Algebraic Poisson structures in global Lie theory

Philip Batch, IMJTPRG \& cuRS Paris

- See also short survey arxiv: 1703 for more background
- course notes: ~/cours23/

Geometrically, what are the six Painlevé equations* trying to tell us?

* Picard, Painlevé, R. Fuchs, Gambier

Geometrically, what are the six Painlevé equations trying to tell us?

Henri Poincaré:

" Les Mathématiques constituent un continent solidement agencé, dont tous les pays sont bien reliés les uns aux autres; l'œuvre de Paul Painlevé est une ille originale et splendide dans locéan voisin"

Geometrically, what are the six Painlevé equations trying to tell us?

Henri Poincaré:

" Les Mathématiques constituent un continent solidement agencé, dont tous les pays sont bien reliés les uns aux autres; l'œuvre de Paul Painlevé est une ille originale et splendide dans locéan voisin"

Geometrically, what is the Riemann-Hilbert-Birkhoff correspondence* trying to tell us?

* Stokes, Birkhoff, Malgrange, Sibuya, Jurkat, Deligne, Écalle, Martinet, Ramis, ...
$G=G L_{n}(\mathbb{C})$ (or any other complex reductive group)
Riemann surface $\Sigma \leadsto$ character variety

$$
\begin{gathered}
M_{B}=R / G \\
R=\operatorname{Hom}(\pi,(\varepsilon, b), G)
\end{gathered}
$$

representation variety
wild Riemann surface $\underset{\sim}{\Sigma} \leadsto$ wild character variety

$$
\begin{aligned}
& \mu_{B}=R / \underset{\sim}{H} \\
& R=\operatorname{Hom}_{\mathscr{B}}(\pi, G)
\end{aligned}
$$

wild representation variety
$G=G L_{n}(\mathbb{C})$ (or any other complex reductive group)
Riemann surface $\Sigma \leadsto$ character variety

$$
\begin{gathered}
\mu_{B}=R / G \\
R=\operatorname{Hbm}(\pi,(\varepsilon, b), G)
\end{gathered}
$$

representation variety
wild Riemann surface $\underset{\sim}{\Sigma} \leadsto$ wild character variety

$$
\begin{aligned}
& \mu_{B}=R / \underset{\sim}{H} \\
& R=\operatorname{Hom}_{\mathscr{B}}(\pi, G)
\end{aligned}
$$

Chm (B.-Yamakawa)
wild representation variety M_{B} is alg. Poisson variety, points are the reductive Stokes representations, any admissible deformation of $\underset{\sim}{\sum} \Rightarrow$ load system of Poisson varieties

More precise references:

- Irregular Atiyah-Bott $\int_{\Sigma} \operatorname{Tr}(\alpha \wedge \beta)$:
[1] P.B., Symplectic manifolds and isomonodromic deformations, Adv. in Math. 163 (2001), 137-205. (Oxford thesis 1999, ICM poster 1998)
- Hyperkähler upgrade of [1]—new complete hyperkähler manifolds, beyond instantons:
[2] O.Biquard and P.B., Wild non-abelian Hodge theory on curves, Compositio Math. 140 (2004), no. 1, 179-204. (arXiv:math/0111098, 2001)
- Purely algebraic construction of the topological symplectic/Poisson structures, via complex quasi-Hamiltonian geometry:
[3] P.B., Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J. 139 (2007), no. 2, 369-405, (arXiv:math/0203161, 2002).
[4] P.B., Through the analytic halo: Fission via irregular singularities, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, 2669-2684, Volume in honour of B. Malgrange. [5] P.B., Geometry and braiding of Stokes data; Fission and wild character varieties, Annals of Math. 179 (2014), 301-365.
[6] P.B. and D. Yamakawa, Twisted wild character varieties, arXiv:1512.08091, 2015.

Lie theory

$$
\begin{aligned}
& g \longrightarrow G \\
& x \longmapsto \exp (x)
\end{aligned}
$$

connection $\frac{x}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy

Lie theory

$$
\begin{aligned}
& g \longrightarrow G \\
& x \longmapsto \exp (x)
\end{aligned}
$$

connection $\frac{x}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy
Global Lie theory
Connection $\left(\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{A_{i j}}{\left(z-a_{i}\right)^{j}}\right) d z \longmapsto \begin{gathered}\text { mondromy } \\ \&\end{gathered}$ \& Stokes data

Lie theory

$$
\begin{aligned}
& g \longrightarrow G \\
& x \longmapsto \exp (x)
\end{aligned}
$$

connection $\frac{X}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy
Global Lie theory
Connection $\left(\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{A_{i j}}{\left(z-a_{i}\right)^{i}}\right) d z \longmapsto \begin{gathered}\text { monodromy } \\ \text { \& stree }\end{gathered}$ \& Stokes data
moduli spaces:

Lie theory

$$
\begin{aligned}
& \sigma \longrightarrow G \\
& x \longmapsto \exp (x)
\end{aligned}
$$

connection $\frac{X}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy
Global Lie theory
Connection $\left(\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{A_{i j}}{\left(z-a_{i}\right)^{i}}\right) d z \longmapsto \begin{gathered}\text { monodromy } \\ \&\end{gathered}$ \& Stokes data
moduli spaces: $M^{*} \longleftrightarrow M_{D R} \xrightarrow{\cong} \mu_{B}$ wild character variety (same dimension)

Lie theory

$$
\begin{aligned}
& O \longrightarrow G \\
& x \longmapsto \exp (x)
\end{aligned}
$$

connection $\frac{x}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy
Global Lie theory
Connection $\left(\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{A_{i j}}{\left(z-a_{i}\right)^{i}}\right) d z \longmapsto$ monodromy \& Strikes data
moduli s spaces:

$$
M^{*} \longleftrightarrow M_{D R} \xrightarrow{\cong} M_{\beta}
$$

wild character variety (same dimension)
wild harmric bundles (ad effectuality)

Lie theory

$$
\begin{aligned}
& \sigma \longrightarrow G \\
& x \longmapsto \exp (x)
\end{aligned}
$$

connection $\frac{X}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy
Global Lie theory
Connection $\left(\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{A_{i j}}{\left(z-a_{i}\right)^{i}}\right) d z \longmapsto$ monodromy \& Stokes data
moduli spaces:

wild character variety (same dimension)
wild harmonic bundles (ad seffeduality)

Lie theory

$$
\begin{aligned}
& \sigma \longrightarrow G \\
& x \longmapsto \exp (x)
\end{aligned}
$$

connection $\frac{X}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy
Global Lie theory
Connection $\left(\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{A_{i j}}{\left(z-a_{i}\right)^{i}}\right) d z \longmapsto \begin{gathered}\text { monodromy } \\ \&\end{gathered}$ \& Stress data
moduli s spaces:

wild character variety (same dimension)
wild harmonic bundles (ad seffecdualty)

Lie theory

connection $\frac{X}{2 \pi i} \frac{d z}{z} \longmapsto$ monodromy
Global Lie theory
Connection $\left(\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{A_{i j}}{\left(z-a_{i}\right)^{j}}\right) d z \longmapsto \underset{\&}{\text { mondromy }} \underset{\&}{\text { stab ec }}$ \& Stress data
moduli spaces:

Classify via diagrams? (eg. sometimes M^{*} is a quiver variety)

PainlevéII:

$$
Q=\left(\begin{array}{ll}
x^{3} & \\
& -x^{3}
\end{array}\right)
$$

Solutions involve e^{Q}
plot growth / decay of $\exp \left(x^{3}\right), \exp \left(-x^{3}\right)$:

Stokes diagram with Stokes directions

Halo at ∞ with singular directions

Painlevé II: $\quad Q=\left(\begin{array}{ll}x^{3} & -x^{3}\end{array}\right)$
Solutions involve e^{Q}
plot growth / decay of $\exp \left(x^{3}\right), \exp \left(-x^{3}\right)$:

Stokes diagram with Stokes directions

Halo at ∞ with singular directions

2×2 matrix relation result: \hat{A}_{1}

Airy equation (Stoles 1857)
solutions involve $\exp \left(x^{3 / 2}\right)$

Airy equation (Stoles 1857)
solutions involve $\exp \left(x^{3 / 2}\right)$

$$
\begin{aligned}
& \mu_{G}=1 \\
& \begin{array}{l}
h S_{3} S_{2} S_{1}=1 \\
\left.\left(\begin{array}{ll}
1 & u_{1} \\
10
\end{array}\right) u_{+} u_{-} \right\rvert\, u_{+}
\end{array}
\end{aligned}
$$

$$
\cong Q
$$

\qquad relations

- resulting diagram

Painlevé $1 \exp \left(x^{5 / 2}\right)$

Much of the story can be summarised in the (slightly oversimplified) diagram:
Dolbeault DeRham Betti

Rational Lax matrices L

$$
\dot{L}=[P, L]
$$

$$
\cap
$$

Mero. Higgs bundles

Holom. Higgs bundles

$$
(E, \Phi)
$$

Rational diff. op.s
$\frac{d}{d z}-B$
\cap
$\xrightarrow{\text { wnAbH }}$ Mero. connections (E, ∇)
\cup

Stokes and monodromy data

Stokes local systems

$\stackrel{\text { nAbH }}{\longleftrightarrow}$ Holom. connections $\stackrel{\mathrm{RH}}{(E, \nabla)}$

$$
(E, \nabla)
$$

$$
\pi_{1} \text {-rep.s }
$$

Very good connections \sim models in Biquard-B. 2004

$$
\left(\text { cf. exposition in }\left\{\begin{array}{l}
\text { arxiviv: } 1203.6607 \\
\hline 10376
\end{array}\right)\right.
$$

ε compact Riemann surface, $a \subset \varepsilon$ finite subset
$V \rightarrow \Sigma$ holomorphic vector bundle
7 parabolic filtration (in $V_{a} \forall a \in a$)
$\nabla: V \rightarrow V \otimes \Omega^{\prime}(* a)$ meromorphic connection
such that ...

Very good connections \sim models in Biquard-B. 20044

$$
\text { (cf. exposition in }\left\{\begin{array}{l}
\text { arxiviv:1703. } 10307
\end{array}\right)
$$

ε compact Riemann surface, $a \subset \varepsilon$ finite subset
$V \rightarrow \Sigma$ holomorphic vector bundle
7 parabolic filtration (in $V_{a} \forall a \in a$)
$\nabla: V \rightarrow V \otimes \Omega^{\prime}(* a)$ meromorphic connection such that have local bases (at each $a \in \underset{\sim}{a}$) splitting η_{a} such that:

- $\nabla=d-A, \quad A=d Q+1 \frac{d z}{z}+$ holomorphic terms
$Q=\sum_{1}^{k} \frac{A_{i}}{Z^{i}}, A_{i}$ diagonal matrices (irregular type)
$1 \in h$ preserves ta, $h=\operatorname{lie}(H), H=C_{G}(Q)$
["Good" if some local cyclic pull beck is very good (twisted case)]
$\leadsto M_{D R}$ moduli of stable corrections, $Q, G r(1)$, parabolic weights fixed

Very good Hings bundles \sim models in Biquard-B. 20044

$$
\left(\text { cf. exposition in }\left\{\begin{array}{l}
\text { arxiv: }: 1703.10376
\end{array}\right)\right.
$$

ε compact Riemann surface, $a \subset \varepsilon$ finite subset
$V \rightarrow \Sigma$ holomorphic vector bundle
7 parabolic filtration (in $V_{a} \forall a \in a$)
Ф: $V \rightarrow V \otimes \Omega^{\prime}(* a)$ meromorphic Highs field such that have local bases (at each $a \in \underset{\sim}{a}$) splitting η_{a} such that:

$$
\Phi=d Q+1 \frac{d z}{z}+\text { holomorphic terms }
$$

$Q=\sum_{1}^{k} \frac{A_{i}}{Z^{i}}, A_{i}$ diagonal matrices (irregular type)
$1 \in h$ preserves fa, $h=\operatorname{lie}(H), H=C_{G}(Q)$
["Good" if some local cyclic pull beck is very good (t wisted case)]
$\leadsto M_{D_{0} C}$ moduli of stable Higgsbundles, $\underset{\sim}{Q}, G r(1)$, parabolic weights fixed

General choices/boundary data (twisted case) [Betti weights zero]
Fact \exists covering $I \rightarrow \partial$ such that:
$\left\{\begin{array}{c}\text { connections on formal } \\ \text { punctured disk }\end{array}\right\} \Leftrightarrow\{\tau$-graded local systems $\}$
[Ebbry, Hukamara, Turritfon, levelt, Junket, Deligne]

General choices/boundary data (Gvisted case) [Betti weights zero]
Fact \exists covering $I \rightarrow \partial$ such that:
$\left\{\begin{array}{c}\text { connections on formal } \\ \text { punctured disk }\end{array}\right\} \Leftrightarrow\{\tau$-graded local systems $\}$ punctured disk
[Eabry, Hukamora, Turrititio, levels, Surkat, Peligne]

function on sector: $q=\sum_{i=0} a_{i} z^{-i / r} \quad(r \in \mathbb{N})$
\Rightarrow Stokes circle $\langle q\rangle$ (Riemannsunfoce / Galois $\begin{gathered}\text { orbit })\end{gathered}$

$$
\begin{array}{ll}
\Psi & U\langle q\rangle \\
\downarrow & \text { exponential } \\
\partial & \text { locellsystem }
\end{array}
$$

General choices/boundary data (twisted case) [Betti weights zero]
Fact \exists covering $\mathcal{I} \rightarrow \partial$ such that:
$\left\{\begin{array}{c}\text { connections on formal } \\ \text { punctured } d s k\end{array}\right\} \Leftrightarrow\{\tau$-graded local systems $\}$
[Ebbry, Hukama, Turritton, levelt, Jurkat, Peligne]

function on sector: $q=\sum_{i=0} a_{i} z^{-i / r} \quad(r \in \mathbb{N})$
\Rightarrow Stokes circle $\langle q\rangle$ (Riemannsurfece $\left./ \begin{array}{c}\text { Galois } \\ \text { orbit }\end{array}\right)$
\downarrow
∂

$$
\begin{array}{ll|}
\hline I & U\langle q\rangle \\
\downarrow & \text { exponential } \\
\partial & \text { local system }
\end{array}
$$

τ-graded load system $V \rightarrow \partial$ of vector spaces
local system $V \rightarrow I$ with compact support
ie $V \rightarrow I, I \subset I$ finite subcorer
\Rightarrow Irregular class $\mathbb{H}=n_{1}\left\langle q_{1}\right\rangle+\cdots+n_{m}\left\langle q_{m}\right\rangle \quad n_{i}=\left.r k U\right|_{\text {oi }}$

+ monodromy classes $e_{i} \subset G \ln ;(\mathbb{C})$

In simple examples this growth/decay can be easily visualised in the Stokes diagram, as in the example of $q=x^{17}$ in Figure 5, where the singularity is at $a=\infty$ (so $z=x^{-1}$ is a local coordinate vanishing at a). For example we see on the positive real axis that the function $\exp \left(x^{17}\right)$ has maximal growth there, and there are 16 other evenly spaced directions of maximal growth, interlaced with 17 directions of maximal decay, the first at $\arg (x)=\pi / 17$.

Figure 5. Stokes diagram for $\left\langle x^{17}\right\rangle$: the Stokes circle $\left\langle x^{17}\right\rangle$ is projected to the plane so as to indicate the growth/decay of $\exp \left(x^{17}\right)$ near ∞.

Figure 6. The Stokes diagram of $\left\langle 2 x^{3 / 2}\right\rangle$, from Stokes' paper [?] on the Airy equation. The points a, b, c are the points of maximal decay.

Stokes diagram of the Weber equation, with Stokes arrows drawn.

There is a javascript program here:
https://webusers.imj-prg.fr/~philip.boalch/stokesdiagrams.html
to draw lots of other examples of Stokes diagrams, the Stokes diagrams of the "symmetric" or "hypotrochoid" irregular classes $I(a: b)$ (see the explanation in the box at the bottom there). ${ }^{15}$ In brief $I(a: b)$ is the pull-back to the x-plane of the irregular class $\left\langle w^{1 / b}\right\rangle$ under the map $w=x^{a}$. It has k Stokes circles where $k=(a, b)$ is the highest common factor. Explicitly:

$$
I(a: b)=\bigsqcup_{i=0}^{k-1}\left\langle\varepsilon^{i} x^{a / b}\right\rangle \subset \mathcal{I}
$$

where $\varepsilon=\exp (2 \pi i / b)$. For example it is the irregular class at $x=\infty$ of the MolinsTurrittin equation $y^{(b)}=x^{\nu} y$, if $a=\nu+b[?, ?]$. Upto a constant $I(1: q+1)$ is also the irregular class at ∞ of the differential equation for the hypergeometric series ${ }_{0} F_{q}$.
10.5. Rank two examples. The simplest rank two Stokes diagrams are collected in Figure 7. The left four are rigid in that their (symplectic) wild character varieties are dimension zero. They come from the ODEs of Clifford, Airy, Whittaker, HermiteWeber. The next two, with 5 or 6 crossings, give the wild character varieties of Painlevé I and II.

Figure 7. The simplest rank two Stokes diagrams $I(k: 2), k=1,2, \ldots, 8$.

Figure 8. Example rank three Stokes diagram, $I(6: 3)$.

Figure 9. Stokes diagram at ∞ for the "hyperairy" equation $y^{(4)}=x y$

Figure 10. Another example rank four Stokes diagram, $I(12: 4)$.

10.6. Example Stokes diagrams: Bessel's equation.

Bessel's differential equation is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0
$$

where $\alpha \in \mathbb{C}$. This has a regular singularity at 0 and an irregular singularity at ∞. A short computation, or a glance at a book, shows that the irregular class $x=\infty$ is:

$$
\Theta=\langle i x\rangle+\langle-i x\rangle
$$

and that α determines the local monodromy eigenvalues at 0 . In particular the singular directions are the two halves of the imaginary axis.

10.7. Example Stokes diagrams: Bessel-Clifford equation.

The Bessel-Clifford equation (also known as the confluent hypergeometric limit equation, Kummer's second equation, or the ${ }_{0} F_{1}$ equation) is:

$$
\begin{equation*}
x y^{\prime \prime}+a y^{\prime}=y . \tag{10.1}
\end{equation*}
$$

If f is any solution of this, then $x^{a-1} \cdot f\left(-x^{2} / 4\right)$ solves the Bessel equation with parameter $\alpha=a-1$. The irregular class at $x=\infty$ is

$$
\left\langle 2 x^{1 / 2}\right\rangle
$$

and (if $a \notin \mathbb{Z}$) the monodromy around 0 has eigenvalues $1, \exp (-2 \pi i a)$.

9.5. Wild Riemann surfaces. The irregular class makes up the basic "new modular parameters" that occur for irregular connections, behaving just like the modulus of the underlying Riemann surface and the location of the marked points a.

In particular it behaves completely differently to the formal residue Λ.
This motivates the following definition:
Definition 9.5. A rank n wild Riemann surface is a triple $\boldsymbol{\Sigma}=(\Sigma, \mathbf{a}, \Theta)$ where Σ is a Riemann surface, $\mathbf{a} \subset \Sigma$ is a finite subset and $\Theta=\left\{\Theta_{a} \mid a \in \mathbf{a}\right\}$ is the data of a rank n irregular class at each point $a \in \mathbf{a}$.

Here we are mainly interested in the case where Σ is compact. We will define the character variety $\mathcal{M}_{\mathrm{B}}(\boldsymbol{\Sigma})$ of any such wild Riemann surface, show that it is Poisson and forms a local system of varieties under any admissible deformation of $\boldsymbol{\Sigma}$.

Of course if all the irregular classes are trivial then $\boldsymbol{\Sigma}=(\Sigma, \mathbf{a}, \Theta)$ just amounts to choosing a Riemann surface with some marked points, and then $\mathcal{M}_{\mathrm{B}}(\boldsymbol{\Sigma})$ will be the usual (tame) character variety defined previously $\cong \operatorname{Hom}\left(\pi_{1}\left(\Sigma^{\circ}, b\right), \mathrm{GL}_{n}(\mathbb{C})\right) / \mathrm{GL}_{n}(\mathbb{C})$.

Notes: This definition is from [B2014] Defn 8.1, Rmk 10.6, [BY2015] §4. There are several minor variations that we won't worry about here, but are sometimes useful: One can work with irregular types instead of irregular classes (which were called "bare irregular types" in [B2014] Rmk 10.6); this is analogous to whether or not we order the points a. Also one can work with smooth complex algebraic curves instead of Riemann surfaces (which doesn't make much difference in the compact case); the terms "irregular curve" or "wild curve" are sometimes used to replace the term "wild Riemann surface" in the algebraic case. Op. cit. give the definition for any complex reductive group, not just $\mathrm{GL}_{n}(\mathbb{C})$.

MODULES DES SURFACES DE RIEMANN

par André WEIL

Par la combinaison des idées (récentes) de KODAIRA et SPENCER sur la variation des structures complexes avec les idées (anciennes) de TETCHMULLER sur le problème des modules, la théorie a fait dernièrement quelques progrès qu'on se propose d'exposer ici.

Soit T_{0} une surface orientée compacte de genre g, donnée une fois pour toutes. Par une surface de Riemann de genre g, on entend, comme d'habitude, une variété complexe compacte de dimension complexe 1 , de genre g, munie de son orientation naturelle. Par une surface de Teichmijiler de genre g, on entendra une surface de Riemann S de genre g, munie de plus d'une classe (au sens de I'homotopie) d'applications de T_{0} dans S, classe dont on suppose qu'elle contient au moins un homéomorphisme conservant l'orientation ; c'est ià une structure (plus "riche" que celle de structure de surface de Riemann). Si π° désigne le

Il est utile de définir une notion intermédiaire entre celle de surface de Riemann et celle de surface de Teichmiiller : on l'obtient en se donnant les images des $A_{i}{ }^{\circ}$, non dans $T(S)$, mais dans $H_{1}(S)$; la donnée de ces images sur la surface de Riemann S détermine ce qu'on appellera une "surface de Torelli". Au

Nonabelian Hodge theory on wild Riemann surfaces

Let $\boldsymbol{\Sigma}=(\Sigma, \mathbf{a}, \Theta)$ be a rank n wild Riemann surface whose underlying Riemann surface Σ is compact. Choose some residue data \mathbf{R} for $\boldsymbol{\Sigma}$ of (global) degree zero. Recall that a "connection on $\boldsymbol{\Sigma}$ " means a good meromorphic connection on a parabolic vector bundle on Σ with poles/parabolic filtrations at a, and irregular class Θ_{a} at each point $a \in \mathbf{a}$. Similarly for Higgs bundles on $\boldsymbol{\Sigma}$.

Let $\mathcal{M}_{\mathrm{DR}}(\boldsymbol{\Sigma}, \mathbf{R})$ be the holomorphic moduli space of stable connections on $\boldsymbol{\Sigma}$ with residue data \mathbf{R}. Similarly let $\mathcal{M}_{\text {Dol }}(\boldsymbol{\Sigma}, \mathbf{R})$ be the holomorphic moduli space of stable Higgs bundles on $\boldsymbol{\Sigma}$ with residue data \mathbf{R}. We suppose that the boundary data is chosen so they are not empty.

Theorem 1.1 (Biquard-B. 2004). There is a hyperkähler manifold $\mathfrak{M}(\boldsymbol{\Sigma}, \mathbf{R})$ (equipped with a family of complex structures parameterised by $\mathbb{P}^{1}=\mathbb{C} \sqcup\{\infty\}$) that is a moduli space of irreducible wild harmonic bundles on $\Sigma^{\circ}=\Sigma \backslash$ a with boundary conditions determined by $\boldsymbol{\Sigma}, \mathbf{R}$ such that:

1) In the complex structure determined by $1 \in \mathbb{P}^{1}$ the space $\mathfrak{M}(\boldsymbol{\Sigma}, \mathbf{R})$ is isomorphic as a complex manifold to the moduli space $\mathcal{M}_{\mathrm{DR}}(\boldsymbol{\Sigma}, \mathbf{R})$ of stable good meromorphic connections,
2) In the complex structure determined by $0 \in \mathbb{P}^{1}$ the space $\mathfrak{M}(\boldsymbol{\Sigma}, \mathbf{R})$ is isomorphic as a complex manifold to the moduli space $\mathcal{M}_{\mathrm{Dol}}(\boldsymbol{\Sigma}, \mathbf{R})$ of stable good meromorphic Higgs bundles,
3) If the residue data \mathbf{R} is semisimple and there are no strictly semistable connections on $\boldsymbol{\Sigma}$ with residue data \mathbf{R}, then the hyperkähler metric on $\mathfrak{M}(\boldsymbol{\Sigma}, \mathbf{R})$ is complete.

The boundary data is related by the following table:

	Dolbeault	De Rham	Betti
weights $\in[0,1),[0,1), \mathbb{R}$	$\lceil\tau\rceil-\tau$	θ	$\phi=\theta+\tau$
eigenvalues $\in \mathbb{C}, \mathbb{C}, \mathbb{C}^{*}$	$\frac{1}{2}(\phi+\sigma)$	$\lambda=\tau+\sigma$	$\mu=\exp (2 \pi i \lambda)$
exponential factors	$\frac{1}{2} q$	q	$\langle q\rangle$

- In tame case $(q=0)$ most of this is due to Konno 1993 and Nakajima 1996 (using Biquard's weighted Sobolev space approach), strengthening Simpson's 1990 tame bijective correspondence in to a diffeomorphism. Even then the completeness statement (beyond the finite energy "strongly parabolic" setting in Konno's paper) is new.
- In the wild case the construction of harmonic bundles from irreducible irregular connections on meromorphic bundles (i.e. Betti weights zero) was established earlier by Sabbah 1999.
- In the nonsingular/compact case $(q=0=\lambda=\theta)$ it is due to Hitchin, Donaldson, Corlette, Simpson, (Fujiki, Diederich-Ohsawa).
- If also the Higgs field is zero this gives the Narasimhan-Seshadri theorem.

Fission spaces

Fission spaces $\quad V=\bigoplus_{i \in I} V_{i} \quad I$ graded vector space

$$
G=G L(V) \supset H=\operatorname{GrAut}(V) \cong \Pi G L\left(V_{i}\right)
$$

Fission spaces $\quad V=\bigoplus_{i \in I} V_{i} \quad I$ graded vector space

$$
G=G L(V) \supset H=\operatorname{GrAut}(V) \cong \Pi G L\left(V_{i}\right)
$$

- $2 k$ tangential punctures 0

Fission spaces $\quad V=\bigoplus_{i \in I} V_{i} \quad I$ graded vector space

$$
G=G L(V) \supset H=\operatorname{GrAut}(V) \cong \Pi G L\left(V_{i}\right)
$$

- $2 k$ tangential punctures 0

$$
\cdot U_{+}, U_{c}=\left(\begin{array}{ll}
1 & 0 \\
* & 1
\end{array}\right) \subset G\binom{\text { stokes }}{\text { groups }}
$$

Fission spaces $\quad V=\bigoplus_{i \in I} V_{i} \quad I$ graded vector space

$$
G=G L(V) \supset H=\operatorname{Graut}(V) \cong \Pi G L\left(V_{i}\right)
$$

- $2 k$ tangential punctures 0
- $U_{+}, U_{c}=\left(\begin{array}{cc}1 & 0 \\ * & 1 \\ \hdashline\end{array}\right) \subset G\binom{$ stapes }{ groups }
- $\pi=\pi_{1}\left(\tilde{\varepsilon},\left\{b_{1}, b_{2}\right\}\right)$
(Wild suffice

Fission spaces $\quad V=\bigoplus_{i e I} V_{i} \quad I$ graded vector space

$$
G=G L(V) \supset H=\operatorname{GrAut}(V) \cong \Pi G L\left(V_{i}\right)
$$

- $2 k$ tangential punctures o

$$
\begin{aligned}
& \cdot U_{+}, U_{-}=\left(\begin{array}{cc}
1 & 0 \\
* & -
\end{array}\right) \subset G\binom{\text { sol bes }}{\text { groups }} \\
& \cdot \pi=\pi_{1}\left(\tilde{\varepsilon},\left\{b_{1}, b_{2}\right\}\right) \quad\binom{\text { wild suffice }}{\text { groupoid }} \\
& \cdot A=G A_{H}^{k}=H o m_{g}(\pi, G) \\
& \cong G \times H \times\left(U_{+} U_{-}\right)^{k}
\end{aligned}
$$

$\cong\left\{\right.$ Stoles local systems framed at $\left.b_{1}, b_{2}\right\} / 1$ so.

Fission spaces $\quad V=\bigoplus_{i \in I} V_{i} \quad I$ graded vector space

$$
G=G L(V) \supset H=\operatorname{Graut}(V) \cong \Pi G L\left(V_{i}\right)
$$

- $2 k$ tangential punctures 0

$$
\begin{aligned}
& \cdot U_{+}, U_{2}=\left(\begin{array}{cc}
1 & 0 \\
* & -1
\end{array}\right) \subset G\binom{\text { sobers }}{\text { groups }} \\
& \cdot \pi=\pi_{1}\left(\tilde{\varepsilon},\left\{b_{1}, b_{2}\right\}\right) \quad\binom{\text { wild suffice }}{\text { groupoid }} \\
& \cdot A=G A_{H}^{k}=H o m_{S}(\pi, G) \\
& \cong G \times H \times\left(U_{+} U_{-}\right)^{k}
\end{aligned}
$$

$\cong\left\{\right.$ stories loci systems framed at b, $\left.b_{1}, b_{2}\right\} / 1$ so.
The A is a quasi-Hamiltonian $G x+1$ space with moment map $\mu: C A \rightarrow G \times H, \quad \mu(p)=\left(\rho\left(\partial_{1}\right), \rho\left(\partial_{2}\right)\right)$
(2002 $H=T$ (any $G), 2009$ any $H, G(k=1), 2011$ in general)

Tame character varieties (after Alekseev-Malkin-Meinvenken 1998)

The. $R=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g_{1}}\right), G\right)$ is a quasitlamitionian G-space

$$
\begin{gathered}
\cong G^{2 g}, \quad \mu=\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right]: R \rightarrow G \\
{[a, b]=a b a^{-1} b^{-1}}
\end{gathered}
$$

Tame character varieties (after Alekseev-Malkin-Meinvenken 1998)

The. $R=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g_{1}}\right), G\right)$ is a quasitlamitionian G-space

$$
\begin{gathered}
\cong G^{2 g}, \quad \mu=\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right]: R \rightarrow G \\
{[a, b]=a b a^{-1} b^{-1}}
\end{gathered}
$$

Cor. $M_{B}=R / G$ is a poison variety

- The symplectic leaves are $\mu_{B}(e)=\mu^{-1}(e) / G$ for conjugacy classes $e \subset G$
Eeg. $\left.\quad \mu_{B}\left(\Sigma_{g}\right)=R / / G=\mu^{-1}(1) / G=\left\{A, B \in G^{2 g} \mid \Pi C A, B_{B}\right]=1\right\} / G$

Tame character varieties (after Alekseev-Malkin-Meinvenken 1998)

The. $R=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g_{1}}\right), G\right)$ is a quasitlamitionian G-space

$$
\cong G^{2 g}, \quad \mu=\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right]: R \rightarrow G
$$

$[a, b]=a b b^{-1} b^{-1}$
Cor. $M_{B}=R / G$ is a poison variety

- The symplectic leaves are $\mu_{B}(e)=\mu^{-1}(e) / G$ for conjugacy classes e $\subset G$
- can fuse simple pieces: $R=\mathbb{D} \otimes \cdots \otimes \mathbb{D}, \mathbb{D}=R\left(\Sigma_{1,1}\right)$

Tame character varieties (after Alekseev-Malkin-Meinvenken 1998)

Toolbox: $\cdot \mathbb{D}=R\left(\varepsilon_{1,1}\right) \cong G \times G$, $\cdot e \subset G$

- $D=R\left(\varepsilon_{0,2}\right)=R(0) \cong G \times G \quad$ "double"
- $*$ fusion, © reduction ($/ / G$)

$$
\mu_{B}(\underset{\sim}{e})=10 \otimes \ldots \otimes \mathbb{1} \otimes e_{1} \otimes \ldots \otimes e_{m} / / G
$$

Tame character varieties (after Alekseev-Malkin-Meinvenken 1998)

Toolbox: $\cdot \mathbb{D}=R\left(\varepsilon_{1,1}\right) \cong G \times G$, $\cdot e \subset G$

- $D=R\left(\varepsilon_{0,2}\right)=R(0) \cong G \times G$ "double"
- $*$ fusion, © $\operatorname{Deduction~(~} / / G$)

Now add fission spaces $A=G A_{+1}^{k} \quad \forall G, H, k$
\Rightarrow lots of new algebraic symplectic/Poisson varieties "fission varieties" \rightleftharpoons (untwisted) wild character varieties

Wild character varieties
Egg. Birkhoff 1913 wrote presentations in generic setting:

$$
\left(c_{1}^{-1} h_{1} s_{2 k_{1}}^{(1)} \cdots s_{1}^{(m)} c_{1}\right) \cdots\left(c_{m}^{-1} h_{m} s_{2 k_{m}}^{(m)} \cdots s_{1}^{(m)} c_{m}\right)=1
$$

(see Jimbo-Mirla-Uleno 1981 equation 2.46)

Wild character varieties
Egg. Birkhoff 1913 wrote presentations in generic setting:

$$
\left(c_{1}^{-1} h_{1} s_{2 k_{1}}^{(1)} \cdots s_{1}^{(1)} c_{1}\right) \cdots\left(c_{m}^{-1} h_{m} s_{2 k_{m}}^{(m)} \cdots s_{1}^{(m)} c_{m}\right)=1
$$

(see Jimbo-Mirla-Uleno 1981 equation 2.46)

$$
R=G \operatorname{Al}_{T}^{k_{1}} \underset{G}{\otimes}{ }_{G} \operatorname{tt}_{1}^{k_{2}} \underset{G}{\otimes} \cdots{\underset{G}{*}}_{\otimes}^{\otimes} \operatorname{tl}_{T}^{k_{m}} \xrightarrow{\mu} T^{m} \times G
$$

The Reductions with fixed h: $E T$ are symplectic
(Adv. Math. 2001 "irreg. Htivah Bott", algebraic quasi-Hemiltonian approach 2002)

Wild character varreties
Similarly in general (~any alg. connections on turisted G-bundles)

$$
\begin{gathered}
\left(c_{1}^{-1} h_{1} S_{k_{1}}^{(1)} \cdots S_{1}^{(1)} c_{1}\right) \cdots\left(c_{m}^{-1} h_{m} S_{k_{m}}^{(m)} \ldots S_{1}^{(m)} c_{m}\right) \vec{\Pi}_{1}^{g} A_{B_{B}} B_{1} A_{1}^{-1} B_{1}^{-1}=1 \\
\operatorname{THFom}_{g}(\pi, G)=A_{1} \otimes \cdots A_{m} \otimes \mathbb{D}^{\otimes g} / / G
\end{gathered}
$$

Thm Wild characiter varrely $M_{B}=$ THom $g(T, G) /$ H is a Posson variety with symplectic leaves got by Ax;ing (turistel) Convegary C ciseses of formal monod romy ... An mint fouser 84, arxiv: 1111.6228 , arxiv: 1512.08091 (With D. Yamakeawa)

Wild character variefies
E.g. $\quad G A_{\top}^{\prime} / G \cong T \times U_{+} \times U_{-}$

is thus a nonlinear Poisson vasiety (with Hamittonian T-action)

Wild character varieties
E.g. $G A_{\top}^{\prime} / G \cong T \times U_{+} \times U_{-}$

is thus a nonlinear Poisson variety (with Hamitomian T-action)
Thm (Drimeld/ Sumenov Tian shankry, Deconerni Pocesi 1993) $U_{q}(o g)$ quantizes a Porsson variety $G^{*} \cong T_{k} U_{+} U_{-}$

Thm ($P B$ meant Main 2001)
$G^{*} \cong G d_{T} / G$ as a Possson variety
Cor. The Drinfeld-Tmbo quantum group is molular $\frac{\tau}{\tau}$
(comes from moduli of connections on curves)

Wild character varieties
Egg. $\quad G A_{H}^{\prime} / \sigma_{x+1} \cong\left(H \times U_{+} \times U_{-}\right) / H$
is an algebraic Poisson variety with symplectic lewes

$$
\mu_{B}(e, \check{e})=\left\{h_{1} S_{1}, S_{2} \mid h \in \check{e}, h S_{1} S_{2} \in e\right\} / H
$$

for conjugacy classes $\dot{e} \subset H, e \subset G$

Wild character varieties
Egg. $\quad G A_{H}^{\prime} / G_{x+H} \cong\left(H \times U_{+} \times U_{-}\right) / H$
is an algetravie Poisson variety with symplectic lewes

$$
M_{B}(e, \check{e})=\left\{h_{1} s_{1}, s_{2} \mid h \in \check{e}, h S_{1} s_{2} \in e\right\} / H
$$

for conjugacy classes Er $\subset H, e \subset G$
Ohm (Fourter-Laplace, Malgrange 1991)
This class of varieties \equiv all tame genus zero character varieties
Th - symplecte structures match too (PB arxiv 1307)

- and the hyperkäher metrics (SE. Szabo arxiv 1407)
\rightarrow notion of "representations" of abstract moduli space

$$
\text { Plato to Painlevé (Mckay - Harnad) cf: } \begin{gathered}
\text { Salar's prestom } \\
0706.2634 \\
\text { Exercise } 3
\end{gathered}
$$

Sakai's question
Plato to Painlevé (Mckay - Harnad) Cf. $\begin{gathered}\text { Salaris } 0706 \text {. } 2634 \\ \text { Exercise } 3\end{gathered}$
groups: Tetra. Octa. Icosa. $\subset \mathrm{SO}_{3}(\mathbb{R})$

$$
\begin{aligned}
& \text { groups: Tetra. Octa. Icosa. } \subset \mathrm{SO}_{3}(\mathbb{R})
\end{aligned}
$$

Plato to Painlevé (McKay - Harnad) cf. $\begin{gathered}\text { Solaress prestion } \\ 0706 \cdot 2634 \\ \text { Exercise } 3\end{gathered}$
groups: Tetra. Octa. Icosa. $\subset \mathrm{SO}_{3}(\mathbb{R})$
$\underset{\text { grinary: }}{\operatorname{Din}} \tilde{\boldsymbol{T}} \tilde{0} \tilde{\boldsymbol{I}} \quad \subset S u_{2} \subset S L_{2}(\mathbb{C})$
Singularities: $\mathbb{C}^{2} / \tilde{T} \quad \mathbb{C}^{2} / \tilde{O} \quad \mathbb{C}^{2} / \tilde{I}$

Plato to Painlevé (McKay - Harnad) cf. $\begin{gathered}\text { Solaress prestion } \\ 0706 \cdot 2634 \\ \text { Exercise } 3\end{gathered}$
groups: Tetra. Octa. Icosa. $\subset \mathrm{SO}_{3}(\mathbb{R})$
$\underset{\substack{\text { gromps }}}{\operatorname{binary}: \tilde{T}} \tilde{\boldsymbol{T}} \quad \subset \mathrm{Su}_{2} \subset S L_{2}(\mathbb{C})$
$\begin{array}{lccl}\text { Singularities: } & \mathbb{C}^{2} / \tilde{T} & \mathbb{C}^{2} / \tilde{O} & \mathbb{C}^{2} / \tilde{I} \\ \text { resolve: } & \hat{X}_{T} & \hat{X} & \hat{X}_{0} \\ X_{I}\end{array}$

$$
\begin{aligned}
& \text { Plato to Painlevé (McKay - Harnad) cf. } \begin{array}{c}
\text { Solaress prestion } \\
0706 \cdot 2634 \\
\text { Exercise } 3
\end{array} \\
& \text { groups: Tetra. Octa. Icosa. } \subset \mathrm{SO}_{3}(\mathbb{R}) \\
& \underset{\substack{\text { groarys }}}{\operatorname{Din}} \tilde{\boldsymbol{T}} \tilde{\boldsymbol{O}} \quad \tilde{\mathrm{I}} \quad \underset{\mathrm{~S}}{2} \subset S L_{2}(\mathbb{C}) \\
& \text { Singularities: } \mathbb{C}^{2} / \tilde{T} \quad \mathbb{C}^{2} / \tilde{O} \quad \mathbb{C}^{2} / \tilde{I}
\end{aligned}
$$

Plato to Painlevé (Mckay-Harnad) cf. PB 0706.2634 Exercise 3
groups: Tetra. Octa. Icosa. $\subset \mathrm{SO}_{3}(\mathbb{R})$
$\underset{\substack{\text { bimary: } \\ \text { grups: }}}{\sim} \tilde{\boldsymbol{T}} \tilde{\boldsymbol{I}}$ с $\mathrm{Su}_{2} \subset S L_{2}(\mathbb{C})$

Plato to Painlevé (Mckay-Harnad) cf. PB 0706.2634
Exercise 3
groups: Tetra. Octa. Icosa. $\subset \mathrm{SO}_{3}(\mathbb{R})$
binary:
grups $\tilde{T} \quad \tilde{0} \tilde{\boldsymbol{I}} \quad$ a $S u_{2} \subset S L_{2}(\mathbb{C})$

Krombermer: - smooith fibres are complote hyperkithier 4-folds (1989) - construct in terms of affme Dyshim graph
E.g. E6 case (hol. symplectic approach)

E.g. EG case (hol. symplectic appraach)

$$
V=\operatorname{Rep}\left(\Gamma, \mathbb{C}^{d}\right)
$$

E.g. EG case (hol. symplectic apprach)

$$
V=\operatorname{Rep}\left(\Gamma, \mathbb{C}^{d}\right)
$$

E.g. EG case (hol. symplectic appraach)

$$
V=\operatorname{Rep}\left(\Gamma, \mathbb{C}^{d}\right)
$$

E.g. E6 case (hol. symplectic approach)

$$
\begin{aligned}
& \mathbb{V}=\operatorname{Rep}\left(\Gamma, \mathbb{C}^{d}\right) \\
& G=G L\left(\mathbb{C}^{d}\right)=\Pi G L_{d_{i}}(\mathbb{c})
\end{aligned}
$$

E.g. E6 case (hol symplectic approach)

$$
\begin{aligned}
& V=\operatorname{Rep}\left(\Gamma, \mathbb{C}^{d}\right) \\
& G=G L\left(\mathbb{C}^{d}\right)=\Pi \sigma L_{d_{i}}(\mathbb{C})
\end{aligned}
$$

$$
\begin{aligned}
N=\operatorname{NQV}(\Gamma & , \lambda, d)=\mathbb{N} / / \underset{\sim}{d} \\
\mathbb{G} & =\mu^{-1}(\lambda) / \mathbb{R} \\
\underset{\sim}{\lambda} & \in \operatorname{Lie}(\mathbb{G})^{*} \cong \mathbb{E} \mathbb{E} d\left(\mathbb{C}^{d_{1}}\right) \quad \text { central }
\end{aligned}
$$

E.g. E6 case (hol. symplectic approach)

$$
\begin{aligned}
d m_{\mathbb{C}}(N) & =2-(d, d) \\
V & =\operatorname{Rep}\left(\Gamma, \mathbb{C}^{d}\right) \\
G & =G L\left(\mathbb{C}^{d}\right)=\Pi G L_{d_{j}}(c)
\end{aligned}
$$

$$
\begin{aligned}
& N=\operatorname{NQV}(\Gamma, \lambda, d)=\mathbb{N} / \|_{\sim}^{d} \\
& \mathbb{G}=\mu^{-1}(\lambda) / \mathbb{R} \\
& \underset{\sim}{\lambda} \in \operatorname{Lie}(\mathbb{G})^{*} \cong \mathbb{E n d}\left(\mathbb{C}^{d)}\right) \quad \text { central }
\end{aligned}
$$

Eng. E6 case (hole. symplectic approach)

$$
\operatorname{dim}_{\mathbb{C}}(N)=2-(\underset{\sim}{d}, \underset{\sim}{d})
$$

N is modular \cong moduli space of Fnchsian systems M^{*}
E.g. E6 case (hol. symplectic approach)

$$
\operatorname{dm}_{\mathbb{C}}(N)=2-(d, d)
$$

N is modular \cong moduli space of Fnchsian systems M^{*}

$$
\begin{aligned}
& \cong \theta_{1} \times \theta_{2} \times \theta_{3} / / G L_{3}(C) \\
& \operatorname{dim}_{2}=6+6+6-2(9-1)=2
\end{aligned}\binom{\theta_{1} \subset \text { ogl }(C)}{\text { coadjomt }(C) \text { orbit }}
$$

Eng. E6 case (hod. symplectic approach)

N is modular \cong moduli space of Fuchsian systems M^{*}

$$
\begin{aligned}
& \cong \theta_{1} \times \theta_{2} \times \theta_{3} / / G L_{3}(C) \\
& \operatorname{dim}_{c}=6+6+6-2(9-1)=2
\end{aligned}\left(\begin{array}{c}
\theta_{i} \subset \text { of }(c) \\
\text { coadjoint orbit } \\
\text { dim } 6
\end{array}\right)
$$

E.g. E6 case (hol. symplectic approach)

$$
\operatorname{dm}_{\mathbb{C}}(N)=2-(d, d)
$$

N is modular \cong moduli space of Fnchsian systems M^{*}

$$
\begin{aligned}
& \cong \theta_{1} \times \theta_{2} \times \theta_{3} / / G L_{3}(C) \\
& \operatorname{dim}_{2}=6+6+6-2(9-1)=2
\end{aligned}\binom{\theta_{1} \subset \text { ogl }(C)}{\text { coadjomt }(C) \text { orbit }}
$$

Eng. E6 case (bol. symplectic approach)

$$
\operatorname{dim}_{\mathbb{C}}(N)=2-(\underset{\sim}{d}, d)
$$

N is modular \cong moduli space of Fuchsias systems M^{*}

$$
\begin{aligned}
& \cong \theta_{1} \times \theta_{2} \times \theta_{3} / / G L_{3}(c) \quad\left|\theta_{i} \subset g l_{3}(c)\right| \\
& \nabla=d-\left(\frac{A_{1}}{z-a_{1}}+\frac{A_{2}}{z-a_{2}}+\frac{A_{3}}{z-q_{3}}\right) d z, A_{i} \in \theta_{i}
\end{aligned}
$$

Eng. E6 case (bol. symplectic approach)

$$
d m_{c}(N)=2-(d, d)
$$

N is modular \cong moduli space of Fuchsias systems M^{*}

$$
\begin{aligned}
& \cong \theta_{1} \times \theta_{2} \times \theta_{3} / / G L_{3}(c) \quad\left|\theta_{1} \subset g l_{3}(c)\right| \\
\nabla & =d-\left(\frac{A_{1}}{z-a_{1}}+\frac{A_{2}}{z-a_{2}}+\frac{A_{3}}{z-a_{3}}\right) d z, A_{i} \in \theta_{i}
\end{aligned}
$$

- NQV of any starshhaped Γ is modular ($\left.\begin{array}{c}\text { Kraft P Press, Nobegyma) } \\ \text { Crudely Beery }\end{array}\right)$
- Get multiplicative version $=$ character variety $\mu_{B} \cong e_{1} \oplus e_{2} \oplus e_{3} / / l_{3}$ $M^{*} \subset M_{P R} \xrightarrow{R H} M_{B}$ "Global Lie theory"
\exists one more ster-shaped affine Dynkin graph:
\hat{D}_{4}

\sim quatemion group $\subset S U_{2}$

$$
\{ \pm 1, \pm i, \pm j, \pm k\}
$$

$W\left(D_{4}\right) \subseteq \mathbb{C}^{4}$ "constants"
Rank 2 Fuchsian systems with 4 poles \leadsto cross ratio \in Mo, 4 "modular parameters" / "times"
\exists one more star-shaped affine Dynkin graph:

$$
\sim \text { quatemien group } \subset S U_{2}
$$

$$
\{ \pm 1, \pm i, \pm j, \pm k\}
$$

$W\left(D_{4}\right) \subseteq \mathbb{C}^{4}$ "constants"
Rank 2 Fuchsian systems with 4 poles \leadsto cross ratio $\in M 0,4$ "modular parameters" / " times" - Familiar from the Painleve VI equation: (Richard Fuchs 1905)

M0,4

M0,4
\exists one more star-shaped affine Dynkin graph:

$$
\hat{D}_{4}
$$

$$
\sim \text { quatemien group } \subset S U_{2}
$$

$$
\{ \pm 1, \pm i, \pm j, \pm k\}
$$

$W\left(D_{4}\right) \subseteq \mathbb{C}^{4}$ "constants"
Rank 2 Fuchsian systems with 4 poles \leadsto cross ratio \in Modular parameters" Mo, "4 "modular parameters" / "times" - Familiar from the Painlevé UII equation: (Richard Fuchs 1905)

\exists one more star-shaped affine Dynkin graph:

$$
\hat{D}_{4}
$$

\sim quatemion group $\subset S U_{2}$

$$
\{ \pm 1, \pm i, \pm j, \pm k\}
$$

$W\left(D_{4}\right) \subseteq \mathbb{C}^{4}$ "constants"
Rank 2 Fuchsian systems with 4 poles \leadsto cross ratio \in Modular parameters" Mo, "4 "modular parameters"/ "times" Okamoto 1987: affine whey group $W\left(\hat{D}_{4}\right) J \mathbb{C}^{4}$ relating P UI equations

$$
y^{\prime \prime}=\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{y^{\prime}}{2}\right)^{2}
$$

$$
-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) y^{\prime}
$$

$$
+\frac{y(y)(y)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\frac{f t}{y^{2}}+\frac{\gamma(t-1)}{(y-1)^{2}}+\frac{s t(t-1)}{\left(y-t^{2}\right.}\right)
$$

$\alpha, \beta, \gamma, \delta \in \mathbb{C}, t \in \mu_{0,4} \cong \mathbb{C} \backslash\{0,1\}$

Mol

$M_{B} \cong \begin{aligned} & \text { Fricke-Kliem-Vogt } \\ & \text { cubic surflece }\end{aligned}$ cubic surface $x y z+x^{2}+y^{2}+z^{2}=$ $a x+b y+c z+d$

M0,4

THE PAINLEVÉ EQUATIONS AND THE DYNKIN DIAGRAMS

Kazuo Okamoto
Department of Mathematics
College of Arts and Sciences
University of Tokyo
Tokyo, Japan

1 Painlevé Systems

Let δ be a differential on $\mathbf{C}(t)$, i.e.

$$
\delta=f(t) \frac{d}{d t},
$$

$f(t)$ being a rational function in t, and

$$
\mathrm{H}(t ; q, p) \in \mathbf{C}[t, q, p],
$$

a polynomial in three variables (t, q, p). We consider the Hamiltonian system of ordinary differential equations:

$$
\begin{align*}
& \delta q=\frac{\partial \mathrm{H}}{\partial p}, \tag{1}\\
& \delta p=-\frac{\partial \mathrm{H}}{\partial q},
\end{align*}
$$

under the assumption that H is of the second degree with respect to p. Therefore, by

P_{J}	1	2	3	4	5	6
δ	$\frac{d}{d t}$	$\frac{d}{d t}$	$t \frac{d}{d t}$	$\frac{d}{d t}$	$t \frac{d}{d t}$	$t(t-1) \frac{d}{d t}$
number of parameters	0	1	2	2	3	4
Affine Weyl Group	--	\mathbf{A}_{1}	\mathbf{B}_{2}	\mathbf{A}_{2}	\mathbf{A}_{3}	\mathbf{D}_{4}
Particular solutions	--	Airy	Bessel	Hermite- Weber	Hyper- geometric	Hyper- geometric

(0706-2634) Exercise 3: works for Painlevé 5, 4, 2 to::

$$
\left\{\begin{array}{l}
M^{*} \cong N Q V(\Gamma) \quad\left(A L E \text { space of type } \hat{A}_{3}, \hat{A}_{2}, \hat{A}_{1}\right) \\
\Gamma=\text { affine Dyking graph of Okamoto symmetry group }
\end{array}\right.
$$

$\Gamma=$ affine Dyking graph of Okaumoto symmetry group
(0706-2634) Exercise 3: works for Painlevé 5, 4, 2 too:

$$
\left\{\begin{array}{l}
\left.M^{*} \cong \operatorname{NQV}(\Gamma) \quad \text { (ALE space of type } \hat{A}_{3}, \hat{A}_{2}, \hat{A}_{1}\right) \\
\Gamma=\text { affine Dyking graph of Okemoto symmetry group }
\end{array}\right.
$$

Questions (1) What are the higher dimensional modular quiver varieties lying over generalising the stars?
(2) What about Parmeve $1 \&$ Pamievé $3\left(\mu^{*}\left(P_{3}\right) \neq\right.$ NQu $\left.(\Gamma) \forall \Gamma\right)$ \& their higher domensomal analogues?

Questions (1) What are the higher dimensional modular quiver varieties lying over \square generalising the stars?
(2) What about Parnieve $1 \&$ Pamievé $3\left(\mu^{*}\left(P_{3}\right) \neq\right.$ NQu $\left.(\Gamma) \forall \Gamma\right)$ \& their higher domensomal analogues?
(3) What is the 'deeper' anilgue of $M_{0,4}$ in general?
\rightarrow moduli of wild Riemann surfaces
(4) What is the 'deeper' annilgue of
the nonlinear local system $\mu_{B} \rightarrow M_{0, A}$?
\leadsto local system of wild character varieties over any admissible deformation of a wild Riemann surface
[P.B. Annals of Math. 2014]

- eigenvalues/orbit of 1 , parablic weghts (constants)

Choices: $\cdot(\Sigma, \underset{\sim}{a}, \underset{\sim}{Q})$ "wild Riemann surface" (parameters)

- eigenvelues/orbit of 1 , parabolic weights (constants)

Qu (1) Consider $\left(\mathbb{P}^{\prime}, \infty, Q\right)$ very good, I pole, wis zero $M^{*} \subset M_{D R} \quad$ where $V \rightarrow \mathbb{P}^{1}$ trivial

Choices: $\cdot(\Sigma, \underset{\sim}{a}, \underset{\sim}{Q})$ "wild Riemann surface" (morometers)

- eigenvalues/orbit of 1 , parabolic weights (constants)

Un (1) Consider $\left(\mathbb{P}^{1}, \infty, Q\right)$ very good, I pole, wis zero $M^{*} \subset M_{D R} \quad$ where $V \rightarrow \mathbb{P}^{1}$ trivial
Queer modularity theorem $\left\{\begin{array}{l}\text { Pb simply laced case + general conjecture } \\ \text { Hiroe-Yamakawa general proof }\end{array}\right.$ $M^{*}(Q, 1) \cong \operatorname{NQU}(\Gamma, \underset{\sim}{d}, \underset{\sim}{d})$ for some Γ

Choices: $\cdot(\Sigma, \underset{\sim}{a}, \underset{\sim}{Q})$ "wild Riemann surface" (modular (pometers)

- eigenvalues/orbit of 1 , parabolic weights (constants)

Qu (1) Consider $\left(\mathbb{P}^{\prime}, \infty, Q\right)$ very good, I pole, wis zero $M^{*} \subset M_{D R} \quad$ where $V \rightarrow \mathbb{P}^{1}$ trivial

Quiver modularity theorem $\left\{\begin{array}{l}\text { PB simply laced case + general conjecture } \\ \text { Hirve-Yamakava general proof }\end{array}\right.$ $M^{*}(Q, 1) \cong \operatorname{NQU}(\Gamma, \underset{\sim}{d}, \underset{\sim}{d})$ for some Γ

$$
\begin{aligned}
& \text { "supernova graphs" } \\
& (\text { core + legs })
\end{aligned} \quad Q=\left(\begin{array}{l}
q_{1} \\
\\
\cdots q_{n}
\end{array}\right), \quad q: \in x \mathbb{C}[x]
$$

core nodes $=\left\{q_{1}\right\}, \quad \# \operatorname{edges}\left(q_{i}, q_{j}\right)=\operatorname{deg}\left(q_{i}-q_{j}\right)-1$ $+\log s$ from $1 \in h_{1}=\pi o g_{d_{i}}(\mathbb{C})$

Idea $M^{*} \cong \theta / G\left\{\begin{array}{l}d Q+1 \frac{d z}{z} \in \theta \subset g_{k}^{*} \\ \left.G_{k}=G L_{n} \subset \subset(z] / z^{k+1}\right)\end{array}\right.$

$$
\begin{array}{ll}
\cong H \| \tilde{\theta} / / G & \text { "extended orbit" } \tilde{\theta} S G \times H \\
\cong H_{1} \| \theta_{B} \quad & 1 \rightarrow B_{k} \rightarrow G_{k} \xrightarrow{\text { ev }} G \rightarrow 1 \\
& \theta_{B} \subset b_{k}^{*} \text { Birkhoff orbit } \\
& B_{k}-\text { coadjoint orbit of } d Q \\
& \text { decouping: } \tilde{\theta} \cong\left(T^{*} G\right) \times \theta_{B}
\end{array}
$$

Thm $\theta_{B} \cong I V($ core graph) as a Hamittonian H-space

Idea $M^{*} \cong \theta / G\left\{\begin{array}{l}d Q+1 \frac{d z}{z} \in \theta \subset g_{k}^{*} \\ \left.G_{k}=G L_{n} \subset \subset(z] / z^{k+1}\right)\end{array}\right.$

$$
\begin{array}{ll}
\cong H \| \tilde{\theta} / / G & \text { "extended orbit" } \tilde{\theta} S G \times H \\
\cong H_{1} \| \theta_{B} \quad & 1 \rightarrow B_{k} \rightarrow G_{k} \xrightarrow{\text { er }} G \rightarrow 1 \\
& \theta_{B} \subset b_{k}^{*} \text { Birkhoff orbit } \\
& B_{k}-\text { coadjoint orbit of } d Q \\
& \text { decoupling: } \tilde{\theta} \cong\left(T^{*} G\right) \times \theta_{B}
\end{array}
$$

The $\theta_{B} \cong I V($ core graph) as a Hamiltonian H-space
Eeg. $Q=\left(x^{3}-x^{3}\right), \quad \theta_{B} \cong T^{*} \mathbb{C}^{2}=\mathbb{V}(\Longleftrightarrow) \quad$ (Painlevé II) $M^{*} \cong$ Eguch:-tanson space (\hat{A}_{1} ALE space) $T^{*} P^{1}, \theta \subset s l_{2}(\mathbb{R})$
$Q_{n}(2)$
The (B-Yamakava 2020)
\exists uniform way to define a diagram for any meromorphic connection on \mathbb{P}^{1} with $\leqslant 1$ irreg. singularity

- $\operatorname{dim}\left(\mu_{B}\right)=z-(\underset{d}{d}, \underset{d}{ })$ - form firm Cation $\begin{aligned} & \text { matrix } C \text { of diagram }\end{aligned}$
- Can have loops/edges of negative multiplicity
[Any moduli space on $\mathbb{P P}^{1}$ has such a representation]
$Q_{n}(2)$
The (B-Yamakawra 2020, Dougot 2021)
\exists uniform way to define a diagram for any meromorphic connection on \mathbb{P}^{1}
- $\operatorname{dim}\left(\mu_{B}\right)=2-(\underset{\sim}{d}, \underset{d}{d})$ - form form Martian $\begin{aligned} & \text { matrix of diagram }\end{aligned}$
- Can have loops /edges of negative multiplicity
$Q_{n}(2)$
The (B-Yamakawra 2020, Dougot 2021)
\exists uniform way to define a diagram for any meromorphic connection on \mathbb{P}^{1}
- $\operatorname{dim}\left(\mu_{B}\right)=2-(\underset{d}{d}, \underset{d}{ })$ - form form Martian $\begin{aligned} & \text { matrix } C \text { of diagram }\end{aligned}$
- Can have loops/edges of negative multiplicity eeg Parneve III

- $\sim_{\mathbb{Z}}$ Intersection form of M DR

$$
\begin{aligned}
& c=\left(\begin{array}{ccc}
2 & -2 & 0 \\
-2 & 4 & -2 \\
0 & -2 & 2
\end{array}\right) \\
& d=(1,1,1)
\end{aligned}
$$

- special solutions (Bessec-clufford)

Qu (2) Idea: pass to wild character variety \& use general presentations of them $M^{*} c M_{P R} \stackrel{R H B}{\cong} M_{B}$ wild character

can do all this side in general twisted case ($B-y 2015$) + looks like quiver rep. for $G L_{n}$

- points of maximal decay $\partial<\mathcal{I}$
$\partial(q) \subset\langle q\rangle$ where e^{q} max decay
- Irregularity:

$$
\begin{aligned}
& \operatorname{lrr}(q)=\# \partial(q) \\
& \operatorname{Irr}\left(\sum n_{i}\left\langle q_{i}\right\rangle\right)=\sum n_{i} \operatorname{lrr}\left(q_{i}\right)
\end{aligned}
$$

- Ramification: $\operatorname{Ram}(q)=\operatorname{deg} \pi:\langle q\rangle \rightarrow 0 \quad(\min r)$

Choose $H=\sum n_{i}\left\langle q_{i}\right\rangle, \quad e_{:} \subset G \ln _{i}(\mathbb{C})$, at $\infty \in \mathbb{P}^{\prime}$ 'wild Riemann surface ($\mathbb{P} 1, \infty,(\mathbb{H})$

- points of maximal decay $\partial \subset \mathcal{L}$
$\partial(q) \subset\langle q\rangle$ where e^{q} max decay
- Irregularity: $\operatorname{lrr}(q)=\# \delta(q)$

$$
\operatorname{lrr}\left(\sum n_{i}\left\langle q_{i}\right\rangle\right)=\sum n_{i} \operatorname{lrr}\left(q_{i}\right)
$$

- Ramification: $\operatorname{Ram}(q)=\operatorname{deg} \pi:\langle q\rangle \rightarrow 0 \quad(\min r)$

Choose $H=\sum n_{i}\left\langle q_{i}\right\rangle, \quad e_{:} \subset G \ln _{i}(\mathbb{C})$, at $\infty \in \mathbb{P}^{\prime}$
Core diagram: nodes $\sim\left\{\left\langle q_{i}\right\rangle\right\}$

$$
\begin{aligned}
\text { \#arrows }\left\langle q_{i}\right\rangle \rightarrow\left\langle q_{j}\right\rangle=B_{i j}:= \begin{cases}A_{i j}-\beta_{i} \beta_{j} & i \neq j \\
A_{i i}-\beta_{i}^{2}+1 & i=j\end{cases} \\
\left.A_{i j}:=\operatorname{Irr}\left(\operatorname{Hom}\left(\left\langle q_{i}\right\rangle,<q_{j}\right\rangle\right)\right), \beta_{i}=\operatorname{Ram}\left(q_{i}\right)
\end{aligned}
$$

(symmetrized) Cartan matrix: $\quad C=2-B$
Then glue on legs from classes $e_{i} c G l_{n_{i}}(\mathbb{C}$) as before

PainlevéII:

$$
Q=\left(\begin{array}{ll}
x^{3} & \\
& -x^{3}
\end{array}\right)
$$

Solutions involve e^{Q}
plot growth / decay of $\exp \left(x^{3}\right), \exp \left(-x^{3}\right)$:

Stokes diagram with Stokes directions

Halo at ∞ with singular directions

Painlevé II: $\quad Q=\left(\begin{array}{ll}x^{3} & -x^{3}\end{array}\right)$
Solutions involve e^{Q}
plot growth / decay of $\exp \left(x^{3}\right), \exp \left(-x^{3}\right)$:

Stokes diagram with Stokes directions

Halo at ∞ with singular directions

2×2 matrix relation result: \hat{A}_{1}

Airy equation (Stoles 1857)
solutions involve $\exp \left(x^{3 / 2}\right)$

Airy equation (Stoles 1857)
solutions involve $\exp \left(x^{3 / 2}\right)$

$$
\begin{aligned}
& \mu_{G}=1 \\
& \begin{array}{l}
h S_{3} S_{2} S_{1}=1 \\
\left.\left(\begin{array}{ll}
1 & u_{1} \\
10
\end{array}\right) u_{+} u_{-} \right\rvert\, u_{+}
\end{array}
\end{aligned}
$$

$$
\cong Q
$$

\qquad relations

- resulting diagram

Painlevé $1 \exp \left(x^{5 / 2}\right)$

Higher Painlevé spaces:

$\operatorname{dim} 2 n$, conjecturally $\cong \not \approx i l^{n}\left(2 d M_{B}\right)$ (known by Groechenig in tame case

