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In simple examples this growth/decay can be easily visualised in the Stokes dia-
gram, as in the example of q = x17 in Figure 5, where the singularity is at a = ∞
(so z = x−1 is a local coordinate vanishing at a). For example we see on the positive
real axis that the function exp(x17) has maximal growth there, and there are 16 other
evenly spaced directions of maximal growth, interlaced with 17 directions of maximal
decay, the first at arg(x) = π/17.

Figure 5. Stokes diagram for 〈x17〉: the Stokes circle 〈x17〉 is projected
to the plane so as to indicate the growth/decay of exp(x17) near ∞.



Figure 6. The Stokes diagram of 〈2x3/2〉, from Stokes’ paper [?] on
the Airy equation. The points a, b, c are the points of maximal decay.



Stokes diagram of the Weber equation, with Stokes arrows drawn.



There is a javascript program here:
https://webusers.imj-prg.fr/~philip.boalch/stokesdiagrams.html

to draw lots of other examples of Stokes diagrams, the Stokes diagrams of the “sym-
metric” or “hypotrochoid” irregular classes I(a :b) (see the explanation in the box at
the bottom there).15 In brief I(a :b) is the pull-back to the x-plane of the irregular
class 〈w1/b〉 under the map w = xa. It has k Stokes circles where k = (a, b) is the
highest common factor. Explicitly:

I(a :b) =
k−1⊔
i=0

〈εixa/b〉 ⊂ I

where ε = exp(2πi/b). For example it is the irregular class at x =∞ of the Molins–
Turrittin equation y(b) = xνy, if a = ν + b [?, ?]. Upto a constant I(1 :q + 1) is also
the irregular class at∞ of the differential equation for the hypergeometric series 0Fq.

15Note that such diagrams are only useful for sufficiently simple examples (those with just “one
level” in the sense that slope(qi − qj) is constant for all i, j ∈ Id).



10.5. Rank two examples. The simplest rank two Stokes diagrams are collected in
Figure 7. The left four are rigid in that their (symplectic) wild character varieties are
dimension zero. They come from the ODEs of Clifford, Airy, Whittaker, Hermite–
Weber. The next two, with 5 or 6 crossings, give the wild character varieties of
Painlevé I and II.

Figure 7. The simplest rank two Stokes diagrams I(k :2), k = 1, 2, . . . , 8.



Figure 8. Example rank three Stokes diagram, I(6 :3).



Figure 9. Stokes diagram at ∞ for the “hyperairy” equation y(4) = xy



Figure 10. Another example rank four Stokes diagram, I(12 :4).



10.6. Example Stokes diagrams: Bessel’s equation.
Bessel’s differential equation is

x2y′′ + xy′ + (x2 − α2)y = 0

where α ∈ C. This has a regular singularity at 0 and an irregular singularity at
∞. A short computation, or a glance at a book, shows that the irregular class
x =∞ is:

Θ = 〈ix〉+ 〈−ix〉
and that α determines the local monodromy eigenvalues at 0. In particular the
singular directions are the two halves of the imaginary axis.



10.7. Example Stokes diagrams: Bessel–Clifford equation.
The Bessel–Clifford equation (also known as the confluent hypergeometric limit
equation, Kummer’s second equation, or the 0F1 equation) is:
(10.1) xy′′ + ay′ = y.

If f is any solution of this, then xa−1 ·f(−x2/4) solves the Bessel equation with
parameter α = a− 1. The irregular class at x =∞ is

〈2x1/2〉
and (if a 6∈ Z) the monodromy around 0 has eigenvalues 1, exp(−2πia).






























































































































