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RIEMANN–HILBERT FOR

TAME COMPLEX PARAHORIC CONNECTIONS

P. P. BOALCH
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Abstract. A local Riemann–Hilbert correspondence for tame meromorphic connections
on a curve compatible with a parahoric level structure will be established. Special cases
include logarithmic connections on G-bundles and on parabolic G-bundles. The corre-
sponding Betti data involves pairs (M,P ) consisting of the local monodromy M ∈ G
and a (weighted) parabolic subgroup P ⊂ G such that M ∈ P , as in the multiplicative
Brieskorn–Grothendieck–Springer resolution (extended to the parabolic case). The nat-
ural quasi-Hamiltonian structures that arise on such spaces of enriched monodromy data
will also be constructed.

1. Introduction

The starting point of this paper was an attempt to extend to G-bundles the
local classification of logarithmic connections on vector bundles on curves in terms
of Levelt filtrations, where G is a connected complex reductive group. Namely, log-
arithmic connections on vector bundles are classified locally by triples (V, F,M)
where V is a finite-dimensional complex vector space, F is a decreasing finite filtra-
tion of V indexed by Z andM ∈ GL(V ) preserves the filtration F . If we forget the
filtration then we obtain the local classification of regular singular connections,
much studied, e.g. by Deligne [13] (in arbitrary dimensions)—they form a Tan-
nakian category (cf. [17]) and the extension to G-bundles is then straightforward
(they are classified by their monodromy M ∈ G up to conjugation) although a
direct approach is possible (see [2]).

Thus for general G we wish to describe the extra data needed to determine a
logarithmic connection and establish the precise correspondence. Unfortunately,
the category of triples (V, F,M) is not abelian, and so not Tannakian, and so it
seems a direct approach is necessary (if it were Tannakian we could just take the
space of homomorphisms from the corresponding group into G). The key point in
the above classification of logarithmic connections is that one may choose a local
holomorphic trivialization and a one-parameter subgroup ϕ : C∗ → GL(V ) such
that if we view ϕ as a meromorphic gauge transformation, then in the resulting
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trivialization the connection takes the simple form

R
dz

z

for some R ∈ End(V ) with eigenvalues all having real parts in the interval [0, 1)
(using a fixed local coordinate z). The resulting data is then (V, F,M) where
M = e2πiR is the local monodromy and F is the filtration naturally associated to
ϕ. The utility of the filtration is that if g ∈ GL(V ) and ψ = gϕg−1 is a conjugate
one-parameter subgroup then the meromorphic group element ϕψ−1 is holomor-
phic if and only if ϕ and ψ determine the same filtration, i.e. g preserves F . This
is why the Levelt filtration (from [19, (2.2)]) gives a much cleaner approach than
the naive viewpoint of directly recording the extra terms that may occur in the
case of “resonant” connections.

For general G the notion of flag generalizes directly to the notion of parabolic
subgroup, and one may in general attach a parabolic subgroup P ⊂ G to a one-
parameter subgroup (see, e.g. Mumford et al. [21, p. 55]). However, it is not true,
even for SL2(C), that every logarithmic connection may be put in the simple form
Rdz/z with R ∈ g = Lie(G) via a suitable trivialization and a one-parameter
subgroup (see [2, p .65]), and even if we did restrict ourselves to such connections
a good analogue of the above normalization of the eigenvalues looks to be elusive.
At first sight this is bad news since it means the direct analogue of the above
GLn(C) classification does not seem to hold, but it is also good news: the failure
to reduce to the simple form corresponds directly to the fact that there are loga-
rithmic connections whose monodromy M is not in the image of the exponential
map, so we can hope for a more complete correspondence involving all possible
monodromy conjugacy classes.

Whilst extending the nonabelian Hodge correspondence to open curves Simpson
[25] gave an alternative approach, which he also applies to more general objects
(“filtered tame D-modules”), but still in the context of vector bundles. In the
case of logarithmic connections this amounts to refining the Levelt filtration to
take into account the exact rate of growth of solutions rather than its integer part
as was effectively done above. It is this approach that we are able to extend to
all complex reductive groups. Moreover, the final version of the correspondence
(Theorem D) involves some new features which do not occur in the case of vector
bundles. Also a surprisingly clean statement (Corollary E) is possible if we use
Bruhat–Tits buildings.

Our motivation was to understand the spaces of monodromy-type data that
occur in the extension of the nonabelian Hodge correspondence to the case of ir-
regular connections on curves [23], [5], and its extension to arbitrary G. Using the
quasi-Hamiltonian approach this problem may be broken up into pieces: under-
standing the Stokes data, and understanding what to do for regular singularities.
Since it is possible to understand the Stokes data for arbitrary G (cf. [7], [8],
[9]) we are left with the problem of extending Simpson’s tame Riemann–Hilbert
correspondence [25] to general G, which we will do here. At the end of the day
this will give the algebraic “Betti” description of some complex manifolds support-
ing hyper-Kähler metrics (appearing in the nonabelian Hodge theory of curves).
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Some motivation also came from trying to understand the recent work of Gukov
and Witten [15], [16] on the tamely ramified geometric Langlands correspondence
(in particular this justifies our desire to work uniformly with arbitrary complex
reductive groups).

Results and further evolution

We will state three local classification results, of increasing complexity, since each
may be of interest to different readers. In the case of logarithmic connections the
statement is as follows. Let t ⊂ g be a Cartan subalgebra corresponding to a
maximal torus T ⊂ G, and let tR = X∗(T )⊗Z R be the space of real cocharacters
so that t = tR ⊗R C. Choose an element τ + σ ∈ t with real part τ ∈ tR and a
nilpotent element n ∈ g commuting with τ + σ. Let O ⊂ g be the adjoint orbit of
τ + σ + n ∈ g. Let L ⊂ G be the centralizer of τ and let Pτ ⊂ G be the parabolic
subgroup determined by τ (see Section 2), so that L is a Levi subgroup of Pτ . Let
C ⊂ L be the conjugacy class containing the element exp(2πi(τ + σ + n)) ∈ L.
Then C canonically determines a conjugacy class in the Levi factor of any parabolic
subgroup of G conjugate to Pτ (see Lemma 1).

Theorem A (Logarithmic case). There is a canonical bijection between isomor-

phism classes of germs of logarithmic connections on G-bundles with residue in O
and conjugacy classes of pairs (M,P ) with P ⊂ G a parabolic subgroup conjugate

to Pτ and M ∈ P such that π(M) ∈ C, where π is the natural projection from P
onto its Levi factor.

Note that if O is nonresonant (i.e. α(τ +σ) is not a nonzero integer for any root
α) then the condition π(M) ∈ C implies that M itself is conjugate to exp(2πi(τ +
σ + n)).

At this point we investigated the spaces of enriched monodromy data that start
to appear here from a quasi-Hamiltonian viewpoint. In the case of compact groups,
when studying moduli space of flat connections on open Riemann surfaces, one fixes
the conjugacy class of monodromy around each boundary component/puncture in
order to obtain symplectic moduli spaces. As in [25] for GLn(C) we now see
this is not the most general thing that arises in the case of complex reductive
groups: in general, one should fix the conjugacy class of the image in a Levi factor.
In the quasi-Hamiltonian approach where one constructs spaces of (generalized)
monodromy data by fusing together some basic pieces this corresponds to a “new
piece”, as follows.

Let P0 ⊂ G be a fixed parabolic subgroup with Levi factor L. Choose a conju-
gacy class C ⊂ L (as remarked above this canonically determines a conjugacy class
in the Levi factor of any conjugate parabolic subgroup). Let P ∼= G/P0 be the set
of parabolic subgroups conjugate to P0.

Theorem B. The smooth variety Ĉ of pairs (M,P ) ∈ G×P such that M ∈ P and

π(M) ∈ C is a quasi-Hamiltonian G-space with moment map given by

(M,P ) 7→ M ∈ G.
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If P0 is a Borel, these spaces appear in the multiplicative Brieskorn–Grothen-
dieck–Springer resolution. If P0 = G then Ĉ = C. The additive analogue (on the
Lie algebra level) of this is well known, when the resolution is the moment map in
the usual sense (see [4, Theorem 2]). Some Poisson aspects of the multiplicative
case are studied in [14], but the quasi-Hamiltonian (or quasi-Poisson) viewpoint
looks to be more natural. The GLn(C) case may be constructed differently via
quivers (cf. [27]).

This enables us to construct lots of complex symplectic manifolds of “enriched
monodromy data” of the form

(
D~ · · ·~ D~ Ĉ1 ~ · · ·~ Ĉm

)
//G,

where D ∼= G×G is the internally fused double, the Ci are conjugacy classes in Levi
factors of various parabolic subgroups of G and “//” denotes a quasi-Hamiltonian
quotient (a quotient of a subvariety). The problem now is to try to interpret these
spaces as spaces of meromorphic connections on Riemann surfaces (of genus equal
to the number of factors of D appearing here). This almost immediately reduces

to the local problem of interpreting the spaces Ĉ—clearly only some of them arise
in Theorem A since τ determines the parabolic subgroup Pτ and also arises in the
choice of C.

The next generalization is to consider logarithmic connections on parabolic bun-
dles as follows. We will say an element θ ∈ tR is small if α(θ) < 1 for all roots α.
Choose a small element θ and let Pθ ⊂ G be the corresponding parabolic subgroup.
A (germ of a) parabolic bundle with weight θ is a G-bundle E on a disk together
with a reduction of structure group1 to Pθ at 0. A logarithmic connection on a
parabolic G-bundle E is then a logarithmic connection whose residue preserves
the parabolic structure. In local coordinates and trivialization this means the
connection takes the form

A =

(∑

i≥0

Aiz
i

)
dz

z
,

with Ai ∈ g and the reduction determines a parabolic subalgebra p ⊂ g and the
compatibility condition means A0 ∈ p.

The parabolic correspondence is then as follows. Fix τ +σ+n ∈ g as above and
suppose further that n commutes with θ. LetHθ ⊂ G be the centralizer of θ (a Levi
subgroup of Pθ) and let O ⊂ hθ be the adjoint orbit of τ + σ + n ∈ hθ := Lie(Hθ).
The orbit O canonically determines an adjoint orbit in the Levi factor h of any
parabolic subalgebra p conjugate to Lie(Pθ). We will say a parabolic connection
“lies over O” if its residue (in p) projects to an element of O ⊂ h under the
canonical map p � h, quotienting by the nilradical. Now set

φ = τ + θ ∈ tR

1This is a choice of a point of E0/Pθ where E0
∼= G is the fibre of E at 0. Equivalently,

it is the choice of a parabolic subgroup conjugate to Pθ in G(E)0 ∼= G, where G(E) is
the associated adjoint group bundle.
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and let Pφ ⊂ G be the corresponding parabolic subgroup and let L ⊂ Pφ be the
centralizer in G of φ (a Levi subgroup of Pφ). Then exp(2πi(τ + σ + n)) is in L
and we let C ⊂ L be its conjugacy class.

Theorem C (Parabolic case). Suppose that the centralizer in G of exp(2πiθ) ∈ G
is connected. Then there is a canonical bijection between isomorphism classes

of germs of parabolic connections on G-bundles with weight θ and residue lying

over O, and conjugacy classes of pairs (M,P ) with P ⊂ G a parabolic subgroup

conjugate to Pφ and M ∈ P such that π(M) ∈ C, where π is the natural projection

from P onto its Levi factor.

This clearly captures many more of the spaces Ĉ, and specializes to Theorem A if
θ = 0. But it is still not entirely satisfactory for several reasons. First, by definition
C ⊂ L is always in the image of the exponential map (so we do not always get all
possible classes). Second, Theorem C involves a connected centralizer condition—
this holds automatically if the derived subgroup of G is simply connected (e.g.
for GLn(C) or for any simply connected semisimple group), but not always. For

example, Theorem C does not apply to PGL2(C) and θ =
(
1
0

)
/2. Third, we

have restricted ourselves to small weights θ (such that α(θ) < 1 for all roots α).2

Somewhat miraculously all the problems disappear if we pass to the objects
which naturally appear when we do not restrict to small weights and if we use
their most natural groups of automorphisms. This is most simply described in local
coordinates/trivializations. Given any θ ∈ tR we have a decomposition g =

⊕
gλ

of the Lie algebra of G into the eigenspaces of adθ and we may consider the space
of “tame parahoric” connections of the form

Aθ =

{
A =

( ∑

i∈Z,λ∈R

Aiλz
i

)
dz

z

∣∣∣ Aiλ ∈ gλ and i+ λ ≥ 0

}
⊂ g((z)) dz.

This is acted on (by gauge transformations) by the extended parahoric subgroup

P̂θ = {g ∈ G((z)) | zθgz−θ has a limit as z → 0 along any ray}

where zθ = exp(θ log(z)) (see Section 2). The main result is the classification of

P̂θ orbits of such connections. That this is a nontrivial generalization is clear if
we consider for example the case G = E8: then there are 511 conjugacy classes
of parahoric subgroups, of which only 256 arise in the parabolic case. To describe
the classification we will first discuss the generalization of the notion of fixing the
adjoint orbit of the residue.

Let Ĥθ ⊂ G be the centralizer of exp(2πiθ) (which might be disconnected),

and now set hθ = Lie(Ĥθ), which agrees with the previous definition for small θ.

The group Ĥθ is isomorphic to the “Levi” subgroup L̂θ = {z−θhzθ | h ∈ Ĥθ}
2Note for GLn(C) one can always reduce to the case of small weights, every Levi

subgroup has surjective exponential map, and the centralizer of any semisimple group
element is connected.
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of P̂θ. The finite-dimensional weight zero piece Aθ(0) = {∑Ai,−iz
i dz/z} of Aθ

is acted on by L̂θ and the orbits correspond to adjoint orbits of Ĥθ (see Lemma
4). The generalization of fixing the adjoint orbit of the (Levi quotient of the)
residue is to fix the adjoint orbit O ⊂ hθ corresponding to the weight zero part of
the connection. Notice that in general one now gets a richer class of subalgebras
hθ ⊂ g: it is not necessarily the Levi factor of a parabolic (e.g. if G = G2 one may
obtain sl3(C) ⊂ g which is still simple of rank 2). The full statement of the local
correspondence is then as follows.

Fix elements θ, τ ∈ tR and σ ∈
√
−1tR and set φ = θ + τ . Choose a nilpotent

element n ∈ hθ ⊂ g commuting with φ and σ. (Thus there is a finite decomposition
n =

∑
ai with [τ, ai] = iai = [ai, θ] for i ∈ Z.) Let O ⊂ hθ be the adjoint orbit of

the element φ+σ+n ∈ hθ. This corresponds to the element (τ+σ+
∑
aiz

i) dz/z ∈
Aθ(0). Let L ⊂ Pφ be the Levi subgroup as above, but define C ⊂ L to be the
conjugacy class containing the element

exp(2πi(τ + σ)) exp(2πin) ∈ L.

Note that C is not necessarily an exponential conjugacy class, since n and τ might
not commute—indeed the Jordan decomposition implies that all conjugacy classes
arise in this way.

Theorem D (Parahoric case). There is a canonical bijection between the P̂θ orbits

of tame parahoric connections in Aθ lying over O and conjugacy classes of pairs

(M,P ) with P ⊂ G a parabolic subgroup conjugate to Pφ and M ∈ P such that

π(M) ∈ C.
This is the main result and specializes to Theorems A and C. Finally, by consid-

ering the space B(G) of weighted parabolic subgroups of G, and the space B(LG)
of weighted parahoric subgroups of the local loop group LG = G((z)), it is possible
to deduce the following statement, not involving orbit choices etc:

Corollary E. There is a canonical bijection between LG orbits of tame parahoric

connections and G orbits of enriched monodromy data:

{(A, p) | p ∈ B(LG), A ∈ Ap}/LG ∼= {(M, b) | b ∈ B(G),M ∈ Pb}/G.

The layout of this paper is as follows. In Section 2 we give basic definitions—
this is divided into three parts: reductive groups, loop groups and meromorphic
connections. Section 3 then establishes the main correspondence (Theorem D).
Next Section 4 is devoted to quasi-Hamiltonian geometry and establishes Theo-
rem B. Finally, Section 5 discusses Bruhat–Tits buildings and weighted parahoric
subgroups and deduces Corollary E. Some further directions are mentioned at the
end.
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2. Basic definitions

2.1. Background on reductive groups

Let G be a connected complex reductive group. Let T ⊂ G be a maximal torus
and let B ⊂ G be a Borel subgroup containing T . Write the Lie algebras as
t ⊂ b ⊂ g. Let R ⊂ t∗ denote the set of roots and let ∆ ⊂ R denote the simple
roots determined by B. We will identify the roots with characters of T whenever
convenient. Let gα ⊂ g be the root space corresponding to α ∈ R and let Uα ⊂ G
denote the corresponding root group.

Let X∗(T ) denote the set of one-parameter subgroups ϕ : C∗ → T of T . Taking
the derivative (ϕ = zφ 7→ φ) embeds X∗(T ) as a lattice in t, and we define
tR = X∗(T )⊗Z R ⊂ t, so that t is the complexification of the real vector space tR.

Recall the Jordan decompositions:

(1) X ∈ g has a unique decomposition X = Xs +Xn with Xs semisimple, Xn

nilpotent and [Xs, Xn] = 0,
(2) g ∈ G has a unique decomposition g = gsgu with gs semisimple, gu unipo-

tent and gsgu = gugs.

An element of X ∈ g will be said to have real eigenvalues if its adjoint orbit
contains an element whose semisimple part is in tR. Said differently there are a
finite number of commuting one-parameter subgroups λi such that Xs =

∑
ai dλi

for real numbers ai.
Recall that the standard parabolic subgroups PI ⊂ G are the subgroups con-

taining B. They are determined by subsets I of the nodes of the Dynkin diagram
∆. The Lie algebra of PI is that of B plus the sum of the root spaces g−α for
positive roots α which are linear combinations of the elements of I . The parabolic
subgroups P ⊂ G may be characterized as the subgroups conjugate to a standard
parabolic. The Levi factor of P is the quotient L = P/U of P by the unipotent
radical U = Radu(P ) of P ; it is again a connected complex reductive group. One
can choose a lifting of L to a subgroup of P (and thus of G) and P is isomorphic
to the semi-direct product of L and U . If T ⊂ B ⊂ P then we have a preferred
lift L with T ⊂ L, but in general there are many lifts, since we can conjugate the
lift L by elements of P .

Any semisimple element θ ∈ g with real eigenvalues (and in particular any
one-parameter subgroup) has an associated parabolic subgroup:

Pθ = {g ∈ G | zθgz−θ has a limit as z → 0 along any ray} ⊂ G

where zθ = exp(θ log(z)). Equivalently, Pθ is L · U ⊂ G where the Levi factor
L ⊂ G is the centralizer of θ and U ⊂ G is the unipotent subgroup whose Lie
algebra is the direct sum of the eigenspaces of adθ ∈ End(g) with strictly positive
eigenvalues. For one-parameter subgroups this notion is used by Mumford [21,
p. 55]. If we choose θ (or T ) such that θ ∈ tR then Pθ is the group generated by T
and the root groups Uα such that α(θ) ≥ 0. (If further θ is in the closed positive
Weyl chamber then Pθ = PI where I = {α ∈ ∆ | α(θ) = 0} is the set of walls
containing θ.) Note that PAdh(θ) = hPθh

−1 for any h ∈ G.
Now let P ⊂ G be a parabolic subgroup and let C ⊂ L be a conjugacy class in

the Levi factor L of P .
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Lemma 1. The conjugacy class C ⊂ L uniquely determines a conjugacy class in

the Levi factor of any parabolic subgroup of G conjugate to P .

Proof. Given l ∈ C ⊂ L and g ∈ G, then glg−1 projects to an element h =
π(glg−1) of the Levi factor H of the parabolic Q = gPg−1 (where π : Q →
H := Q/Radu(Q)). The conjugacy class in H of h is uniquely determined. Since
parabolics are their own normalizers ([11, 11.16]) Q determines g up to left mul-
tiplication by an element q of Q. Replacing g by qg only conjugates h by π(q).
Choosing a different l ∈ C corresponds to right multiplication of g by an element p
of P—this does not change Q so by the above corresponds to conjugating h. �

Similarly, an adjoint orbit O ⊂ Lie(L) uniquely determines an adjoint orbit of
the Lie algebra of the Levi factor of any conjugate parabolic. Similarly, also for
coadjoint orbits in Lie(L)∗.

Given a parabolic subgroup P ⊂ G, a set of weights for P is an element [θ] of
the centre of the Lie algebra of the Levi factor L of P such that

(1) it is semisimple and has real eigenvalues; and
(2) given any lift of L to a subgroup of P the corresponding lift θ ∈ p ⊂ g of

[θ] determines P , i.e. Pθ = P .

A weighted parabolic subgroup is a parabolic subgroup P together with a set of
weights for P . More concretely, [θ] is a (one-point) adjoint orbit of L and so
corresponds uniquely to an adjoint orbit of the Levi factor of the standard parabolic
PI conjugate to P . Then [θ] just corresponds to a point θ′ of the closed Weyl
chamber such that PI = Pθ′ . Thus if G is semisimple this amounts to choosing a
strictly positive real number for each element of ∆ \ I .

Lemma 2. A semisimple element θ ∈ g with real eigenvalues determines a set

of weights [θ] for the associated parabolic subgroup Pθ ⊂ G. In general there are

many elements θ determining the same pair (Pθ, [θ]).

Proof. Indeed, θ determines a Levi decomposition Pθ = LU (with L the central-
izer of θ) and θ is in the Lie algebra of the centre of L, so determines a weight. (Less
abstractly θ is conjugate to a unique element θ′ of the closed Weyl chamber in tR.)
Finally, it is clear that θ and gθg−1 determine the same pair for any g ∈ Pθ. �

Let B(G) denote the set of weighted parabolic subgroups of G. (This will be
discussed in more detail in Section 5.)

2.2. Background on loop groups

Now we will consider the analogous definitions for the complex (local) loop group.
We will work with the ring O = C{z} of germs of holomorphic functions (equiv-
alently, power series with radius of convergence > 0) and its field of fractions
K = C{(z)} = C{z}[z−1]. (The proofs we will give also yield the analogous results

for the completions Ô = C[[z]] and K̂ = C((z))—in fact this case is slightly easier—
for simplicity only the completed results were stated in the Introduction.) The
convergent local loop group is LG = G(K), the group of K points of the algebraic
group G. The subgroups of LG analogous to parabolic subgroups of G are the
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parahoric subgroups of LG. (Unlike in the finite-dimensional case parahoric sub-
groups are not always self-normalizing.) A basic example of a parahoric subgroup
is the subgroup G(O) which arises as the group of germs of bundle automorphisms
if we choose a local trivialization of a principal G-bundle. Similarly, the Iwahori
subgroup

I = {g ∈ G(O) | g(0) ∈ B}
and its parabolic generalizations

{g ∈ G(O) | g(0) ∈ P}

(where P ⊂ G is a parabolic subgroup) arise if we consider parabolic G-bundles.
These are also parahoric subgroups of LG but they do not exhaust all the pos-
sibilities. Indeed, if G is simple, conjugacy classes of parahoric subgroups of LG
correspond to proper subsets of the nodes of the affine Dynkin diagram, whereas
those above correspond to parabolic subgroups of G, i.e. to subsets of the usual
Dynkin diagram. For example, if G = E8 there are 511 conjugacy classes of para-
horic subgroups of LG, of which only 256 arise from parabolic subgroups of G. On
the other hand, if G = GLn any parahoric subgroup is conjugate to a subgroup
arising from a parabolic subgroup of G.

The general setup we will need for Theorem D is as follows. Given an element
θ ∈ tR we will define an associated parahoric subgroup of the loop group. First, θ
gives a grading of the Lie algebra g, namely it decomposes as

g =
⊕

λ∈R

gλ

where gλ is the λ eigenspace of adθ. Then for any integer i we may define subspaces

g(i) =
⊕

λ≥−i

gλ ⊂ g and n(i) =
⊕

λ>−i

gλ ⊂ g

so in particular g(0) = pθ is the Lie algebra of the parabolic associated to θ, and
n(0) is its nilradical (and g0 is its Levi factor). To emphasize the dependence on
θ we will sometimes write gθλ = gλ and gθ(i) = g(i). Note that the subset

℘θ :=

{
X =

∑

i∈Z

Xiz
i ∈ g{(z)})

∣∣∣ Xi ∈ g(i)

}

is a Lie subalgebra of Lg = g{(z)}. Said differently θ determines a grading of the
vector space Lg, with finite-dimensional pieces

Lg(r) =
{∑

Xiz
i ∈ Lg | Xi ∈ gλ where λ+ i = r

}

for all r ∈ R. Then ℘θ is the subalgebra of Lg with weights r ≥ 0. The weight
zero piece will be a subalgebra which we will denote as

lθ := Lg(0) = {X =
∑

Xiz
i ∈ ℘θ | Xi ∈ g−i}.
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This is finite-dimensional and in fact reductive. We view lθ as the Levi factor
of ℘θ. By setting z = 1 there is an embedding

ι : lθ ↪→ g.

Let Ĥθ = CG(e
2πiθ) be the centralizer in G of e2πiθ, and let hθ ⊂ g be its Lie

algebra. Then the image ι(lθ) is hθ. (Note that hθ is not necessarily isomorphic to
a Levi factor of a parabolic subalgebra of g—for example, for simple g, hθ could be
the Lie algebra determined by any proper subset of the nodes of the affine Dynkin
diagram of g, so may be a proper semisimple subalgebra of the same rank, such as
sl3 ⊂ g2, as in Borel–De Siebenthal theory.) More generally, we may consider the
subgroup

L̂θ = {z−θhzθ | h ∈ Ĥθ} ⊂ LG

of LG (this is indeed well defined since h commutes with the monodromy of

zθ = exp(θ log(z))). By setting z = 1 we see L̂θ is isomorphic to Ĥθ, and ι is
the corresponding map on the level of Lie algebras. Let Hθ denote the identity
component of Ĥθ and let Lθ ⊂ L̂θ denote the corresponding subgroup of the loop
group. Thus the Lie algebra of L̂θ and Lθ is lθ.

The extended parahoric subgroup determined by θ is the subgroup

P̂θ = {g ∈ LG | zθgz−θ has a limit as z → 0 along any ray}.

This definition is perhaps best understood by thinking in terms of a faithful rep-
resentation, whence θ is a diagonal matrix and we can see explicitly what the
condition means in terms of matrix entries. Alternatively, one can work with the
Bruhat decomposition, and show that P̂θ is generated by:

(1) elements of L̂θ;

(2) elements of the form exp(Xzi) with X ∈ gα such that α(θ) + i > 0 (or
X ∈ t and i > 0); and

(3) elements of the form exp(Y (z)) with Y ∈ zNg{z} with N a sufficiently
large integer (so that Y ∈ ℘θ).

Heuristically, the Lie algebra of P̂θ is ℘θ. This has Levi subgroup L̂θ and pro-
unipotent radical

Uθ = {g ∈ LG | zθgz−θ tends to 1 as z → 0 along any ray}

(which has Lie algebra the part of Lg of weight > 0, and is generated by elements

just of type (2) and (3) above). The group P̂θ is the semidirect product of L̂θ

and Uθ.

The parahoric subgroup associated to θ is the group generated by Uθ and the
connected group Lθ:

Pθ = Lθ · Uθ ⊂ P̂θ.

This is a normal subgroup of P̂θ and the quotient P̂θ/Pθ
∼= Ĥθ/Hθ is finite.
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2.3. Germs of meromorphic connections

Choose θ ∈ tR and let Pθ be the corresponding parahoric subgroup with Lie algebra
℘θ. Then we may consider the space A = g(K) dz of meromorphic connections (on
the trivial G-bundle over the disk) and the subspace

Aθ = ℘θ

dz

z
.

Thus if θ = 0 this is just the space of logarithmic connections. If θ is small,
these are the logarithmic connections with residue in the Lie algebra pθ of Pθ, as
occurs in the case of parabolic bundles. (Parabolic G-bundles are studied, e.g.
in [26], in the case where G is simple and simply connected, and the weights are
small and rational.) In general elements of Aθ will have poles of order greater
than 1, but we will see in the course of the proof of Theorem 6 below that they
always have regular singularities: fundamental solutions have at most polynomial
growth at zero. They should perhaps be viewed as the right notion of “logarithmic
parahoric connections” (as the pole is of order 1 greater than that permitted by the
parahoric structure) but this term is cumbersome and possibly confusing. We will
call them tame parahoric connections (although perhaps “logahoric” is simplest).

Lemma 3. The natural (gauge) action of P̂θ on A preserves Aθ.

Proof. Given g ∈ LG and a connection A ∈ A, the gauge action of g on A is
g[A] := Adg(A) + (dg)g−1 where for any g ∈ LG we define the g-valued meromor-
phic 1-form (on a neighbourhood of 0 ∈ C)

(dg)g−1 := g∗(Θ),

where Θ ∈ Ω1(G, g) is the right-invariant Maurer–Cartan form on G. (The sign
conventions used here are as in [7].) Thus it is sufficient to check that (dg)g−1 ∈ Aθ

for any g ∈ P̂θ. First, if g = exp(Xzi) for X ∈ gα with α(θ) + i ≥ 0 then
(dg)g−1 = (iXzi) dz/z ∈ Aθ. Second, if g = exp(X(z)) with X ∈ zNg{z} for N
a sufficiently large integer again we have (dg)g−1 ∈ Aθ. Such elements generate
Pθ so it follows that Pθ preserves Aθ (since d(gh)(gh)−1 = Adg(dhh

−1) + dgg−1).

Finally we must check L̂θ preserves Aθ (since P̂θ is generated by this and Pθ).

But if g = z−θhzθ ∈ L̂θ then one finds dgg−1 = (Adg(θ)− θ) dz/z and this will be
in Aθ if Adzθ(Adg(θ)− θ) has a limit as z → 0 along any ray. But it does have a
limit, since it is constant and equals Adh(θ)− θ. �

Note that the gauge action may also be interpreted as the (level 1) coadjoint
action of a central extension of LG, although we will not need this interpretation
here. A closer examination of the action of L̂θ on the weight zero piece Aθ(0) =
Lg(0) dz/z of Aθ yields the following.

Lemma 4. The map A 7→ zθ[A] is well defined on the weight zero piece Aθ(0) of
Aθ and provides an isomorphism

Aθ(0) ∼= hθ
dz

z
⊂ g

dz

z
,
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which is equivariant with respect to the gauge action of L̂θ on Aθ(0) and the adjoint

action of Ĥθ on hθ.

Proof. Aθ(0) is just the set of elements A =
∑
Aiz

i dz/z with Ai ∈ g in the −i
eigenspace of adθ. Thus zθ[A] = (θ +

∑
Ai) dz/z ∈ g dz/z, and B := θ +

∑
Ai

is just an arbitrary element of hθ (i.e. an element with components only in the

integer eigenspaces of adθ). Clearly if h ∈ Ĥθ and g = z−θhzθ ∈ L̂θ ⊂ LG is the
corresponding element of the loop group then

zθ [g[A]] = h[B dz/z] = Adh(B)
dz

z

so we have the desired equivariance. �

3. Main correspondence

Having now covered the background definitions we can move on to the main
result. Fix elements θ, τ ∈ tR and σ ∈

√
−1tR and set φ = θ + τ . Choose a

nilpotent element n ∈ g commuting with φ and σ and such that Adt(n) = n where
t := exp(2πiτ) ∈ G. (This means there is a (finite) decomposition n =

∑
ai with

[τ, ai] = iai for i ∈ Z.)
As above θ determines a space Aθ of θ parahoric connections and an extended

parahoric subgroup P̂θ ⊂ LG with Levi subgroup L̂θ. Moreover θ determines an
isomorphism L̂θ

∼= Ĥθ := CG(e
2πiθ) ⊂ G. The corresponding Lie algebras are

denoted lθ ∼= hθ ⊂ g.
Let O ⊂ hθ be the adjoint orbit (under the possibly disconnected group Ĥθ) of

the element
φ+ σ + n ∈ hθ.

This corresponds to the L̂θ orbit in Aθ(0) containing the element
(
τ + σ +

∑
aiz

i

)
dz

z
. (1)

Also φ determines a parabolic subgroup Pφ ⊂ G and a weight [φ] for Pφ. Let
L be the centralizer of φ (a Levi subgroup of Pφ). By construction τ, σ and n
commute with φ, so are in the Lie algebra of L. Then we define C ⊂ L to be the
conjugacy class containing the element

exp(2πi(τ + σ)) exp(2πin) ∈ L.

Note that C is not necessarily an exponential conjugacy class, since n and τ in
general do not commute. (This was one of our motivations for considering more
general objects than logarithmic or parabolic connections.)

Lemma 5. The triple ([φ], Pφ, C) is uniquely determined up to conjugacy by θ and

the orbit O ⊂ hθ. Moreover, any such triple ([φ], Pφ, C) arises in this way (upto
conjugacy).

Proof. Any other element of O will be of the form Adg(φ + σ + n) with g ∈ Ĥθ.
Suppose we choose g so that the semisimple part Adg(φ + σ) is in t. This yields
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new choices φ′ = Adgφ, τ
′ = φ′ − θ, σ′ = Adgσ, n

′ = Adgn and we should check
that ([φ′], Pφ′ , C′) is conjugate to ([φ], Pφ, C). But this follows from the fact that
exp(2πiτ ′) = g exp(2πiτ)g−1, as g commutes with exp(2πiθ). The fact that all
such triples arise follows immediately from the multiplicative Jordan decomposi-
tion. �

Note that, given φ = θ+τ and σ, the precise correspondence between the adjoint
orbits O ⊂ hθ and the conjugacy classes C ⊂ L = CG(φ) rests on the identification

{X ∈ hθ | [X,φ] = [X, σ] = 0} = {X ∈ g | [X,φ] = [X, σ] = 0,Ade2πiθX = X}
= {X ∈ g | [X,φ] = [X, σ] = 0,Ade2πiτX = X}
= {X ∈ Lie(L) | [X, σ] = 0,Ade2πiτX = X}

since n is a nilpotent element of this (reductive) Lie algebra.
We will say that a connection A ∈ Aθ “lies over O” if its weight zero component

is in the L̂θ orbit corresponding to O. Similarly, if P ⊂ G is a parabolic subgroup
conjugate to Pφ, we will say M ∈ P “lies over C” if π(M) ∈ C, where π is the
canonical projection from P onto its Levi factor (and we transfer C from L ⊂ Pφ

as in Lemma 1).
The main statement (Theorem D of the Introduction) is then:

Theorem 6. There is a canonical bijection between the P̂θ orbits of tame para-

horic connections in Aθ lying over O and conjugacy classes of pairs (M,P ) with

P ⊂ G a parabolic subgroup conjugate to Pφ and M ∈ P an element lying over C.
Proof. To start we will explain how to put such connections in a simpler form.
Suppose A ∈ Aθ lies over O. First we may do a gauge transform by an element of
L̂θ so the weight zero component of A equals A(0) := (τ +σ+

∑
aiz

i) dz/z. Then
we claim we can do a gauge transformation by an element g of Uθ such that g[A]
is normalized in the following way:

g[A] =

(
τ + σ +

∑

i∈Z

Aiz
i

)
dz

z
(2)

with each Ai ∈ g(i) and

[τ, Ai] = iAi, [σ,Ai] = 0,

for all i ∈ Z (and ai is the component of Ai in the −i eigenspace of adθ). This
implies that only finitely many of the Ai are nonzero.

To prove the claim we extend the usual argument in the logarithmic case (cf.
[2]) as follows. Let 0 = r0 < r1 < · · · be the sequence of positive real numbers
such that Lg(ri) 6= 0. Suppose inductively that the piece of A in Lg(ri) dz/z has
been normalized for 0 ≤ i < k. Then we claim we may choose X(k) ∈ Lg(rk)
so that the piece of gk[A] in Lg(ri) dz/z is normalized for 0 ≤ i ≤ k, where
gk = exp(X(k)) ∈ Uθ. Indeed, gk[A] will equal A up to Lg(rk−1) dz/z and will
have subsequent coefficient

A(k) + [X(k), A(0)] + z
d

dz
X(k) ∈ Lg(rk), (3)

39



P. P. BOALCH

where A =
∑

i≥0 A(i) dz/z with A(i) ∈ Lg(ri). Thus ideally we would like to

choose X(k) such that this was zero, i.e.
(
adA(0) − z d/dz

)
X(k) = A(k). This

is not always possible, but we can make the difference small, as follows. Note
that adA(0) restricts to a linear operator on the finite-dimensional vector space
Lg(rk) and so we may decompose Lg(rk) into its generalized eigenspaces. Since
τ + σ is the semisimple part of A(0), these generalized eigenspaces are just the
eigenspaces of the semisimple operator adτ+σ. On the other hand, we also have
z d/dz ∈ End(Lg(rk)) preserving this eigenspace decomposition (as it commutes
with adτ+σ) and having only integral eigenvalues (mapping xzi to ixzi). Thus if
aiµz

i (resp. xiµz
i) is the component of A(k) (resp. X(k)) in the µ-eigenspace of

adτ+σ (and the i-eigenspace of z d/dz) then we may define X(k) by setting xiµ = 0
if µ = i and

xiµz
i =

(
adA(0) − z

d

dz

)−1

(aiµz
i)

if i 6= µ, since then the operator adA(0) − z d/dz will be invertible on the cor-
responding joint eigenspace. If X(k) is defined in this way we thus find that
the next coefficient (3) is the sum of the components of A(k) with i = µ, i.e.∑

i aiiz
i ∈ Lg(rk) (noting that θ commutes with τ + σ and d/dz). But this just

means it is normalized: [τ, aii] = iaii, [σ, aii] = 0. Thus inductively we may con-
struct a formal transformation g = · · · g3g2g1 in the completion of Uθ converting
A into normal form. To conclude that this transformation is actually convergent
we need to check that

Lemma 7. Any connection A ∈ Aθ is regular singular.

Proof. Choose a faithful representation of G and work in this representation.
Thus τ is a real diagonal matrix and we may choose a diagonal matrix λ with
integral eigenvalues such that the diagonal entries of τ −λ are in [0, 1). Let ϕ = zλ

be the corresponding one-parameter subgroup. We may then choose k sufficiently
large such that the convergent meromorphic gauge transformation ϕ−1gk · · · g2g1
converts A into a logarithmic connection. �

Thus both the original connection and the resulting connection are convergent
connections with regular singularities, and it follows that g is actually convergent
and in Uθ (in effect we constructed an Ô point of a group scheme and then deduced
it is actually an O point, i.e. in Uθ).

Having completed the normalization now set N =
∑
Ai, R = σ + N , Ms =

exp(2πi(τ + σ)),Mu = exp(2πiN),M =MsMu ∈ G.
Then MsMu is the Jordan decomposition of M and the connection A has mon-

odromy M . Indeed A (after normalization) equals zτ [Rdz/z], which has funda-
mental solution zτzR. By constructionM ∈ Pφ, so we have attached a pair (M,P )
to the original data (with P = Pφ). If L is the Levi factor of P then the image of
M in L is

π(M) = exp(2π
√
−1(τ + σ)) exp

(
2π

√
−1

∑
ai

)
,

where ai is the component of Ai in the −i eigenspace of adθ (the component
commuting with φ). It follows that π(M) ∈ C.
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Surjectivity. To give the inverse construction we proceed as follows. Suppose
we have (M,P ) with M ∈ P , P of type φ and π(M) ∈ C ⊂ L(P ). Then we
may conjugate by G so that P = Pφ and Ms = exp(2πi(τ + σ)) ∈ T , since
π(M) ∈ C. (Here Ms is the semisimple part of M .) Then we may write M =
exp(2πiτ) exp(2πiR) for a unique element R = σ + N ∈ g with N nilpotent
(and τ, σ as fixed above). Moreover, N commutes with σ and AdtN = N where
t := exp(2πiτ) ∈ T , but N does not necessarily commute with τ itself. This
implies that there is a unique decomposition N =

∑
i∈Z

Ai with Ai ∈ g such that
[τ, Ai] = iAi. (If N has components in any other eigenspace of adτ then one will
not have Adt(N) = N .) On the other hand, since M ∈ Pφ we have N ∈ pφ and so
N only has components in the positive weight spaces of φ. Now since θ = φ − τ
the connection A := zτ [Rdz/z] = (τ + σ +

∑
Aiz

i) dz/z is in Aθ.
The component of A in the weight zero component Aθ(0) is (τ+σ+

∑
aiz

i) dz/z
where ai is the component of Ai commuting with φ (i.e. weight −i for θ). This is
determined by C and lies over O by construction. Thus (M,P ) is the data attached
to the connection A.

The main lemma we need for the rest of the proof is the following.

Lemma 8. Suppose C ∈ G. Then zτCz−τ is in P̂θ if and only if:

(a) C ∈ CG(t) where t = e2πiτ ; and
(b) C ∈ Pφ.

Proof. Condition (a) holds if and only if p := zτCz−τ is in LG (since that is the

condition for it to have no monodromy). Then by definition p ∈ P̂θ if and only if
zθpz−θ has a limit as z → 0 along any ray, i.e. if zφCz−φ has a limit as z → 0.
But this is just the condition for C ∈ Pφ. �

Well-defined on orbits. Next we will check that if two connections are in the same
orbit then their data (M,P ) are conjugate. Recall we have fixed θ, τ ∈ tR and set

φ = τ + θ. Suppose A,B ∈ Aθ are related by g ∈ P̂θ. Without loss of generality
we may assume A,B are both normalized. Thus they have fundamental solutions
ΦA = zτzR and ΦB = zτzR1 . Their monodromies areM(A) = te2πiR andM(B) =
te2πiR1 (both in Pφ) where t := e2πiτ . The hypothesis means that ΦA = gΦBC
for some C ∈ G. This implies M(A) = C−1M(B)C, so the monodromies are
conjugate, but we must show that C ∈ Pφ. It follows (from M(A) = C−1M(B)C)
that C commutes with t and that R1 = AdC(R). Thus the identity ΦA = gΦBC

simplifies to zτ = g(z)zτC, so that zτCz−τ = g−1 ∈ P̂θ. Thus by Lemma 8,
C ∈ Pφ as desired.

Injectivity. Now suppose A,B ∈ Aθ both lie over O and yield data conjugate to
(M,P ). We will show they are gauge equivalent by an element of P̂θ. Without
loss of generality we may assume P = Pφ. Thus they have fundamental solutions

ΦA = f(z)zτzR and ΦB = h(z)zτzR1 , respectively, for some f, h ∈ P̂θ, and they
have monodromy M(A) = te2πiR and M(B) = te2πiR1 where t := e2πiτ . By
assumption M(B) = CM(A)C−1 for some C ∈ Pφ = NG(Pφ). Thus M(B) =
e2πiτ1e2πiAdC(R) where τ1 = AdC(τ). Comparing the semisimple parts of the two
expressions for M(B) we deduce C commutes with t (so that t = e2πiτ1) and also
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that AdC(σ) = σ. Using, for example, the Iwasawa decomposition it follows that
R1 = AdC(R). Thus B also has fundamental solution h(z)zτCzR = ΦBC. Thus
it is sufficient to prove that

p := zτCz−τ is in P̂θ

(since then h(z)zτCzRΦ−1
A = hzτCz−τf−1 will be an element of P̂θ relating A

and B). But by Lemma 8 this is now immediate. �

This establishes the main correspondence. For small weights θ this reduces to
the parabolic statement in Theorem C (the connected centralizer condition ensures

P̂θ = Pθ; it is the group Pθ that appears in the local moduli of parabolic bundles).
For θ = 0 one obtains the logarithmic statement (Theorem A).

Remark 1. Note it follows from the proof that the stabiliser in P̂θ of a connection in
Aθ is isomorphic to the centralizer in Pφ of the monodromy M . Indeed, for a con-
nection in normal form, this correspondence is given by C ∈ CPφ

(M) ↔ zτCz−τ ,
and in general one conjugates by any transformation putting the connection in
normal form.

Remark 2. Analogously to [25] one may define the notion of a “filtered G-local
system” on a smooth punctured Riemann surface U to be a G-local system L

on U together with (on a small punctured disk ∆i around the ith puncture, for
each i) a P -local system Li (for some weighted parabolic P ⊂ G) such that the
restriction of L to ∆i is the G-local system Li ×P G associated to Li. If U is a
punctured disk, and we choose a basepoint in U , then specifying a filtered G-local
system is the same as specifying the data (M,P, [φ]) in our correspondence (so
the correspondence could be restated more intrinsically in terms of filtered G-local
systems).

Remark 3. Another motivation for studying such “enriched” (or “exact”) Riemann–
Hilbert correspondences is related to isomonodromic deformations. For example,
such “monodromy preserving” deformations of a nonresonant logarithmic connec-
tion A =

∑
Aidz/(z−ai) on the trivial bundle on P1 are governed by Schlesinger’s

equations: dAi = −∑
j 6=i[Ai, Aj ] d log(ai − aj). These are the deformations which

preserve the conjugacy class of the monodromy representation of A. Of course,
these equations make sense for any residues, and one may ask what exactly is
preserved by Schlesinger’s equations in the resonant case?3 The answer (which
is clear from [20], or may be extracted from [10]) is that the monodromy repre-
sentation and the filtrations are preserved (up to overall conjugacy). This now
extends immediately to arbitrary G. Such “resonant” deformations are important
since, for example, soliton solutions arise as such (when one has a further irregular
singularity at infinity).

3Recall that a logarithmic connection on a G-bundle E is resonant if the residue of the
induced connection on the associated vector bundle Ad(E) has an eigenvalue in Z \ {0}.
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4. Quasi-Hamiltonian spaces

Fix a connected complex reductive group G and a parabolic subgroup P0 ⊂ G.
Let C ⊂ L be a conjugacy class of the Levi factor L of P0. Let P ∼= G/P0 be the
variety of parabolic subgroups of G conjugate to P0.

The aim of this section is to prove Theorem B, that the set Ĉ of pairs (g, P ) ∈
G × P with g ∈ P and π(g) ∈ C, is a quasi-Hamiltonian G space with G-valued
moment map given by (g, P ) 7→ g.

Recall (cf. [1]) that a complex manifold M is a complex quasi-Hamiltonian G-
space if there is an action of G on M , a G-equivariant map µ : M → G (where G
acts on itself by conjugation) and a G-invariant holomorphic 2-form ω ∈ Ω2(M)
such that:

(QH1) dω = µ∗(η).
(QH2) For all X ∈ g, ω(vX , · ) = 1

2µ
∗(Θ +Θ, X) ∈ Ω1(M).

(QH3) At each point m ∈M : kerωm ∩ ker dµ = {0} ⊂ TmM .

Here we have chosen a symmetric nondegenerate invariant bilinear form ( , ) :
g ⊗ g → C, the Maurer–Cartan forms on G are denoted Θ,Θ ∈ Ω1(G, g), re-
spectively (so in any representation Θ = g−1dg,Θ = (dg)g−1), and the canonical
bi-invariant 3-form on G is η := 1

6 ([Θ,Θ],Θ). Moreover, if G acts on M , vX is the
fundamental vector field of X ∈ g; it is minus the tangent to the flow (so that the
map g → VectM ;X 7→ vX is a Lie algebra homomorphism).

First we note that Ĉ is a complex manifold, in fact a smooth algebraic variety.
Let G̃ denote the subvariety of G × P of pairs (g, P ) with g ∈ P (this is the
multiplicative Brieskorn–Grothendieck space if P0 is a Borel). There is a surjective
map

pr : G× P0 → G̃, (C, p) 7→ (g, P ) = (C−1pC,C−1P0C),

whose fibres are precisely the orbits of a free action of P0: explicitly q ∈ P0 acts
on G×P0 as q(C, p) = (qC, qpq−1). Now choose a Levi decomposition P0 = LU of
P0 so that U is the unipotent radical of P0 and L ∼= P0/U . Consider the (locally
closed) subvariety CU ⊂ LU of P0. Since C is a conjugacy class of L and P0 acts
on L via the projection π : P0 → L, the conjugation action of P0 on itself preserves
CU . Then pr restricts to G× CU and its image is Ĉ, so that

Ĉ ∼= G×P0
CU

and we deduce Ĉ is a smooth complex algebraic variety. (Note that C has a natural
algebraic structure as a quotient of L, but will not be affine unless it is a semisimple
conjugacy class.)

Rather than prove directly that Ĉ is quasi-Hamiltonian we will use the well
known fact that C is a quasi-Hamiltonian L-space and obtain Ĉ by reduction from
a quasi-Hamiltonian G× L space, as follows.

Recall that P0 acts freely on G × P0. Let M denote the quotient G ×U P0 =
(G× P0)/U by the subgroup U ⊂ P0. Thus M has a residual action of L ∼= P0/U
and also has a commuting action of G, from the action g(C, p) = (Cg−1, p) on
G × P0. Moreover, there is a map µ : M → G × L induced from the U invariant
map

µ̂ : G× P0 → G× L, (C, p) 7→ (C−1pC, π(p)−1),
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where π : P0 → L is the canonical projection.

Theorem 9. The space M is a quasi-Hamiltonian G×L space with moment map

µ and 2-form ω determined by the condition

pr∗(ω) = 1
2 (γ,Adp γ) +

1
2

(
γ,P + P

)
∈ Ω2(G× P0),

where pr is the projection G× P0 → M and γ = C∗(Θ), P = p∗(Θ),P = p∗(Θ).

To deduce Theorem B from this we may perform the fusion M ~L C with the
conjugacy class C ⊂ L, and then perform the quasi-Hamiltonian reduction by the
free action of L. The result (M ~L C)//L may be identified immediately with Ĉ.

In the special case P0 = L = G, the space M is just the double D(G) ∼= G×G
of [1]. In general, dimM = 2dimP0 and the 2-form ω on M may be derived from
the 2-form ωD on D(G): one finds that the restriction of ωD to G × P0 (via the
inclusion P0 ⊂ G) is basic for the U action and descends to the 2-form ω on M.
That the result is again quasi-Hamiltonian requires proof of course.

Remark 4. In the first instance the 2-form ω was arrived at by actually computing
what arose from the Hamiltonian loop group spaces related to resonant logarithmic
connections on a disk, similarly to Section 4 of [8]. This computation led to the 2-
form from the double. Note that in the case of G = GLn(C) the quasi-Hamiltonian

spaces Ĉ may be constructed differently, in terms of quivers (see [27]), although
even for GLn the spaces M do not seem to arise from quivers.

Remark 5. Notice also that there are certain parallels with the Stokes phenomenon;
e.g. for the global moduli spaces, again one must fix a certain union of local gauge
orbits to fix a symplectic leaf (in [6] this union arose by fixing the formal gauge
orbits). Also the spaces M may be viewed as a tame analogue of the fission spaces
of [9] (and again one may glue on more complicated spaces, not just conjugacy
classes).
Proof of Theorem 9. Write ω̂ = pr∗(ω). Let U− denote the unipotent radical of
the parabolic opposite to P0 (so that U−P0 is open in G). Condition (QH1) may
be deduced directly from the result of [9] that GAL := G×L×U−×U is a quasi-
Hamiltonian G× L space with moment map µA : (C, h, u−, u) 7→ (C−1pC, h−1) ∈
G× L where p = u−1

− hu. Then we can consider the embedding

ι : G× P0 ↪→ GAL, (C, p) 7→ (C, h, 1, u),

defined via the Levi decomposition p = hu ∈ P0. Thus µ̂ = µA ◦ ι and moreover
ι∗Ω = ω̂ where Ω is the quasi-Hamiltonian 2-form on GAL from [9]. Then (QH1)
follows immediately:

pr∗dω = dpr∗ω = dι∗Ω = ι∗dΩ = ι∗µ∗
Aη = µ̂∗η = pr∗µ∗η

so that dω = µ∗η since pr is surjective on tangent vectors. Condition (QH2)
is straightforward and left as an exercise. (QH3) is trickier and we proceed as
follows. It is sufficient to show that at each point m ∈ M := G× P0 the subspace
ker ω̂∩ker dµ̂ of the tangent space TmM is contained in the space of tangents to the
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U action. Thus choose X ∈ TmM and suppose that X ∈ ker(ω̂) ∩ ker(dµ̂). Write
µ̂ = (µG, µL) for the components of the moment map. Since X is in the kernel of
dµL we have η′ = 0 (here primes denote derivatives along X , so η′ := 〈h∗(ΘL), X〉,
where ΘL is the Maurer–Cartan form on L). Moreover, X being in the kernel of
dµG amounts to the condition γ ′ + P ′ = p−1γ′p. Since p = hu (and η′ = 0) this
becomes

γ′ + U ′ = p−1γ′p. (4)

(In general, here the adjoint action of g ∈ G on X ∈ g will be denoted by
gXg−1 := AdgX .) Now we choose an arbitrary tangent vector Y ∈ TmM and

denote derivatives along Y by dots, so, e.g. Ṗ = 〈Y,Pm〉 ∈ Lie(P0). We then
compute

2ω̂(X,Y ) = 2
(
γ′, U̇

)
+
(
uγ′u−1 + h−1γ′h, η̇

)
.

This should be zero for all Y ; observe that each term on the right is really an
independent condition on X . From the first term we deduce the component of γ ′

in Lie(U−) is zero. The second term implies the Lie(L) component of γ ′ is also
zero. Thus we find that γ ′ ∈ Lie(U), and we know η′ = 0 and equation (4) holds.
But these three conditions characterize4 the tangents to the U orbits on G × P0,
so (QH3) follows. �

Remark 6. In particular it follows that all the spaces Ĉ arise as certain moduli
spaces of framed connections on a disk. The precise statement is as follows. Let
∆ be a closed disk in the z plane centred at zero. Replace LG,Aθ, P̂θ by their
analogues defined on all of ∆ (rather than just germs at zero). So, e.g. now
LG = G(R) where R is the ring of meromorphic functions of ∆, having poles only

at zero. Choose a point q on the boundary of ∆ and let P̂1
θ be the subgroup of P̂θ

of elements taking the value 1 ∈ G at q. Also let Aθ(O) denote the subset of Aθ

of elements lying over a fixed orbit O as in Theorem 6 (and suppose C, φ are as
defined there too). Then

Ĉ ∼= Aθ(O)/P̂1
θ ,

i.e. Ĉ is isomorphic to the space of connections on ∆ lying over O with a framing
at q. Moreover, the residual action of P̂θ/P̂1

θ
∼= G corresponds to the G action

on Ĉ.

5. Cleaner statement

A cleaner Riemann–Hilbert statement arises if we also allow the weight θ to
vary in the correspondence, but for this we need to define the notion of a weighted
parahoric subgroup, analogous to the notion of a weighted parabolic subgroup.
This leads directly to the definition of the Bruhat–Tits building.

First, define the partly extended affine Weyl group to be Ŵ = N(K)/T (O) ∼=
WnX∗(T ) where X∗(T ) is the cocharacter lattice, which we think of either as

4To see this choose X ∈ Lie(U) and consider the flow (C(t), p(t)) = exp(Xt) · (C, p).
Thus (differentiating with respect to t) γ′ = C′C−1 = X ∈ Lie(U) and, similarly,
P ′ = p−1Xp−X. But since p = hu we see h is constant and U ′ = P ′, so (4) follows.
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the set of 1 parameter subgroups of T , or as the kernel of exp(2πi ·) : t → T (an
element λ of this kernel corresponds to the one-parameter subgroup ϕ = zλ). Here
N ⊂ G is the normalizer of T in G and W = N/T is the finite Weyl group, which
acts naturally on tR (via the adjoint action of N). Note that X∗(T ) ∼= T (K)/T (O)
and by conventionX∗(T ) acts on tR via zλ ·θ = θ−λ (this is a standard convention,
but beware it agrees with our conventions concerning gauge transformations only
if we identify θ with minus the residue of the connection −θ dz/z.) These two

actions combine to give an action of Ŵ on tR.

Definition 1. A weighted parahoric subgroup of LG is an equivalence class of
elements (g, θ) ∈ LG× tR where

(g, θ) ∼ (g′, θ′)

if θ′ = wθ for some w ∈ Ŵ and g−1g′ŵ ∈ P̂θ for some lift ŵ of w to N(K) ⊂ LG.

This is the standard definition of the (extended) Bruhat–Tits building B(LG) =
(LG×tR)/ ∼ of LG [12, p. 170]. Thus we are saying a weighted parahoric is a point

of the building. (It seems one usually views the building as a simplicial complex
and rarely regards its points in this sense.) Note that LG acts naturally on B(LG)
via left multiplication on LG.

Lemma 10. A weighted parahoric p ∈ B(LG) canonically determines a parahoric

subgroup Pp ⊂ LG and a space of connections Ap ⊂ A.

Proof. Suppose p is in the equivalence class of (g, θ) ∈ LG×tR, and (g′, θ′) ∼ (g, θ)
with θ′ = wθ. Choose a lift ŵ of w to N(K) = N(C)nT (K) ⊂ LG. We may check
directly that Pθ′ = ŵPθŵ

−1 and that Aθ′ = ŵ[Aθ]. The first claim then follows

since P̂θ normalizes Pθ: Pp := gPθg
−1 is well defined. Second, we should check

that Ap := g[Aθ] depends only on the equivalence class of p. But by Lemma 3
g−1g′ŵ preserves Aθ so Ap = g′[Aθ′ ]. �

Remark 7. Note there is an embedding tR ↪→ B(LG); θ 7→ [(1, θ)] (whose image is

the standard apartment) and one may then confirm (see Lemma 12) that P̂θ is
exactly the stabilizer in LG of θ ∈ B(LG). It follows in general that Pp is the
identity component of StabLG(p).

Thus it makes sense to consider pairs (A, p) where p ∈ B(LG) is a weighted
parahoric and A ∈ Ap is a compatible connection. It follows from the lemma that
the loop group LG acts on the set of such pairs: g(A, p) = (g[A], g(p)).

The corresponding monodromy data consists of pairs (M, b) ∈ G × B(G) with
M ∈ Pb. Here B(G) is the space of weighted parabolic subgroups of G. A point of
B(G) consists of a parabolic P ⊂ G and a set of weights for P (as defined earlier).
This can be rephrased to parallel the definition of B(LG) as follows.
Definition 2. A weighted parabolic subgroup of G is an equivalence class of ele-
ments (g, θ) ∈ G× tR where (g, θ) ∼ (g′, θ′) if θ′ = wθ for some w ∈W in the Weyl
group and gPθg

−1 = g′Pθ′(g′)−1 ⊂ G (i.e. g−1g′ŵ ∈ Pθ for some lift ŵ ∈ N(C)
of w).

Thus we can define B(G) = (G × tR)/∼ and note that b ∈ B(G) determines a
parabolic subgroup Pb = gPθg

−1 ⊂ G. (Beware this is not the spherical building

46



TAME PARAHORIC RIEMANN–HILBERT

of G, it is more like the cone over the spherical building; if we choose a maximal
compact subgroup K ⊂ G then one may identify B(G) ∼= iLie(K) ⊂ g.)5 In any
case, basically as a corollary of Theorem 6 we find:

Corollary 11. There is a canonical bijection between LG orbits of tame parahoric

connections and G orbits of enriched monodromy data:

{(A, p) | p ∈ B(LG), A ∈ Ap}/LG ∼= {(M, b) | b ∈ B(G),M ∈ Pb}/G.

Proof. Given (A, p) we may act by LG to move p to a point θ of the standard
apartment, and thus suppose A ∈ Aθ and p = θ ∈ tR. We may further assume
A is in normal form. Then we may obtain data M,φ as usual, with M ∈ Pφ,
i.e. a point of the right-hand side, with b = φ. We should check that the G-orbit
of (M, b) only depends on the LG orbit of (A, p). Firstly this is clear if we only

move (A, p) by an element of P̂θ (so p = θ does not move) by Lemma 5 and
Theorem 6. Second, we should examine what happens if we act by an element g
of N(K) = N(C)nT (K) (since any other element of the LG orbit of (A, p) above
the standard apartment will arise in this way). We may write g = hzµt with

h ∈ N(C), µ ∈ X∗(T ), t ∈ T (O). Since t ∈ P̂θ we may assume t = 1 here. Set
A′ = g[A], θ′ = g · θ = Adh(θ − µ). It is straightforward to check that A′ is again
in normal form: indeed, suppose, A = (τ + σ +

∑
Aiαz

i) dz/z with α ∈ R ∪ {0}
and Aiα ∈ gα (or in t if α = 0), then

hzµ[A] = Adh

(
τ + µ+ σ +

∑
Aiαz

i+α(µ)
)dz
z
.

The key point then is that τ ′ = Adh(τ + µ) so that

φ′ = τ ′ + θ′ = Adh(τ + µ+ θ − µ) = Adh(φ)

so that φ only moves via the finite Weyl groupW . The corresponding fundamental
solutions are of the form zτzR and zτ

′

zR
′

= hzτ+µzRh−1 so it is clear that the
monodromies, etc. are related by the action of h. This shows the map from left to
right is well defined. Surjectivity follows from Theorem 6. Injectivity also largely
follows from Theorem 6, but it remains to check that orbits with inequivalent θ
map to different points. But this follows from the fact that (M, b) determines the

Ŵ orbit of θ ∈ tR—indeed suppose we act by G so that M ∈ Pφ, with φ ∈ tR
determined up to the action of W . Then let d ∈ T be any element conjugate to
the semisimple part of π(M) ∈ L = CG(φ), so that d = exp(2πi(τ + σ)) with τ
determined up to the addition of an element of X∗(T ). This yields one choice of
θ = φ − τ and the others are determined by making different choices, i.e. via the
action of Ŵ . �

5Similarly it seems one may identify B(LG) with a space of K-connections, although
we will not use this viewpoint.
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6. Other directions

First it looks to be possible to extend the nonabelian Hodge correspondence to
the present context (i.e. the correspondence on a smooth algebraic curve Σ between
such connections and Higgs bundles, under stability conditions). The correspon-
dence of the parameters will be as in Simpson’s table [25, p. 720]—basically the
parameters are rotated, and this now generalizes directly. In our notation this
table is:

Dolbeault De Rham Betti
weights ∈ tR −τ θ φ = τ + θ

“eigenvalues”∈ tC, tC,T(C) − 1
2 (φ+ σ) −(τ + σ) exp(2πi(τ + σ))

where the columns correspond to Higgs bundles, connections and monodromy data,
respectively.6 Observe for example that the eigenvalues of the Higgs field will only
vary under the finite Weyl group, as expected. This global correspondence is
probably best phrased in terms of torsors for the parahoric (Bruhat–Tits) group
schemes G → Σ, such that locally G looks like a parahoric subgroup P of the
local loop group and at all but finitely many points G looks like G(O). Such
torsors have been studied recently (in more generality, but not with connections
or weights) in [22]. On the other hand, quasi-parahoric Higgs bundles (i.e. without
the weights) have been studied algebraically recently by Yun [28], and, in effect,
the local picture of such Higgs bundles was studied by Kazhdan and Lusztig [18]
in 1988. (Corollary E is related to the De Rham and Betti analogues of this.) It
might also be profitable (in the case of rational weights) to relate the parahoric
viewpoint here to the “ramified” approach of Balaji et al. [3] (see also Seshadri
[24]), although they have not considered the analogue of logarithmic connections
it seems.

A. Extra proofs

Lemma 12. For any θ ∈ tR, the group P̂θ is the stabilizer in LG of p = [(1, θ)] ∈
B(LG).

Proof. Clearly P̂θ does stabilize p. Conversely if g ∈ LG stabilizes p then (g, θ) ∼
(1, θ) so that g−1ŵ ∈ P̂θ for some ŵ ∈ N(K) such that w(θ) = θ (where w is the

image of ŵ in Ŵ ). Thus it is sufficient to show that all such elements ŵ are in P̂θ.
Thus we should check that zθŵz−θ has a limit as z → 0 along any ray. We may
write ŵ = hzλt with h ∈ N(C), λ ∈ X∗(T ), t ∈ T (O). Thus

zθŵz−θ = zθhz−θ+λt = hzAd−1

h
(θ)z−θ+λt.

But the condition that wθ = θ means Adh(θ − λ) = θ, so that Ad−1
h (θ) = θ − λ,

and the above expression reduces to ht, which clearly has a limit as z → 0. �

6Beware that we use the opposite conventions to [25] for connections on vector bundles
(d−A rather than d+A in local trivializations)—this explains the sign in the middle of
the bottom row, that does not appear elsewhere in the present paper.
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[4] O. Biquard, Sur les équations de Nahm et la structure de Poisson des algèbres de
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