g−1 = Bdz,

i.e. the inverse of g gives a gauge transformation converting D into ∂, the “trivial”
∂-operator.
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If we pass to such a holomorphic basis then the flat connection will become a
connection with zero 0, 1 part, so of the form

∇ = d− Cdz

for a matrix C of C∞ functions: since it is still flat the matrix C is actually holo-
morphic: ∇2 = (dC)dz = (∂C)dz and the vanishing of this means that C is holo-
morphic. So we get a holomorphic connection on the holomorphic bundle determined
by D = ∇0,1. This is how to pass back and forth between holomorphic and flat C∞

connections.
Of course in the current setting of flat connection we could bypass this and note

that flatness implies that any flat connection d − α is locally trivial and has a basis
of horizontal sections (the clutching map between such bases will be constant and so
in particular holomorphic). This is the nonabelian Poincaré lemma (with one-forms
replaced by connections and closedness by flatness):

Theorem 4.5. Any flat connection has a fundamental solution (basis of horizontal
sections) when restricted to any disk. In other words a (nonsingular) connection is
flat if and only if it is locally isomorphic to the trivial connection. Explicitly in the
current setting: If B,C are n×n matrices of complex C∞ functions on a disk ∆ and

∇ := d− α = ∂ − Cdz + ∂ −Bdz

is a C∞ connection that is flat, then there is a basis of horizontal sections s1, . . . , sn on
∆. This implies the kernel of ∇ is a locally constant sheaf of n dimensional complex
vector spaces.

This can be proved directly (see e.g. [24]), or by passing to a holomorphic basis
by Koszul–Malgrange, and then constructing a fundamental solution of the resulting
holomorphic connection as we did before.

This leads to item 4) in the list, the local systems.

4.2. Local systems.

Noter que revêtement et faisceau localement constant sont synonymes ([22] p.231)

Now we get to the intrinsic, purely topological, description of connections. A
convenient framework to phrase this is covering spaces (often with uncountable fibres),
or equivalently locally constant sheaves (with open sets in the usual topological sense).

Definition 4.6. Suppose B is a topological manifold. A local system (of sets) on B
is a locally constant sheaf of sets, and in turn it is the same thing as (the sheaf of
sections of) a covering space of B.
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This is really two definitions and an enlightening exercise shows they are the same.
In practice we can choose an open covering and a local system is then a bundle

with local trivialisations (to a product with a fixed “standard fibre”), that can be
defined by constant clutching maps on the double intersections of open sets in the
covering.

Here, from flat connections, we have a local system of vector spaces, i.e. a locally
constant sheaf of n dimensional complex vector spaces. This just means that the
clutching maps are constant linear maps.

Exercise 4.7. Show that, by definition in the Cech approach, the set of isomorphism
classes of local systems of n dimensional complex vector spaces on Σ is the nonabelian
cohomology set H1(Σ,GLn(C)).

Thus the passage from 3) to 4) is just to go from a flat connection (E,∇) to its
sheaf of horizontal sections V defined by

V (U) = {sections s : U → E
∣∣ ∇(s) = 0}.

This is the desired local system.

To recover (E,∇) from V we just tensor: the sheaf E of sections of E is

E(U) = V (U)⊗C C∞

and the connection can be defined on these sections via Leibniz, since V (U) are the
horizontal sections:

∇(vf) = (df)v + f∇(v) = (df)v

for C∞ functions f . Similarly we could go directly back to a holomorphic vector
bundle by tensoring with holomorphic functions E(U) := V (U) ⊗C O is the sheaf of
sections of a holomorphic vector bundle, and this gets a holomorphic connection in
the same way: ∇(vf) = (df)v for holomorphic functions f .

4.3. Monodromy of local systems. Finally we can discuss monodromy and how
to pass to representations of the fundamental group.

First of all there is a general statement.

Suppose B is a connected manifold and π : C → B is any covering space (the fibres
may be uncountable etc). Thus the sheaf of sections of C is a local system of sets.

For any two points a, b ∈ B the choice of a path γ : [0, 1] → B in B from a to b,
determines a bijection

Tγ(a, b) : Ca
∼= Cb

the transport isomorphism, from the fibre Ca = π−1(a) of C at a, to the fibre Cb at b.

The transport map is defined as follows: For any point c ∈ Ca the path γ has a
unique lift to a path γ̃ : [0, 1]→ C in C starting at c. This follows from the definition
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of covering space. Then Tγ(a, b)(c) is defined to be the end point γ̃(1) ∈ C of this
lifted path. From the definition of γ̃ it is in Cb, i.e. it lies over b.

The map Tγ(a, b) only depends on the homotopy class of γ (with fixed endpoints).
Indeed any continuous deformation of γ cannot move Tγ(a, b)(c) since it is constrained
to be in the fibre Cb and the fibres are discrete.

Exercise 4.8. Rewrite this definition of transport in terms of locally constant sheaves
of sections, and their clutching/restriction maps (passing from one open set to the
next, via their intersection, covering the path γ), without first passing to the equiv-
alent notion of covering spaces. If the local system is in fact the sheaf of horizontal
sections of a holomorphic connection on a trivial vector bundle, show that this is the
same thing as the analytic continuation of solutions.

In particular, considering loops based at b, this construction gives a homomorphism

ρ : π1(B, b)→ Aut(Cb); ρ(γ) = Tγ(b, b)

from the fundamental group of the base into the group of automorphisms of the fibre.
This is just transport around loops. Said differently this is an action of π1(B, b) on
the fibre Cb, the monodromy action.

In the case that we started with a local system of vector spaces V (and not just sets)
on B = Σ then this yields the monodromy representation ρ : π1(B, b) → Aut(Vb) =

GL(Vb) ∼= GLn(C). In other words the fibre Vb is a representation of the fundamental
group. Thus the covering space and the basepoint determine a pair (Vb, ρ) consisting
of a complex vector space equipped with a representation of π1(B, b). This is an object
of the category in 5), and this construction defines the desired functor 4) → 5).

Now we just need to check that this gives an equivalence. The key step is to define
the inverse construction, from 5) to 4), which goes as follows.

Given b ∈ B let pr : B̃→ B be the universal cover, based at b. By definition B̃ is the
set of homotopy classes of paths in B starting at b, i.e. maps γ : [0, 1]→ B such that
γ(0) = b. Two such paths are identified if there is a homotopy between them, fixing
both end points. The map pr takes the free end point of the path, pr(γ) = γ(1) ∈ B.

Write π1 = π1(B, b) for the fundamental group. This group acts on the fibres of
B̃→ B freely and transitively, in other words:

Lemma 4.9. The universal covering space B̃ is a principal π1 bundle over B.

Proof. π1 acts on B̃ in the natural way, composing a loop and a path: If g ∈ π1 is
a loop based at b and γ ∈ B̃ is a path starting at b then γ ◦ g ∈ B̃ since it is clearly
another path starting at b. The ordering of the composition γ ◦ g means “go around
g and then go along γ”.
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Now it is easy to see that two paths γ1, γ2 ∈ B̃ have the same endpoint (γ1(1) =
γ2(1)) if and only if they are related in this way by a loop based at b. Moreover two
paths with the same end point are homotopic if and only if the loop relating them
is contractible, so represents the identity in π1. This says that π1 acts freely and
transitively on the fibre

B̃c := pr−1(c) ⊂ B̃

of the universal covering map, for any c ∈ B̃.
□

Now for any representation of π1 we can form the associated bundle (of the principal
π1 bundle B̃). If ρ : π1 → V then the associated bundle is the quotient

B̃×ρ V := (B̃× V )/π1

where g ∈ π1 acts on a pair (c, v) ∈ B̃× V as

g · (c, v) = (cg−1, ρ(g)v).

Since the action on B̃ is free, this quotient is well-defined, and it comes equipped with
a map:

(4.2) B̃×ρ V → B = B̃/π1

by projecting onto the first factor, with each fibre isomorphic to a copy of V .

Now we leave it as an exercise to check that the map (4.2) is a covering map (giving
the fibres ∼= V the discrete topology), defining a local system of vector spaces, and
moreover that its monodromy representation based at b is given by ρ.

4.4. Representation varieties. Let G = GLn(C) = GL(Cn) the group of linear
automorphisms of a fixed (standard) copy of Cn.

Let π1 = π1(Σ, b) and suppose we are given a representation V of π1, i.e. we are
given a homomorphism

ρ : π1 → GL(V ).

Now if we choose a basis of V , i.e. an isomorphism φ : Cn
∼=−→V with our standard

copy of Cn, then we get a “concrete” representation π1 → G = GLn(C), into a fixed
copy of the general linear group.

Lemma 4.10. Let R = Hom(π1, G) be the set of group homomorphisms π1 → G.
Consider the enriched category of triples (V, ρ, φ) where (V, ρ) is a π1 representation
as in 5), and φ : Cn

∼=−→V is a framing of V . Then the set of isomorphism classes of
such triples is naturally in bijection with the points of R.
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Proof. This is a straightforward unwinding of the definitions. (The map ρ becomes
a point of R once we use φ to identify V and Cn.) □

Now R is naturally a complex affine algebraic variety. The easiest way to see this
is to choose a presentation of π1. The standard presentation is as follows (where g is
the genus of Σ):

π1(Σ, b) ∼= 〈a1, . . . , ag, b1, . . . , bg
∣∣ [a1, b1] · · · [ag, bg] = 1〉

where [a, b] = aba−1b−1 is the multiplicative commutator. Given this presentation, it
follows that R has the following presentation as an affine variety:

(4.3) R ∼= {(A1, . . . , Ag, B1, . . . , Bg) ∈ G2g
∣∣ [A1, B1] · · · [Ag, Bg] = 1} ⊂ G2g

where [A,B] = ABA−1B−1 is the multiplicative commutator in the group G. Each
matrix entry of the relation here is an algebraic equation, and so this defines R as
a subvariety of G2g. Of course G = GLn(C) is itself an affine variety, for example
defined by the equation:

GLn(C) ∼= {(g, a) ∈ End(Cn)× C
∣∣ a det(g) = 1} ⊂ Cn2+1.

Thus R is an affine variety, defined by the matrix equation in (4.3). A point of the
right-hand side of (4.3) determines a unique representation ρ since it specifies where
ρ sends generators of π1, in GLn(C).

Observe that G acts on R by diagonal conjugation of the matrices. This action
corresponds to changing the choice of framing φ : Cn

∼=−→V ; an element of g ∈ G acts
ion φ by pre-composition: φ 7→ φ ◦ g−1.

Corollary 4.11. The set of isomorphism classes of π1 representation (V, ρ) of rank
n, is naturally in bijection with the set of G orbits in R.

Proof. This now comes down to observing that (V1, ρ1) ∼= (V2, ρ2) if and only if we
can choose framings φ1 : Cn ∼= V1 and φ2 : Cn ∼= V2 so that the two triples (V1, ρ1, φ1)

and (V2, ρ2, φ2) determine the same point of R. □

We are now in a very good position of a complex reductive group G acting on a
complex affine variety R and there are standard tools (geometric invariant theory) to
take the quotient of R by G in an algebraic way, thereby constructing the character
variety MB.

Let C[R] denote the ring of regular functions on the affine variety R and let
C[R]G ⊂ C[R] denote the subring of G invariant functions, where G acts by diagonal
conjugation as above. Since G is reductive it is known that this ring is finitely
generated and so determines an algebraic variety.
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Definition 4.12. The character variety (or Betti moduli space) MB(Σ, G) deter-
mined by the pair (Σ, G) is the variety associated to the ring C[R]G of G invariant
functions on the representation variety R. By construction the points of MB(Σ, G)
correspond bijectively to the closed G-orbits in R.

We will writeMB = Rps/G where Rps ⊂ R is the subset of points whose G-orbits
are closed (since the closed orbits are often called the polystable points). In fact we
will sometimes abuse notation and just write MB = R/G (then the word “variety”
will be used to indicate we mean the affine geometric invariant theory quotient, not
just the set-theoretic quotient).

The book [34] of Lubotzky–Magid “Varieties of representations of groups”, studies
the construction of character varieties of any finitely presented group in detail.

4.5. Classification of solutions of the zero curvature equation. As an appli-
cation of the previous theorem, we can see that it gives a precise finite dimensional
description of the space of equivalence classes of solutions of a nontrivial nonlinear
differential equation in infinite dimensions.

Let E = Cn × Σ → Σ be the trivial complex vector bundle (that we view here as
a C∞ bundle).

Let
A = {d− α

∣∣ α ∈ Γ(Σ,End(E)⊗ (Ω1,0 ⊕ Ω0,1))}
be the set of connections on E, so that α is an arbitrary n× n matrix of global C∞

one-forms. Thus A is isomorphic to an infinite dimensional vector space.

Let G = C∞(Σ,GLn(C)) be the group of global gauge transformations of E, i.e.
the C∞ maps from Σ to GLn(C). Thus G acts on A by gauge transformations as
usual: g[α] = gαg−1 + (dg)g−1.

Now consider the subset of connections which are flat, so α satisfies the nonlinear
differential equation dα = α2:

Aflat = {d− α
∣∣ dα = α2} ⊂ A.

This subset is preserved by the gauge action and the previous theorem implies the
following classification of gauge orbits.

Corollary 4.13. The set of G orbits in Aflat is naturally in bijection with the set of
G orbits in the representation variety R.

Proof. Given what was proven in the theorem this amounts to observing that
Aflat/G is the set of isomorphisms classes of flat connections on C∞ vector bundles of
rank n. This in turn follows from the fact that Chern-Weil theory implies any C∞

complex vector bundle on a compact Riemann surface that admits a flat connection
is trivial (in brief, it has degree zero). Thus if we choose a trivialisation, we see they
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all appear as points of Aflat. Moreover the notion of isomorphism of connections then
comes down to the gauge action of G on A. □

This may seem like it is just a tricky exercise in rephrasing the definitions but we
will see below that this C∞ viewpoint enables us to see, following Narasimhan and
Atiyah–Bott, that the character variety has a holomorphic symplectic structure.

For now let us just quote a theorem that appears in Gunning’s 1967 book “Lectures
on vector bundles on Riemann surfaces”:

Theorem 4.14 (Gunning [27] p.196). Let Ms
B ⊂MB be the subset of the character

variety consisting of representations that are irreducible. Then Ms
B is a (smooth)

complex analytic manifold, of dimension 2gn2 − 2(n2 − 1).

We won’t prove this statement yet, as one of our aims will be to show how to
prove that it has an algebraic symplectic structure at the same time, as well as many
generalisations of it.

As a first step note that it is easy to explain the dimension formula since it is a
subquotient of G2g: it is the quotient of the subvariety µ−1(1)irr by G where

µ : G2g → G; (A1, . . . , Ag, B1, . . . , Bg) 7→ [A1, B1] · · · [Ag, Bg]

and µ−1(1)irr is the subset of µ−1(1) that are irreducible representations. The point
is that µ−1(1)irr has codimension (n2 − 1) (since the determinant is already fixed to
be 1), and PGLn(C) acts freely on it, and that has dimension (n2 − 1) as well, so we
see the dimension is obtained by subtracting (n2 − 1) twice from 2gn2 = dim(G2g).

Remark 4.15. Note that the equivalences between 2),3),4),5) work verbatim over any
Riemann surface, not necessarily compact. This will be used to give part of the
topological data of any meromorphic connection (E,∇)→ Σ with poles on a. Namely
the restriction of (E,∇) to Σ◦ = Σ \ a is a holomorphic connection and we can take
the local system V → Σ◦ of horizontal sections of that. We will see this is really only
a very small part of the topological data attached to any meromorphic connection.
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5. The Riemann problem (Hilbert 21)

We will take the point of view that the Betti spaces (and eventually the whole
nonabelian Hodge space) is like a “global version” of a Lie group, attached to a Lie
group plus a surface (with suitable boundary condtions). This comes more into focus
if we look at the genus zero case with poles, as, in effect, we then see the Lie algebra
of the space as well. These are the additive moduli spaces M∗ and the simplest
(Fuchsian) examples motivated the famous Riemann problem appearing in Hilbert’s
21st problem (the Riemann–Hilbert problem).

There is some controversy over the exact statement of the question, but the basic
idea is very simple and clear, and comes down to the following matching of dimensions.

Choose an integer n > 0 and m distinct points a = (a1, . . . , am) ⊂ C in the complex
plane.

On one hand consider the set of rank n Fuchsian systems with poles at these points:

M̃∗ =

{
∇ = d− A

∣∣ A =
m∑
1

Ai

z − ai
dz, Ai ∈ End(Cn)

}
∼=
{
(A1, . . . , Am)

∣∣ Ai ∈ End(Cn)
}
.(5.1)

On the other hand, given any such connection we can restrict it to the complement
of the poles to get a holomorphic connection on Σ◦ := C \ a, noting that in general
the connection will have a further pole at ∞. Then we can take the local system
of horizontal sections of that and in turn get a representation of the fundamental
group π1 = π1(Σ

◦, b) in GLn(C), for any choice of basepoint b ∈ Σ◦. (It comes with
a framing as the underlying bundle is the trivial bundle.) Thus we get a point of the
representation variety

R = Hom(π1,GLn(C))
∼=
{
(M1, . . . ,Mm)

∣∣ Mi ∈ GLn(C)
}

(5.2)

where the last isomorphism arises by choosing a suitable presentation of π1, with m
loops around the points in a, freely generating π1.

The spaces (5.1) and (5.2) are clearly both of the same dimension mn2, and (5.2)
looks like the multiplicative version of (5.1), with the Lie algebra replaced by the
corresponding Lie group, and the sum replaced by the product (in a certain fixed
order).

Moreover the Riemann–Hilbert map

M̃∗ νa−→ R
taking a connection to its monodromy representation is a holomorphic map, which
generalises the matrix exponential map, that appears in the case m = 1:
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Exponential map as a simple Riemann–Hilbert map.
Given X ∈ g = End(Cn) then the connection d− A where

A =
1

2πi
X
dz

z
has monodromy given by

exp(X) ∈ GLn(C).
Proof. For any Y ∈ g, the connection d − Y dz/z has fundamental solution
zY on any open sector at zero (using any choice of branch of log(z)). This has
monodromy exp(2πiY ) around zero. □

Thus it is tempting to study this map, for example can it be upgraded to a precise
bijective correspondence? What happens if we move the points a?
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6. Birkhoff’s generalised Riemann problem

There is of course a more basic question that one can ask:

Suppose we have an arbitrary effective divisor D =
∑

ni(ai) where a = (a1, . . . , am) ⊂
P1 and ni > 0.

Then we can consider the finite dimensional space M̃∗(D) consisting of all the
meromorphic connections

d− A

where A is a matrix of rational one-forms with poles bounded by the divisor D.
Counting coefficients and using the residue theorem shows that

dim(M̃∗) = n2

(
m∑
1

ni

)
− n2

Question: Can one define invariants of such connections with any order poles,
thereby defining a space R of dimension equal to dim(M̃∗) and a holomorphic map

M̃∗ →R,

generalising the Riemann–Hilbert map taking the monodromy representation?

Birkhoff (1909, 1913) found that this can indeed be done for a dense open subset
of M̃∗. He imposed a genericity condition on the connection (“Birkhoff-generic”)10

and then constructed some invariants making up a space of the desired dimension.

These data and their generalisation/modification leading up to the definition of the
general notion of Stokes data and wild character varieties are what we want to study
in detail. In a sense they are the general notions of global Lie groups that appear in
this way. This dimension count will be rephrased and discussed in detail in §14.3.

As a simple example to illustrate how this goes, suppose n = 2 and D = 4(∞) so
we look at rank two connections with one pole of order 4 at infinity

∇ = d− A, A = (A0 + A1z + A2z
2)dz.

We suppose that the leading term A2 is diagonal with distinct eigenvalues and is
fixed, so there are 8 remaining free parameters in A0, A1. The monodromy-type data
this leads to have the following form: first we restrict ∇ to the formal disk at ∞ and
find it can be put uniquely in the form:

∇̂ = d− Â, Â = dQ+ Λ
dz

z
, Q = B3z

3 +B2z
2 +B1z

10that the leading term at each pole has n distinct eigenvalues, and further that the eigenvalues
are off of some real codimension one walls.
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via a formal (not necessarily convergent) gauge transformation, for some diagonal
matrices Bi,Λ, with B3 = A2/3 and Tr(Λ) = 0. This gives 5 parameters, in Λ, B1, B2.
The remaining parameters are more mysterious and can be understood in several
ways. One way (essentially that of Birkhoff) is that there are “wild monodromy
data” S1, . . . S6 that obey a wild monodromy relation:
(6.1) S6S5 · · ·S1 = h, h := exp(2πiΛ).

Moreover the Si are constrained to be in alternating unipotent groups:

S1, S3, S5 ∈ U+ =

(
1 ∗
0 1

)
, S2, S4, S6 ∈ U− =

(
1 0
∗ 1

)
.

These unipotent groups have a total dimension of 6 and the relation (6.1) imposes 3

constraints on them (as the determinant is 1), and so this yields the desired remaining
three parameters, making up 8 in total. This example in fact leads to the wild
character variety (of complex dimension two) underlying the Painlevé II equation,
that takes the form of the affine surface (the Flaschka–Newell surface):
(6.2) x y z + x+ y + z = c

for a constant c ∈ C (directly related to the constant α in PII).

This is of course, all incredibly strange and mysterious, and begs many questions
(that we will endeavour to answer in the rest of the course): what are these matrices
Si? Why are they triangular? Why are there 6 of them? Are we really generalising
the fundamental group? What is the generalisation of the intrinsic topological notion
of local system? Why has no-one told me about this before? (etc)
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Derivation of the Flaschka–Newell surface (Â1 wild character variety).
Here is the derivation of the surface from the monodromy relation:
Let T ⊂ GL2(C) be the diagonal torus, and define the space B of solutions of
the wild monodromy relation:

B =
{
(h,S) ∈ T × (U+ × U−)

3
∣∣ S6S5 · · ·S1 = h

}
where S = (S1, . . . , S6) with Sodd ∈ U+, Seven ∈ U−. It is easy to see B is a
smooth affine variety of complex dimension 4. Given t ∈ T of determinant one,
let B(t) ⊂ B be the subset of B with h = t. The torus T acts on B by diagonal
conjugation, preserving the three-fold B(t).

Lemma 6.1. If t 6= 1 the quotientMB(Â1, t) of B(t) by T is isomorphic to the
smooth complex affine surface
(6.3) x y z + x+ y + z = b− b−1

where b ∈ C∗ is any complex number such that t = −diag(b−2, b2).

Proof. Let si be the nontrivial off-diagonal matrix entry of Si. The T -action
reduces to that of the subtorus C = diag(1, ∗) ⊂ T . If t 6= 1 the C-action is free
and every orbit is closed in B(t) since then some of the odd and even si must
be nonzero. So we just need to compute the ring of invariant functions. The
equation S6 · · ·S1 = t is equivalent to the three equations: s1 = −q(s3s4s5 +
s3 + s5), s6 = −q(s2s3s4 + s2 + s4) (allowing to eliminate s1 and s6), and
s2s3s4s5 + s2s3 + s2s5 + s4s5 + 1 = 1/q where q = −b2. To quotient by T
we pass to invariants s23, s25, s34, s45 where sij = sisj, and thus find s25 =
1/q − (1 + s45 + s23 + s23s45). Substituting this in the relation s23s45 = s34s25
yields (6.3) after relabelling s45 = z/b− 1, s23 = x/b− 1 and s34 = −1− b y. In
other words:

x = b(1 + s2s3), y = −(1 + s3s4)/b, z = b(1 + s4s5).

Smoothness is easy to check (and we will see later how to deduce it in general
from the freeness of the C action). □

These surfaces appear in Flaschka–Newell 1980 [25] (3.24) in relation to PII.
They underlie simple examples of the hyperkähler manifolds constructed in [4].
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7. Lecture 3: Geometric local systems, nonlinear and linear

Having introduced local systems last time it is now easy to introduce a large class
of nonlinear local systems, whose fibres are character varieties. This is the Betti
approach to (tame) isomonodromy, and is a key way to get nonlinear local systems
from linear local systems on curves.

Write Σ = (Σ, a) where Σ is a compact Riemann surface and a ⊂ Σ is a finite
subset. Let Σ◦ = Σ \ a be the corresponding punctured surface. Let G = GLn(C) be
a general linear group. Given a basepoint b ∈ Σ◦ let π1 = π1(Σ

◦, b).

Definition 7.1. A surface group is a discrete group that is isomorphic to π1(Σ
◦, b)

for some choice of compact Riemann surface Σ and finite subset a ⊂ Σ.

This is a nice class of groups, whose character varieties have wonderful properties.
Note that there are of course Riemann surfaces with much more complicated funda-
mental groups (e.g. C\Z2). In essence the surface groups are the fundamental groups
of “algebraic Riemann surfaces” (those that arise as the analytification of a smooth
complex algebraic curve). They only depend on the genus g and the number m = #a
of marked points, and admit the presentation:

(7.1) π1(Σ
◦, b) ∼= 〈a1, . . . , bg, γ1, . . . , γm

∣∣ [a1, b1] · · · [ag, bg]γ1 · · · γm = 1〉

where [a, b] = aba−1b−1 is the multiplicative commutator.

As in the last lecture we can define the G-character variety of Σ by taking the
affine geometric invariant theory quotient

(7.2) MB(Σ, G) = R/G, R = Hom(π1(Σ
◦, b), G)

of the representation variety R of the punctured Σ◦ by the conjugation action of G,
for any choice of basepoint b ∈ Σ◦. In brief MB(Σ, G) is the variety (the maximal
spectrum) of the ring C[R]G of G invariant regular functions on R, and this means
that the points of MB(Σ, G) are the closed G orbits in R

Reductive groups and Hilbert’s theorem. Hilbert proved that if a linearly
reductive group acts on an affine variety R then the ring of invariant functions
C[R]G is finitely generated (and so we can take its maximal spectrum to get an
affine variety). Most of our constructions use this result, if only as a black box.
(See e.g. Thm. 4.53 in Mukai’s book “Introduction to invariants and moduli”).

Since we are working over C the linearly reductive groups are exactly the canon-
ical complexifications of the compact Lie groups. For example GLn(C) is the
complexification of the unitary group Un.
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Remark 7.2. Note that the character variety does not depend on the choice of base-
point b ∈ Σ◦. Moving the basepoint along a path just conjugates the representations,
and so does not change the conjugacy class of the representation (= point of MB).

Thus have a procedure
Σ 7→ MB(Σ, G)

attaching a variety to a surface with some marked points. This shouldn’t be viewed
as a static procedure, but rather it works well in families, deforming Σ.

Naively one might think that we just have a gadget that produces a variety for
each choice of integers g,m, n (taking the GLn(C) character variety of the surface
group determined by g,m). However this misses the key (but rather subtle) way that
MB(Σ, G) depends on the choice of the surface. If we define Γg,m to be the abstract
group defined by the presentation above (the right-hand side of (7.1)) then we can
indeed define a variety for each choice of g,m, n (taking the GLn(C)-character variety
of Γg,m). However we defined the character variety in terms of the fundamental group
of a surface, and the subtly is hidden in the choice of the isomorphism in (7.1), i.e.
the choice of generators of π1.

Exercise 7.3. 1) Choose a local system of rank two complex vector spaces on C \
{1, 2, 3}. Ask a friend in a different room to do the same. Choose a presentation of
π1 = π1(C \ {1, 2, 3}, 0) with a simple loop γi around the point i for i = 1, 2, 3. Thus
your local system determines monodromy matrices Mi (i = 1, 2, 3), well-defined up to
overall conjugation, and these matrices determine the local system up to isomorphism.
Get your friend to do the same, and to tell you their monodromy matrices N1, N2, N3.
Show that you do not have enough information to decide if your local system is
isomorphic to theirs, unless they also tell you their choice of generating loops. Design
a method for deciding if your local system is isomorphic to theirs or not.

2) Think about repeating the exercise in 1) but starting with each person choosing
a genus two surface with four punctures. Show that the question of identifying the
local systems does not even make sense unless some choice of isomorphism between
the surfaces or their fundamental groups is given.

7.1. Betti isomonodromy connections.
Suppose B is a manifold and π : Σ → B is a family of Riemann surfaces with

marked points, over B. If b ∈ B then the fibre π−1(b) = Σb = (Σb, ab) is a Riemann
surface Σb with marked points ab ⊂ Σ. We assume it is an “admissible family” in the
sense that the surfaces remain smooth (and are the fibres of a smooth fibre bundle
pr : Σ → B) and that the points do not coalesce (there are the same number of
marked points in each fibre).

The main statement is then as follows:
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Proposition 7.4. Suppose we replace each fibre of the admissible family π : Σ→ B
by the corresponding character variety MB(Σb, G), for all b ∈ B. Then the resulting
bundle of character varieties over B naturally has the structure of a local system of
varieties. Thus it can be described in terms of an open cover of B with constant clutch-
ing maps (that are themselves algebraic automorphisms of the fibres). In particular
for any base point b ∈ B the fundamental group of the base π1(B, b) acts on the fibre
MB(Σb, G) by algebraic automorphisms.

Proof. The last statement is just taking the monodromy action of the local system,
as defined in the last lecture.

The first statement comes down to a simple topological fact (essentially the “ho-
motopy invariance of the fundamental group”).

In detail suppose we have a contractible open subset U ⊂ B and a point b ∈ U .
Let Σ◦

b = Σb \ ab be the corresponding punctured surface and let

Σ◦
U =

⋃
u∈U

Σ◦
u ⊂ pr−1(U) ⊂ Σ

be the union of all the punctured surfaces over U (which is itself a fibre bundle over
U). Then we claim that the inclusion of the fibre:

Σ◦
b ↪→ Σ◦

U

is a homotopy equivalence and so induces an isomorphism of fundamental groups and
in turn induces an identification of the character varieties:

Hom(π1(Σ
◦
b), G)/G ∼= Hom(π1(Σ

◦
U), G)/G

of the fibre with that of the total space of the fibration over U . Indeed this follows
from the homotopy long exact sequence for the fibration Σ◦

U → U , since the base U

is contractible: the inclusion induces and isomorphism π1(Σ
◦
b)
∼= π1(Σ

◦
U).

In turn if we have two points b1, b2 ∈ U then the choice of U induces a canonical
identification

Hom(π1(Σ
◦
b1
), G)/G ∼= Hom(π1(Σ

◦
U), G)/G ∼= Hom(π1(Σ

◦
b2
), G)/G

between the character varieties of the fibres over b1 and b2.
This gives the canonical local trivialisations of the bundle, making it into a local

system of varieties. □

Exercise 7.5. In the situation of the proposition, choose two intersecting contractible
open sets U1, U2 ⊂ B with U12 = U1 ∩ U2 contractible, and choose any points b1 ∈
U1, b2 ∈ U2. Choose presentations of the two surface groups π1(Σ

◦
b1
), π1(Σ

◦
b2
) and thus

describe the corresponding two character varieties explicitly in terms of matrices.
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Now show that the clutching map on U12 is constant, since it comes from a (constant)
identification π1(Σ

◦
b1
) ∼= π1(Σ

◦
b2
).

Of course if we think in a more differential geometric way (assuming the character
varieties are smooth) a local system of (smooth) varieties is the same as having a
bundle equipped with a complete flat Ehresmann connection. Thus we are getting
nonlinear flat connections in a completely geometric way. This becomes very inter-
esting when we describe these connections in algebraic coordinates on the other side
of the Riemann–Hilbert correspondence. The sixth Painlevé equation is the simplest
example of a nonlinear differential equation that arises geometrically in this way (as
we will see).
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7.2. Fricke–Klein–Vogt surfaces. The simplest (tame) character varietes are the
D̂4 character varieties related to PVI. Set G = SL2(C), Σ = P1 and a ⊂ Σ a subset
of four distinct points, and Σ◦ = Σ \ a.

The fundamental group π1(Σ
◦) is the free group on 3 generators so R ∼= G3 and

we wish to compute the G invariant functions on this (where G acts by diagonal
conjugation). This was done by Vogt in 1889 [47] and rediscovered by Fricke–Klein
[26].

Suppose M1,M2,M3 ∈ G = SL2(C) and define the seven G-invariant functions
m1 := Tr(M1), m2 := Tr(M2), m3 := Tr(M3),

m12 := Tr(M1M2), m23 := Tr(M2M3), m13 := Tr(M1M3)(7.3)
m4 = m321 := Tr(M3M2M1)

so that m4 = Tr(M4) if M4 ∈ SL2(C) satisfies M4M3M2M1 = 1. The Fricke–Klein–
Vogt relation is the relation

(7.4) x y z + x2 + y2 + z2 = b1 x+ b2 y + b3 z + c

where x = m23, y = m13, z = m12 and
b1 = (m1m4 +m2m3)

b2 = (m2m4 +m1m3)

b3 = (m3m4 +m1m2)

c = 4− (m2
1 +m2

2 +m2
3 +m2

4 +m1m2m3m4).

Proposition 7.6. These 7 functions subject to the relation (7.4) give a presentation
of the ring of G invariant functions on R ∼= G3. This identifies the character variety
MB = R/G as the hypersurface in C7 cut out by (7.4).

A more recent exposition of this is in the 1980 paper of Magnus “Rings of Fricke
characters and automorphism groups of free groups”.

Often (in the context of PVI) the traces mi are written in terms of complex numbers
θi as
(7.5) mi = 2 cos(πθi)

for i = 1, 2, 3, 4, so that Mi has eigenvalues exp(±π
√
−1θi).

We will see later thatMB has a natural Poisson structure with Casimir functions
given by m1,m2,m3,m4. This implies that all the interesting flows/automorphisms
occur within the complex surfaces obtained by fixing these to be constants, i.e. with
in the fibres of the map

MB → C4; (x, y, z,m) 7→m := (m1,m2,m3,m4).
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Notice that the bi, c just depend on m and so the fibres of this map are the affine
surfaces MB(m) defined by

x y z + x2 + y2 + z2 = b1 x+ b2 y + b3 z + c

the Fricke–Klein–Vogt surfaces (with b1, b2, b3, c constant).

7.3. Braid group action. Now as we vary the four-tuple a the character varieties
MB form a local system, so we can compute the monodromy automorphisms ofMB
that occur by varying the marked points. Consider the configuration space

C3 \ diagonals = {(a1, a2, a3) ∈ C3
∣∣ ai 6= aj}

and let
B = (C3 \ diagonals)/Sym3

be the corresponding space of unordered 3 tuples of points. A point b = {a1, a2, a3} ∈
B determines the (unordered) four-tuple

a = ab = {a1, a2, a3,∞} ⊂ Σ = P1.

Thus B parameterises an admissible family of pointed surfaces
π : Σ→ B

with π−1(b) = (P1, ab) for any b ∈ B. Thus by Proposition 7.4 we get a local system
MB → B

of varieties, with fibres the corresponding Betti spacesMB (of complex dimension 6).
The base space B can be described explicitly in terms of the space of coefficients of
the polynomial

(x− a1)(x− a2)(x− a3) = x3 + s1x
2 + s2x+ s3

where s1 = −(a1+a2+a3), s2 = a1a2+a2a3+a1a3, s3 = −a1a2a3. B is the complement
of the discriminant which is

∆2 = 18s1s2s3 − 4s31s3 + (s1s2)
2 − 4s32 − 27s23 = ((a1 − a2)(a2 − a3)(a1 − a3))

2.

B ∼= {(s1, s2, s3) ∈ C3
∣∣ ∆2 6= 0} ⊂ C3.

In any case B is a smooth complex manifold of dimension 3, and by definition its
fundamental group is the three-string braid group:

B3 = π1(B).

This is a well-studied group, and has presentation

B3
∼= 〈β1, β2

∣∣ β1β2β1 = β2β1β2〉

with two generators and a single relation the braid relation. (Note that we can retract
B onto the subset where s1 = 0, and so identify π1(B) with the π1 of the complement
of the cuspidal curve 4s32 + 27s23 = 0 in C2.)
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The general theory above says we have a local system of Betti spaces over B and
taking the monodromy of this gives an action of B3 on the character variety MB.
This can be given explicitly as follows.

In terms of monodromy data this action can be given by the standard “Hurwitz”
action:

β1(M3,M2,M1) = (M2,M
−1
2 M3M2,M1)

β2(M3,M2,M1) = (M3,M1,M
−1
1 M2M1)

which fixes the product M4M3M2M1 = 1. (Recall that the product a ◦ b in the
fundamental group means “go around b and then a”, and this explains why we put
M1 on the right.)

Exercise 7.7. Choose a basepoint b ∈ B and choose loops generating π1(Σ
◦
b , e). Derive

the formula for the Hurwitz action by “braiding” two of the points in ab, dragging
the generating loops around, and then re-expressing the new loops in terms of the
original loops.

Clearly this actions descends to the invariant functions, and acts on m as
β1(m1,m2,m3,m4) = (m1,m3,m2,m4)

β2(m1,m2,m3,m4) = (m2,m3,m3,m4)

and it turns out that the action on the remaining (quadratic) invariant functions is:

β1(x, y, z) = (x, z, b2 − y − xz)

β2(x, y, z) = (y, b1 − x− yz, z).

These formulae define an action of B3 on MB, and this action is the (nonlinear)
monodromy of the local system

MB → B.
For example this entails reducing invariants functions such as

Tr(M−1
2 M3M2M1)

to polynomials in the chosen generating functions (in this example we get b2−y−xz).
Methods to do this go back to Vogt (see Magnus op. cit.) and such formulae for the
braid group action were found by Iwasaki [29]. A direct (more pedestrian) way to do
such computations appeared in [8] by writing Mi = εi(1 + ei ⊗ αi) for a scalar εi and
a rank one matrix ei⊗αi (so that ei is a column vector and αi is a row vector). This
enables everything to be computed explicitly in terms of the numbers εi, αi(ej).

Remark 7.8. To relate this to PVI we use a different base

B6 = {(0, t, 1,∞)
∣∣ t ∈ C \ {0, 1}}.

The fundamental group of this is the free (nonabelian) group F2 with two generators
(and the variable t will be the t in PVI). One can show that the monodromy action of
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the of F2 onMB is generated by the squares (β2
1 and β2

2) of the above automorphisms
β1, β2 ofMB. This situation is especially nice since both β2

1 and β2
2 fix m and so this

action now restricts to an action on the Fricke–Klein–Vogt surfaces. In other words
for each m ∈ C4 we have a local system

MB(m)→ B6

whose fibres have complex dimension two, and the monodromy action of this local
system is given by the automorphisms β2

1 and β2
2 of MB(m). It is this local system

of surfaces that will give (the second order ODE) PVI, when we pass over to the
De Rham side of the Riemann–Hilbert correspondence and rewrite this local system
in algebraic coordinates there. In other words we will explain that PVI is the explicit
description of the corresponding (non-linear) De Rham local system MDR(θ) → B6

(where m and θ = (θ1, . . . , θ4) are related as in (7.5).)
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7.4. The Klein cubic surface ⇝ nonlinear representation theory. The Klein
cubic surface is the affine cubic surface X ⊂ C3 defined by

(7.6) xyz + x2 + y2 + z2 = x+ y + z.

It is a smooth affine variety, so is a smooth noncompact complex manifold, and has
complex dimension 2.

This surface is particularly interesting as it contains a braid group orbit S of size
7, given by the points whose coordinates are the binary numbers from 0 to 6:
S = {(x, y, z) = (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)} ⊂ X.

It is easy to check this is indeed a finite braid group orbit by hand, recalling the
braid group action is generated by the operations:

β1 : (x, y, z) 7→ (x, z, 1− y − xz)

β2 : (x, y, z) 7→ (y, 1− x− yz, z).

It is easy to check that the corresponding F2 action generated by β2
1 , β

2
2 gives a degree

7, genus zero11 Belyi cover of B6 = C \ {0, 1}. In other words S is the fibre at some
basepoint b ∈ B6 of a finite cover S → B6, and the action of β2

1 , β
2
2 on S is the

monodromy of this finite cover (= local system of finite sets of size 7).

We are interested in the “meaning” of this pair S ⊂ X. Specifically we will see
that X has several different “representations” as a moduli space.

First we can identify X with an SL2(C) character variety:

Lemma 7.9. The Klein surface (7.6) is the Fricke–Klein–Vogt surface with the pa-
rameters θ = (2, 2, 2, 4)/7.

Proof. From (7.4) we should check that if m = 2 cos(2π/7), k = 2 cos(4π/7) then:

m2 +mk = 1, 3m2 + k2 + km3 = 4

which is an easy exercise, e.g. using k = m2−2,m3+m2−2m−1 =
∑3

j=−3 e
2πij
7 = 0.□

Of course, changing primitive seventh roots of unity, this lemma thus also holds
for the parameters θ = (4, 4, 4, 6)/7 and θ = (6, 6, 6, 2)/7.

Remark 7.10. Given the data corresponding to any of these branches one can easily
solve the seven equations (7.3) to find a corresponding SL2(C) triple. For example
for the branch with (x, y, z) = (0, 0, 0) it is straightforward to find the triple:

(7.7) M1 =

(
φ 0
0 φ−1

)
, M2 =

(
w x
−x w

)
, M3 =

(
w µx
−x/µ w

)
,

11Indeed the permutation of the branches around each of 0, 1,∞ has cycles of type 2 + 2 + 3, so
Riemann–Hurwitz says 2− 2g = 7 · (2− 2g(P1))− 3(1 + 1 + 2) so that g = 0.
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where φ = exp(πiθ1), θ1 = 2/7, w = 1+ϕ2

ϕ−ϕ3 , x =
√

1− |w|2 and µ = (r + i
√
4− r2)/2

where r = 1
2
+ 1/(4 cos(πθ1/2)). The same formulae but with θ1 = 6/7 yields a

triple for the parameters θ = (6, 6, 6, 2)/7. For θ1 = 4/7 so θ = (4, 4, 4, 6)/7 one
should instead use: r = 1

2
− 1/(4 cos(πθ1/2)) and reverse the order of the triple (so

that Tr(M1M2M3) = 2 cos(6π/7)). Note that we could also use the transcendental
formulae in [8] Appendix B.
Lemma 7.11. For θ1 = 2/7 or 4/7 the three matrices Mi are in SU2 whereas for
θ1 = 6/7 they are in SU1,1

∼= SL2(R).

Proof. We check directly that MiM
†
i = 1 in the first two cases and Mi∆M †

i = ∆

in the last case, where ∆ = diag(1,−1). Recall also that M ∈ SU1,1 if and only if
CMC−1 ∈ SL2(R) where C = ( i 1

1 i ). □

Lemma 7.12. The group generated by M1,M2,M3 is an infinite group (in each of the
three cases θ1 = 2/7, 4/7, 6/7), and they project to PSL2(C) to generate a subgroup
there isomorphic to the 237 triangle group.

Proof. See [8] Lemma 7 and [10] Appx B, Prop. 6. □

The point here is that if (M1,M2,M3) generated a finite group, then it would be
clear that they live in a finite braid group, since there are only a finite number of
triples in any finite group. Thus the fact that this orbit is finite is mysterious; it is one
of only two such exotic braid group orbits of triples in SL2(C) (up to equivalence).

However in this case we can explain this finite braid orbit S in terms of finite
groups in two ways, by identifying X as a different moduli space:

•) X is also GL3(C) character variety of a four-punctured sphere Σ◦, and the points
of S make up the braid orbit through the π1(Σ

◦) representation determined by the
triple of matrices:

r1 =
1

2

 1 −1 −a
−1 1 −a
−a −a 0

 , r2 =

1 0 0
0 1 0
0 0 −1

 , r3 =

1 0 0
0 0 1
0 1 0

 ,

where a := (1+i
√
7)/2. These matrices (from (10.1) in the classic paper of Shephard–

Todd [41]) are very special as they generate the Klein complex reflection group, a finite
group of order 336 whose projectivisation in PGL3(C) is Klein’s simple group of order
168).

The fact that X is the corresponding GL3(C) character variety of the four punc-
tured sphere containing the π1 representation determined by the triple r1, r2, r3 is
proved in [8]. As a sanity check we compute the dimension:
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Let C ⊂ GL3(C) be the conjugacy class of order two complex reflections, i.e.
matrices conjugate to diag(−1, 1, 1). Thus dim(C) = 4. Let C∞ ⊂ GL3(C) be a
generic conjugacy class, which has dimension 6. The corresponding character variety
with local monodromy class C at 3 points and C∞ at the fourth point has dimension:

dim{(g1, g2, g3, g4)
∣∣ g1, g2, g3 ∈ C, g4 ∈ C∞, g1g2g3g4 = 1}/G = 3 · 4 + 6− 2 · 8 = 2.

•) X is also a character variety of a four-punctured sphere Σ◦, with group the
exceptional complex simple algebraic group G = G2(C) of dimension 14, through a
very special triple of elements in the six-dimensional semisimple conjugacy class of G.
The triple of elements generate the finite simple group of order 6048 (a finite subgroup
of G2(C) often denoted G2(2)

′ as it is the derived subgroup of G2(2) = G2(F2)). This
was proved in B.–Paluba [16]. The dimension count in this case looks like:

3 · 6 + 12− 2 · 14 = 2.

Thus the pair S ⊂ X is related to the Klein simple group of order 168 = 23 · 3 · 7
and the simple group of order 6048 = 25 · 33 · 7, as well as the infinite 237 triangle
group.

In any case these examples give the idea that the variety X should not be thought
of as having a single fixed interpretation as an SL2(C) character variety, but has other
realisations/representations as well. In fact most examples of (symplectic) character
varieties (in genus zero) have an infinite number of representations (most of which
have not been classified).

Note: The Klein cubic surface here (related to the Klein solution of Painlevé VI equation [8]) should not be confused
with the Clebsch cubic surface (which is sometimes called the “Klein icosahedral cubic surface”)
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Research problem: Finite representations for the elliptic 237 solutions
Consider the symmetric Fricke–Klein–Vogt surface E

x y z + x2 + y2 + z2 + 2α = (1 + α)(x+ y + z)

where α = 2 cos(π/7).
It is special as it contains a braid group orbit of size 18 that has no known
relation to finite groups. The 18 points (x, y, z) of this orbit are:

(0, 1, 1), (1, 0, 1), (1, 1, 0),
(0, 1, α), (0, α, 1), (α, 0, 1),
(1, 0, α), (1, α, 0), (α, 1, 0),
(1, 1, α), (1, α, 1), (α, 1, 1),
(0, α, α), (α, 0, α), (α, α, 0),
(α, α, β), (α, β, α), (β, α, α),

where β = 2 cos(4π/7) = 1 + α − α2. In other words these 18 points are the
Sym3 orbits of the 5 points: (0, 1, α), (1, 1, 0), (1, 1, α), (α, α, 0), (α, α, β). These
Sym3 orbits have sizes 6, 3, 3, 3, 3 yielding 6 + 4 · 3 = 18 points in total.
The braid group action is generated by the operations:

β1 : (x, y, z) 7→ (x, 1 + α− z − xy, y)

β2 : (x, y, z) 7→ (z, y, 1 + α− x− yz)

One can almost compute this orbit by hand using the fact that α3 = α2+2α−1.

Problem: Find a representation of the surface E as a character variety of a
four-punctured sphere for some (reductive) complex algebraic group G, such
that the above 18 points of E correspond to triples of generators of a finite
subgroup of G. Alternatively prove there is no such representation.

This orbit (and the corresponding explicit algebraic solution of PVI, living on
the elliptic curve u2 = s (s2 + s + 7)) was found in [10], and around the same
time independently by A. V. Kitaev [32]. This orbit has two “siblings”, obtained
by replacing α by 2 cos(3π/7) or 2 cos(5π/7), i.e. the other two roots of the
polynomial α3 − (α2 + 2α− 1) (and always defining β = 1 + α− α2).
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7.5. Dubrovin’s example: braiding of BPS states.
B. Dubrovin’s 1995 paper “Geometry of topological field theories” contained an

inspiring example. In brief he looked at n× n operators of the form

Λ =
d

dz
− U − 1

z
V (u)

where U is a diagonal matrix with entries u = (u1, . . . , un), ui 6= uj and V was a
skew-symmetric complex matrix. Viewed as a connection this has an irregular singu-
larity at ∞, and Dubrovin defined its Stokes matrix S (a complex upper triangular
unipotent matrix). He used them to classify massive Frobenius manifolds (a certain
axiomatisation of certain 2d topological field theories).

On one hand, in earlier work of Cecotti–Vafa the matrix entries of S were integers
counting BPS states (solitons between vacua), and a natural braid group action was
defined on the space of matrices S. On the other hand Dubrovin found a braid group
invariant Poisson structure in the case n = 3, where

S =

1 x z
0 1 y
0 0 1


that “looked to be new”. Here are some key excerpts of his paper:
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These surfaces x2 + y2 + z2 − xyz = const. are of course easily seen to be isomor-
phic to Fricke–Klein–Vogt surfaces with the same braid group action, but Dubrovin’s
example was inspiring since the braid group action is not arising from the motion of
the poles of the operator Λ (which has only two poles, at 0,∞). Rather the braid
group action came from the motion of the matrix U , the leading coefficient of the
leading term Udz of the connection, with a pole of order 2 at z = ∞, the irregular
part of the connection.

This led to the realization that there is a whole new paradigm for (Poisson) braid
group actions on spaces of monodromy data: if you include irregular connections there
is a new type of braiding that is possible, where the space of deformation parameters
is related to the structure group, not just the pole positions (and the moduli of
Riemann surface). This idea led to the natural appearance of G-braid groups in 2d
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gauge theory [7], the new topological symplectic structures on Stokes data in general
[5, 9, 14, 12, 17], and the wild nonabelian Hodge correspondence on curves [4], that we
want to describe in detail. Some aspects of such braiding had been studied earlier (by
Garnier, Malgrange, Jimbo–Miwa–Ueno) for generic connections on vector bundles.
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7.6. Abelian Picard–Fuchs/Gauss-Manin example. [[To Add]]
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8. Lecture 4: Basic definitions

Before proceeding we will set-up some basic definitions, giving vocabulary for some
types of meromorphic connections. (The simple definition of meromorphic connection
we gave looks to be too naive for all the desired correspondences to work smoothly.)

holomorphic ⊂ logarithmic ⊂ · · · ⊂ very good ⊂ good ⊂ · · ·
generic logarithmic ⊂ generic irregular ⊂ nonresonant ⊂ · · · ⊂ very good ⊂ · · ·

Suppose (E,∇)→ Σ is a meromorphic connection with poles at the points a ⊂ Σ.

Definition 8.1. The meromorphic connection (E,∇) is logarithmic if at each point
a ∈ a it has a pole of order ≤ 1, so takes the form

∇ = d− A, A = Λ
dz

z
+ holomorphic

in any local trivialisation, for some matrix Λ ∈ g = gln(C).

This is the simplest generalisation of holomorphic connections. Classically such
connections were sometimes said to be of the “first kind”. Note that a Fuchsian
system is thus just a logarithmic connection on a trivial vector bundle on the Riemann
sphere. (Beware that the definition of logarithmic connections on higher dimensional
complex manifolds is more subtle, and it is not enough to just have a simple pole.)

Definition 8.2. Suppose (E,∇) is a rank n logarithmic connection with residue Λ at
a ∈ Σ, and Sp(Λ) ⊂ C is the set of eigenvalues of Λ. Then (E,∇) has generic residue
if #exp(2πi Sp(Λ)) = n i.e.

#Sp(Λ) = n and “a 6= b ∈ Sp(Λ)⇒ a− b 6∈ Z”.
It is nonresonant if adΛ ∈ End(g) has no nonzero integral eigenvalues, i.e.

a 6= b ∈ Sp(Λ)⇒ a− b 6∈ Z.

Definition 8.3. The meromorphic connection (E,∇) is tame or regular singular at
a if any horizontal section on Σ◦ has at most polynomial growth at a along any ray
(when working in any local trivialisation of E across the pole). A connection that is
not tame is said to be wild or irregular singular.

These are standard definitions. The basic facts one should know (but will not
be needed directly) are that any logarithmic connection is tame, and a connection
is tame if and only if there is a meromorphic gauge transformation relating it to a
logarithmic connection. Thus we think of non-logarithmic tame connections as being
“logarithmic connections written in a bad meromorphic trivialisation”.

Exercise 8.4. Write down a tame meromorphic connection with a pole of order 2.

There is a simple criterion to see if a connection is irregular:
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Lemma 8.5. Suppose ∇ is a meromorphic connection with a pole of order ≥ 2 whose
leading coefficient is not nilpotent. Then ∇ is irregular.

Proof. See [?] p.28 □

Definition 8.6. If the meromorphic connection (E,∇) has a pole of order ≥ 2 at a
then it is said to be generic at a if the leading coefficient has n distinct eigenvalues.
Thus in some trivialisation it takes the form:

∇ = d− A, A =

(
Ak

zk
+ · · · A1

z
+ Λ

)
dz

z
+ holomorphic

for some matrix Ak = diag(c1, . . . , cn) with ci 6= cj for all i 6= j, where k ≥ 1.

These are the simplest connections beyond the logarithmic case. The previous
lemma implies they are not tame, and we will see this below explicitly. More generally:

Definition 8.7. A meromorphic connection (E,∇) is very good if at each point a ∈ a
there is a local trivialisation of E such that ∇ takes the form

∇ = d− A, A = dQ+ Λ
dz

z
+ holomorphic terms

where:

• Q =
∑k

1 Ai/z
i (the irregular type) is a diagonal matrix of meromorphic functions,

• Λ (the formal residue) is a constant matrix that commutes with each coefficient
of Q and z is a local coordinate vanishing at a.

Thus the irregular type Q is a polynomial in 1/z with coefficients in the Lie algebra
t ⊂ g = gln(C) of diagonal matrices, and zero constant term. We will prove below
that any generic connection is very good, and that a very good connection is tame if
and only if Q = 0.

We will often use the subalgebra h = Cg(Q) ⊂ g and the subgroup H = CG(Q) ⊂
G = GLn(C) given by the matrices that commute with the irregular type Q. These
are “block diagonal” (if we order the basis appropriately). Thus the condition on the
formal residue says that Λ ∈ h.

Definition 8.8. 1) A very good connection (E,∇) is nonresonant if adΛ ∈ End(h) has
no nonzero integral eigenvalues. 2) It has generic (formal) residue if exp(2πiΛ) ∈ H

is regular semisimple in H (i.e. the only elements of H that commute with exp(2πiΛ)

make up a maximal torus T ⊂ H).
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This amounts to repeating Defn 8.2 for each “block” of Λ ∈ h. Beware that these
are somehow not completely standard definitions12. Observe that if a very good
connection with irregular type Q has centraliser group CG(Q) = H = T a torus then
it is automatically nonresonant (and has generic residue).

For later use we will need a coordinate independent definition of irregular type:
Suppose a ∈ Σ is a point. Then we can consider the formal completion

Ôa
∼= C[[z]]

of the ring of functions at a and its field of fractions
K̂a
∼= C((z)).

If we choose a coordinate then Ôa is isomorphic to the ring of formal power series
C[[z]], i.e. the ring of expressions of the form

∑∞
0 aiz

i where the ai ∈ C are arbitrary.
Similarly K̂a

∼= C((z)) and elements of this are formal Laurent series, so of the form
f/zk for some integer k and some f ∈ C[[z]].

Definition 8.9. Given t ⊂ g as above and a point a ∈ Σ then an irregular type at a
is an element

Q ∈ t⊗ K̂a/Ôa.

Of course if we choose a coordinate then K̂a/Ôa
∼= z−1C[z−1] and we reduce to the

original definition. The point is that we can now discuss deformations of an irregular
type at a varying point a on the surface in an intrinsic fashion.

Later we will recall the notion of parabolic vector bundles, and extend the notion of
“very good” to connections on parabolic vector bundles, and then define the slightly
more general notion of “good” connections (those that reduce to very good connections
after pullback along a finite cyclic cover).

12Some authors define any nongeneric irregular connection to be resonant. This is misleading.
Defn. 8.8 1) appears in [11] footnote 6, and [13] p.44 in the study of nongeneric isomonodromy.
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9. Geometry at the boundary

Given a Riemann surface Σ and a point a ∈ Σ then we will define a circle ∂ (the
circle of directions at a) and a covering space π : I → ∂ of the circle of directions, i.e.
a local systems of sets. I is called the exponential local system and each component
I ⊂ I is called a Stokes circle and π restricts to a finite cover

π : I → ∂.

As we will see, this is just a geometric way to think about all the possible expo-
nential factors exp(q) appearing in solutions of meromorphic connections. It is very
convenient and will be essential in order to understand the Stokes data intrinsically.
(Examples of Stokes circles appeared in Stokes’ 1857 paper and Fabry 1885 found
formal solutions of arbitrary meromorphic linear differential equations.)

9.1. Circle of directions. If TaΣ ∼= C is the tangent space at a then

∂ = ∂a = ((TaΣ) \ {0})/R>0
∼= S1

is the set of real oriented directions at a. We picture a point d ∈ ∂ of the circle of
directions as a little arrow at a pointing in the direction d.

Given a direction d ∈ ∂ let Sectd denote a small open sector with vertex at a
spanning the direction d. We will shrink this sector whenever convenient (both its
radius and its opening)—it is a germ of an open sector (and is a subset of the open
curve Σ◦ = Σ \ a).

9.2. Stokes circles and exponential local system. The exponential local system
is a natural covering space (local system of sets) π : I → ∂. It can be defined
intrinsically but is much easier to define using a coordinate: If z is a local coordinate
on Σ vanishing at a and we choose a direction d ∈ ∂ and a branch of log(z) on Sectd
then the germs of local sections of I over d are the functions on Sectd that may be
written as finite sums of the form

(9.1) q =
∑

aiz
−ki

where ai ∈ C, and ki ∈ Q>0. As usual z−k := exp(−k log(z)) in this expression.
Thus any such q is a polynomial in t with zero constant term where t = z−1/r =
exp(− log(z)/r) for some integer r ≥ 1.

Given such a function q on Sectd then the analytic continuation of q around a will
have finite monodromy, so it will return to the same function on Sectd after a finite
number of turns. Let

I = 〈q〉 → ∂
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denote the covering circle of ∂ that parameterises all these branches of the function
q (essentially the germ of the Riemann surface of the function q as it is continued
around a). This is the Stokes circle of q.

Thus a point i ∈ I determines a function qi on Sectd where d = π(i) ∈ ∂ is the
direction below the point i ∈ I (and qi is a certain branch of the continuation of the
original function q).

Thus in brief the covering space I → ∂ is the disjoint union of all the Stokes circles
that arise from all such functions q (and two such function determine the same circle
if they are analytic continuations of each other, i.e. if they are in the same Galois
orbit).

Remark 9.1. An intrinsic (coordinate independent) construction of I is given in [17]
Rmk 3 (in which case sections of I are certain equivalence classes of functions on
sectors, but that will make no difference in the use of these functions below).

An isomorphic local system “dI” (whose sections are one-forms) was used by
Deligne and Malgrange in [20, 35].

9.3. Numerical invariants of a Stokes circle.
Any Stokes circle I = 〈q〉 ⊂ I has three numbers attached to it:

• The ramification Ram(q) ∈ Z≥1 is the degree of the cover π : 〈q〉 → ∂, i.e the
number of points in any fibre of this map. This is the number of branches that the
function q has, and it is the lowest common multiple of the denominators of the ki
present in the expression for q. If Ram(q) = 1 then I = 〈q〉 is unramified or untwisted.

• slope(q) ∈ Q≥0 is the largest ki occurring in (9.1), or slope(q) = 0 if q = 0.

• The irregularity Irr(q) ∈ N is the product:

Irr(q) = slope(q)Ram(q).

Some pictures of Stokes circles will be drawn below, and then it will become clear
that the irregularity is the “number of wiggles” (in a precise sense) in the Stokes circle
(or equivalently the number of points of maximal decay).

The circle 〈0〉 ⊂ I is called the tame circle and it is the only Stokes circle with
irregularity zero.

9.4. Irregular classes. An irregular class Θ (at a) is a finite multiset of Stokes
circles at a (i.e. a set with positive integer multiplicities). Thus it can be written as
a finite formal sum

Θ = n1I1 + · · ·+ nsIs
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where ni ∈ N and the Ii ⊂ I are distinct Stokes circles (but the ordering of the Stokes
circles is not part of the data).

Said differently an irregular class is (the same thing as) a continuous map

Θ : I → N
(constant on each circle) assigning an integer to each point of I, equal to zero for all
but a finite number of circles. (Thus Θ amounts to a map π0(I) → N on the set π0

of connected components.)

The rank of an irregular class Θ is the integer

(9.2) rk(Θ) =
∑

niRam(Ii) =
∑
i∈Id

Θ(i) ∈ N

for any direction d ∈ ∂, where Id denotes the fibre of the cover I over the direction
d.

Given an irregular type
Q = diag(q1, . . . , qn)

with each qi ∈ z−1C[z−1] then the corresponding irregular class is

Θ = 〈q1〉+ · · ·+ 〈qn〉

which has rank n (this means we just remember the unordered set of qi present and
the multiplicities that they are repeated with in Q).

Proposition 9.2. Any meromorphic connection (E,∇) → Σ has a rank n irregular
class Θa at each singular point a ∈ Σ, where n = rank(E).

Of course there is really an irregular class at any point of Σ, its just that it is
“trivial” in the sense that it equals n〈0〉 (the tame circle with multiplicity n) at all
nonsingular points (as happens also at any logarithmic or tame singularity).

The irregular class is really just the Galois closed list of exponents of the exponen-
tial factors appearing in any (formal) basis of solutions at a, so this will follow when
we review the formal classification later on. For example it is known that one can
do a finite cyclic pullback and then a meromorphic gauge transformation to reduce
any connection a very good connection, then the irregular type of this very good con-
nection determines the irregular class of the original connection. The irregular class
only depends on the restriction of the connection to the formal punctured disk at a
(so any two connections related by GLn(C((z))) will have the same irregular class).

Exercise 9.3. Consider the rank two irregular class Θ at x = ∞ of y′′ = fy for a
polynomial f ∈ C[x], i.e. the irregular class of the connection

d− A, A =

(
0 1
f 0

)
dx.
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Show, by pulling back under x = t2 and diagonalising the irregular part, that Θ =

〈±
∫ √

fdx〉, or more precisely:

1) If f has even degree then we can choose p ∈ C((x−1)) such that p2 = f , and in
turn choose q ∈ xC[x] such that dq − pdx ∈ C[[x−1]]dx/x. Then Θ = 〈q〉+ 〈−q〉.

2) If f has odd degree then we can choose p ∈ C((t−1)) such that p2 = f where
t2 = x, and in turn choose q ∈ tC[t] such that dq−2ptdt ∈ C[[t−1]]dt/t. Then Θ = 〈q〉.

For example y′′ = 9xy has class Θ = 〈2x3/2〉 at ∞ as in Stokes’ 1857 paper [43].

Of course to get the irregular class in practice, for any given explicit connection,
one can just use a computer algebra package to compute a basis of formal solutions
and then look at the exponential factors exp(q) that appear.

There is a similar fact for meromorphic Higgs bundles:

Proposition 9.4. Any meromorphic Higgs bundle (E,Φ)→ Σ has a rank n irregular
class Θa at each singular point a ∈ Σ, where n = rank(E).

Proof. In brief we take the integrals of the irregular part of the eigenforms of Φ. In
more detail: Locally we can write Φ = B(z)dz/z for some n×n matrix of meromorphic
functions B. Restricting to the formal punctured disk at a we can view the matrix
entries as living in K̂ = C((z)). Thus B has n eigenvalues in the algebraic closure of
K̂. This means there is an integer s ≥ 1 and n eigenvalues bi ∈ C((t)) where ts = z.
Thus Φ = B(z)dz/z has n “eigenforms” sbi(t)dt/t (since dz/z = sdt/t). Then we can
throw away the logarithmic parts and integrate to get qi(t) ∈ t−1C[t−1] such that

dqi = sbi(t)dt/t+ fi(t)dt/t

for some nonsingular fi(t). Then the qi (viewed as functions of z on any small sec-
tor) determine the function germs making up the irregular class of the Higgs bundle.
Beware that s might be larger than the total ramification of the Stokes circles in the
irregular class since we are truncating. □

9.5. Wild Riemann surfaces. It turns out that the irregular class makes up the
basic “new modular parameters” that occur for irregular connections, behaving just
like the modulus of the underlying Riemann surface and the location of the marked
points a. In particular it behaves completely differently to the formal residue Λ. This
motivates the following definition.

Definition 9.5. A rank n wild Riemann surface is a triple Σ = (Σ, a,Θ) where Σ is
a Riemann surface, a ⊂ Σ is a finite subset and Θ = {Θa

∣∣ a ∈ a} is the data of a
rank n irregular class at each point a ∈ a.
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Here we are mainly interested in the case where Σ is compact. We will define the
character variety MB(Σ) of any such wild Riemann surface, show that it is Poisson
and forms a local system of varieties under any admissible deformation of Σ.

Of course if all the irregular classes are trivial then Σ = (Σ, a,Θ) just amounts to
choosing a Riemann surface with some marked points, and then MB(Σ) will be the
usual (tame) character variety defined previously∼= Hom(π1(Σ

◦, b),GLn(C))/GLn(C).
Notes: This definition is from [14] Defn 8.1, Rmk 10.6, [17] §4. There are several minor variations that we won’t
worry about here, but are sometimes useful: One can work with irregular types instead of irregular classes (which were
called “bare irregular types” in [14] Rmk 10.6); this is analogous to whether or not we order the points a. Also one
can work with smooth complex algebraic curves instead of Riemann surfaces (which doesn’t make much difference in
the compact case); the terms “irregular curve” or “wild curve” are sometimes used to replace the term “wild Riemann
surface” in the algebraic case. Op. cit. give the definition for any complex reductive group, not just GLn(C).
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10. More geometry at the boundary

10.1. Points of maximal decay.

Given a Stokes circle I = 〈q〉 ⊂ I at a ∈ Σ then there is a distinguished finite
subset the points of maximal decay:

(q) ⊂ I

They will sometimes be called the “p.o.m.s” (or apples). The number of them is equal
to the irregularity:

# (q) = slope(q) · Ram(q) = Irr(q)

so that (q) is empty if and only if I is the tame circle. A key point to note is that
they are defined to be in I ⊂ I and not directly as a set of directions (in ∂).13

In brief if I 6= 〈0〉 then i ∈ I is a point of maximal decay if and only if the function
exp(qi) on Sectd has maximal decay along the direction d ∈ ∂ (compared to the rate
of decay along other nearby directions), where d = π(i) ∈ ∂ is the direction below
i ∈ I ⊂ I. Here qi is the function germ on Sectd determined by i ∈ I.

Putting all these together defines an infinite subset ⊂ I, so that ∩ 〈q〉 = (q).

From this definition the set is clearly well-defined (independent of any coordinate
choice). If we have a coordinate z vanishing at a then the locations of the points of
maximal decay only depend on the leading term of q (although lower terms may well
affect the ramification degree of the cover 〈q〉 → ∂). Here are some examples.

• If q = 1/z then 〈q〉 → ∂ is a trivial (degree one) cover, identifying 〈q〉 and ∂. (q)

consists of the single direction where 1/z is real and negative, i.e. arg(z) = π.

• If q = z−k with k ∈ N then 〈q〉 → ∂ is still a trivial degree 1 cover and (q) consists
of the k directions where 1/zk ∈ R−, i.e. z ∈ e(1+2j)πi/k · R+ for j = 1, . . . , k.

• Similarly if q = λ/zk +
∑k−1

1 ai/z
i with λ ∈ C∗, k ∈ N then (q) consists of the k

directions where λ/zk is real and negative.

• If q = z−1/r then 〈q〉 → ∂ is a degree r cover. Lets choose a coordinate t upstairs,
so z = tr and q = 1/t. Then (q) ⊂ 〈q〉 consists of the single point where t ∈ R−.

• Similarly if q = z−k/r with k and r coprime, then 〈q〉 → ∂ is a degree r cover. Lets
choose a coordinate t upstairs, so z = tr and q = 1/tk. Then (q) consists of the k

points where 1/tk is real and negative, i.e. t ∈ e(1+2j)πi/k · R+ for j = 1, . . . , k.

13we have a mental picture of the apples being in the tree and not yet fallen to the ground...
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• Similarly if q = λz−k/r +
∑k−1

1 aiz
−i/r with λ ∈ C∗ and k, r coprime, then (q)

consists of the k points where λ/tk is real and negative. If k, r are not coprime but
Ram(q) = r nonetheless, then (q) still consists of the k points where λ/tk ∈ R−.
For example 〈x3 + x1/2〉 has 6 apples and 〈x5/3 + x1/18〉 has 30 (where x = 1/z).

Similarly one can define the “points of decay”, “points of growth” and “points
of indeterminacy” in any non-tame Stokes circle I ⊂ I. These three sets of points
partition I and it is easy to see there are 2 · Irr(I) points of indeterminacy, interlaced
with alternating open intervals of points of growth and decay. Each interval of decay
contains a unique point of maximal decay (similarly each interval of growth contains
a unique point of maximal growth, but we won’t need to use those points).

In simple examples this growth/decay can be easily visualised in the Stokes dia-
gram, as in the example of q = x17 in Figure 4, where the singularity is at a = ∞
(so z = x−1 is a local coordinate vanishing at a). For example we see on the positive
real axis that the function exp(x17) has maximal growth there, and there are 16 other
evenly spaced directions of maximal growth, interlaced with 17 directions of maximal
decay, the first at arg(x) = π/17.

Figure 4. Stokes diagram for 〈x17〉: the Stokes circle 〈x17〉 is projected
to the plane so as to indicate the growth/decay of exp(x17) near ∞.

10.2. Dominance orderings and Stokes/oscillating directions. By looking at
the growth rates of the functions exp(q) near a, there is a partial ordering <d (expo-
nential dominance) on each fibre of the cover π : I → ∂, defined as follows.

Suppose d ∈ ∂ and i, j ∈ Id are distinct points of the fibre. Thus they correspond
to function germs qi, qj on Sectd. Then (by definition)

i <d j, or qi <d qj

if exp(qi − qj) is flat (has zero asymptotic expansion) on some open sectorial neigh-
bourhood of d. In other words the point qi − qj ∈ Id is a point of decay.
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Figure 5. The Stokes diagram of 〈2x3/2〉, from Stokes’ paper [43] on
the Airy equation. The points a, b, c are the points of maximal decay.

The notation i ≤d j is defined to mean “either i <d j or i = j”.

Given an irregular class Θ =
∑

niIi let

I =
⋃

Ii ⊂ I

be the set of Stokes circles present in Θ, the “active exponents” or “finite subcover”
of I determined by Θ. Thus π : I → ∂ restricts to I expressing it as a finite cover
π : I → ∂.

The dominance relation <d restricts to a partial order on each fibre Id = π−1(d) ⊂ I
of I. Since I is a finite cover of ∂, this is actually a total order on the finite set Id for
all but a finite number of directions

S ⊂ ∂

the Stokes directions (or oscillating directions) of the irregular class Θ.

Thus if d ∈ ∂ \ S is not a Stokes direction then Id is totally ordered by the
exponential dominance relation <d.

In simple examples the changes of dominance ordering can be easily visualised
by drawing the Stokes diagram of the irregular class, as in Fig. 5 for the example
of Θ = 〈2x3/2〉 for the version y′′ = 9xy of the Airy equation studied by Stokes in
1857. The Stokes directions are the three directions where the two strands cross, at
arg(x) = ±π/3, π. This figure was also reproduced on the cover of [17]. (The modern
standard Airy equation y′′ = xy has Θ = 〈(2/3)x3/2〉, and the Stokes diagram looks
exactly the same. The differential equation is due to Stokes not Airy (see Whittaker–
Watson p.204).)

10.3. Singular directions and Stokes arrows.
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The Stokes arrows lying over a direction d ∈ ∂ are the ordered pairs (i, j) ∈ Id×Id
such that the difference

qi − qj ∈ ∩ Id
is a point of maximal decay, where qi, qj are the functions on Sectd determined by i, j
respectively. In this case we will write:

i d j.

It is viewed as an arrow from the point j to the point i. This relation defines a partial
order on each fibre Id and exponential dominance refines it (if qi d qj then qi <d qj),
since a point of maximal decay is, in particular, a point of decay. These arrows are
important as they give the geometric way to define the non-trivial matrix entries in
the Stokes matrices in the wild monodromy relations (in the presentations of the wild
character varieties).

Given an irregular class Θ with active exponents I ⊂ I then there are only a finite
number of Stokes arrows in I × I.

These Stokes arrows lie over a finite set
A ⊂ ∂

called the singular directions (or anti-Stokes directions 14).

The Stokes quiver at a singular direction d ∈ A is the quiver given by the set of
Stokes arrows d at d (and nodes given by the finite set Id).

Stokes diagram of the Weber equation, with Stokes arrows drawn.

10.4. Simple example. Consider Weber’s equation y′′ = (x2/4 + λ)y where λ ∈ C
(the equation for the parabolic cylinder functions) and the corresponding connection

∇ = d− A, A =

(
0 1

x2/4 + λ 0

)
dx.

14in fact the terms “Stokes directions” and “anti-Stokes directions” are swapped in some papers,
so we will try to prefer the unambiguous terms “oscillating directions” and “singular directions”.
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This has just one singularity, at x =∞.

A short computation, or a glance at [1] §19.8, shows the formal solutions at ∞
involve the multivalued functions f± = exp(q±)x

±λ−1/2 where q± = ±x2/4. Thus
Θ = 〈q+〉+ 〈q−〉 → ∂, with each circle 〈q±〉 a trivial degree one cover.

The exponential factors exp(q±) here are the main contributors to the behaviour
of solutions near x = ∞, and their dominance is encoded in the Stokes diagram in
the figure drawn.

From this we see immediately the oscillating directions S ⊂ ∂ are the four directions
with argument π/4+kπ/2 (where the dominance changes), and the singular directions
A ⊂ ∂ are the real and imaginary axes (where the ratio of dominances is largest).

The apples (points of maximal decay) are the four points of I that project to the
four marked points on the diagram, at the heads of the Stokes arrows.

There is a javascript program here:
https://webusers.imj-prg.fr/~philip.boalch/stokesdiagrams.html

to draw lots of other examples of Stokes diagrams, the Stokes diagrams of the “sym-
metric” or “hypotrochoid” irregular classes I(a :b) (see the explanation in the box at
the bottom there).15 In brief I(a :b) is the pull-back to the x-plane of the irregular
class 〈w1/b〉 under the map w = xa. It has k Stokes circles where k = (a, b) is the
highest common factor. Explicitly:

I(a :b) =
k−1⊔
i=0

〈εixa/b〉 ⊂ I

where ε = exp(2πi/b). For example it is the irregular class at x =∞ of the Molins–
Turrittin equation y(b) = xνy, if a = ν + b [40, 44]. Upto a constant I(1 :q+1) is also
the class of the equation for the hypergeometric series 0Fq.

15Note that such diagrams are only useful for sufficiently simple examples (those with just “one
level” in the sense that slope(qi − qj) is constant for all i, j ∈ Id).

https://webusers.imj-prg.fr/~philip.boalch/stokesdiagrams.html
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10.5. Rank two examples. The simplest rank two Stokes diagrams are collected in
Figure 6. The left four are rigid in that their (symplectic) wild character varieties are
dimension zero. They come from the ODEs of Clifford, Airy, Whittaker, Hermite–
Weber. The next two, with 5 or 6 crossings, give the wild character varieties of
Painlevé I and II.

Figure 6. The simplest rank two Stokes diagrams I(k :2), k = 1, 2, . . . , 8.

Figure 7. Example rank three Stokes diagram, I(6 :3).
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Figure 8. Stokes diagram at ∞ for the “hyperairy” equation y(4) = xy

Figure 9. Another example rank four Stokes diagram, I(12 :4).
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10.6. Example Stokes diagrams: Bessel’s equation.
Bessel’s differential equation is

x2y′′ + xy′ + (x2 − α2)y = 0

where α ∈ C. This has a regular singularity at 0 and an irregular singularity at
∞. A short computation, or a glance at a book, shows that the irregular class
x =∞ is:

Θ = 〈ix〉+ 〈−ix〉
and that α determines the local monodromy eigenvalues at 0. In particular the
singular directions are the two halves of the imaginary axis.

10.7. Example Stokes diagrams: Bessel–Clifford equation.
The Bessel–Clifford equation (also known as the confluent hypergeometric limit
equation, Kummer’s second equation, or the 0F1 equation) is:
(10.1) xy′′ + ay′ = y.

If f is any solution of this, then xa−1 ·f(−x2/4) solves the Bessel equation with
parameter α = a− 1. The irregular class at x =∞ is

〈2x1/2〉
and (if a 6∈ Z) the monodromy around 0 has eigenvalues 1, exp(−2πia).
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11. Lecture 5: Stokes local systems and wild character varieties

Now we have most of the definitions in hand to define the category of Stokes local
systems determined by any wild Riemann surface, and in turn to give their classifi-
cation in terms of Stokes representations, leading directly to the wild representation
varieties and the wild character varieties.

Note that we could just give the explicit presentations of the wild character varieties
directly, but we are going to need to see how they are tied to the surface (in order to
define the clutching maps for the nonlinear local systems of wild character varieties).

11.1. Stokes local systems. Let Σ = (Σ, a,Θ) be a rank n wild Riemann surface.
For simplicity at first suppose that a = {a} consists of just one point. The general
case will follow with minor adjustments at the end.

Thus Θ =
∑m

1 niIi is a rank n irregular class at a, with the Ii ⊂ I being distinct
Stokes circles, where I → ∂ is the exponential local system at a.

Thus we have the data:
• a surface Σ with a marked point a ∈ Σ,

• a finite cover π : I =
⋃

Ii → ∂ of the circle of directions at a,

• an integer ni = Θ(Ii) for each circle Ii ⊂ I,

• a finite subset A ⊂ ∂ (the singular directions),

• a partial order d on the fibre Id for all d ∈ A (the Stokes arrows).

This is all the “input data” we need in this section.
Let

Σ̂→ Σ

be the real oriented blow-up of Σ at the point a. Thus in effect we replace the point
a ∈ Σ by the circle ∂ so that the boundary ∂Σ̂ = ∂ is the circle ∂ of directions at a.
Topologically Σ̂ is got by gluing the circle ∂ to the punctured curve Σ◦ = Σ \ {a},
and the inclusion Σ◦ ↪→ Σ̂ is a homotopy equivalence.

Then we define the “wild curve”

Σ̃ = Σ̂ \ e(A) ⊂ Σ̂

(or “auxiliary surface”) by deleting a point e(d) (a tangential puncture) in the interior
of Σ̂ near to each singular direction d ∈ A ⊂ ∂ ⊂ Σ̂.

It doesn’t matter exactly where we put these tangential punctures e(d). One way
to do this is to choose a tubular neighbourhood, the “halo”:

H ⊂ Σ̂
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of the circle ∂ (i.e. a small annulus with one boundary equal to ∂ and the other
boundary circle ∂′ in the interior of Σ̂). Then fix an isomorphism e : ∂ ∼= ∂′ so the
rays d → e(d) in H do not cross (for d ∈ A). Then remove all the points e(A) from
Σ̂ to get Σ̃.

For example if we look at Σ = (P1,∞,Θ) with Θ = 〈x3〉 + 〈−x3〉 then Σ̂ is
topologically a closed disk and the wild curve Σ̃ looks as follows:

Halo at ∞ with singular directions and Stokes diagram

Here ∂ is the outer boundary circle, the black circles • are the singular directions,
the shaded annulus is the halo (at x =∞) and the tangential punctures ◦ are on the
interior boundary of the halo.

Definition 11.1. A Stokes local system on Σ is a local system V→ Σ̃ of n-dimensional
complex vector spaces such that:

1) the restriction of V to ∂ is graded by the cover I → ∂ (in to pieces of dimension
given by Θ), and

2) the local monodromy of V around any tangential puncture e(d) is in the corre-
sponding Stokes group Stod ⊂ GL(Vd), for any d ∈ A.

To understand this we need to discuss gradings and the Stokes groups:

• 1) Suppose V → ∂ is a local system of n-dimensional complex vector spaces; we
want to define what it means to grade V by the cover I → ∂.

Each fibre Vd
∼= Cn should be graded by the corresponding fibre Id of I (a finite

set). This means we have to choose a decomposition:
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Vd =
⊕
i∈Id

Vd(i)

of the fibres into a direct sum of subspaces Vd(i) ⊂ Vd, indexed by the points i ∈ Id
of the fibre of I at d. Moreover the dimensions of the graded pieces should be fixed
by Θ:

dim(Vd(i)) = Θ(i)

for all i ∈ Id. (Recall that we sometimes think of Θ as a map I → N, constant on
each circle.)

Moreover these gradings should be locally constant; as we move d everything varies
smoothly. If we choose any path γ in ∂ from d to d′ say, then we get transport maps

TV = TV
γ (d, d

′) : Vd

∼=−→Vd′

T I = T I
γ (d, d

′) : Id
∼=−→Id′

for the local systems V and I respectively. The gradings are locally constant if and
only if the transport of V relates the graded pieces, according to the transport of I,
i.e. in symbols:

TV(Vd(i)) = Vd′(T
I(i))

for all i ∈ Id.

Exercise 11.2. (1) Show that the grading of V → ∂ is determined by the grading of
just one fibre Vd for any d ∈ ∂.

(2) Give an example to show that in general an arbitrary grading of the fibre Vd

will not extend to a grading of V→ ∂.

(3) Show that the graded pieces Vd(i) assemble into a local system on I, such
that the fibre at i ∈ I is Vd(i). Deduce that an I-graded local system on ∂ (with
dimensions Θ) is the same thing as a local system of vector spaces on I, where the
local system on each circle Ii ⊂ I has rank Θ(Ii).

(4) Show that an I-graded local system is a special type of I-graded local system
(where all the other Stokes circles in I grade the trivial zero-dimensional subspace of
each fibre).

• 2) Given a singular direction d ∈ A ⊂ ∂ and any vector space W = Vd graded by
Id, then the partial order d on Id determines a unipotent subgroup

Stod ⊂ GL(W ),

the Stokes group. In brief the arrows in the partial order give the off-diagonal blocks
that are allowed to be nonzero. Since W is graded then there is a decomposition

End(W ) =
⊕
i,j∈Id

Hom(Wi,Wj)
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of End(W ) in “block matrices”. Thus there is a subspace

Lie(Stod) :=
⊕
i dj

Hom(Wi,Wj) ⊂ End(W )

where in effect we just select the block matrix entries that are related by the partial
order.

Now we claim that since d is a partial order then Lie(Stod) (as defined above) is
a nilpotent Lie subalgebra of End(W ), the Lie algebra Lie(GL(W )) of GL(W ).

First the transitivity of the partial order shows that it is a Lie algebra (with bracket
given by that of End(W ), i.e. commutator of matrices). To see it is nilpotent just
observe that any partial order can be extended, by adding some more arrows, to a
total order (of the set Id). This implies that Lie(Stod) is inside the strictly upper-
triangular block matrices (if written in the total order), and is thus nilpotent.

Consequently we can exponentiate to define the (unipotent) Stokes group:
Stod = exp(Lie Stod)

= {1 + (wij) ∈ End(W )
∣∣ wij : Wj → Wi is zero unless i d j}(11.1)

⊂ GL(W ).

This completes the explanations of the ingredients of the definition of the Stokes
local systems: a local system V→ Σ̃ whose restriction to ∂ is graded by I → ∂ (with
dimension Θ). Note that we can think of the grading as being given over the whole
of the halo (if we just grade over ∂ then the grading propagates over H).

The other condition is that the local monodromy around each tangential puncture
e(d) should be in Stod. This means that if we choose a small loop γ around e(d),
based at some point b ∈ Σ̃, inside the halo, then the monodromy Tγ(b, b) ∈ GL(Vb)
of V around γ should lie in the Stokes group. This is well defined since the basepoint
is in the halo (near d ∈ A ⊂ ∂) so that Vb is graded by Id and so we can define the
Stokes group in GL(Vb), as above (we could just choose the basepoint b = d ∈ ∂, and
take γ that crosses H and then goes around e(d) before returning to d.)

This gives the abstract notion of Stokes local system (actually very close to that in
Stokes’ original paper, as we will see later)16. It is set-up so that Stokes local systems
are easy to classify, as in the tame case, so we will do that next.

16Various minor variations are possible (see [15] Rmk 8.4). What is “really happening” is that the
connection determines the local system V → Σ◦ of analytic solutions, and on H it also determines
a different, graded local system V 0 → H, and moreover, away from the singular directions, it also
determines a way to glue V 0 to V . The result of this Stokes gluing is encoded in the Stokes local
system V (gluing V to V 0 away from A).
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11.2. Wild representation variety. Given a rank n wild Riemann surface Σ =

(Σ, a,Θ) as above (with just one marked point), define Σ̃ ⊂ Σ̂→ Σ as above.

Now choose a basepoint b ∈ ∂ ⊂ Σ̃ and let

Π = π1(Σ̃, b)

be the fundamental group of the wild curve Σ̃ based at b. This is the wild surface group
of Σ, based at b. (Of course Σ̃ is itself a surface but the tangential punctures play a
special role and should not be confused with usual punctures.)

Now since a Stokes local system V is a local system on Σ̃ it is easy to classify
Stokes local systems in terms of representations of Π. We just need to translate the
axioms for Stokes local systems in terms of their monodromy representations.

Define the “standard fibre” at b to be the n-dimensional graded vector space:

F = CΘ :=
⊕
i∈Ib

CΘ(i)

which is a copy of Cn, graded according to the dimensions determined by Θ. Thus if
V is any Stokes local system on Σ then the fibre Vb is isomorphic to F as a graded
vector space.

Definition 11.3. A framing of a Stokes local system V on Σ is the choice of a graded
isomorphism

φ : F → Vb

from the standard fibre to the fibre of V at b. A framed Stokes local system is a pair
(V, φ) where V is a Stokes local system and φ is a framing of V. The framing group
is the group

H = GrAut(F) ∼=
∏
i∈Ib

GL(CΘ(i))

of graded automorphisms of F (it is the “block diagonal” subgroup of GL(F)).

Thus if we have a framed Stokes local system (V, φ) then its Stokes representation
is the map

ρ : Π→ GLn(C) = GL(F)

taking a loop γ in Σ̃ based at b, to the transport Tγ(b, b) ∈ GL(Vb) determined by V,
and then identifying GL(Vb) ∼= GL(F) using the framing φ. Thus

ρ ∈ Hom(Π, G)

where G = GLn(C). Now observe that if ρ comes from a Stokes local system then it
obeys the following two Stokes conditions reflecting that V

∣∣
∂

is graded, and that the
local monodromies around the tangential punctures are in the Stokes groups:
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SR1) Given any singular direction d ∈ A let α be the positive arc in ∂ from b to
d, and let γd be the simple loop based at d going out to e(d) around it in a positive
sense and then back to d. Then let ηd = α−1 ◦γd ◦α ∈ Π be the corresponding simple
loop around e(d) based at b. The first Stokes condition is that:

ρ(ηd) ∈ Stod ⊂ GL(F)
for all d ∈ A, where we transfer the Stokes arrows from Id to Ib using the transport
of I over α (and use them to define the Stokes group in GL(F)).

SR2) Suppose we view the circle ∂ as a loop in Σ̂ based at b, in a positive sense.
Then the second Stokes condition is that ρ(∂) ∈ GL(F) permutes the graded pieces
according to the monodromy of I, i.e.:
(11.2) ρ(∂)(F(i)) = F(ρ̂(∂)(i))

for all i ∈ Ib, where ρ̂(∂) : Ib
∼=−→Ib is the monodromy of the cover I → ∂ around the

loop ∂ and F(i) ⊂ F is the graded piece of F indexed by i ∈ Ib.

Definition 11.4. The wild representation variety of Σ with basepoint b is the subva-
riety

R = R(Σ) = HomS(Π, G) ⊂ Hom(Π, G)

of Stokes representations, i.e. the elements ρ ∈ Hom(Π, G) such that both SR1) and
SR2) hold. Here G = GL(F) = GLn(C) and Π = π1(Σ̃, b).

Choosing a presentation of Π enables to see the structure of R:

Lemma 11.5. The wild representation variety R(Σ) is an affine variety with a nat-
ural action of the framing group H, conjugating Stokes representations. The points of
R are in bijection with the set of isomorphism classes of framed Stokes local systems
on Σ.

Proof. The last statement is an exercise, as in the tame case. It is clear the framing
group H = GrAut(F) acts naturally to change the framings: any two framings φ1, φ2

of Vb are related by φ2 = φ1 ◦ h for a unique h ∈ H. If Σ has genus g and there
are r = #A singular directions at a then Hom(Π, G) has a presentation as the closed
subvariety of G2g+r+1 cut out by the matrix equation

hSr · · ·S2S1[A1, B1] · · · [Ag, Bg] = 1

where h = ρ(∂), Si = ρ(γi) (with γi the loop around the ith singular direction in a
positive sense from b as in SR1), and [A,B] = ABA−1B−1. Now the Stokes conditions
say that Si ∈ Stoi and h is in the subvariety:

H(∂) := {h ∈ G
∣∣ h(F(i)) = F(ρ̂(∂)(i)) for all i ∈ Ib} ⊂ G.

Both of these are closed conditions, and so it follows that HomS(Π, G) ⊂ Hom(Π, G)
is affine. The group H acts by diagonal conjugation, and this action preserves the
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Stokes groups and H(∂). □

Exercise 11.6. 1) Show that H(∂) = H if and only if the cover I → ∂ is trivial, i.e.
has no monodromy.

2) Show in general that H acts freely and transitively on H(∂) by left or by right
multiplication. Deduce that for any two points h1, h2 ∈ H(∂) there is a unique element
hL ∈ H such that h1 = hLh2. Similarly show there is a unique element hR ∈ H such
that h1 = h2hR. (This implies that H(∂) is an “H-bitorsor”)

Figure 10. Σ = (P1,∞,Θ),Θ = n〈x2〉+m〈−x2〉.

Exercise 11.7. Consider the wild curve in Fig. 10. Show that dimR(Σ) = 2nm and
it has a presentation of the form:

hS4S3S2S1 = 1

where h is block diagonal and the Si are in alternating block triangular unipotent
groups. Show that it also has a presentation of the form:

R ∼= {(a, b) ∈ Hom(Cn,Cm)× Hom(Cm,Cn)
∣∣ det(1 + ab) 6= 0}.

11.3. Wild character variety. Now we can define the wild character variety of the
wild Riemann surface Σ in the case with just one marked point. Namely, as above, if
we choose a basepoint b ∈ ∂ then Σ determines the wild surface group Π = π1(Σ̃, b)
and the wild representation variety, the space of Stokes representations:

R = HomS(Π, G) ⊂ Hom(Π, G)

where G = GLn(C). This is an affine variety equipped with an action of the framing
group H ⊂ G. Moreover H =

∏
i∈Ib GL(CΘ(i)) is a complex reductive group.
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Definition 11.8. The wild character variety MB(Σ) of Σ is the affine geometric
invariant theory quotient of R by H. Thus it is the affine variety determined by the
the ring

C[R]H ⊂ C[R]
of H-invariant algebraic functions on R (the maximal spectrum). The points of
MB(Σ) are the closed H orbits in R (the so-called polystable points of R):
(11.3) MB(Σ) = Rps/H = HomS(Π, G)ps/H.

As mentioned before, we don’t worry about the exact positions of the tangential
punctures and view Π as being canonically determined by Σ and b. A slightly more
complicated definition makes this literally true (as in [15] Rmk 8.4 point 2). One
can also consider the stack theoretic quotient, leading to the wild character stack
MB(Σ) = [R/H].

Thus we have defined an arrow
Σ⇝MB(Σ)

attaching a variety to a wild Riemann surface, and in the tame case Θ = n〈0〉 this
reproduces the usual Betti space/character variety. Many basic examples will be
given in Lectures 6,7. The main result we want to get to next are a) thatMB(Σ) is a
complex algebraic Poisson and b) that they form a local system of varieties over any
admissible deformation of Σ. In particular this motivates the definition: Note that
H acts on the subvariety H(∂) ⊂ G by conjugation.

Definition 11.9. For any conjugacy class C ⊂ H(∂) (i.e. an H-orbit under the con-
jugation action) the symplectic wild character variety is the (locally closed) subvariety

MB(C) ⊂MB

where the formal monodromy ρ(∂) ∈ H(∂) is restricted to be in C.

Of course for now this is just a definition, but these spaces will turn out to be the
symplectic leaves of the Poisson varieties MB(Σ). If there are more marked points
we fix the conjugacy class of formal monodromy at each one.

Remark 11.10. This general definition/construction is from the 2015 paper [17], that showed the spaces MB(Σ) have
natural algebraic Poisson structures. It generalises the construction in [14] in the case when all the Stokes circles are
untwisted. In turn that generalises (via the intermediate step in [12]) the 2002 approach in the generic case [9]. (All
these papers actually work in the context of any connected complex reductive group G, not just G = GLn(C), and
with any number of marked points. In fact [17] also allows the group G to be non-constant, i.e. to be subject to
twisting automorphisms, as it moves over the surface Σ◦). Beware that the term “wild character variety” was only
introduced quite recently (in [14]) although the basic examples arose earlier (the best terminology is probably the
“character variety of the wild Riemann surface”). Exercise 11.7 is from [14] §4, giving a link to Van den Bergh [46].
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11.4. More marked points. Adding more marked points is straightforward, but we
then need to use more basepoints, so we end up with wild surface groupoids, rather
than groups.

In fact even in the tame case admits with ≥ 2 marked points it turns out to be
very convenient to use one basepoint for each marked point.

[[To add]]
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12. Link to connections

This section will state the link between Stokes local systems and algebraic connec-
tions, in abstract terms. More down-to-earth description will come later (as reviewed
in [15] §A.3). We will start by reviewing the tame case conceptually.

12.1. The tame case. Let Σ = (Σ, a) for a smooth compact complex algebraic curve
Σ and a finite subset a ⊂ Σ. Let Σ◦ = Σ \ a.

Let Conn(Σ◦) denote the category of algebraic connections on algebraic vector
bundles on Σ◦. (Note that any meromorphic connection on Σ with poles on a is
really algebraic so restricts to an object of Conn(Σ◦).)

Now as in the compact case (recall in Thm. 4.1) we have a sequence of functors:

Conn(Σ◦)
(1)−→Connan(Σ

◦)→ ConnC∞,flat(Σ
◦)→ LocSys(Σ◦)→ π1(Σ

◦, b)-mod.

and all of them are equivalences except the first one (1). There are far more algebraic
connections on the open curve than are captured by the topological fundamental
group.

In fact the subcategory
Connrs(Σ◦) ⊂ Conn(Σ◦)

of regular singular (or “tame”) connections on Σ◦ is exactly the part of Conn(Σ◦)

that is captured by π1; one can prove that the analytification functor (1) restricts to
give an equivalence:
Theorem 12.1. Suppose Σ◦ is a smooth complex algebraic curve. The following
categories are equivalent (via the specific functors described in Thm. 4.1):

1) Regular singular algebraic connections on algebraic vector bundles on Σ◦,

2) Holomorphic connections on holomorphic vector bundles on Σ◦,

3) Flat C∞ connections on C∞ complex vector bundles on Σ◦,

4) Local systems of finite dimensional complex vector spaces on Σ◦,

5) For any fixed basepoint b ∈ Σ◦, the category of finite dimensional complex
π1(Σ

◦, b) representations.

This leads to the (tame) character varieties as already defined in (7.2):
(12.1) MB(Σ, G) = Rps/G, R = Hom(π1(Σ

◦, b), G)

of the representation variety R of the punctured Σ◦ by the conjugation action of
G = GLn(C), for any choice of basepoint b ∈ Σ◦.
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What we are doing here really is to first consider the rank n local systems:
LocSysn ⊂ LocSys(Σ◦).

These form a “groupoid” (if we just look at morphisms which are isomorphisms), and
we showed that the set of isomorphism classes in LocSysn is the same as the set of G
orbits in R. This leads to the (tame) character variety (by doing the affine quotient).

The only new statement in Thm. 12.1 is 1)⇐⇒ 2) and that is proved in Deligne’s
1970 book “Équations différentielles à points singuliers réguliers” [21], and reviewed in
Katz’s overview paper [31] (in fact Deligne proves this for all smooth quasi-projective
varieties and the curve case seems to go back to earlier (Plemelj, Rohrl, Levelt)).

Remark 12.2. Beware that no-one knows any interesting character varieties (of smooth
quasi-projective varieties) beyond the curve case: apparently all known examples
of character varieties are isomorphic to a curve case (via the map restricting local
systems to a sufficiently generic curve). This is the “construction problem”, in a
remark of Simpson in https://arxiv.org/abs/math/0410224 p.2. It highlights the
importance of surface groups. There is still lots of work for mathematicians to do
though, since most of the applications lie in the wild case on curves...

12.2. Wild case. A rephrasing of the Riemann–Hilbert–Birkhoff correspondence im-
plies:

Theorem 12.3 (Stokes, Birkhoff, Malgrange, Sibuya, Jurkat, Deligne, ...). The
Stokes local systems on Σ classify the algebraic connections on Σ◦ with irregular class
Θ at a (i.e. there is an equivalence of groupoids).

The equivalence between Stokes local systems and some of these other approaches
is detailed in “Topology of the Stokes phenomenon” [15]. The Stokes local systems
are close to the approach in Stokes’ original paper (as we will see) and many of the
notions above come from Loday-Richaud [33] and Martinet–Ramis [39], and in turn
Écalle, Dingle, Watson, É. Borel.

More generally one can define a “Stokes local system on Σ◦ = Σ \ {a}” to be a
pair (Θ,V) consisting of an irregular class Θ at a and a Stokes local system V on
Σ = (Σ, a,Θ). These form the category SLocSys(Σ◦) of Stokes local systems and the
Riemann–Hilbert–Birkhoff correspondence proved by the authors listed above can be
restated as giving an equivalence of categories with all the algebraic connections on
Σ◦:

Conn(Σ◦)
∼=−→ SLocSys(Σ◦)

Now the passage from here to the wild character varieties is the exact generalization
of the tame case: fixing the irregular class generalizes the notion of fixing the rank n,

https://arxiv.org/abs/math/0410224
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so the subgroupoid
SLocSys(Σ) = SLocSysΘ(Σ◦) ⊂ SLocSys(Σ◦)

of Stokes local systems of class Θ is the generalisation of LocSysn(Σ◦) ⊂ LocSys(Σ◦).

Indeed if Θ = n〈0〉 then SLocSysΘ(Σ◦) = LocSysn(Σ◦). The set of isomorphism
classes of SLocSys(Σ) is the set of H orbits in the affine variety R = HomS(Π, G)
and the wild character variety is the corresponding affine quotient

MB(Σ) = Rps/H, R = HomS(Π, G).

Note that any meromorphic connection on a compact Riemann surface is equivalent
to an algebraic one, and so restricts to give an element of Conn(Σ◦) and thus has a
Stokes local system attached to it.
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13. Some useful linear algebra

In this section we will collect two linear algebra results that arise often in the study
of Stokes data.

13.1. Gauss factorisation. Suppose W = U ⊕ V and write an element g ∈
GL(W ) in block form

g =

(
a b
c d

)
with a ∈ End(U), b ∈ Hom(V, U) etc.

1) Show that det(a) 6= 0 if and only if g can be written in the form

g =

(
1 0
e 1

)(
x 0
0 y

)(
1 f
0 1

)
with x, y invertible. If det(a) 6= 0 show the decomposition is unique and write
the expressions for x, y, e, f as functions of a, b, c, d.

2) Suppose W = V1 ⊕ · · · ⊕ Vk for some k. Let U± ⊂ GL(W ) be the block
upper/lower triangular unipotent subgroups and let H ⊂ GL(W ) be the block
diagonal subgroup. Deduce from 1) that the image of the multiplication map

U− ×H × U+ → GL(W ); (u−, h, u+) 7→ u−hu+

is exactly the complement of the subvariety
det(g1) det(g2) · · · det(gk−1) = 0

where gi ∈ End(V1⊕· · ·⊕Vi) is the ith top-left submatrix of g. Let G◦ ⊂ GL(W )
denote the image, i.e. the open subset det(g1) · · · det(gk−1) 6= 0, and show that
the multiplication map gives an algebraic isomorphism

U− ×H × U+

∼=−→ G◦.

The dense open subset G◦ ⊂ G is often called the “big Gauss cell” (especially
in the case where all the Vi are of dimension one, even though it is not a cell).
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13.2. Direct spanning isomorphisms. The construction of the Stokes groups can
be carried out by taking a product of smaller “elementary” unipotent groups, one for
each Stokes arrow in the Stokes quiver. Thus it is good to know some basic facts
about such products, and the corresponding unique factorisations of the elements of
the Stokes groups into the elementary pieces for each Stokes arrow. In fact this will
be crucial for understanding the nonlinear local system structure of the wild character
varieties, i.e. how to define irregular isomonodromy, when the irregular class moves.
This can be done directly for GLn(C), but we will give a general statement (from [18]
or [42]) that is useful for other algebraic groups as well17.

Basic example. Suppose W = C3 and consider the subgroups:

G1 =

1 ∗ 0
0 1 0
0 0 1

 , G2 =

1 0 0
0 1 ∗
0 0 1

 , G3 =

1 0 ∗
0 1 0
0 0 1


of the full unipotent triangular subgroup U+ ⊂ GL(W ).
Identify Gi

∼= C in the obvious way and show that the product map
(13.1) G3 ×G2 ×G1 → U+

is an algebraic isomorphism, and use it to identify U+
∼= C3.

Show that the product map
(13.2) G1 ×G2 ×G3 → U+

(in the opposite order) is also an algebraic isomorphism, and deduce that the
resulting composite isomorphism

G1 ×G2 ×G3

∼=−→ U+

∼=←− G3 ×G2 ×G1

is given by the nonlinear automorphism:
(13.3) (a, b, c) 7→ (a, b, ab+ c)

of C3. The maps (13.1),(13.2) are basic examples of direct spanning isomor-
phisms, and the composition (13.3) is called an (irregular) isomonodromy iso-
morphism, or a wall crossing isomorphism (recall the link to physics in §7.5).

Here is a general approach to such isomorphisms, that it is good to be aware of.

Let T ∼= (C∗)n be a torus and let U be a connected (complex affine) unipotent
group, on which T acts by algebraic group automorphisms. Let u = Lie(U). Consider

17the GLn(C) case was done directly in [3] Lem. 2, and used in [45] to define irregular isomon-
odromy of generic meromorphic connections (see also [30, 36]). This was connected to the general
notion of direct spanning in [5] Lem 3.2, that was subsequently used in a critical way in [7] Lem.
2.4, where G-valued Stokes data and irregular isomonodromy was defined, beyond the GLn(C) case.
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the action of T on U and the corresponding action of t = Lie(T ) on u. Write

u =
⊕
α∈Φ

uα

for the decomposition of u under the action of t. Here Φ ⊂ t∗ is the set of weights
that occur for this action: If α ∈ Φ and X ∈ t then

[X,Y ] = α(X)Y

for all Y ∈ uα, where [X,Y ] denotes the action of t on u. Suppose that:

1) all the subspaces uα are one-dimensional, for α ∈ Φ

2) zero is not a weight for the action: 0 6∈ Φ

3) distinct weight spaces are not collinear: if α 6= β ∈ Φ the Cα 6= Cβ ⊂ u.

Let Uα ⊂ U be the one-dimensional closed subgroup with Lie algebra uα. Choose
a nonzero element (a basis) eα ∈ uα of each (one dimensional) space uα, and let

vα : C→ uα → Uα; x 7→ exp(xeα)

be the algebraic isomorphism of C onto the unipotent subgroup Uα ⊂ U given by
x 7→ exp(xeα) for x ∈ C.

Lemma 13.1 (Direct spanning 1). For any total ordering φ : {1, . . . , N} ∼= Φ of
Φ the map

CN →
∏

Uα → U ; (x1, . . . , xN) 7→ v1(x1)v2(x2) · · · vN(xN) ∈ U

is an algebraic isomorphism, where vi = vϕ(i).

Proof. This is Lemma 8.2.2 in Springer’s book [42], applied to the solvable group
T o U given by the semidirect product of T and U . □

Note this is saying that the map
∏

Uα → U is an isomorphism of affine algebraic
varieties, not of groups.

We will often use this type of statement in the following form. Let G be a complex
reductive group such as GLn(C). Fix a maximal torus T ⊂ G and a Borel subgroup
B with T ⊂ B ⊂ G. Let

g = t⊕
⊕
α∈R

gα

be the root decomposition of g = Lie(G), where t = Lie(T ). Here R ⊂ t∗ is the
root system, and the gα are the root spaces; they are one dimensional and are the
eigenspaces for the adjoint action of t: if α ∈ R then

gα = {X ∈ g
∣∣ [Y,X] = α(Y )X for all Y ∈ t} ∼= C.
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In other words gα is a joint eigenspace for all the operators adY for Y ∈ t, and
α(Y ) ∈ C is the eigenvalue for the action of adY on gα. Let Uα = exp(gα) ⊂ G
be the corresponding “root group”. For example the three groups Gi above are root
groups for GL3(C). The choice of B is equivalent to an “ordering” of the roots, i.e.
the choice of a system of positive roots

R+ ⊂ R

so Lie(B) = t⊕
⊕

α∈R+
gα. The Weyl group of G acts simply transitively on the set

of such root orderings.

Proposition 13.2 (Direct spanning 2). Suppose we are given a subset S ⊂ R+ of
the set of positive roots, that is closed in the sense that:

if α, β ∈ S and α + β ∈ R, then α + β ∈ S.

Then for any total ordering φ : {1, . . . , N} ∼= S of S the product map
−→∏
α∈S

Uα → U+ ⊂ G

is an algebraic isomorphism onto its image, and its image is a closed subgroup of U+.

Proof. See §14 of Borel’s book [18], or use the previous result. □

Exercise 13.3. 1) Show that this result applies directly in the case of G = GLn(C) to
construct any Stokes group of any “multiplicity one” irregular class, i.e. of the form
Θ =

∑m
1 Ii for distinct Stokes circles Ii ⊂ I. (Hint: identify the Stokes arrows with

roots, and see the examples in Lectures 6,7.)

2) Show it also applies directly in the case of arbitrary multiplicities, if we use the
standard diagonal maximal torus of GL(F) = GLn(C). (Hint: break up each Stokes
arrow into a union of smaller arrows.)

Remark 13.4. At this point we start to see a surprisingly intricate interrelation be-
tween the theory of Stokes data and the theory of algebraic groups. This apparent
coincidence can be “explained” by noting that they are both natural offshoots of the
study of the Galois groups of algebraic linear connections (Kolchin’s work on differ-
ential Galois theory led to the abstract study of algebraic groups18, and the Stokes
data are part of the canonical topological generators of the differential Galois group,
in Ramis’ density theorem.)

18see e.g. Chevalley’s MathSciNet review of [?].
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Figure 11. K. Ueno’s first note ⇝ isomonodromy of generic irregular connections.
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14. Lecture 6: Examples 1 (Fission spaces and Birkhoff’s examples)

14.1. Fission spaces. The TQFT approach to wild character varieties involves cut-
ting and gluing pieces of surface. Thus we need some basic building blocks.

Given a rank n irregular class Θ at some point a ∈ Σ, the fission space A(Θ) is
the variety obtained by choosing a small disk ∆ around a and taking the wild repre-
sentation variety of the wild Riemann surface (∆, a,Θ). Of course since everything
is topological the fission spaces that arise in this way are the same as taking the
Riemann sphere with two marked points, one of which is tame:

A(Θ) = R(P1, (0,∞), (Θ, n〈0〉)).

It is easy to choose a presentation of Π to describe A explicitly:

Lemma 14.1. The fission space A(Θ) has the explicit description
A(Θ) ∼= G×H(∂)× Sto

where G = GLn(C), H(∂) ⊂ G and Sto ∼= CN is the product of all the Stokes groups
and
(14.1) N = Irr(End(Θ))

is the irregularity of the (rank n2) irregular class End(Θ) determined by Θ.

Proof. Choose basepoints β = {bH , bG} so there is a basepoint on each of the two
boundary circles; in Fig. 12 the outer boundary is the G-boundary and the inner
boundary is the H-boundary.

C

S4

S1

S2

S3

h

Figure 12. Σ̃ for the fission space A, with irregular singularity at 0.

Choosing generating paths of Π = Π1(Σ̃, β) as in Fig. 12 gives an isomorphism
A = HomS(Π, G) ∼= G×H(∂)× Sto

where Sto :=
∏

d∈A Stod is the product of the Stokes groups, translated to be sub-
groups of G = GL(F) = GLn(C) where F is the standard fibre (at bH).
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Thus a point of A is of the form (C, h,S) where C ∈ G is the transport between the
basepoints (classically called a “connection matrix”), h = ρ(∂H) ∈ H(∂) is the formal
monodromy (around the H-boundary circle) and S = (S1, . . . , Sr) ∈ Sto (where
r = #A) are the Stokes automorphisms.

The dimension is given by counting the Stokes arrows. In general if Θ =
∑

niIi is
any irregular class then its irregularity is defined to be

Irr(Θ) :=
∑

niIrr(Ii)

where Irr(Ii) is the irregularity of the Stokes circle Ii, as usual. If Θ =
∑

niIi and
I =

⋃
Ii ⊂ I then the irregular class End(Θ) is defined to be the rank n2 class

determined by the n2 functions on Sectb:

(14.2) qi − qj repeated Θ(i)Θ(j) times

for all i, j ∈ Ib ⊂ Ib (where b = bH is the H-basepoint). Note that n =
∑

i∈Ib Θ(i)

so there are indeed n2 functions here. Now, by definition, the Stokes arrows are the
points of maximal decay of this class End(Θ) (i.e. where the differences (14.2) have
maximal decay) and so Irr(End(Θ)) is just counting the Stokes arrows of Θ. □

For later use we define a map µ = (µG, µH) : A → G × H(∂) taking the pos-
itively oriented monodromies around the boundary circles. In terms of the chosen
presentation this works out explicitly as follows:

(14.3) µG : A → G; µG(C, h,S) = C−1hSr · · ·S1C

(14.4) µH : A → H(∂); µG(C, h,S) = h−1.

Of course topologically the annulus and the cylinder are the same so we can view
the fission space as in Fig. 14.1, thus giving a way to break the structure group from
G to H when the boundaries circles are glued into other surfaces.

Figure 13. Fission space, breaking the structure group from G to H.

Eventually, if Θ is not twisted, so that H(∂) = H, we will change viewpoints and
see the different factors of H can move off on independent surfaces, so for example if
H = H1 ×H2 one has the fission picture:
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∼=

G

H1 H2

G

H

Figure 14. Another way to picture the fission spaces

Similarly we define the reduced fission space B = B(Θ) as the wild representation
variety of the Riemann sphere with just one marked point and irregular class Θ:

B(Θ) = R(P1,∞,Θ).

We already saw simple examples of reduced fission spaces such as that of the Weber
equation in Exercise 11.7:

Figure 15. Σ = (P1,∞, 〈±x2〉),B ∼= {a, b ∈ C
∣∣ 1 + ab 6= 0}.

Lemma 14.2. The reduced fission space B = B(Θ) has the explicit description

B(Θ) ∼= {(h,S) ∈ H(∂)× Sto
∣∣ hSr · · ·S1 = 1}

where H(∂) ⊂ G and Sto is the product of all the Stokes groups. If nonempty it has
dimension Irr(End(Θ)) + dim(H)− n2.

Proof. Observe that it arises as the G-reduction
B = A//G := µ−1

G (1)/G

of A. The G action on A is free and taking the quotient corresponds to forgetting
C ∈ G so that A/G = H(∂) × Sto. Then we just look at the (codimension n2)
subvariety µ−1

G (1) inside this space. Note that the reduction process corresponds to
gluing a disk onto the G boundary of the wild curve Σ̃ of A to get that of B. □
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14.2. Birkhoff’s examples: the “rootiness” of Stokes data. Two classes of ex-
amples of Stokes data are quite well-known: those of Birkhoff [?] (rank n with generic
leading term), and those in Sibuya’s 1975 book [?] (rank two, possibly twisted). Com-
bined they cover most of the examples you are likely to first meet. In this section we
will describe Birkhoff’s examples in detail, and cover Sibuya’s in the next lecture.

The simplest Birkhoff example is as follows. Suppose Θ =
∑n

1 〈−ai/z〉 is the
irregular class of the irregular type Q = −A/z at z = 0, where A = diag(a1, . . . , an)
for distinct complex numbers ai ∈ C. Any connection of the form

∇ = d−B, B = A
dz

z2
+ (holomorphic)dz

z

has irregular class Θ at z = 0, since dQ = Adz/z2.

Let A = A(Θ) ∼= G× T × Sto be the corresponding fission space, for some choice
of basepoints, where G = GLn(C) and T ⊂ G is the diagonal torus. We know
immediately that dimSto = n2 − n since we can count the Stokes arrows:

Lemma 14.3. dimSto = IrrEnd(Θ) = n2 − n and so dim(A) = 2n2.

Proof. If qi = −ai/z then by definition End(Θ) = n〈0〉 +
∑

i ̸=j〈(ai − aj)/z〉. This
consists of n circles with no apples and n2 − n with exactly 1 apple. □

Of course we can easily just compute where all the Stokes arrows are. This is most
cleanly described in terms of the root system of G = GLn(C).

Let T ⊂ G be the diagonal maximal torus and let t ⊂ g = End(Cn) be the Lie
algebras. Let R ⊂ t∗ be the roots of (g, t); this is just the set of linear maps

αij : t→ C;αij(X) = Xii −Xjj

for i 6= j, so that g = t⊕
⊕

α∈R gα where

gα := {Y ∈ g
∣∣ [X,Y ] = α(X)Y for all X ∈ t}

is the root space of the root α (i.e. the one-dimensional subspace of matrices whose
corresponding off-diagonal matrix entry is possibly nonzero).

Lemma 14.4. The singular directions d ∈ A ⊂ ∂ at z = 0 of Θ = 〈Q〉 are the
directions from 0 to the points

〈A,R〉 = {α(A)
∣∣ α ∈ R} = {ai − aj

∣∣ i 6= j} ⊂ C∗.

Proof. We need to find the directions along which z is such that α(Q) is real and
negative, for any root α ∈ R. In other words where −α(A)/z is real and negative.
This just says that arg(z) = arg(α(A)). □
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Thus we see the singular directions A very clearly by using A to project the roots
onto the z-plane (as in [7] p.1133 for any G). It is then easy to see the Stokes groups
themselves. Note that Θ is not twisted so the set of Stokes circles Θ = I → ∂
is a trivial degree n cover (and we have already labelled the components by the
integers 1, . . . , n by writing Θ =

∑
〈−ai/z〉), so we can just work in a fixed copy of

G = GLn(C) with the fixed (diagonal) maximal torus T .

Lemma 14.5. For any direction d ∈ ∂ let R(d) ⊂ R be the subset of roots that project
to the direction d:

R(d) = {α ∈ R
∣∣ α(A) ∈ d ⊂ C∗}

where we identify the direction d with the ray (∼= R+) in the direction d in C∗. Then
R(d) “is” the set of Stokes arrows in the fibre Id, and the Stokes group Stod is the
corresponding unipotent subgroup of G:

Stod = exp

 ⊕
α∈R(d)

gα

 ⊂ G.

We leave this as an exercise (see [7] for the proof for any G).

d1

d2

dl

R+

R−

Figure 16. Projecting the roots R ⊂ t∗ to the plane via A ∈ treg, to
define the singular directions and the Stokes groups.
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Thus if A is sufficiently generic then each Stokes group has dimension one19. On
the other hand if A is maximally nongeneric (e.g. if A is real) then there are only
two Stokes groups, each of dimension n(n− 1)/2.

Using direct spanning we can identify Sto, as a space, to a pair of opposite full
unipotent groups for any A.

Let V+, V− ⊂ G be the unipotent triangular subgroups and let B± = T oV± be the
corresponding Borel subgroups (the full triangular subgroups). Define a unipotent
subgroup U ⊂ G to be a “full unipotent subgroup” if it is conjugate to V+ by some
permutation matrix P ∈ G. In turn define a pair of unipotent subgroups U+, U− ⊂ G
to be “opposite full unipotent subgroups” if the pair is conjugate to V+, V− by some
permutation matrix p ∈ G, i.e.

U+ = pV+p
−1 and U− = pV−p

−1.

In general (for any complex reductive group) note that the Weyl group acts simply
transitively on the set of Borel subgroups containing T , and each such B ⊃ T has a
unique “opposite” Borel group B′ ⊃ T with B∩B′ = T . The “opposite full unipotent
subgroups” are then just the unipotent radicals of opposite Borels containing T .

Finally define a half-period to be a subset d ⊂ A of #A/2 consecutive singular
directions. (This is just the set of singular directions in some half-open interval
[d, d+ π) ⊂ ∂ of opening π.)

Then we can collect the Stokes groups into full unipotent groups:

Lemma 14.6 ([3]). For any choice of half-period d ⊂ A there is an isomorphism

Sto =
∏
d∈A

Stod ∼= U+ × U−

to a pair of opposite full unipotent subgroups U± of G, and thus the fission space is:

A ∼= G× T × U+ × U−.

Proof. The direct spanning results §13.2 show that the product map∏
d∈d

Stod → G

maps the Stokes groups over d isomorphically (as a space) on to a full unipotent
group. And in turn the Stokes groups over A\d map onto the opposite full unipotent

19this is actually the case Birkhoff looked at: a connection is Birkhoff generic if it is generic
and all the Stokes groups have dimension one. The passage from Birkhoff generic to generic is
well-documented in [3] (but the resulting spaces are still isomorphic to those of Birkhoff, as in Lem.
14.6; of course this isomorphism is crucial for isomonodromy). Beware one needs to rotate by π in
this example to get Birkhoff’s exact picture though; we use Stokes’ approach, that fits with modern
resurgence ideas.
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group. □

Thus up to isomorphism all these spaces look the same. Similarly Birkhoff consid-
ered similar cases with higher order poles.

Definition 14.7. Choose G, T and a pair of opposite full unipotent group U± as
above. For integers k > 0 the “generic fission spaces” are

Ak = G× T × (U+ × U−)
k.

Exercise 14.8. 1) Generalise the above discussion to show that the fission space A(Q)

of Q = A/zk is isomorphic to Ak for any k > 0, where A is any diagonal matrix
with distinct eigenvalues. (Hint: define a half-period to be the consecutive singular
directions in some half-open interval [d, d+ π/k) ⊂ ∂ of opening π/k, and show that
the Stokes groups of consecutive half-periods directly span opposite full unipotent
groups.)

2) Show the same is true if we add any lower order terms so that Q =
∑k

1 Ai/z
i

for diagonal matrices Ai, with Ak having distinct eigenvalues.
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Exercise 14.9. 1) Compare20 the Stokes diagram of the symmetric irregular class
I(4 :4) (which fits into the above discussion for k = 1) with that of the symmetric
irregular class I(1 :4) (which is twisted, but its degree four cyclic pullback is I(4 :4)).
Show that the Stokes arrows at d ∈ A are in bijection with the crossings at d + π/2

(and also with the crossings at d − π/2). Recall that g = sl4(C) has 3 simple roots
and 12 roots and that 12 = 4 × 3, where 4 is the Coxeter number of g. Show that
the root projection 〈A,R〉 determining the Stokes arrows of I(4 :4) is the same as
the famous “Coxeter plane” projection of the roots (and it is symmetric as it is the
pullback of I(1 :4). [Hint: see [?] for A.]

2) (*) Develop a theory of G-valued Stokes data for any G and show the same is
true, replacing I(1 :4) by the irregular class Θ of the Frenkel–Gross connection and
I(4 :4) by the unramified degree h pull-back of Θ, where h is the Coxeter number
of G. Show that for G = E8(C) this gives Peter McMullen’s famous drawing of the
Coxeter projection of the E8 roots (see Fig. 17). [Hint: see [17] for G-valued Stokes
data for twisted connections like that of Frenkel–Gross, building on [7, 14]]

Figure 17. Coxeter projection of the E8 roots; There are 60 rays with
four roots; they give the 60 four-dimensional Stokes groups of the degree
30 cyclic pullback of the E8 Frenkel–Gross connection

20Using https://webusers.imj-prg.fr/~philip.boalch/stokesdiagrams.html or otherwise.

https://webusers.imj-prg.fr/~philip.boalch/stokesdiagrams.html
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14.3. Birkhoff’s dimension count revisited. Lets now take stock and see how the
fission spacesAk give moduli spaces of the right dimension, for all generic connections.

Suppose we have a generic meromorphic connection on the trivial vector bundle on
the Riemann sphere. Lets choose a coordinate z so all the poles are at finite distance.
Thus

∇ = d− A, A =

(
m∑
i=1

ri∑
j=1

Aij

(z − ai)j

)
dz

for some matrices Aij with each leading coefficient Airi generic.

Observe that this has no pole at ∞ if and only if the residue terms sum to zero:
A11 + · · ·+ Am1 = 0.

This is simply because dz/(z − a)j is holomorphic at ∞ unless j = 1, and if j = 1 it
has a simple pole at ∞ with residue −1.

Now lets look at the local picture at a pole (at z = 0 say). We want to fix the
irregular type and the formal residue. Thus we choose an irregular type

Q =
k∑
1

Ai/z
i

for diagonal matrices A1, . . . , Ak, so that Ak has distinct eigenvalues and a diagonal
matrix Λ ∈ t = Cg(Q). If A has irregular type Q and formal residue Λ then

A = g

(
dQ+ Λ

dz

z

)
g−1 + holomorphic

in a neighbourhood ∆ of z = 0, for some holomorphic map g : ∆→ G = GLn(C).

We can formalise this by saying that the principal part of A is in a certain orbit
O, defined as follows.

Let r = k + 1 and consider the group
Gr = GLn(C[z]/zr)

of r-jets of maps to G, and its Lie algebra

gr = {X = X0 +X1z + · · ·+Xkz
k
∣∣ Xi ∈ g}

where the Lie bracket is given by the additive commutator, forgetting all higher order
terms. The vector space dual of gr can be identified with principal parts:

g∗r =

{
B =

(
Bk

zk
+ · · ·+ B1

z
+B0

)
dz

z

∣∣ Bi ∈ g

}
of connections. The pairing (to see it actually is the dual vector space) is given by:

〈B,X〉 = Res0Tr(BX) =
∑

Tr(BiXi).
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Now the group Gr acts on g∗r by conjugation (ignoring any holomorphic terms in the
result)

g[B] = gBg−1

for g ∈ Gr, B ∈ g∗r. Now let O ⊂ g∗r be the orbit of dQ+ Λdz/z so that:

O = {g(dQ+ Λdz/z)g−1
∣∣ g ∈ Gr} ⊂ g∗r.

Thus fixing the irregular type and formal residue becomes the statement:

Lemma 14.10. The connection d− A has irregular type Q and formal residue Λ at
z = 0 if and only if the principal part of A at 0 is in O:

PP0(A) ∈ O.

In general we will repeat this at each pole, choosing an irregular type Qi at ai with
a pole of order ki, and also Λi ∈ t, for i = 1, . . . ,m. Thus if we let Oi be the orbit of
dQi + Λidz/(z − ai) at ai then the global space of connections we are looking at is

{d− A
∣∣ PPai(A) ∈ Oi,

m∑
1

Resai(A) = 0}

This is the subvariety
µ−1(0) ⊂ O1 × · · · × Om

of the product of the orbits, where
µ : O1 × · · · × Om → g

is the map taking the sum of the residues. Finally we want to look at the isomorphism
classes of such connections: the global automorphisms of the trivial bundle are the
holomorphic maps g : P1 → G, so they are just constant elements of G. This leads
to the additive moduli space

M∗ = O1 × · · · × Om//G := µ−1(0)/G.

As usual we do the quotient as an affine geometric invariant theory quotient, taking
the closed G orbits (acting by diagonal conjugation). We don’t worry about this too
much since it is possible to prove21 that if the Λi are sufficiently generic then all the
orbits in µ−1(0) are closed (so then the affine quotient is the same as the set-theoretic
quotient, and the projective group PGLn(C) of G acts freely). Thus we can rephrase
Birkhoff’s question as asking for a space of “generalised monodromy data” of such
connections, of the same dimension as M∗, which is:

dim(M∗) =
m∑
1

dim(Oi)− 2(n2 − 1)

(if the Λi are generic).
21see (8.1) in [4].
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Now in the Fuchsian case with generic residues, where each Qi = 0 and Λi has
distinct eigenvalues not differing by any integers, the matching of the dimensions
with the character variety comes from the local fact that

dim(Oi) = dim(Ci)

where Ci = exp(2π
√
−1Oi) ⊂ G is the conjugacy class determined by Oi. Indeed in

the case of an m-punctured sphere with fixed local monodromy conjugacy classes

MB(C) = C1 × · · · × Cm//G := µ−1
G (1)/G

where
µG : C1 × · · · × Cm → G;M1, . . . ,Mm 7→M1 · · ·Mm ∈ G

and G acts by diagonal conjugation, so that

dim(MB(C)) =
m∑
1

dim(Ci)− 2(n2 − 1).

Thus, returning to the general case with Oi ⊂ g∗ri , we can restate Birkhoff’s ques-
tion similarly, as the following local version:

Can we find define a deeper analogue Ci of a conjugacy class, of dimension
dim(Oi) for each i, equipped with an action of G and a map µi : Ci → G as
well as a map:

M∗ →MB(C) := C1 × · · · × Cm//G := µ−1
G (1)/G

where µG = µ1 · · ·µm : C1 × · · · × Cm → G?

The surprises are a) that this can be done, and b) that (at least as far as the
author can tell) that Ci is not (naturally) a conjugacy class of Gri . Rather the moduli
get spread out around the circle of directions (rather than along a Taylor/Laurent
series), and it is easy to construct Ci from the fission space Aki :

Definition 14.11. The deeper conjugacy class C determined by a generic irregular
type Q (with a pole of order k) and Λ ∈ t is

C := A //
t

G = µ−1
T (t)/T

where A ∼= Ak is the generic fission space of Q, µT : A → T is the formal monodromy
and t = exp(−2πiΛ) ∈ T .

For the moment we just note the basic facts that follow easily:

1) C is well defined as the T action on A is free; it acts as t(C, h, S1, . . . , S2k) =

(tC, h, tS1t
−1, . . . , tS2kt

−1).

2) The map µG : A → G descends to define µG : C → G,
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3) dim(C) = dimA−2 dimT = n2+n+kn(n−1)−2n = (k+1)n(n−1) = rn(n−1)

4) dimO(dQ + Λdz/z) = dim(Gr) − r dim(T ) = rn2 − rn = rn(n − 1) since the
stabiliser in Gr of dQ+ Λdz/z is the diagonal subgroup, of dimension rn.

Of course this is just the start of the story, and it is a big step to go from the generic
case to the very good case (and then to understand the cyclic covers to get to the full
twisted setting). Our next main aim is to show that the maps µG : C → G are group
valued moment maps so that the quotient MB(C) inherits an algebraic symplectic
structure.

Figure 18. Explicit genus zero wild monodromy relation, from [30].
A key question is to prove that the left-hand side is a group valued
moment map, so the reduction, the wild character variety, is symplectic.

Note. Birkhoff’s main paper on this is [?]. A very clear exposition of the local story in the generic case is in [3]
(see also [?]), and the global story in the generic case is in [30]. The approach using the orbits O sketched here is
from [5], generalising the suggestive rephrasing of the tame case given in [?, 2].
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