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We study moduli spaces of meromorphic connections (with arbitrary order poles)
over Riemann surfaces together with the corresponding spaces of monodromy data
(involving Stokes matrices). Natural symplectic structures are found and described
both explicitly and from an infinite dimensional viewpoint (generalising the Atiyah–
Bott approach). This enables us to give an intrinsic symplectic description of the
isomonodromic deformation equations of Jimbo, Miwa and Ueno, thereby putting
the existing results for the six Painlevé equations and Schlesinger’s equations into a
uniform framework. © 2001 Elsevier Science
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1. INTRODUCTION

Moduli spaces of representations of fundamental groups of Riemann
surfaces have been intensively studied in recent years and have an incre-
dibly rich structure: For example, a theorem of Narasimhan and Seshadri
[56] identifies the space of irreducible unitary representations of the fun-
damental group of a compact Riemann surface with the moduli space of
stable holomorphic vector bundles on the surface. In particular, this
description puts a Kähler structure on the space of fundamental group
representations—it has a symplectic structure together with a compatible



complex structure. A remarkable fact is that although the complex struc-
ture on the space of representations will depend on the complex structure
of the surface, the symplectic structure only depends on the topology, a fact
often referred to as ‘‘the symplectic nature of the fundamental group’’ [22].
The geometry is richer still if we consider the moduli space of complex

fundamental group representations: Due to results of Hitchin, Donaldson
and Corlette, the Kähler structure above now becomes a hyper-Kähler
structure and the symplectic structure becomes a complex symplectic struc-
ture, which is still topological. One of the main aims of this paper is to
generalise this complex symplectic structure. (Hyper-Kähler structures will
not be considered here.)
First recall that, over a Riemann surface, there is a one to one corre-

spondence between complex fundamental group representations and holo-
morphic connections (obtained by taking a holomorphic connection to its
monodromy/holonomy representation). Then replace the word ‘‘holo-
morphic’’ by ‘‘meromorphic’’—we will study the symplectic geometry of
moduli spaces of meromorphic connections.
In fact, as in the holomorphic case, these moduli spaces may also be

realised in a more topological way, using a generalised notion of mono-
dromy data. By restricting a meromorphic connection to the complement
of its polar divisor and taking the corresponding monodromy representa-
tion, a map is obtained from the moduli space of meromorphic connections
to the moduli space of representations of the fundamental group of the
punctured Riemann surface. For connections with only simple poles this
map is generically a covering map and so we are essentially in the well-
known case of representations of fundamental groups of punctured
Riemann surfaces. However in general there are local moduli at the
poles—it is not sufficient to restrict to the complement of the polar divisor
and take the monodromy representation as above.
Fortunately this extra data—the local moduli of meromorphic connec-

tions—has been studied in the theory of differential equations for many
years and has a monodromy-type description in terms of ‘‘Stokes matri-
ces’’, which encode (as we will explain) the change in asymptotics of solu-
tions on sectors at the poles. The Stokes matrices and the fundamental
group representation fit together in a natural way and the main question
we ask is simply: ‘‘What is the symplectic geometry of these moduli spaces
of generalised monodromy data?’’
Recently, Martinet and Ramis [50] have constructed a huge group

associated to any Riemann surface, the ‘‘wild fundamental group’’, whose
set of finite dimensional representations naturally corresponds to the set of
meromorphic connections on the surface. Although we will not directly use
this perspective, the question above can then be provocatively rephrased as
asking: ‘‘What is the symplectic nature of the wild fundamental group?’’
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The motivation behind these questions is to understand intrinsically the
symplectic geometry of the full family of isomonodromic deformation
equations of Jimbo, Miwa and Ueno [40]. The initial impetus was the
theorem of B. Dubrovin [19] identifying the local moduli space of semi-
simple Frobenius manifolds with a space of Stokes matrices. (In brief, this
means certain Stokes matrices parameterise certain two-dimensional topo-
logical quantum field theories.) The original aim was to find a more intrin-
sic approach to the intriguing (braid group invariant) Poisson structure
written down by Dubrovin on this space of Stokes matrices in the rank
three case (see [19] appendix F and also the recent paper [67] of
M. Ugaglia for the higher rank formula). The key step in the proof of
Dubrovin’s theorem is that (in the semisimple case) the WDVV equations
(of Witten–Dijkgraaf–Verlinde–Verlinde) are equivalent to the equations
for isomonodromic deformations of certain meromorphic connections on
the Riemann sphere with just two poles, of orders one and two respectively
(so the space of solutions corresponds to the moduli of such connec-
tions—the Stokes matrices).
More generally Jimbo, Miwa and Ueno [40] have written down a vast

family of nonlinear differential equations, governing isomonodromic
deformations of meromorphic connections over P1 having arbitrarily many
poles of arbitrary order (on arbitrary rank bundles). These are of indepen-
dent interest and can be thought of as a universal family of nonlinear
equations: They are the largest family of nonlinear differential equations
known to have the ‘‘Painlevé property’’ (that, except on fixed critical
varieties, solutions will only have poles as singularities). Special cases
include the six Painlevé equations (which arise as the isomonodromic
deformation equations for connections on rank two bundles over P1, with
total pole multiplicity four) and Schlesinger’s equations (the simple pole
case—see below).
In brief, the six Painlevé equations were found almost a hundred years

ago, as a means to construct new transcendental functions (namely their
solutions—the Painlevé transcendents); R. Fuchs discovered then that the
sixth Painlevé equation arises as an isomonodromic deformation equation.
The subject then lay more or less dormant until the late 1970’s when (spec-
tacularly) Wu, McCoy, Tracey and Barouch [73, 52] found that the corre-
lation functions of certain quantum field theories satisfied Painlevé equa-
tions. Subsequently Jimbo, Miwa, Môri and Sato [60, 39] showed that this
was a special case of a more general phenomenon and developed the theory
of ‘‘holonomic quantum fields’’ which led to [40]. See for example
[36, 69] for more background material.
One expects isomonodromic deformations to lurk underneath most

integrable partial differential equations since the heuristic ‘‘Painlevé
integrability test’’ says that a nonlinear PDE will be ‘‘integrable’’ if it
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admits some reduction to an ODE with the Painlevé property (for example
the KdV equation has a reduction to the first Painlevé equation and all six
Painlevé equations appear as reductions of the anti-self-dual Yang–Mills
equations; see [1, 51]). They certainly appear in a diverse range of non-
linear problems in geometry and theoretical physics, such as Frobenius
manifolds [19] or in the construction of Einstein metrics [65, 30].
On the other hand general solutions of isomonodromy equations cannot

be given explicitly in terms of known special functions; as mentioned above
general solutions are new transcendental functions (see [68]). This is the
reason we turn to geometry to understand more about these equations.
Recent work on isomonodromic deformations seems to have focused
mainly on particular examples, in particular exploring the rich geometry of
the six Painlevé equations and searching for the few, very special, explicit
solutions that they do admit. The question we address here is simply
‘‘What is the symplectic geometry of the full family of isomonodromic
deformation equations of Jimbo, Miwa and Ueno?’’
Geometrically the isomonodromy equations constitute a flat (Ehresmann)

connection on a fibre bundle over a space of deformation parameters, the
fibres being certain moduli spaces of meromorphic connections over P1.
Thus the idea is to find natural symplectic structures on such moduli spaces
and then prove they are preserved by the isomonodromy equations. In
certain special cases, such as the Schlesinger or six Painlevé equations the
symplectic geometry is well-known (see [28, 29, 57). The main results of
this paper are analogous to those of Hitchin [29] and Iwasaki [35] who
explained intrinsically why Schlesinger’s equations and certain rank two
higher genus isomonodromy equations (respectively) admit a time-depen-
dent Hamiltonian description. However for the general isomonodromy
equations considered here a Hamiltonian description is still not known:
this work indicates strongly that such description should exist. (See also
Remark 7.1.)
For example, understanding the symplectic geometry of the isomo-

nodromic deformation equations enables us to ask questions about their
quantisation. This has been addressed in certain cases by Reshetikhin [59]
and Harnad [27] and leads to Knizhnik–Zamolodchikov type equations.
A key step (Theorem 6.1) is to establish that the transcendental map

taking a meromorphic connection to its (generalised) monodromy data, is
a symplectic map. This is the ‘‘inverse monodromy theory’’ version of the
well-known result in inverse scattering theory, that the map from the set of
initial potentials to scattering data is a symplectic map (see [20] Part 1,
Chapter III).
Although apparently not mentioned in the literature, a useful perspective

(explained in Section 7) has been to interpret the paper [40] of Jimbo, Miwa
and Ueno, as stating that the Gauss–Manin connection in non-Abelian
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cohomology (in the sense of Simpson [64]) generalises to the case of
meromorphic connections. This offers a fantastic guide for future generali-
sation.

The Prototype: Simple Poles

The simplest way to explain the results of this paper is to first describe
the intrinsic symplectic geometry of Schlesinger’s equations, following
Hitchin [29].
Choose matrices A1, ..., Am ¥ End(Cn), distinct numbers a1, ..., am ¥ C

and consider the following meromorphic connection on the trivial rank n
holomorphic vector bundle over the Riemann sphere:

N :=d−1A1
dz

z−a1
+·· ·+Am

dz
z−am

2 . (1)

This has a simple pole at each ai and will have no further pole at . if and
only if A1+·· ·+Am=0, which we will assume to be the case. Thus, on
removing a small open disc Di from around each ai and restricting N to the
m-holed sphere S :=P10(D1 2 · · · 2 Dm), we obtain a (nonsingular)
holomorphic connection. In particular it is flat and so, taking its
monodromy, a representation of the fundamental group of the m-holed
sphere is obtained. This procedure defines a holomorphic map, which we
will call the monodromy map, from the set of such connection coefficients to
the set of complex fundamental group representations

3(A1, ..., Am) : C Ai=04`na 3(M1, ..., Mm) :M1 · · ·Mm=14, (2)

where appropriate loops generating the fundamental group of S have been
chosen and the matrix Mi ¥ G :=GLn(C) is the automorphism obtained by
parallel translating a basis of solutions around the ith loop.
This map is the key to the whole theory and is generically a local analytic

isomorphism. It is tempting to think of na as a generalisation of the expo-
nential function, but note the dependence on the pole positions a is rather
complicated since the monodromy map solves Painlevé type equations (see
below).
We can however study the geometry of the monodromy map, particu-

larly the symplectic geometry. First, to remove the base-point dependence,
quotient both sides of (2) by the diagonal conjugation action of G. Second,
restrict the matrices Ai to be in fixed adjoint orbits. (These may be iden-
tified with coadjoint orbits using the trace, and so have natural complex
symplectic structures.) Thus we pick m generic (co)adjoint orbits O1, ..., Om

and require Ai ¥ Oi. Also define Ci … G to be the conjugacy class containing
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exp(2p`−1 Ai) for any Ai ¥ Oi. Fixing Ai ¥ Oi implies Mi ¥ Ci. The key
fact now is that the sum ; Ai is a moment map for the diagonal conjuga-
tion action of G on O1 × · · · ×Om and so (2) becomes

O1 × · · · ×Om//G`
na HomC(p1(S), G)/G, (3)

where the subscript C means we restrict to representations having local
monodromy around ai in the conjugacy class Ci. The symplectic geometry
of this set of representations has been much studied recently. The primary
symplectic description is due to Atiyah and Bott [6, 5] and involves
interpreting it as an infinite dimensional symplectic quotient, starting with
all C. connections on the manifold-with-boundary S (see also [7]). Alter-
natively, a purely finite dimensional description of the symplectic structure
is given by the cup product in parabolic group cohomology [13] and
finding a finite dimensional proof of the closedness of this symplectic form
has occupied many people. (See [41, 21, 4, 25, 3].)
By construction the left-hand side of (3) is a finite dimensional symplec-

tic quotient and one of the key results of [29] was that, for any choice of
pole positions a, the monodromy map na is symplectic; it pulls back the
Atiyah–Bott symplectic structure on the right to the symplectic structure on
the left, coming from the coadjoint orbits. This fact is the key to under-
standing intrinsically why Schlesinger’s equations are symplectic, as we will
now explain.
Observe that if we vary the positions of the poles slightly then the spaces

on the left and the right of (3) do not change. However the monodromy
map na does vary. Schlesinger [61] wondered how the matrices Ai should
vary with respect to the pole positions a1, ..., am such that the monodromy
representation na(A1, ..., Am) stays fixed, and thereby discovered the beau-
tiful family of nonlinear differential equations which now bear his name:

“Ai

“aj
=

[Ai, Aj]
ai −aj

if i ] j, and
“Ai

“ai
=−C

j ] i

[Ai, Aj]
ai −aj

.

These are the equations for isomonodromic deformations of the
logarithmic connections N on P1 that we began with in (1). Hitchin’s
observation now is that the local self-diffeomorphisms of the symplectic
manifold O1 × · · · ×Om//G induced by integrating Schlesinger’s equations,
are clearly symplectic diffeomorphisms, because they are of the form
n−1

aŒ p na for two sets of pole positions a and aŒ and the monodromy map is
a local symplectic isomorphism for all a.
This is the picture we will generalise to the case of higher order poles,

after rephrasing it in terms of symplectic fibrations. The main missing
ingredient is the Atiyah–Bott construction of a symplectic structure on the
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generalised monodromy data; when the discs are removed any local moduli
at the poles is lost. We will work throughout over P1 since the weight of
this paper is to see what to do locally at a pole of order at least two, and
because our main interest is the Jimbo–Miwa–Ueno isomonodromy equa-
tions, which are for connections over P1. However, apart from in Section 2
and for the explicit form of the isomonodromy equations, global coordi-
nates on P1 are not used and so most of this work generalises immediately
to arbitrary genus compact Riemann surfaces, possibly with boundary.
The organisation of this paper is as follows. The next three sections each

give a different approach to meromorphic connections. In Section 2 we
generalise the left-hand side of (3) and prove the results we will need later
regarding the symplectic geometry of these spaces. Section 3 describes the
generalised monodromy data of a meromorphic connection on a Riemann
surface, both the local data (the Stokes matrices) and the global data fitting
together the local data at each pole. This generalises the spaces of funda-
mental group representations above—the notion of fixing the conjugacy
class of local monodromy is replaced by fixing the ‘‘formal equivalence
class’’. In Section 4 we introduce an appropriate notion of C. singular
connections and prove the basic results one might guess from the non-sin-
gular case, relating flat singular connections to spaces of monodromy data
and to meromorphic connections on degree zero holomorphic bundles. The
notion of fixing the formal type of a meromorphic connection corresponds
nicely to the notion of fixing the ‘‘C. Laurent expansion’’ of a flat C. sin-
gular connection. Section 5 then shows that the Atiyah–Bott symplectic
structure generalises naturally to these spaces of C. singular connections,
and that as in the non-singular case, the curvature, when defined
appropriately, is a moment map for the gauge group action. Thus the
spaces of generalised monodromy data also appear as infinite dimensional
symplectic quotients. (One should note that the ‘‘naive’’ extension of the
Atiyah–Bott symplectic structure to C. singular connections does not work
since the two-forms that arise are too singular to be integrated.) Section 6
summarises the preceding sections in a commutative diagram and then
proves the key result, that the monodromy map pulls back the Atiyah–Bott
type symplectic structure on the generalised monodromy data to the expli-
cit symplectic structure of Section 2, on the spaces of meromorphic con-
nections. Section 7 explains geometrically what the Jimbo–Miwa–Ueno
isomonodromy equations are (we will write them explicitly in the appen-
dix), and then proves the main result, Theorem 7.1, that the isomonodro-
mic deformation equations of Jimbo–Miwa–Ueno are equivalent to a flat
symplectic connection on a symplectic fibre bundle having the moduli
spaces of Section 2 as fibre. Note that in the general case there are more
deformation parameters: we may vary the ‘‘irregular types’’ of the connec-
tions at the poles, as well as the pole positions. This produces, in particular,
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many nonlinear symplectic braid group representations on the spaces of
monodromy data. Finally, we end by sketching a relationship between
Stokes matrices and Poisson Lie groups.

2. MEROMORPHIC CONNECTIONS ON TRIVIAL BUNDLES

Let D=k1(a1)+· · ·+km(am) > 0 be an effective divisor on P1 (so that
a1, ..., am ¥ P1 are distinct points and k1, ..., km > 0 are positive integers)
and let VQ P1 be a rank n holomorphic vector bundle.

Definition 2.1. A meromorphic connection N on V with poles on D is a
map N: VQ V éK(D) from the sheaf of holomorphic sections of V to the
sheaf of sections of V éK(D), satisfying the Leibniz rule: N(fv)=
(df) é v+fNv, where v is a local section of V, f is a local holomorphic
function and K is the sheaf of holomorphic one-forms on P1.

If we choose a local coordinate z on P1 vanishing at ai then in terms of a
local trivialisation of V, N has the form N=d−A, where

A=Aki

dz
zki
+·· ·+A1

dz
z
+A0 dz+· · · (4)

is a matrix of meromorphic one-forms and Aj ¥ End(Cn), j [ ki.

Definition 2.2. A meromorphic connection N will be said to be generic
if at each ai the leading coefficient Aki is diagonalisable with distinct
eigenvalues (if ki \ 2), or diagonalisable with distinct eigenvalues mod Z (if
ki=1).

This condition is independent of the trivialisation and coordinate choice.
We will restrict to such generic connections since they are simplest yet
sufficient for our purpose (to describe the symplectic nature of isomono-
dromic deformations).

Definition 2.3. A compatible framing at ai of a vector bundle V with
generic connection N is an isomorphism g0: Vai Q Cn between the fibre Vai
and Cn such that the leading coefficient of N is diagonal in any local
trivialisation of V extending g0.

Given a trivialisation of V in a neighbourhood of ai so that N=d−A as
above, then a compatible framing is represented by a constant matrix (also
denoted g0) that diagonalises the leading coefficient: g0 ¥ G such that
g0Aki g

−1
0 is diagonal.
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At each point ai choose a germ d− iA0 of a diagonal generic mero-
morphic connection on the trivial rank n vector bundle. (We use the ter-
minology that a trivial bundle is just trivialisable, but the trivial bundle has
a chosen trivialisation. Also pre-superscripts iA, whenever used, will signify
local information near ai.) Thus iA0 is a matrix of germs of meromorphic
one-forms, which we require (without loss of generality) to be diagonal. If
zi is a local coordinate vanishing at ai, write

iA0=d( iQ)+ iL0 dzi
zi

, (5)

where iL0 is a constant diagonal matrix and iQ is a diagonal matrix of
meromorphic functions.

Definition 2.4. A connection (V, N) with compatible framing g0 at ai

has irregular type iA0 if g0 extends to a formal trivialisation of V at ai, in
which N differs from d− iA0 by a matrix of one-forms with just simple
poles.

Equivalently this means, if N=d−A in some local trivialisation, we
require gAg−1+(dg) g−1=d( iQ)+ iL dzi/zi for some diagonal matrix iL

not necessarily equal to iL0 and some formal bundle automorphism
g ¥ GQziR=GLn(CQziR) with g(ai)=g0. The diagonal matrix iL appearing
here will be referred to as the exponent of formal monodromy of (V, N, g0).
Let A denote the choice of the effective divisor D and all the germs iA0.

The spaces which generalise those on the left-hand side of (3) are defined as
follows.

Definition 2.5. The moduli space Mg(A) is the set of isomorphism
classes of pairs (V, N) where V is a trivial rank n holomorphic vector
bundle over P1 and N is a meromorphic connection on V which is formally
equivalent to d− iA0 at ai for each i and has no other poles.

Following [40], we also define slightly larger moduli spaces:

Definition 2.6. The extended moduli space M2 g(A) is the set of iso-
morphism classes of triples (V, N, g) consisting of a generic connection N
(with poles on D) on a trivial holomorphic vector bundle V over P1 with
compatible framings g=(1g0, ..., mg0) such that (V, N, g) has irregular type
iA0 at each ai.

The term ‘‘extended moduli space’’ is taken from the paper [37] of
L. Jeffrey, since these spaces play a similar role (but are not the same).
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Remark 2.1. For use in later sections we also define spaces M(A) and
M2(A) simply by replacing the word ‘‘trivial’’ by ‘‘degree zero’’ in Defini-
tions 2.5 and 2.6 respectively.

Since Mg(A) and M2 g(A) are moduli spaces of connections on trivial
bundles we can obtain explicit descriptions of them. First define Gk to be
the group of (k−1)-jets of bundle automorphisms

Gk :=GLn(C[z]/zk),

where z is an indeterminate. Then the main result of this section is:

Proposition 2.1.

• Mg(A) is isomorphic to a complex symplectic quotient

Mg(A) 5 O1 × · · · ×Om//G (6)

where G :=GLn(C) and Oi … gg
ki is a coadjoint orbit of Gki .

• Similarly there are complex symplectic manifolds (extended orbits) O2 i

with dim(O2 i)=dim(Oi)+2n and (free) Hamiltonian G actions, such that

M2 g(A) 5 O2 1 × · · · ×O2m//G. (7)

• In this way M2 g(A) inherits (intrinsically) the structure of a complex
symplectic manifold, the torus actions changing the choices of compatible
framings are Hamiltonian (with moment maps given by the values of the iL’s)
and Mg(A) arises as a symplectic quotient by these m torus actions.

Because of the third statement here (and that Mg(A) may not be
Hausdorff) we will mainly work with the extended moduli spaces. They
will be the phase spaces of the isomonodromy equations. Before proving
Proposition 2.1 we first collect together all the results we will need regard-
ing the extended orbits O2 i.

Extended Orbits

Fix a positive integer k \ 2. Let Bk be the subgroup of Gk of elements
having constant term 1. This is a unipotent normal subgroup and in fact Gk

is the semi-direct product G x Bk (where G :=GLn(C) acts on Bk by
conjugation). Correspondingly the Lie algebra of Gk decomposes as a
vector space direct sum and dualising we have:

gg
k=bg

k À gg. (8)
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Concretely if we have a matrix of meromorphic one-forms A as in (4) with
k=ki then the principal part of A can be identified as an element of gg

k

simply by replacing the coordinate z by the indeterminate z:

Ak
dz
zk
+·· ·+A1

dz
z

¥ gg
k . (9)

Abusing notation, this element of gg
k will also be denoted by A. Such A’s

are identifiedas elementsofgg
k via thepairingOA, XP :=Res0(Tr(A(z) ·X))=

;k
i=1 Tr(AiXi−1) where X=X0+X1z+·· ·+Xk−1z

k−1 ¥ gk. Then from (8),
bg
k is identified with the set of A in (9) having zero residue and gg with

those having only a residue term (zero irregular part). Let pres: g
g
k Q gg and

pirr: g
g
k Q bg

k denote the corresponding projections.
Now choose a diagonal element A0=A0

k dz/z
k+·· ·+A0

2 dz/z
2 of bg

k

whose leading coefficient A0
k has distinct eigenvalues. For example if k=ki,

such A0 arises from the irregular part d( iQ) of iA0 in (5). Let OB … bg
k

denote the Bk coadjoint orbit containing A0.

Definition 2.7. The extended orbit O2 … G×gg
k associated to OB is

O2 :={(g0, A) ¥ G×gg
k | pirr(g0Ag

−1
0 ) ¥ OB},

where pirr: g
g
k Q bg

k is the natural projection removing the residue.

If (g0, A) ¥ O2 then eventually A will correspond to the principal part of a
generic meromorphic connection and g0 to a compatible framing.

Lemma 2.2. The extended orbit O2 is canonically isomorphic to the
symplectic quotient of the product TgGk ×OB by Bk, where both the cotangent
bundle TgGk and the coadjoint orbit OB have their natural symplectic
structures.

Proof. Bk acts by the coadjoint action on OB and by the standard (free)
left action on TgGk (induced from left multiplication of the groups). A
moment map is given by m: TgGk ×OB Q bg

k ; (g, A, B)W −pirr(Adg
g (A))+B

where B ¥ OB and (g, A) ¥ Gk ×gg
k 5 TgGk via the left trivialisation. Thus

m−1(0)={(g, A, B) | pirr(gAg−1)=B}. (10)

It is straightforward to check that the map

q: m−1(0)Q O2 ; (g, A, B)W (g(0), A) (11)

is well-defined, surjective and has precisely the Bk orbits as fibres. L
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This gives O2 the structure of a complex symplectic manifold. Next we
examine the torus action on O2 corresponding to changing the choice of
compatible framing. If (g0, A) ¥ O2 then by hypothesis there is some g ¥ Gk

such that gAg−1=A0+L dz/z for some matrix L. It is easy now to modify
g such that L is in fact diagonal. (Conjugating by 1+Xzk−1 for an appro-
priate matrix X will remove any off-diagonal part of L.) It follows that
there is a well-defined map

mT: O2 Q tg; (g0, A)W −L
dz
z
,

where, as above, if R=L dz/z ¥ tg and LŒ ¥ t then OR, LŒP=Tr(LLŒ).

Lemma 2.3. (1) The map mT is a moment map for the free action of
T 5 (Cg)n on O2 defined by t(g0, A)=(tg0, A) where t ¥ T.

(2) The symplectic quotient at the value −R of mT is the Gk coadjoint
orbit through the element A0+R of gg

k .

(3) Any tangents v1, v2 to O2 … G×gg
k at (g0, A) are of the form

vi=(Xi(0), [A, Xi]+g−1
0 Ṙi g0) ¥ g×gg

k

for some X1, X2 ¥ gk and Ṙ1, Ṙ2 ¥ tg (where g 5 TgG via left multiplication),
and the symplectic structure on O2 is then given explicitly by the formula

wO2 (v1, v2)=OṘ1, X2 2P−OṘ2, X21P+OA, [X1, X2]P, (12)

where X2 i :=g0Xi g
−1
0 ¥ gk for i=1, 2.

Proof. There is a surjective ‘‘winding’’ map w: Gk × tg Q O2 defined by
(g, R)W (g(0), g−1(A0+R) g). It fits into the commutative diagram

Gk × tg …|̀
i

m−1(0) … TgGk ×OB ||̀pr TgGk

‡w ‡q

O2 = O2

(13)

where q is from (11), i(g, R) :=(g, g−1(A0+R) g, A0) and pr is the projec-
tion. Since the OB component of i is constant the pullback of the symplectic
structure on TgGk along pr p i is the pullback of the symplectic structure
on O2 along w. Let T act on TgGk by the standard left action t(g, A)=
(tg, A), on OB by conjugation (t(B)=tBt−1) and on Gk × tg by left multi-
plication: t(g, R)=(tg, R). Observe that all the maps in (13) are
then T-equivariant and that a moment map on TgGk is given by
n: TgGk Q tg; (g, A)W −d(pres(gAg−1)) since the map d p pres (taking the
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diagonal part of the residue term of an element of gg
k ) is the dual of the

derivative of the inclusion T+ Gk. Statement 1) now follows from the fact
that the pullback of n along pr p i is the pullback of mT along w (both maps
pullback to the projection Gk × tg Q tg). The third statement is proved by
directly calculating the pullback of the symplectic structure on TgGk along
pr p i. (Note (Xi, Ṙi) is just a lift of vi to Gk × tg.) The second statement
follows directly from (12). L

Thus, by projecting to gg
k , we see O2 is a principal T bundle over an

n-parameter family of Gk coadjoint orbits. An alternative description will
also be useful:

Lemma 2.4 (Decoupling). The following map is a symplectic isomorphism

O2 5 TgG×OB; (g0, A)W (g0, pres(A), pirr(g0Ag
−1
0 )),

where TgG 5 G×gg via the left trivialisation.

Proof. It is an isomorphism as the map (g0, S, B)W (g0, g
−1
0 Bg0+S) ¥

O2 (where (g0, S, B) ¥ TgG×OB) is an inverse. Under this identification, a
section s of the projection q in (13) is given by: s : TgG×OB Q TgGk ×OB;
(g0, S, B)W (g0, g

−1
0 Bg0+S, B) where left multiplication is used to tri-

vialise the cotangent bundles. A straightforward calculation shows s is
symplectic. L

This will be important because OB admits global Darboux coordinates.

Corollary 2.5. The free G action h(g0, A) :=(g0h−1, hAh−1) on O2 is
Hamiltonian with moment map mG: O2 Q gg; (g0, A)W pres(A).

Proof. After decoupling O2 , G acts only on the TgG factor and it does so
by the standard action coming from right multiplications, which has
moment map mG. L

Finally in the simple pole case (k=1) not yet considered we define

O2 :={(g0, A) ¥ G×gg | g0Ag
−1
0 ¥ tŒ} … G×gg

where tŒ … tg is the subset containing diagonal matrices whose eigenvalues
are distinct mod Z. If we identify G×gg with TgG then O2 is in fact a
symplectic submanifold (see [24, Theorem 26.7]). The formula (12) holds
unchanged and the free G and T actions are still Hamiltonian with the
same moment maps as above (the diagonalisation of A used to define mT is
simply g0Ag

−1
0 ). Note that the winding map w: G× tŒQ O2 ; (g0, R)W

(g0, g
−1
0 Rg0) is now an isomorphism.
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Proof (of Proposition 2.1). Choose a coordinate z to identify P1 with
C 2. such that each ai is finite. Define zi :=z−ai. The chosen mero-
morphic connection germs d− iA0 determine Gki coadjoint orbits Oi and
extended orbits O2 i as above: Define Oi to be the coadjoint orbit through
the point of gg

ki determined (using the coordinate choice zi) by the principal
part of iA0 in (5). Similarly the irregular part of iA0 determines a point of bg

ki
and O2 i is the extended orbit associated to the Bki coadjoint orbit through
this point.
Now suppose N is a meromorphic connection on a holomorphically

trivial bundle V over P1 with poles on the divisor D. Upon trivialising V we
find N=d−A for a matrix A of meromorphic one-forms of the form

A=C
m

i=1

1 iAki

dz
(z−ai)ki

+·· ·+ iA1
dz

(z−ai)
2 , (14)

where the iAj are n×n matrices. The principal part of A at ai determines an
element iA ¥ gg

ki as above (replacing z−ai by z in the ith term of the sum
(14)).
The crucial fact now is that N is formally equivalent to d− iA0 at ai if and

only if iA is in Oi. The ‘‘only if’’ part is clear since the gauge action restricts
to the coadjoint action on the principal parts of A. The converse is not true
in general (even if formal meromorphic transformations are allowed: see
[8]), but it does hold in the generic case we are considering here, and is
well-known (see [11]). Also, using the description of the extended orbits
as principal T bundles, it follows that if N is generic and has compatible
framings g=(1g0, ..., mg0) then (V, N, g) has irregular type iA0 at ai if and
only if ( ig0, iA) is in O2 i.
Thus any meromorphic connection on the trivial bundle with the correct

formal type determines and is determined by a point of the product
O1 × · · · ×Om. Observe however that a general point of O1 × · · · ×Om will
give a connection with an additional pole at z=. unless we impose the
constraint

1A1+·· ·+mA1=0. (15)

Also observe that the choice of global trivialisation of V corresponds to the
action of G on O1 × · · · ×Om by diagonal conjugation. The first statement
in Proposition 2.1 follows simply by observing that the left-hand side of
(15) is a moment map for this G action on O1 × · · · ×Om (since the G action
on each Oi factor is the restriction of the coadjoint action to G … Gki ).
The proof of the second statement is completely analogous. (The G

action on O2 i is given in Corollary 2.5.)
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Lemma 2.4 makes it transparent that M2 g(A) is a smooth complex mani-
fold: the symplectic quotient by G just removes a factor of TgG from the
product of extended orbits. It is straightforward to check the complex
symplectic structure so defined on M2 g(A) is independent of the coordinate
choices used above. (In fact arbitrary local coordinates zi may be used.)
Finally the statements concerning the torus actions are immediate from

Lemma 2.3, since the G and T action on each extended orbit commute. L

Remark 2.2. Open subsets of the symplectic quotients O1 × · · · ×Om//G
in (6) have been previously studied: They are algebraically completely
integrable Hamiltonian systems [2, 12]. See also [18] Sections 4.3 and 5.3.
The perspective there is to regard these as spaces of meromorphic Higgs
fields, rather than as spaces of meromorphic connections.

3. GENERALISED MONODROMY

This section describes the monodromy data of a generic meromorphic
connection, involving both a fundamental group representation and Stokes
matrices, largely following [8, 11, 40, 43, 50]. The presentation here is
quite nonstandard however and care has been taken to keep track of all the
choices made and thereby see what is intrinsically defined.
Fix the data A of a divisor D=; ki(ai) on P1 and connection germs

d− iA0 at each ai as in Section 2. Let (V, N, g) be a compatibly framed
meromorphic connection on a holomorphic vector bundle VQ P1 with
irregular type A.
In brief, the monodromy data arises as follows. The germ d− iA0 canon-

ically determines some directions at ai (‘‘anti-Stokes directions’’) for each
i and (using local coordinate choices) we can consider the sectors at each ai

bounded by these directions (and having some small fixed radius). Then the
key fact is that the framings g (and a choice of branch of logarithm at each
pole) determine, in a canonical way, a choice of basis of solutions of the
connection N on each such sector at each pole. Now along any path in the
punctured sphere P10{a1...., am} between two such sectors we can extend
the two corresponding bases of solutions and obtain a constant n×n
matrix relating these two bases. The monodromy data of (V, N, g) is simply
the set of all such constant matrices, plus the exponents of formal
monodromy.
Before filling in the details of this procedure we will give a concrete

definition of the monodromy manifolds that store this monodromy data
and so give a clear idea of where we are going. All of the monodromy
manifolds are of the following form. Suppose N1, ..., Nm are manifolds, we
have maps ri: Ni Q GŒ to some group GŒ for each i and that there is an

ISOMONODROMIC DEFORMATIONS 151



action of G=GLn(C) on GŒ (via group automorphisms) and on each Ni

such that ri is G-equivariant. Define a map r to be the (reverse ordered)
product of the ri’s:

r: N1 × · · · ×Nm Q GŒ; (n1, ..., nm)W rm(nm) · · ·r2(n2) r1(n1).

Since G acts on GŒ by automorphisms, r is G-equivariant and r−1(1) is a
G-invariant subset of the product N1 × · · · ×Nm. We will write the quotient
as:

N1 × · · · ×Nm//G :=r−1(1)/G. (16)

This is viewed simply as a convenient way to write down the various sets of
monodromy data that arise.1 There is no conflict of notation since the

1 The relationship with [3] will be discussed elsewhere.

symplectic quotients of Section 2 arise in this way by taking Ni=Oi (or
O2 i), GŒ=(gg,+) and the ri’s as the moment maps for the G actions. All of
the examples in this section however will have GŒ :=G acting on itself by
conjugation.
Recall in the simple pole case that we fixed generic coadjoint orbits

O1, ..., Om of G to define a symplectic space of connections on trivial
bundles over P1. By choosing appropriate generators of the fundamental
group of the punctured sphere we see that the corresponding space of
monodromy data is of the form

HomC(p1(P10{a1, ..., am}), G)/G 5 C1 × · · · ×Cm//G, (17)

where G acts on each conjugacy class Ci by conjugation and each map
ri: Ci Q G is just the inclusion.
Considering higher order poles in Section 2 amounted to replacing the

coadjoint orbits of G above by coadjoint orbits of Gki (still denoted Oi) or
by extended orbits O2 i. By analogy, in this section we now replace each
conjugacy class in the simple pole case by a larger manifold Ci (the mul-
tiplicative version of Oi), or by C2i (the multiplicative version of O2 i). The
basic definition is somewhat surprising:

Definition 3.1.

• Let U+/− be the upper/lower triangular unipotent subgroups of G,
then

C2i :=G×(U+×U−)ki −1× t,
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where t is the set of diagonal n×n matrices and ki is the pole order at ai. (If
ki=1 replace t by tŒ here; the elements with distinct eigenvalues mod Z.)
A point of C2i will be denoted (Ci, iS, iLŒ) where iS=( iS1, ..., iS2ki −2) ¥
U+×U− ×U+× · · · ×U− .

• The formula t(Ci, iS, iLŒ)=(t ·Ci, (t · iS1 · t−1, ..., t · iS2ki −2 · t−1), iLŒ)
defines a free action of the torus T on C2i and, given some fixed choice of
iLŒ, we define Ci to be the subset of the quotient having t component fixed
to this value: Ci :=(C2i/T)|iLŒ.

• The map ri : C2i Q G is defined by the formula

ri(Ci, iS, iLŒ)=C−1
i · iS2ki −2 · · · iS2 · iS1 · exp ((2p`−1 ) iLŒ) ·Ci.

(This is T invariant so descends to define ri: Ci Q G.)
• Finally G acts on C2i (and on Ci) via g(Ci, iS, iLŒ)=(Ci g−1, iS, iLŒ)

(so that ri is clearly G-equivariant, where G acts on itself by conjugation).

The triangular matrices iSj (with 1’s on their diagonals) appearing here
are the Stokes matrices. Note that in every case the dimension of C2i is
the same as the dimension of the extended orbit O2 i (and similarly
dim(Ci)=dim(Oi)). Also note that if the pole is simple (ki=1) then
C2i=G× tŒ and that Ci can naturally be identified with the conjugacy class
through exp(2p`−1 · iLŒ) ¥ G.
Our aim in the rest of this section is to define an (abstract) space

of monodromy data M(A) and an intrinsic holomorphic map n from
the moduli space Mg(A) of Section 2 to M(A), obtained by taking
monodromy data. We will call n the monodromy map, although the names
Riemann–Hilbert map or de Rham morphism are also appropriate. Recall
in Proposition 2.1 that after making some choices (of local coordinates in
that case) a concrete description of the moduli space Mg(A) was obtained.
Analogously here, after making some choices (of some ‘‘tentacles’’; some-
thing like a choice of generators of the fundamental group—see Definition
3.9), we will see that the quotient C1 × · · · ×Cm//G is a concrete realisation
of the space of monodromy data. Thus we will have the diagram:

O1 × · · · ×Om//G C1 × · · · ×Cm//G

… 5 … 5

Mg(A) |||||Ł
v

M(A).

(18)

As in Section 2 we will work mainly with the extended version (putting
tildes on all the spaces in the above diagram) since the spaces are then
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manifolds (and again the non-extended version may be deduced by con-
sidering torus actions).

Lemma 3.1. The extendedmonodromymanifoldM2 (A) 5 C21 × · · · ×C2m//G
is indeed a complex manifold and has the same dimension as M2 g(A).

Proof. Remove the G action by fixing C1=1, so M2 (A) is identified
with the subvariety rm · · ·r1=1 of the product C2 −1 ×C22 × · · · ×C2m where C2 −1
is the subset of C21 having C1=1. The result now follows from the implicit
function theorem since the map rm · · ·r1 : C2

−

1 ×C22 × · · · ×C2m Q G is surjec-
tive on tangent vectors (except in the trivial case m=1, k1=1). In par-
ticular dimM2 (A)=; dim(C2i)−2n2 and, from Proposition 2.7, this is
dimM2 g(A). L

Local Moduli: Stokes Matrices

First we will set up the necessary auxiliary data. Let d−A0 be a diagonal
generic meromorphic connection on the trivial rank n vector bundle over
the unit disc D … C with a pole of order k \ 2 at 0 and no others. Let z be a
coordinate on D vanishing at 0. Thus (as in Section 2) A0=dQ+L0 dz

z

where L0 is a constant diagonal matrix and Q is a diagonal matrix of
meromorphic functions. Q is determined by A0 and z by requiring that it
has constant term zero in its Laurent expansion with respect to z. Write
Q=diag(q1, ..., qn) and define qij(z) to be the leading term of qi −qj. Thus
if qi −qj=a/zk−1+b/zk−2+·· · then qij=a/zk−1.
Let the circle S1 parameterise rays (directed lines) emanating from 0 ¥ C;

intrinsically one can think of this circle as being the boundary circle of the
real oriented blow up of C at the origin. If d1, d2 ¥ S1 then Sect(d1, d2) will
denote the (open) sector swept out by rays rotating in a positive sense from
d1 to d2. The radius of these sectors will be taken sufficiently small when
required later.

Definition 3.2. The anti-Stokes directions A … S1 are the directions
d ¥ S1 such that for some i ] j : qij(z) ¥ R<0 for z on the ray specified by d.

These are the directions along which eqi −qj decays most rapidly as z
approaches 0 and it follows that A is independent of the coordinate choice
z. (For uniform notation later, define A to contain a single, arbitrary
direction if k=1; this will be used only as a local branch cut.)

Definition 3.3. Let d ¥ S1 be an anti-Stokes direction.
• The roots of d are the ordered pairs (ij) ‘‘supporting’’ d:

Roots(d) :={(ij) | qij(z) ¥ R<0 along d}.
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• The multiplicity Mult(d) of d is the number of roots supporting d.
• The group of Stokes factors associated to d is the group

Stod(A0) :={K ¥ G | (K)ij=dij unless (ij) is a root of d}.

It is straightforward to check that Stod(A0) is a unipotent subgroup of
G=GLn(C) of dimension equal to the multiplicity of d. Beware that the
terms ‘‘Stokes factors’’ and ‘‘Stokes matrices’’ are used in a number of dif-
ferent senses in the literature. (Our terminology is closest to Balser, Jurkat
and Lutz [11]. However our approach is perhaps closer to that of Martinet
and Ramis [50] but what we call Stokes factors, they call Stokes matrices,
and they do not use the things we call Stokes matrices.)
The anti-Stokes directions A have p/(k−1) rotational symmetry: if

qij(z) ¥ R<0 then qji(z exp(
p`−1

k−1
)) ¥ R<0. Thus the number r :=#A of anti-

Stokes directions is divisible by 2k−2 and we define l :=r/(2k−2). We
will refer to an l-tuple d=(d1, ..., dl) …A of consecutive anti-Stokes direc-
tions as a ‘‘half-period’’. When weighted by their multiplicities, the number
of anti-Stokes directions in any half-period is n(n−1)/2=Mult(d1)+· · ·+
Mult(dl). Also a half-period d determines a total ordering of the set
{q1, ..., qn} defined by:

qi <d qj . (ij) is a root of some d ¥ d. (19)

A simple check shows (ij) is a root of some d ¥ d precisely if eqi/eqj Q 0 as
zQ 0 along the ray h(d) ¥ S1 bisecting Sect(d1, dl) (so that (19) is the
natural dominance ordering along h(d)). In turn there is a permutation
matrix P ¥ G associated to d given by (P)ij=dp(i) j where p is the permuta-
tion of {1, ..., n} corresponding to (19): qi <d qj Z p(i) < p(j). A key result
is then:

Lemma 3.2. Let d=(d1, ..., dl) …A be a half-period (where di+1 is the
next anti-Stokes direction after di in a positive sense).

(1) The product of the corresponding groups of Stokes factors is
isomorphic as a variety, via the product map, to the subgroup of G conjugate
to U+ via P:

D
d ¥ d

Stod(A0) 5 PU+P−1; (K1, ..., Kl)WKl · · ·K2K1 ¥ G.
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(2) Label the rest of A uniquely as dl+1, ..., dr (in order) then the
following map from the product of all the groups of Stokes factors, is an
isomorphism of varieties

D
d ¥A

Stod(A0) 5 (U+×U−)k−1; (K1, ..., Kr)W (S1, ..., S2k−2)

where Si :=P−1Kil · · ·K(i−1) l+1P ¥ U+/− if i is odd/even.

Proof. (1) holds since the groups of Stokes factors are a set of ‘‘direct
spanning’’ subgroups of PU+P−1; see Borel [15, Section 14]. It is also
proved directly in Lemma 2 of [11]. (2) follows from (1) simply by observing
that the orderings associated to neighbouring half-periods are opposite. L

Now we move on to the local moduli of meromorphic connections. Let
Syst(A0) denote the set of germs at 0 ¥ C of meromorphic connections on
the trivial rank n vector bundle, that are formally equivalent to d−A0.
Concretely we have

Syst(A0)={d−A | A=F1[A0] for some F1 ¥ GQzR},

where A is a matrix of germs of meromorphic one-forms, GQzR=GLn(CQzR)
and F1[A0]=(dF1 ) F1 −1+F1A0F1 −1. The group GQzR does not act on Syst(A0)
since in general F1[A0] will not have convergent entries. The subgroup
G{z} :=GLn(C{z}) of germs of holomorphic bundle automorphisms does
act however and we wish to study the quotient Syst(A0)/G{z} which is by
definition the set of isomorphism classes of germs of meromorphic connec-
tions formally equivalent to A0. Note that any generic connection is for-
mally equivalent to some such A0.
In the Abelian case (n=1) and in the simple pole case (k=1)

Syst(A0)/G{z} is just a point; the notions of formal and holomorphic
equivalence coincide. In the non-Abelian, irregular case (n, k \ 2) however,
Syst(A0)/G{z} is non-trivial and we will explain how to describe it expli-
citly in terms of Stokes matrices.
It is useful to consider spaces slightly larger than Syst(A0):

Definition 3.4.

• Let Syst5 cf(A0) be the set of compatibly framed connection germs
with both irregular and formal type A0.

• Let Syst5mp(A0) :={(A, F1 ) | A ¥ Syst(A0), F1 ¥ GQzR, A=F1[A0]}, be
the set of marked pairs.
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Thus Syst5 cf(A0) is the set of pairs (A, g0) with A ¥ Syst(A0) and g0 ¥ G,
such that g0[A] and A0 have the same leading term. Clearly the projection
to the first factor is a surjection Syst5 cf(A0)“ Syst(A0) and the fibres are
the orbits of the torus action t(A, g0)=(A, t · g0) (where t ¥ T 5 (Cg)n).

Lemma 3.3. There is a canonical isomorphism Syst5mp(A0) 5 Syst5 cf(A0):
For each compatibly framed connection germ (A, g0) ¥ Syst5 cf(A0) there is a
unique formal isomorphism F1 ¥ GQzR with A=F1[A0] and F1(0)=g−1

0 .

Proof. It is sufficient to prove that if F1[A0]=A0 then F1 ¥ T, since this
implies the map (A, F1 )W (A, g0) with g0 :=F1(0)−1, is bijective. Now if
F1[A0]=A0 then the (ij) matrix entry f of F1 is a power series solution to
df=(d(qi −qj)+(li −lj) dz/z) f, where li=(L0)ii. It follows (using
Definition 2.2 if k=1) that f=0 unless i=j when it is a constant. L

See for example [8] for an algorithm to determine F1 from g0. Below we
will use ‘‘Syst5 (A0)’’ to denote either of these two sets. Heuristically the
action g(A, F1 )=(g[A], g p F1 ) of G{z} on the marked pairs is free and so
one expects the quotient

H(A0) :=Syst5 (A0)/G{z}

to be in some sense nice (as is indeed the case). Moreover the actions of T
and G{z} on Syst5 (A0) commute so Syst(A0)/G{z} 5H(A0)/T.
The fundamental technical result we need to quote in order to describe

H(A0) is the following theorem. First we set up a labelling convention,
that will behave well when we vary A0 in later sections. Choose a point p in
one of the r sectors at 0 bounded by anti-Stokes rays. Label the first anti-
Stokes ray when turning in a positive sense from p as d1 and label the sub-
sequent rays d2, ..., dr in turn. Write Secti :=Sect(di, di+1); the ‘‘ith sector’’
(indices are taken modulo r). Note p ¥ Sectr=Sect0; the ‘‘last sector’’. Also
define the ‘‘ith supersector’’ to be Sect5 i :=Sect(di −

p
2k−2 , di+1+

p
2k−2 ). This

is a sector containing the ith sector symmetrically (the same direction
bisects both) and has opening greater than p/(k−1). (The rays bounding
these supersectors are usually referred to as ‘‘Stokes rays’’.)

Theorem 3.1. Suppose F1 ¥ GQzR is a formal transformation such that
A :=F1[A0] has convergent entries. Set the radius of the sectors Secti, Sect5 i

to be less than the radius of convergence of A. Then the following hold:

(1) On each sector Secti there is a canonical way to choose an invert-
ible n×n matrix of holomorphic functions Si(F1 ) such that Si(F1 )[A0]=A.

(2) Si(F1 ) can be analytically continued to the supersector Sect5 i and
then Si(F1 ) is asymptotic to F1 at 0 within Sect5 i.

(3) If g ¥ G{z} and t ¥ T then Si(g p F1 p t−1)=g p Si(F1 ) p t−1.
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The point is that on a narrow sector there are generally many holo-
morphic isomorphisms between A0 and A which are asymptotic to F1 and
one is being chosen in a canonical way; Si(F1 ) is in fact uniquely charac-
terised by property (2). There are various ways to construct Si(F1 ),
although the details will not be needed here. In particular the series F1 is
‘‘(k−1)-summable’’ on Secti, with sum Si(F1 )—see [10, 48, 50]. Other
approaches appear in [11, 43]. See also [47, 72] regarding asymptotic
expansions on sectors.
Functions on the quotient H(A0) are now obtained as follows. Let

(A, g0) ¥ Syst5 (A0) be a compatibly framed connection germ and let
F1 ¥ GQzR be the associated formal isomorphism from Lemma 3.3. The sums
of F1 on the two sectors adjacent to some anti-Stokes ray di ¥A may be
analytically continued across di and they will generally be different on the
overlap. Thus for each anti-Stokes ray di there is a matrix of holomorphic
functions oi :=Si(F1 )−1

p Si−1(F1 ) asymptotic to 1 on a sectorial neigh-
bourhood of di. Moreover clearly oi[A0]=A0; it is an automorphism of
A0. A concrete description of oi is obtained by choosing a basis of solutions
of A0, which is made via a choice of branch of log(z).
Thus choose a branch of log(z) along d1 and extend it in a positive sense

across Sect1, d2, Sect2, d3, ..., Sectr=Sect0 in turn. In particular we get a
lift p2 of the point p ¥ Sect0 to the universal cover of the punctured disc
D0{0} and we will say that these log(z) choices are associated to p2.

Definition 3.5. Fix data (A0, z, p2) as above. The Stokes factors of a
compatibly framed connection (A, g0) ¥5Syst(A0) are

Ki :=e−Qz−L0
·oi · zL

0
eQ, i=1, ..., r=#A

using the choice of log(z) along di, where oi :=Si(F1 )−1
p Si−1(F1 ).

Since zL
0
eQ is a fundamental solution of A0 (i.e. its columns are a basis of

solutions) we have d(Ki)=0; the Stokes factors are constant invertible
matrices. By part (3) of Theorem 3.1, Ki only depends on the G{z} orbit of
(A, g0) and so matrix entries of Ki are functions on H(A0). A useful
equivalent definition is:

Definition 3.6. Fix data (A0, z, p2) and choose (A, g0) ¥ Syst5 (A0).

• The canonical fundamental solution of A on the ith sector is
Fi :=Si(F1 ) zL

0
eQ where zL

0
uses the choice (determined by p2 ) of log(z) on

Sect5 i. (Note Fi+r=Fi.)
• If Fi is continued across the anti-Stokes ray di+1 then on Secti+1 we

have: Ki+1 :=F−1
i+1 p Fi for all i except K1 :=F−1

i+1 p Fi pM
−1
0 for i=r,

where M0 :=e2p`−1 ·L0
is the so-called ‘‘formal monodromy’’.
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Taking care to use the right log(z) choices it is straightforward to prove
the equivalence of these two definitions of the Stokes factors. The basic
fact then is:

Lemma 3.4. The Stokes factor Ki is in the group Stodi (A
0).

Proof. From Theorem 3.1, Sj(F1 ) is asymptotic to F1 at 0 when con-
tinued within the supersector Sect5 j, for each j. Thus (if i ] 1)
zL

0
eQKie−Qz−L0

=Si(F1 )−1Si−1(F1 ) is asymptotic to 1 within the intersection
Sect5 i 5 Sect5 i−1. As Ki is constant we must therefore have (Ki)ab=dab
unless eqa −qb Q 0 as zQ 0 along any ray in Sect5 i 5 Sect5 i−1. It is straight-
forward to check this is equivalent to (ab) being a root of di. (The i=1
case is similar.) L

Thus as in Lemma 3.2 we can define the Stokes matrices of
(A, g0) ¥5Syst(A0)

Si :=P−1Kil · · ·K(i−1) l+1P ¥ U+/−

if i is odd/even, where i=1, ..., 2k−2 and P is the permutation matrix
associated to the half-period (d1, ..., dl). To go directly from the canonical
solutions to the Stokes matrices, simply observe that if Fil is continued in a
positive sense across all the anti-Stokes rays dil+1, ..., d(i+1) l and onto
Sect(i+1) l we have: Fil=F(i+1) lPSi+1P−1 for i=1, ..., 2k−3, and Fil=
FlPS1P−1M0 for i=2k−2=r/l where M0=e2p`−1 L0

. The main fact we
need is then:

Theorem 3.2 (Balser, Jurkat, Lutz [11]). Fix the data (A0, z, p2) as
above. Then the ‘‘local monodromy map’’ taking the Stokes matrices induces
a bijection

H(A0)`5 (U+×U−)k−1; [(A, g0)]- (S1, ..., S2k−2).

In particular H(A0) is isomorphic to the vector space C (k−1) n(n−1).

Sketch. For injectivity, suppose two compatibly framed systems in
Syst5 (A0) have the same Stokes matrices. Let F11, F12 be their associated
formal isomorphisms (from Lemma 3.3). Since the Stokes matrices (and
therefore the Stokes factors and the automorphisms oj) are equal, the
holomorphic matrix Si(F12) p Si(F11)−1 has no monodromy around 0 and
does not depend on i. Thus on any sector it has asymptotic expansion
F12 p F1

−1
1 and so (by Riemann’s removable singularity theorem) we deduce

the power series F12 p F1
−1
1 is actually convergent with the function

Si(F12) p Si(F11)−1 as sum. This gives an isomorphism between the systems
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we began with: they represent the same point in H(A0). Surjectivity follows
from a result of Sibuya: See [11, Section 6]. L

Remark 3.1. The set H(A0) is also described (by the Malgrange–
Sibuya isomorphism) as the first cohomology of a sheaf of non-Abelian
unipotent groups over the circle S1, explaining our notation. However we
will not use this viewpoint: the sums Si(F1 ) lead to canonical choices of
representatives of the cohomology classes that occur. See [9, 43, 50] and
the survey [70].

Finally two (by now easy) facts that we will need are:

Corollary 3.5.

• The torus action on H(A0) changing the compatible framing corre-
sponds to the conjugation action t(S)=(tS 1t−1, ..., tS 2k−2t−1) on the Stokes
matrices, and so there is a bijection Syst(A0)/G{z} 5 (U+×U−)k−1/T
between the set of isomorphism classes of germs of meromorphic connections
formally equivalent to A0 and the set of T-orbits of Stokes matrices.

• If F0 is continued once around 0 in a positive sense, then on return to
Sect0 it will become

F0 ·PS2k−2 · · · S2S1P−1M0 ,

where M0=e2p`−1 ·L0
is the formal monodromy.

Proof. The first part is immediate from Theorem 3.1 statement (3). For
the second part, from Definition 3.6 we see F0 becomes Fi ·Ki · · ·K2K1M0

when continued to Secti. Then observe Kr · · ·K1=PS2k−2 · · · S1P−1. L

Global Monodromy

Recall we have fixed the data A of a divisor D=; ki(ai) on P1 and
connection germs d− iA0 at each ai. Now also choose m disjoint open discs
Di on P1 with ai ¥ Di and, for each i, a coordinate zi on Di vanishing at ai.
Thus the local picture above is repeated on each such disc. Abstractly the
monodromy manifolds will be defined as spaces of representations of the
following groupoid C2 .
Choose a base-point p0 ¥ P10{a1, ..., am} and a point bt in each of the

sectors bounded by anti-Stokes directions at each pole ai, where t ranges
over some finite set indexing these sectors. Let B2i denote the (discrete)
subset of points of the universal cover of the punctured disc Di 0{ai},
which are above one of the bt’s. Let B2 :={p0} 2 B21 2 · · · 2 B2m. If p2 ¥ B2 we
will write p for the point of P1 underlying p2 (namely p0 or one of the bt’s).
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Definition 3.7.

(1) The set of objects of the groupoid C2 is the set B2.
(2) If p21, p22 ¥ B2, the set of morphisms of C2 from p21 to p22 is the set of

homotopy classes of paths c: [0, 1]Q P10{a1, ..., am} from p1 to p2.

This is clearly groupoid with multiplication (of composable morphisms)
defined by path composition.
Now let (V, N, g) be a compatibly framed meromorphic connection with

irregular type iA0 at ai for each i. (Thus, if V is trivial, (V, N, g) represents a
point of the extended moduli space M2 g(A).) For each choice of basis of the
fibre Vp0 of V at p0 such (V, N, g) naturally determines a representation of
the groupoid C2 in the group G=GLn(C), as follows.
Suppose [cp22p21] is a morphism in C2 , represented by a path cp22p21 in the

punctured sphere from p1 to p2. Then from Definition 3.10 (with p2=p2i) we
obtain a canonical choice of basis Fi: Cn Q V of N-horizontal sections of V
in a neighbourhood of pi for i=1, 2. (First use any local trivialisation of
V, and then observe the basis obtained is independent of this choice. In the
case p2i=p0, use the choice of basis of Vp0 to determine Fi.) Now both
bases extend uniquely (as solutions of N) along the track cp22p21 ([0, 1]) of the
path cp22p21 . Since they are both N-horizontal bases we have F1=F2 ·C on
the track of cp22p21 , for some constant invertible matrix C ¥ G. The represen-
tation r of C2 is defined by setting

r(cp22p21 ) :=C=F2
−1F1. (20)

Clearly C only depends on the homotopy class of the path in P10

{a1, ..., am} and it is easy to check this is indeed a representation. (For
example r maps contractible loops to 1 and has composition property
r(cp23p22 · cp22p21 )=r(cp23p22 ) ·r(cp22p21 ).)
Thus r encodes all possible ‘‘connection matrices’’ between sectors at

different poles as well as all the Stokes factors and Stokes matrices at each
pole. To characterise the representations of C2 that arise in this way we
observe:

Lemma 3.6. The representation r has the following two properties:

(SR1) For any i, if p21 ¥ B2i and p22 is the next element of B2i after p21 in a
positive sense and cp22p21 is a small arc in Di from p1 to p2 then
r(cp22p21 ) ¥ Stod( iA0), where d is the unique anti-Stokes ray that cp22p21 crosses.
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(SR2) For each i there is a diagonal matrix iL (which has distinct
eigenvalues mod Z if ki=1) such that for any p21 ¥ B2i, p22 ¥ B2 and morphism
cp22p21 ,

r(cp22(p21+2p))=r(cp22p21 ) · exp(2p`−1 · iL),

where cp22(p21+2p)=cp22p21 as paths, but (p21+2p) is the next point of B2i after p21
(in a positive sense) which is also above p1.

Proof. The first part is immediate from Definition 3.5 and Lemma 3.4
whilst the second is clear from the definition of the canonical solutions,
with iL the exponent of formal monodromy of (V, N, g) at ai. L

Definition 3.8.

• A Stokes representation r is a representation of the groupoid C2 into
G together with a choice of m diagonal matrices iL such that (SR1) and
(SR2) hold. The set of Stokes representations will be denoted HomS(C2 , G).

• The matrices iL associated to a Stokes representation r will be called
the exponents of formal monodromy of r and the number deg(r) :=
;iTr( iL) is the degree of r.

• Two Stokes representations are isomorphic if they are in the same
orbit of the following G action on HomS(C2 , G): if p21, p22 ¥ B2 0{p0}, g ¥ G
define

(g ·r)(cp0p0 )=gr(cp0p0 ) g
−1, (g ·r)(cp0p21 )=gr(cp0p21 ),

(g ·r)(cp22p0 )=r(cp22p0 ) g
−1, (g ·r)(cp22p21 )=r(cp22p21 ).

• The extended monodromy manifold M2 (A) :=HomS(C2 , G)/G is the
set of isomorphism classes of Stokes representations.

Observe that this G action on HomS(C2 , G) corresponds to the choice of
basis of the fibre Vp0 made above, and so a compatibly framed mero-
morphic connection (V, N, g) canonically determines a point of M2 (A).
(Also M2 (A) does not depend on the choices of the base-points p0, bt that
were used to define the groupoid C2 .)

Proposition 3.7 (see [40]). Two compatibly framed meromorphic
connections are isomorphic if and only if they have isomorphic Stokes
representations.

Proof. Suppose (V1, N1, g1), (V2, N2, g2) are isomorphic and both have
irregular type iA0 at each ai. Thus there is a vector bundle isomorphism
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j: V1 Q V2 which relates the connections and the framings. It is easy to
check now that, for each i, j also relates the canonical bases F1, 2(zi):
Cn Q V1, 2 of solutions on each sector at ai, associated to any point p2 ¥ B2i.
This implies the Stokes representations are isomorphic. Conversely if the
Stokes representations are isomorphic the local isomorphisms F2

p (F1)−1:
V1 Q V2 extend to P1 to give the desired isomorphism j, as in the proof of
Theorem 3.2. L

Thus on restricting attention to connections on trivial bundles we get a
well-defined injective map ñ :M2 g(A)QM2 (A) from the extended moduli
space M2 g(A) of Section 2. This is the (extended) monodromy map and is
the key ingredient in the whole isomonodromy story. It is a map between
complex manifolds of the same dimension (see Lemma 3.1 and Proposition
3.8) and moreover results of Sibuya and Hsieh [63, 32, 62] imply it is
holomorphic. (They prove each canonical fundamental solution varies
holomorphically with parameters and therefore so does all the monodromy
data—see also [40, Proposition 3.2].) It follows immediately that ñ is
surjective on tangent vectors and biholomorphic onto its image (since any
injective holomorphic map between equi-dimensional complex manifolds
has these properties—see for example [58, Theorem 2.14]). We will see in
Section 7 that the image of ñ is the complement of a divisor in the degree
zero component of M2 (A).
Now we wish to describe the monodromy manifold M2 (A) more explicitly

and this requires the following choices:

Definition 3.9. A choice of tentacles T is a choice of:

(1) A point pi in some sector at ai between two anti-Stokes rays
(i=1, ..., m).

(2) A lift p2i of each pi to the universal cover of the punctured disc
Di 0{ai}.

(3) A base-point p0 ¥ P10{a1, ..., am}.
(4) A path ci: [0, 1]Q P10{a1, ..., am} in the punctured sphere,

from p0 to pi for i=1, ..., m, such that the loop

(c−1
m ·bm · cm) · · · · · · (c

−1
2 ·b2 · c2) · (c

−1
1 ·b1 · c1) (21)

based at p0 is contractible in P10{a1, ..., am}, where bi is any loop in
Di 0{ai} based at pi encircling ai once in a positive sense.

Proposition 3.8. For each choice of tentacles T there is an explicit
algebraic isomorphism j2T: M2 (A)Q C21 × · · · ×C2m//G from the extended
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monodromy manifold to the ‘‘explicit monodromy manifold’’ of Definition 3.1
and (16).

Proof. The choice T determines an isomorphism HomS(C2 , G)`
5

r−1(1) … C21 × · · · ×C2m as follows. Recall, using the convention used before,
that the chosen point p2i ¥T determines a labelling of, and a log(zi) choice
on, each sector and anti-Stokes ray at ai. Let ib2j be the element of B2i lying
in the corresponding lift of the jth sector iSectj at ai to the universal cover
of the punctured disc Di 0{ai}. Without loss of generality we assume that
ib20=p2i and that the base-point p0 of C2 and T is the same. Also the label-
ling determines a permutation matrix Pi associated to each ai (see Lemma
3.2). (If ki=1 set Pi=1.) Let cp2ip0 be the morphism of C2 from p0 to p2i
corresponding to the path ci and define Ci :=P−1

i r(cp2ip0 ) ¥ G for
i=1, ..., m. Next let isj be the morphism from ib2(j−1) · l to ib2j · l with
underlying path a simple arc in Di 0{ai} from ib(j−1) · l to ibj · l in a positive
sense (where l=li=ri/(2ki −2) and ri=# iA). Then define the Stokes
matrices (as explained before Theorem 3.2) by the formulae:
iSj :=P−1

i r(
isj) Pi for j=2, ..., 2ki −2 and iS1 :=P−1

i r(
is0) · iM

−1
0 ·Pi.

Finally set iLŒ=P−1
i

iLPi where iL is the ith exponent of formal mono-
dromy of r (Definition 3.8). Thus a Stokes representation r determines a
point (C, S, LŒ) of the product C21 × · · · ×C2m, where C=(C1, C2, ..., Cm),
S=(1S, ..., mS), iS :=( iS1, ..., iS2ki −2) and LŒ=(1LŒ, ..., mLŒ). Now observe
that the value r(c−1

i ·bi · ci) of the representation r on the loop c−1
i ·bi · ci

based at p0 is equal to the value ri(Ci, iS, iLŒ) of the map ri: C2 Q G, and so
the contractibility of the loop (21) implies the monodromy data (C, S, LŒ)
satisfies the constraint rm · · ·r1=1. This defines the map HomS(C2 , G)Q
r−1(1) and it is straightforward to see it is an isomorphism (using Lemma
3.2 and knowledge of the fundamental group of the punctured sphere).
This map is G-equivariant and so descends to give j2T. L

Now we turn to the non-extended version. First, taking the exponents of
formal monodromy L=(1L, ..., mL) of any Stokes representation r induces
a map

mTm: M2 (A)0 tm; r- L.

Also for each pole ai there is a torus action on HomS(C2 , G) defined by the
formulae

(t ·r)(cp22p21 )=tr(cp22p21 ) t
−1 (t ·r)(cq22p21 )=r(cq22p21 ) t

−1

(t ·r)(cq22q21 )=r(cq22q21 ) (t ·r)(cp22q21 )=tr(cp22q21 )
(22)

for any p21, p22 ¥ B2i and q21, q22 ¥ B2 0B2i, where t ¥ T.
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Definition 3.10.

• The (non-extended) space of monodromy data M(A) is the set of Tm

orbits in M2 (A) which have exponents of formal monodromy equal to
L0=(1L0, ..., mL0), where iL0=Resai (

iA0):

M(A) :=m−1
Tm(L0)/Tm.

• The monodromy map is the map n:Mg(A)QM(A) induced from the
extended monodromy map.

The monodromy map is well-defined since part (3) of Theorem 3.1
implies that the extended monodromy map is Tm-equivariant and also since
it is clear that mTm p ñ is the moment map for the Tm action on the extended
moduli space M2 g(A) (defined in Proposition 2.1).

Corollary 3.9. For each choice of tentacles T there is an explicit
algebraic isomorphism jT: M(A)Q C1 × · · · ×Cm//G from the monodromy
space to the explicit set of monodromy data from Definition 3.1 (with Ci

depending on T).

Proof. The choice of tentacles determines a permutation matrix Pi for
i=1, ..., m. Then define iLŒ :=P−1

i · iL0 ·Pi and use this value to define Ci.
The rest now follows from Proposition 3.8 since j2T is Tm-equivariant,
where (t1, ..., tm) acts on C2i via (P

−1
i tiPi) ¥ T and the T-action of Definition

3.1. L

Remark 3.2 (Degree). If r is a Stokes representation having exponents
of formal monodromy L then the degree deg(r)=;iTr( iL) of r is an
integer. One way to see this is to choose some tentacles so r determines (via
Proposition 3.8) a point (C, S, LŒ) of C21 × · · · ×C2m satisfying the constraint
rm · · ·r1=1. By taking the determinant of this constraint we see that
;iTr( iLŒ)=;iTr( iL) ¥ Z. (It is also clear that the fixed-degree components
M2 d(A) of the extended monodromy manifolds are pairwise isomorphic.)
On the other hand suppose (V, N, g) is a compatibly framed meromorphic
connection on a holomorphic vector bundle VQ P1 with irregular type A
and exponents of formal monodromy L. Then by considering the induced
connection on the determinant line bundle LnV of V one finds that
;iTr( iL) is equal to the degree of the vector bundle V. The only point we
need to make here is that the germs iA0 must be chosen such that
;iTr( iL0)=0, if the moduli spaces Mg(A) are to be non-empty, and so we
will tacitly assume this throughout.

To end this section we describe the dependence on the local coordinate
choices zi that were made right at the start. Let A be a choice of divisor D
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and connection germs d− iA0 as above. This determines all the spaces
M2 g(A), M2 (A),Mg(A) and M(A).

Proposition 3.10.

(1) The extended monodromy map ñ :M2 g(A)QM2 (A) depends (only)
on the choice of a ki-jet of a coordinate zi at each ai.

(2) This coordinate dependence is only within the Tm orbits: The
monodromy map n:Mg(A)QM(A) is completely intrinsic.

Proof. The key point is to see how a fundamental solution F=
Sj(F1 ) zLeQ changes when the coordinate z is changed. Here A0=
dQ+L dz/z is fixed and Q is determined by (A0, z) by requiring it to have
zero constant term in its Laurent expansion with respect to z. Suppose
zŒ=zef is a new coordinate choice, for some local holomorphic function f.
One finds QŒ=Q−Lf+Lf(0)−Res0(Q df) (as meromorphic functions
near z=0), since then Res0(QŒ dzŒ/zŒ)=0. In turn FŒ=F · t−1 where
t=exp(Res0(Q df)−Lf(0)) ¥ T. (The function Sj(F1 ) is intrinsic.) Then
observe: 1) If f=O(zk) then t=1, since Q has a pole of order k−1, and 2)
This action of t ¥ T corresponds to the torus action we have defined. L

Remark 3.3. One should also note that all the spaces M2 g(A), M2 (A),
Mg(A) and M(A) only depend on the principal part of each germ iA0. For
the monodromy manifolds this is immediate and for the moduli spaces
M2 g(A),Mg(A) it is because all iA0 with the same principal part are for-
mally equivalent via a transformation with constant term 1 (as explained in
Section 2).

4. C. APPROACH TO MEROMORPHIC CONNECTIONS

This section gives a third viewpoint on meromorphic connections: a C.

approach. Although we work exclusively with ‘‘generic’’ connections over
P1 (as we wish to study isomonodromic deformations of such connections)
we remark that this C. approach works over arbitrary compact Riemann
surfaces (maybe with boundary) and the generic hypothesis is also
superfluous (see Remark 4.2).

Singular Connections: C. Connections with Poles

Let D=k1(a1)+· · ·+km(am) be an effective divisor on P1 as usual and
choose m disjoint discs Di … P1 with ai ¥ Di and a coordinate zi on Di
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vanishing at ai. Define the sheaf of ‘‘smooth functions with poles on D’’ to
be the sheaf of C. sections of the holomorphic line bundle associated to
the divisor D

C.[D] :=O[D] éO C.

where O is the sheaf of holomorphic functions and C. the infinitely differ-
entiable complex functions. Any local section of C.[D] near ai is of the
form f/zki

i for a C. function f. Similarly define sheaves W r[D] of C.

r-forms with poles on D (so in particular W0[D]=C.[D]). A basic feature
is that ‘‘C.-Laurent expansions’’ can be taken at each ai. This gives a map

Li: Wg[D](P1)Q CQzi, z̄iR z
−ki
i é Lg C2, (23)

where C2=Cdzi À Cdz̄i. For example if f is a C. function defined in a
neighbourhood of ai then Li(f/z

ki
i )=Li(f)/z

ki
i where Li(f) is the Taylor

expansion of f at ai.
The LaurentmapLi has nicemorphismproperties, for exampleLi(w1 Nw2)

=Li(w1)NLi(w2) and Li commutes with the exterior derivative d, where d
is defined on the right-hand side of (23) in the obvious way (d(z−1

i )=
−dzi/z

2
i ).

We will repeatedly make use of the fact that the kernel of Li consists of
nonsingular forms, that is: if Li(w)=0 then w is nonsingular at ai. This
apparently innocuous statement is surprisingly tricky to prove directly, but
since it is crucial for us we remark it follows from the following:

Lemma 4.1 (Division). Let D … C be a disk containing the origin.
Suppose f ¥ C.(D) and that the Taylor expansion of f at 0 is in the ideal in
CQz, z̄R generated by z. Then f/z ¥ C.(D).

Proof. This is a special case of a much more general result of
Malgrange [44]. The particular instance here is discussed by Martinet [49,
p. 115]. L

Another fact we will use is that the C. Laurent expansion map Li in (23)
is surjective for each i. This is due to a classical result of E. Borel which we
quote here in the relative case that will be needed later:

Theorem 4.2 (E. Borel). Suppose U is a differentiable manifold, I is a
compact neighbourhood of the origin in R and f1 ¥ CQx, yR é C.(U) (where
x, y are real coordinates on C 5 R2). Then there exists a smooth function
f ¥ C.(U×I×I) such that the Taylor expansion of f at x=y=0 is f1.
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Proof. This is easily deduced, via partitions of unity, by using two appli-
cations of the version of Borel’s theorem proved on p. 16 of Hörmander’s
book [31]. L

Now let VQ P1 be a rank n, C. complex vector bundle.

Definition 4.1. A C. singular connection N on V with poles on D is a
map N: V0 V é W1[D] from the sheaf of (C.) sections of V to the sheaf
of sections of V é W1[D], satisfying the Leibniz rule: N(fv)=
(df) é v+fNv where v is a local section of V and f is a local C. function.

Concretely in terms of the local coordinate zi on P1 vanishing at ai and a
local trivialisation of V, N has the form: N=d− iA/zki

i where iA is an n×n
matrix of C. one-forms. In this paper, to study the Jimbo–Miwa–Ueno
isomonodromy equations, we need only to consider the case when V is the
trivial rank n, C. vector bundle over P1. (Recall any degree zero vector
bundle over P1 is C. trivial.)

Definition 4.2.

• Let A[D] denote the set of C. singular connections with poles
on D on the trivial C. rank n vector bundle: A[D] :={d−a | a ¥ Endn

(W1[D](P1))} where W1[D] is the sheaf of C. one-forms with poles on D.
• The gauge group of C. bundle automorphisms is G :=GLn(C.(P1)).
• The curvature of a singular connection d−a ¥A[D] is the matrix of

singular two-forms F(a) :=(d−a)2=−da+a2 ¥ Endn(W2[2D](P1)).
• The flat connections are those with zero curvature and the subset of

flat singular connections will be denoted Afl[D].

Remark 4.1. Occasionally one comes across notions of curvature of
singular connections involving distributional derivatives. For example a
meromorphic connection on a Riemann surface is sometimes said to have a
d-function singularity in its curvature at the pole, to account for the
monodromy around the pole. The definition above of curvature does not
involve distributional derivatives, and so, for us, any meromorphic con-
nection over a Riemann surface is flat.

The group G of bundle automorphisms clearly acts on the singular con-
nections A[D] and explicitly this is given by the formula g[a]=
gag−1+(dg) g−1. This restricts to an action on Afl[D] since F(g[a])=
g(F(a)) g−1 for g ¥ G.
Now choose a generic diagonal connection germ d− iA0 at ai for each i

and let A denote this m-tuple of germs and the divisor D, as usual. Since
d−a ¥A[D] is on the trivial vector bundle, and d− iA0 is a germ of a
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connection on the trivial bundle, we can compare the Laurent expansion of
a at ai with iA0. In particular the following definition makes sense:

Definition 4.3.

• Let A(A) be the set of singular connections with fixed Laurent
expansions:

A(A) :={d−a ¥A[D] | Li(a)= iA0 for each i}.

• Let A2(A) be the following extended set of singular connections with
fixed Laurent expansions:

A2(A) :=3d−a ¥A[D] : Li(a)= iA0+( iL− iL0)
dzi
zi

for some iL ¥ ti 4 ,

where iL0=Res0( iA0), ti=t if ki \ 2 and ti=tŒ if ki=1.
• Let GT and G1 denote the subgroups of G of elements having Taylor

expansion equal to a constant diagonal matrix or the identity, respectively,
at each ai.

The basic motivation for this definition is Corollary 4.4 below. Note that
A(A) is an affine space and that if d−a ¥A(A) then (from the division
lemma above) the (0, 1) part of a is nonsingular over all of P1.

Smooth Local Picture

Now we will give a C. description of the sets H(A0) and the local
analytic classes Syst(A0)/G{z} defined in Section 3.
We begin with a straightforward observation. Let z be a complex coor-

dinate on the unit disc D … C. From Borel’s theorem we have an exact
sequence of groups

1` 0G1 `
0G`L0 GLn(CQz, z̄R)`1,

where 0G is the group of germs at 0 of gauge transformations g ¥ G and
0G1 :=ker(L0) is the subgroup of germs with Taylor expansion 1.
Fix a generic diagonal connection germ d−A0 with an order k pole at

z=0. By projecting a marked pair (A, F1 ) onto its second factor we obtain
an injection Syst5 (A0)+ GQzR (see Lemma 3.3) and so in turn may regard
Syst5 (A0) as a subset of GLn(CQz, z̄R). Define S1 (A0) :=L−1

0 (Syst5 (A0)) to be
the lift of this subset to 0G. Also lift the stabiliser torus T 5 (Cg)n, that is
define 0GT :=L−1

0 (T).
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Lemma 4.2. Taking Taylor series at 0 induces isomorphisms

G{z}0S1 (A0)/0G1 5H(A0) (24)

and (by considering the residual action of 0GT/0G1 5 T):

G{z}0S1 (A0)/0GT 5 Syst(A0)/G{z}. (25)

Proof. First observe L0 induces isomorphisms S1 (A0)/0G1 5 Syst5 (A0)
and 0GT/0G1 5 T. Then recall H(A0) :=G{z}0Syst5 (A0). L

Having lifted things up into a smooth context a new interpretation of the
smooth quotients above will be given. In particular it is desirable to remove
the groups G{z} occurring on the left-hand sides in (24) and (25).
Let 0A[k]=0A[k(0)] denote the set of germs at 0 of C. singular

connections on the trivial bundle, with poles of order at most k.
Now given g ¥S1 (A0) we can apply the formal transformation L0(g)

to A0 to obtain a meromorphic connection A :=L0(g)[A0]. Now apply
the C. gauge transformation g−1 to A to define a singular connection
s(g) :=g−1[A]=g−1[L0(g)[A0]]. This defines a map s:S1 (A0)Q 0A[k].
Observe that

• s(g) has Laurent expansion A0 (from the morphism properties of L0),
• Ifh ¥ G{z} is holomorphic thens(hg)=s(g), ash[A]=L0(h)[A], and
• s(g) is a flat singular connection, since it is C. gauge equivalent to

the meromorphic connection A.

Thus s gives a map into the flat connection germs with Laurent expan-
sion A0, i.e. into 0Afl(A0). In fact it is surjective and its fibres are precisely
the G{z} orbits:

Proposition 4.3. The map s defined above induces an isomorphism

G{z}0S1 (A0)`5 0Afl(A0)

onto the set of flat singular connection germs with Laurent expansion A0.

Proof. We have seen the induced map is well defined and now show it
is bijective. For surjectivity, suppose d−a ¥ 0Afl(A0) is a flat singular con-
nection with Laurent expansion A0. Thus the dz̄ component a0, 1 of a has
zero Laurent expansion at 0 and so in particular is nonsingular. It follows
(see [6, p. 555] or [9, p. 67]) that there exists g ¥ 0G with (“̄g) g−1=a0, 1

and so A :=g−1[a] is still flat and has no (0, 1) part. By writing A=c dz/zk

for smooth c observe that flatness implies “̄c=0 and so A is meromorphic.
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We claim now that A is formally equivalent to A0, and that L0(g) is a
formal isomorphism between them. First, L0(g) has no terms containing z̄
because L0(“̄g)=L0(a0, 1g)=0 since L0(a0, 1)=0. Second, just observe

L0(g−1)[A0]=L0(g−1)[L0(a)]=L0(g−1[a])=L0(A)=A

and so the claim follows. In particular g−1 ¥S1 (A0) and by construction
s(g−1)=a and so s is onto. Finally if g1[A]=g2[B] with A, B mero-
morphic then h[A]=B with h :=g−1

2 g1. Looking at (0, 1) parts gives
(“̄h) h−1=0 and so h is holomorphic. This proves injectivity. L

Combining this with Lemma 4.2 immediately yields the main local result:

Corollary 4.4. There are canonical isomorphisms

0Afl(A0)/0G1 5H(A0) and 0Afl(A0)/0GT 5 Syst(A0)/G{z}

between the 0G1 orbits of flat singular connection germs with Laurent expan-
sion A0 and the set of analytic equivalence classes of compatibly framed
systems with formal type A0, and between the 0GT orbits of flat singular con-
nection germs with Laurent expansion A0 and the set of analytic equivalence
classes of connection germs formally equivalent to A0.

Proof. This follows directly by substituting 0Afl(A0) for G{z}0S1 (A0) in
Lemma 4.2. In summary: to go from a flat singular connection
d−a ¥ 0Afl(A0) to H(A0) just solve (“̄g) g−1=a0, 1 and take the G{z} orbit
of L0(g−1) ¥ GQzR to give an element of H(A0) (see the proof of Proposi-
tion 4.3). Conversely, given F1 ¥ GQzR such that A :=F1[A0] is convergent,
use E. Borel’s theorem to find g ¥ 0G such that L0(g)=F1 −1. Then set
a=g[A] to give a ¥ 0Afl(A0). L

Thus the analytic equivalence classes may be encoded in an entirely C.

way. These bijections can be thought of as relating the two distinguished
types of elements (the meromorphic connections and the connections with
fixed Laurent expansion) within the 0G orbits in 0Afl[k]. That is, they relate
the conditions a ¥ Syst(A0) and a ¥ 0Afl(A0) on a ¥ 0Afl[k] by moving within
a’s 0G orbit.

Remark 4.2. Corollary 4.4 easily extends to the general (non-generic)
case, with the same proof. The precise statement is as follows (but won’t be
needed elsewhere in this paper). Let d−A be any meromorphic connection
germ and let 0GStab(A) be the subgroup of 0G consisting of elements g whose
Taylor expansion stabilises A (i.e. L0(g)[A]=A). Then the set of analytic
isomorphismclasses ofmeromorphic connectiongerms formally equivalent to
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A is canonically isomorphic to the set of 0GStab(A)-orbits of flat singular con-
nection germs with Laurent expansion A: Syst(A)/G{z} 5 0Afl(A)/0GStab(A).
Similarly H(A) :=Syst5 mp(A)/G{z} is canonically isomorphic to 0Afl(A)/
0G1 (but in general this cannot be interpreted in terms of compatibly
framed systems, only in terms of marked pairs).

Globalisation

Recall we have fixed the data A (of a divisor D=; ki(ai) on P1 and
connection germs d− iA0) and defined A(A) to be the set of singular con-
nections on the trivial rank n vector bundle on P1 having Laurent expan-
sion iA0 at ai for each i. Following the results of the last section we are led
to consider such connections which are flat. The main result is:

Proposition 4.5. There is a canonical bijection between the set of GT

orbits of flat C. singular connections with fixed Laurent expansions A and
the set of isomorphism classes of meromorphic connections with formal type
A on degree zero holomorphic bundles over P1:

M(A) 5Afl(A)/GT.

Proof. Suppose (V, N) represents an isomorphism class in M(A). The
meromorphic connection N is in particular a C. singular connection,
according to Definition 4.1. Since V is degree zero it is C. trivial so, by
choosing a trivialisation, (V, N) determines a singular connection d−a on
the trivial bundle over P1.
From the local picture just described, since N is formally equivalent to

iA0 at ai, we can choose g ¥ G such that g[a] has Laurent expansion iA0 at
ai for all i. This gives an element g[a] of Afl(A) and we take the GT orbit
through it to define the required map. We need to check this GT orbit only
depends on the isomorphism class of (V, N) and that the map is bijective.
Suppose we have two such pairs (V, N) and (VŒ, NŒ) and we choose C.

trivialisations of V and VŒ so that N, NŒ give singular connections d−a1,
d−a2 respectively. Now a standard “̄-operator argument implies (V, N) 5
(VŒ, NŒ) if and only if a1 and a2 are in the same G orbit. Thus an iso-
morphism class [(V, N)] of meromorphic connections determines (and is
determined by) a G orbit of singular connections on the trivial bundle. This
G orbit has a subset of singular connections having Laurent expansion iA0

at ai for each i. This subset is a GT orbit of singular connections (since T is
the stabiliser of iA0) and is the element of Afl(A)/GT corresponding to
[(V, N)]. L
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Corollary 4.6. The set M2(A) of isomorphism classes of triples
(V, N, g) consisting of a generic meromorphic connection N (with poles on D)
on a degree zero holomorphic vector bundle V over P1 with compatible
framings g such that (V, N, g) has irregular type A is canonically isomorphic
to the set of G1 orbits of flat connections in A2(A):

M2(A) 5A2fl(A)/G1.

Proof. As in Corollary 4.4, replacing GT by G1 in Proposition 4.5
corresponds to incorporating a compatible framing as required for M2(A).
The desired isomorphism is then obtained by simply repeating the proof of
Proposition 4.5 for each possible set of choices of exponents of formal
monodromy L. L

Monodromy of Flat Singular Connections

Having related the C. approach to meromorphic connections we now
relate it to the monodromy approach of Section 3. The key step is to define
the generalised monodromy data of flat C. singular connections with fixed
Laurent expansions, but this is easy since they too have canonical solutions
on sectors:

Lemma 4.7. Suppose a ¥ 0Afl(A0). For each choice of log(z) there is a
canonical choice Fi of fundamental solution of a on Secti, given by

Fi :=gSi(L0(g−1)) zL
0
eQ

for any g ¥ 0G solving (“̄g) g−1=a0, 1.

Proof. From the proof of Proposition 4.3, such g is unique up to right
multiplication by h ¥ G{z} and A :=L0(g−1)[A0]=g−1[a] is a convergent
meromorphic connection germ. Theorem 3.1 then provides an analytic
isomorphism Si(L0(g−1)) between A0 and A on Secti. It follows that
gSi(L0(g−1)) is an isomorphism between A0 and a which is independent of
the choice of g. Composing this with the fundamental solution zL

0
eQ of A0

gives the result. L

Thus, exactly as in Section 3, a singular connection d−a ¥A2(A) deter-
mines a Stokes representation r (upto isomorphism). This gives a map
(which will be referred to as the C. monodromy map):

ñ :A2fl(A)0M2 (A); a- [r].
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Since the connections in A2fl(A) are on a degree zero bundle, the image of ñ
is in the degree zero component M2 0(A) of the extended monodromy mani-
fold (see Remark 3.2). The main result is then:

Proposition 4.8. The C. monodromy map ñ :A2fl(A)0M2 0(A) is
surjective and has precisely the G1 orbits in A2fl(A) as fibres, so that

A2fl(A)/G1 5M2 0(A).

Moreover ñ intertwines the GT action on A2fl(A) with the GT action on M2 0(A)
defined via the evaluation map GT Q Tm and the torus actions of (22).

Before proving this we deduce what the monodromy data corresponds to
in the meromorphic world:

Corollary 4.9. Taking monodromy data induces bijections

M2(A) 5M2 0(A) and M(A) 5M(A)

between the spaces of meromorphic connections on degree zero bundles and
the corresponding spaces of monodromy data. In particular M2(A) inherits the
structure of a complex manifold from M2 0(A).

Proof. The first bijection follows directly from Propositions 4.5 and 4.8.
The second bijection follows from the first by fixing the exponents of
formal monodromy and quotienting by the Tm action (using the intertwin-
ing property of ñ). L

Proof (of Proposition 4.8). Choose some tentacles T and a thickening
c̄i: [0, 1]×[0, 1]Q P10{a1, ..., am} of each path ci (i.e. a ribbon following
ci whose track |c̄i | is a closed tubular neighbourhood of the track of ci). Let
D0 be a disc in P1 containing p0 and disjoint from each disc D1, ..., Dm. Let
|T| :=D̄0 2 1m

i=1(D̄i 2 |c̄i |) … P1 be the union of the m+1 discs D̄i and the
m ribbons |c̄i |. We will suppose (as is clearly possible) that T, |c̄i |, D0 have
been chosen such that: 1) if i ] j then |c̄i | only intersects |c̄j | inside D0 and
2) that |T| is homeomorphic to a (closed) disc.
For surjectivity, let r be any degree zero Stokes representation. From

Proposition 3.8, specifying r is equivalent to specifying the matrices
(C, S, LŒ)=j2T(r). (Also as in Proposition 3.8, Pi will denote the permu-
tation matrix associated to ai via the tentacle choice.) Since the Stokes
matrices classify germs of singular connections up to C. gauge transfor-
mations with Taylor expansion 1, germs ai ¥ iA2fl( iA0) may be obtained
having any given Stokes matrices and residue for each i=1, ..., m
(combine Theorem 3.2 with Corollary 4.4). It is straightforward to extend
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ai arbitrarily to D̄i. Next the ai’s are patched together along the ribbons
|c̄i |. Let iF0 be the canonical solution of ai on iSect0 from Lemma 4.7. Since
G=GLn(C) is path connected it is possible to choose a smooth map
qi : |c̄i |Q G such that qi=1 on D̄0 5 |c̄i | and qi= iF0PiCi on iSect0 5 |c̄i |
for i=1, ..., m. Define a over |T| as follows: a|D̄0

=0 and for i=1, ..., m
a|D̄i

=ai and a||c̄i |=(dqi) q
−1
i . It is easy to check these definitions agree on

the overlaps and that when the basis iF0 is extended over |c̄i | as a solution
of a then r(cp2ip0 )=

iF−1
0 ·F on |c̄i |, where F is the basis which equals 1 on D0.

Now we must extend a to the rest of P1. First the product relation
rm · · ·r1=1 ensures that a has no monodromy around the boundary circle
“|T| 5 S1, so that any local fundamental solution Y extends to give a map
Y: “|T|Q G. Then the hypothesis that deg(r)=0 ensures that this loop Y
in G is contractible. To see this, firstly recall that the determinant map
det: GQ Cg expresses G as a fibre bundle over Cg, with fibres diffeo-
morphic to SLn(C), and that SLn(C) is simply connected. Then, from the
homotopy long exact sequence for fibrations, it follows that det induces an
isomorphism of fundamental groups: p1(G) 5 p1(Cg) 5 Z. Thus we need to
see that the loop k :=det(Y): “|T|Q Cg in the punctured complex plane
does not wind around zero. But the winding number of k is

1
2pi

G
“|T|

dk
k
=

1
2pi

G
“|T|

Tr(a)

and the C. version of Cauchy’s integral theorem (see Lemma 6.3) implies
this is equal to ; Tr( iL)=deg(r) (using the flatness of a to deduce
dTr(a)=0).
Thus the loop Y in G may be extended to a smooth map from the

complement of |T| in P1 to G. We then define a=(dY) Y−1 on this
complement and thereby obtain a ¥A2fl(A) having the desired monodromy
data. Hence the C. monodromy map is indeed surjective.
Next observe (from Theorem 3.1 and Lemma 4.7) that if h ¥ GT and

aŒ=h[a] then the canonical solutions of a and aŒ are related by:
iF −j=h· iFj · t

−1
i where ti=h(ai) ¥ T. The intertwining property and the fact

that the G1 orbits are contained in the fibres of ñ are then immediate from
the definition of the Stokes representation in terms of the canonical
solutions
The proof that the fibres are precisely the G1 orbits is much like the proof

of Proposition 3.7: Suppose a, aŒ ¥A2fl(A) have the same monodromy data.
Let j :=1F −0(

1F0)−1 be the induced isomorphism between a and aŒ on
1Sect0. Then j is single-valued when extended to P10{a1, ..., am} as a
solution of the induced connection Hom(a, aŒ) on the trivial bundle
End(Cn). (When j is extended around any loop c based at p1 it has no
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monodromy since, when extended around this loop, 1F −0 and 1F0 are both
multiplied on the right by the same constant matrix.) Also, since the
monodromy data encodes the transitions between the various canonical
fundamental solutions it follows that j= iF −j(

iFj)−1 for any i, j. Now
observe (from Theorem 3.1 and Lemma 4.7) that iF −j(

iFj)−1 is asymp-
totic to 1 at ai on some sectorial neighbourhood of iSectj (j=1, ..., ri,
i=1, ..., m). It follows that j extends smoothly to P1 and has Taylor
expansion 1 at each ai. By construction aŒ=j[a] so a and aŒ are in the
same G1 orbit. L

5. SYMPLECTIC STRUCTURE AND MOMENT MAP

In this section we observe that the well known Atiyah–Bott symplectic
structure on nonsingular connections naturally generalises to the singular
case we have been studying. Moreover, as in the nonsingular case we find
that the curvature is a moment map for the action of the gauge group.
Thus the moduli spaces of flat singular connections with fixed expansions
arise as infinite dimensional symplectic quotients.
The main technical difficulty here is that standard Sobolev/Banach

space methods cannot be used since we want to fix infinite-jets of deriva-
tives at the singular points ai ¥ P1. Instead the infinite dimensional spaces
here are naturally Fréchet manifolds. We will not use any deep properties
of Fréchet spaces but do need a topology and differential structure. (The
explicitness of our situation means we can get by without using an implicit
function theorem—the monodromy description gives A2fl(A)/G1 the struc-
ture of a complex manifold and local slices for this G1 action will be con-
structed directly.) The reference used for Fréchet spaces is Treves [66] and
for Fréchet manifolds or Lie groups see Hamilton [26] and Milnor [54];
we will give direct references to these works rather than full details here.

The Atiyah–Bott Symplectic Structure on A2(A)

Let E denote the trivial rank n complex vector bundle over P1 and con-
sider the complex vector space W1[D](P1, End(E)) of n×n matrices of
global C. singular one-forms on P1 with poles on D (see Section 4). This is
the space of sections of a C. vector bundle and so can be given a Fréchet
topology in a standard way [26, p. 68]. Now define W to be the vector
subspace

W :=3f ¥ W1[D](P1, End(E)) : Li(f) ¥ t
dzi
zi

for i=1, ..., m 4
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of W1[D](P1, End(E)) of elements having Laurent expansion zero at each
i, except for a possibly nonzero, diagonal residue term. This is a closed
subspace2 and so inherits a Fréchet topology.

2 Since the C. Laurent expansion maps Li are continuous (if we put the topology of simple
convergence of coefficients on the formal power series ring which is the image of the Laurent
expansion map Li); see [66 p. 390], where this fact is used to prove E. Borel’s theorem on the
surjectivity of Li.

Lemma 5.1. The extended space A2(A) of singular connections is a
complex Fréchet manifold and if a ¥A2(A) then the tangent space to A2(A)
at a is canonically isomorphic to the complex Fréchet space W defined above:
TaA2(A) 5W.

Proof. If all ki \ 2 then A2(A) is an affine space modelled on W: If
a0 ¥A2(A) then A2(A)={a0+f | f ¥W}. In general (some ki=1), A2(A) is
identified in this way with an open subset of W (recall the residues must
be regular mod Z): if a0 ¥A2(A) then the map {a0+f | f ¥W}Q tm;
aW (ResiLi(a))

m
i=1 taking the residues is continuous and A2(A) is the

inverse image of an open subset of tm. Thus A2(A) is identified with an open
subset of W; it is thus a Fréchet manifold (with just one coordinate chart)
and the tangent spaces are canonically identified with W as in the finite
dimensional case (see discussion [54, p. 1030]). L

Thus following Atiyah–Bott [6] we can define a two-form

wa(f, k) :=
1
2pi

F
P
1
Tr(fNk) (26)

on A2(A), where a ¥A2(A) and f, k ¥ TaA2(A). This integral is well defined
since the two-form Tr(fNk) on P1 is nonsingular; its Laurent expansion at
ai is a (2, 0) form and so zero. Thus wa is a skew-symmetric complex bi-
linear form on the tangent space TaA2(A). It is nondegenerate in the sense
that if wa(f, k)=0 for all k then f=0 (if f ] 0 then f is nonzero at some
point p ] a1, ..., am and it is easy then to construct k vanishing outside a
neighbourhood of p and such that wa(f, k) ] 0). Also wa is continuous as
a map W×WQ C, since it is continuous in each factor, and (for Fréchet
spaces) such ‘‘separately continuous’’ bilinear maps are continuous ([66,
p. 354]). Finally the right-hand side of (26) is independent of a, so w is a
constant two-form on A2(A) and in particular it is closed. Owing to these
properties we will say w is a complex symplectic form on A2(A). (See for
example Kobayashi [42] for a discussion of the more well-known theory of
symplectic Banach manifolds.)
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Group Actions

First, the full gauge group G :=GLn(C.(P1)) is a Fréchet Lie group;
that is, it is a Fréchet manifold such that the group operations g, hW g · h
and gW g−1 are C. maps (see [54, Example 1.3]). G is locally modelled on
the Fréchet space Lie(G) :=C.(P1, gln(C)) and has a complex analytic
structure coming from the exponential map exp: Lie(G)Q G; xW exp(x)
which is defined pointwise in terms of the exponential map for G. This
implies Lie(G) is a canonical coordinate chart for G in a neighbourhood
of the identity since exp has a local inverse gW log(g) (also defined
pointwise). In particular Lie(G) is so identified with the tangent space to G
at the identity; the Lie algebra of G.
The group we are really interested in here is G1, the subgroup of G con-

sisting of elements g ¥ G having Taylor expansion 1 at each ai ¥ P1. As
above, the Taylor expansion maps are continuous and so G1 (the intersec-
tion of their kernels) is a closed subgroup of G. It follows that G1 is a
complex Fréchet Lie group with Lie algebra

Lie(G1) :={x ¥ Lie(G) | Li(x)=0 for i=1, ..., m},

where Li is the Taylor expansion map at ai. (The same statements also hold
for GT except now Lie(GT) :={x ¥ Lie(G) | Li(x) ¥ t for i=1, ..., m}.)

Lemma 5.2. The groups G1 and GT act holomorphically on A2(A) by
gauge transformations and the fundamental vector field of x ¥ Lie(GT) takes
the value −dax ¥ TaA2(A) at a ¥A2(A), where da is the singular connection
on End(E) induced from a.

Proof. FirsttheactionmapGT ×A2(A)QA2(A); (g, a)W gag−1+(dg) g−1

can be factored into simpler maps each of which is holomorphic (see [26]).
By convention the fundamental vector field is minus the tangent field to the
flow generated by x, which may be calculated using the exponential map
for GT. L

The Curvature is a Moment Map

It is clear that the action of GT on A2(A) preserves the symplectic form w:
If g ¥ GT and a ¥A2(A) then the derivative of the action of g is simply
conjugation:

(g[ · ])g : TaA2(A)Q Tg[a]A2(A); fW gfg−1,

and sow is preserved asTr(fNk)=Tr(gfg−1Ngkg−1) for anyf, k ¥ TaA2(A).
More interestingly, this action is Hamiltonian. If we firstly look at the

smaller group G1, then, as observed by Atiyah and Bott in the nonsingular
case, the curvature is a moment map. To start with observe:
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Lemma 5.3. The curvature map F:A2(A)0 W2(P1, End(E)) is an infi-
nitely differentiable (even holomorphic) map to the Fréchet space of End(E)
valued nonsingular two-forms on P1. The derivative of F at a ¥A2(A) is

(dF)a: TaA2(A)Q W2(P1, End(E)); f- −daf,

where f ¥ TaA2(A)=W and da: W1[D](P1, End(E))Q W2[2D](P1, End(E))
is the operator naturally induced from the singular connection a.

Proof. Recall the curvature is given explicitly by F(a)=−da+aNa
and observe (by looking at Laurent expansions and using the division
lemma) that this is a matrix of nonsingular two-forms. That F is C. with
the stated derivative follows from basic facts about calculus on Fréchet
spaces (see [26] Part I). L

Next there is a natural inclusion from W2(P1, End(E)) to the dual of the
Lie algebra of G1 given by taking the trace and integrating

i : W2(P1, End(E))Q Lie(G1)g; F(a)W 1xW
1
2pi

F
P
1
Tr(F(a) x)2

where x ¥ Lie(G1) is a matrix of functions on P1. Using this inclusion we
will regard F as a map into the dual of the Lie algebra of the group. We
then have

Proposition 5.4. The curvature F:A2(A)0 Lie(G1)g is an equivariant
moment map for the G1 action on the extended space A2(A) of singular con-
nections.

Proof. Everything has been set up so that the arguments from the non-
singular case still work, as we will now show. Given x ¥ Lie(G1), define a
(Hamiltonian) function Hx on A2(A) to be the x component of F,

Hx :=OF, xP:A2(A)Q C; Hx(a)=
1
2pi

F
P

1
Tr(F(a) x),

where the angled brackets denote the natural pairing between Lie(G1) and
its dual. We need to show that the fundamental vector field of x is the
Hamiltonian vector field of Hx, i.e. that (dHx)a=wa( · , −dax) as elements
of Tg

aA2(A). Now if f ¥ TaA2(A) then

(dHx)a(f)=−
1
2pi

F
P

1
Tr((daf) x) (27)
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from Lemma 5.3 and the chain rule. Now observe that Tr(fx) is a nonsin-
gular one-form on P1 (as Li(x)=0 for all i). Therefore Stokes’ theorem
implies d Tr(fx)=Tr((daf) x)−Tr(fNdax) integrates to zero over P1.
Hence (27) becomes

(dHx)a(f)=−
1
2pi

F
P

1
Tr(fNdax)=wa(f, −dax)

proving that the curvature is indeed a moment map.
The equivariance follows directly from the definition of the coadjoint

action of G1: If x ¥ Lie(G1) then OAdg
g (F(a)), xP :=OF(a), Adg −1(x)P=

OF(g[a]), xP using the fact that Tr(F(a) g−1xg)=Tr(F(g[a]) x). L

Thus the subset of flat connections is the preimage of zero under the
moment map: A2fl(A)=F−1(0). Therefore, at least in a formal sense, the
moduli space is a symplectic quotient: A2fl(A)/G1=F−1(0)/G1. (Recall
A2fl(A)/G1 was identified in Section 4 with the space M2 0(A) of monodromy
data, analogously to the non-singular case.) In the next section we will
show that this prescription does define a genuine symplectic structure on at
least the dense open subset of M2 0(A) which is the image of the extended
monodromy map ñ.

Torus Actions

To end this section we consider the action of the larger group GT

on the extended space of singular connections A2(A). This action is also
Hamiltonian:

Proposition 5.5. Let m :A2(A)0 Lie(GT)g be the map given by taking
the curvature together with the residue at each ai: If x ¥ Lie(GT) and
a ¥A2(A)

Om(a), xP :=
1

(2p`−1 )
F
P

1
Tr(F(a) x)− C

m

i=1
ResiLi(Tr(ax)).

Then m is an equivariant moment map for the GT action on A2(A).

Proof. For any x ¥ Lie(GT) define the function Hx:A2(A)Q C to be the
x component of m: Hx(a) :=Om(a), xP. If f ¥ TaA2(A) then

(dHx)a(f)=−
1

(2p`−1)
F
P

1
Tr((daf) x)−C

i
ResiLi(Tr(fx)). (28)

Our task is to show wa(f, −dax)=(dHx)a(f). We do this by using the C.

Cauchy integral theorem (see Lemma 6.3). Recall f is a matrix of C. one-
forms on P1 with (at worst) first order poles in its (1, 0) part at each ai.
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Also x ¥ Lie(GT) is a matrix of functions on P1 and has Taylor expansion
equal to a constant diagonal matrix at each ai. Thus for each i we can
choose a C. function fi: P1 Q C which vanishes outside Di, such that
Tr(fx)=h+f1dz1/z1+·· ·fm dzm/zm for some nonsingular one-form h on
P1. Thus d Tr(fx)=dh−;i

“fi
“z̄i

dzi Ndz̄i
zi

and so by Stokes’ theorem and
Cauchy’s integral theorem:

F
P
1
dTr(fx)=C

i
F
D̄i

“fi

“z̄i

dzi Ndz̄i
zi

=−(2p`−1 ) C
i
fi(ai).

(Note fi(ai)=Resi Li(Tr(fx)).) Then the equality wa(f, −dax)=(dHx)a(f)
follows from the fact that dTr(fx)=Tr(da(fx))=Tr((daf) x)−Tr(fNdax).
The equivariance follows exactly as before since GT/G1 5 Tm is Abelian. L

Instead we could do the reduction in stages, and consider the Tm action
on A2fl(A)/G1. This matches up with the Hamiltonian Tm actions con-
sidered in Section 2, since the residues above are the exponents of formal
monodromy iL.

6. THE MONODROMY MAP IS SYMPLECTIC

Most of the story so far can be summarised in the commutative diagram:

M2(A) |`5 A2fl(A)/G1

0 ‡ 5

O2 1 × · · · ×O2m//G 5M2 g(A) |`ñ M2 0(A).

(29)

The extended moduli space M2 g(A) was defined in Section 2 to be the set of
isomorphism classes of compatibly framed meromorphic connections on
trivial rank n vector bundles with irregular type A. It was given an intrinsic
complex symplectic structure explicitly in terms of (finite dimensional)
coadjoint orbits and cotangent bundles. The extended monodromy mani-
fold M2 (A) was defined as the set of isomorphism classes of Stokes repre-
sentations and looks like a multiplicative version of M2 g(A) (when both are
described explicitly). M2 0(A) is the degree zero component of M2 (A) and
was identified with the set of G1 orbits in the extended space A2fl(A) of flat
C. singular connections. Moreover the curvature was shown to be a
moment map for the action of the gauge group G1 on the symplectic
Fréchet manifold A2(A), so that (formally) A2fl(A)/G1 is a complex
symplectic quotient. M2(A) has the same definition as M2 g(A) except
with the word ‘‘trivial’’ replaced by ‘‘degree zero’’. The act of taking
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monodromy data defines both the right-hand isomorphism in the diagram
and the monodromy map ñ, which is a biholomorphic map onto its image
(a dense open submanifold of M2 0(A)).
Basically the bottom line appears in the work [40] of Jimbo, Miwa and

Ueno but the symplectic structures and the rest of the diagram do not.
The torus Tm 5 (Cg)nm acts on each space in (29) and these actions are
intertwined by all the maps. The non-extended picture arises by taking the
symplectic quotient (fixing the exponents of formal monodromy and quo-
tienting by Tm). We then obtain another commutative diagram as above
but with all the tildes removed and G1 replaced by GT.
In this section we show that the symplectic structure on A2(A) does

induce a symplectic structure on (at least) the dense open submanifold of
M2 0(A) that is the image of the monodromy map ñ, and that this symplectic
form pulls back along ñ to the explicit symplectic form on M2 g(A). In other
words we will prove:

Theorem 6.1. The monodromy map ñ is symplectic.

Analogous results have been proved in the simple pole case indepen-
dently by Hitchin [29] and by Iwasaki [34, 35]. (Note that Iwasaki
considers only PSL2(C) Fuchsian equations, but he does so over (fixed)
arbitrary genus Riemann surfaces.)

Factorising the Monodromy Map

Recall from Proposition 4.5 how the isomorphism at the top of the
above diagram arose: a meromorphic connection gives rise to a G orbit of
C. singular connections and we consider the subset with fixed Laurent
expansion at each ai to define the map. In other words we can choose g ¥ G
to ‘‘straighten’’ a meromorphic connection to have fixed C. Laurent
expansions and thereby specify an element of A2fl(A). Here we show that
this straightening procedure can be carried out for a family of connections
all at the same time, and so the monodromy map factorises through A2fl(A).
As usual we fix the data A consisting of an effective divisor D=; ki(ai)

and diagonal generic connections germs d− iA0. Also choose a coordinate z
to identify P1 with C 2. such that each ai is finite and let D1, ..., Dm … P1

be disjoint open disks with ai ¥ Di, so that zi :=z−ai is a coordinate on Di.

Proposition 6.1. Let U …M2 g(A) be an open subset. Then there exists
a universal family dP

1 −A of meromorphic connections on the trivial bundle
over P1 (with compatible framings g=(1g0, ..., mg0)) parameterised by u ¥ U
and a family of smooth bundle automorphisms g ¥ GLn(C.(U×P1)) such
that for each u ¥ U and each i=1, 2, ..., m:
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• g(u, ai) ¥ GLn(C) is the compatible framing ig0(u) at ai specified by
u ¥ U,

• The singular connection a(u) :=g(u)[A(u)] on P1 has Laurent
expansion iA0+ iR(u) at ai ¥ P1, where iR(u)=( iL− iL0) dz/zi, iL0=
Resi( iA0) and iL is the exponent of formal monodromy of (d−A(u), g) at ai,

• If z ¥ P10(D1 2 · · · 2 Dm) then g(u, z)=1.

Proof. The construction of the universal family is immediate from the
proof of Proposition 2.1: Using the coordinate choices, M2 g(A) can be
identified with the submanifold of m−1

G (0) … O2 1 × · · · ×O2m which has
1g0=1. This subset was identified as a set of matrices of meromorphic one-
forms A(u) on P1, together with compatible framings g. (Although we do
not need this fact, it is easy to check that the family (d−A, g) of compa-
tibly framed connections on the trivial bundle has the appropriate universal
property for M2 g(A); it is a fine moduli space.)
Now consider the Laurent expansion Li(A) ¥ Endn(C{zi} é O(U)) dz/zki

i

of A at ai ¥ P1, where the coefficients are now holomorphic functions on U.
(If u ¥ U then Li(A)(u)=Li(A(u)) as elements of Endn(C{zi}) dz/z

ki
i .)

Recall from Lemma 3.3 that the compatible framings determine formal
isomorphisms: In the relative case here this means that, for each i, there is
a unique invertible matrix ig1 ¥ GLn(CQziR é O(U)) of formal power series
with coefficients in O(U) which agrees with the compatible framing at ai

and for each u ¥ U satisfies

ig1(u)[A(u)]= iA0+ iR(u) ¥ Endn(CQziR)
dz
zki
i

(30)

with iR(u) as in the statement of the proposition. (The algorithm to
construct such ig1 ’s is as before; it works with coefficients in O(U).)
The crucial step is to now use E. Borel’s result that the Taylor expansion

map is surjective (Theorem 4.1 above). Applying this to each matrix entry
of each ig1 in turn for i=1, ..., m gives matrices of functions ig ¥
Endn(C.(U×D̄i)) such that for each u ¥ U the Taylor expansion of ig at ai

is ig1(u). Since det ig(u, ai)=det ig0(u) is nonzero for all u ¥ U, there is a
neighbourhood of U×{ai} … U×P1 throughout which det( ig) is nonzero.
It follows (as GLn(C) is connected) that there is a smooth bundle auto-
morphism g ¥ GLn(C.(U×P1)) that equals ig in some neighbourhood of
U×{ai} … U×P1 for each i and equals 1 outside U×(D1 2 · · · 2 Dm). In
particular g has the desired Taylor expansions at each ai so that a=g[A]
has the desired C. Laurent expansions by construction. L
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Corollary 6.2. The monodromy map ñ factorises through A2fl(A): It is
possible to choose a map n̂ from the extended moduli space M2 g(A) to the
extended space of flat singular connections determined by A such that the
diagram

M2 g(A) |`n1 A2fl(A) …|̀
i

A2(A)

˙ ‡G1

M2 g(A) |`ñ M2 0(A)

commutes and the composition i p n1 into the Fréchet manifold A2(A) is holo-
morphic.

Proof. Construct g as in Proposition 6.1 with U=M2 g(A) and then
define n1(u)=g(u)[A(u)] for all u ¥M2 g(A). All that remains is to see that
the composition i p n̂ is holomorphic. Recall (from Lemma 5.1) that by
choosing a basepoint A2(A) is identified with a Fréchet submanifold of
the Fréchet space W1[D](P1, End(E)) of matrices of C. one-forms with
poles on the divisor D. Thus we must prove that the map M2 g(A)Q
W1[D](P1, End(E)); uW a(u) :=g(u)[A(u)] is holomorphic. Now if
u0 ¥M2 g(A) and W0 ¥ Tu0M

2 g(A) is a tangent vector at u0, then we will
denote the partial derivative of a along W0 by W0(a) ¥ W1[D](P1, End(E)).
Here we think of a as a section of the C. vector bundle pg(Endn(W1[D]))
over P1×U (where p: P1×UQ P1 is the obvious projection). This vector
bundle is trivial in the U directions so the partial derivative makes sense.
(Concretely, local sections are of the form ; hihi for C. functions hi on U
and sections hi of Endn(W1[D]). Then W0 differentiates just the hi’s:
W0(; hihi)=;W0(hi) hi.) It then follows from basic facts about calculus
on Fréchet spaces that the map i p n̂ is holomorphic and has derivative
W0(a) along W0 at u0. (This can be deduced from Examples 3.1.6 and 3.1.7
in [26].) L

Main Proof

Proof (of Theorem 6.1). Choose g as in Corollary 6.2 above and let
n̂ :M2 g(A)QA2fl(A) be the corresponding lift of the monodromy map. It is
sufficient for us to prove that the composite map i p n1 :M2 g(A)QA2(A) is
symplectic. This is because the symplectic form on M2 0(A) is defined locally
as (i p s)g wA2(A) for any local slice s : M2 0(A)QA2fl(A) of the G1 action.
But, over the subset ñ(M2 g(A)), such a slice is given by n̂ p ñ −1. Thus
ñ gwM2 0(A)=(i p n̂)g wA2(A) and, if i p n̂ is symplectic, this is wM2g(A).
Now choose a point u0 ¥M2 g(A) and two tangent vectors W1, W2 ¥

Tu0M2
g(A). Define two matrices of singular one-forms on P1, fj :=

Wj(a) ¥ Endn(W1[D](P1)) (j=1, 2), to be the corresponding partial
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derivatives of a(u) :=g(u)[A(u)]. As in the proof of Corollary 6.2, fj is the
derivative (i p n̂)g (Wj) of the map i p n̂ along Wj. Therefore what we must
prove is:

1
2pi

F
P

1
Tr(f1 Nf2)=wM2g(A)(W1, W2). (31)

The first step is to obtain a formula for the right-hand side in terms of g.
This comes from Lemma 2.3 since, by construction, the first ki terms of the
Taylor expansion of g at ai give a section of the ith ‘‘winding map’’ w. For
j=1, 2 define iL̇j=Wj( iL) ¥ t where iL is the ith exponent of formal
monodromy (which is regarded as a t-valued function on M2 g(A)). Let
iṘj := iL̇jdz/zi and denote the derivatives of g as ġj :=Wj(g) ¥
Endn(C.(P1)). Then according to Lemma 2.3, if we define iXj ¥ gki to be
the first ki terms in the Taylor expansion of g(u0)−1 ġj at ai then

wM2g(A)(W1, W2)=C
m

i=1
(O iṘ1, iX22P−O iṘ2, iX21P+O iA(u0), [ iX1, iX2]P),

(32)

where iA is the Laurent expansion of A at ai and iX2 j= ig0(u0) · iXj ·
ig0(u0)−1 ¥ gki for j=1, 2 and i=1, ..., m.
Now we will calculate the left-hand side of (31). First observe that the

two-form Tr(f1 Nf2) on P1 is non-singular. Indeed the C. Laurent expan-
sion of fj at ai is iṘj, and so the expansion of Tr(f1 Nf2) is a (2, 0) form
and so zero. Then the division lemma implies Tr(f1 Nf2) is non-singular.
Next, by differentiating the expression g(u)[A(u)] for a along Wj we find

fj=g(u0) ·f2j · g(u0)−1, f2j :=Ȧj+dA(u0)(g(u0)
−1 ġj) (33)

for j=1, 2, where Ȧj :=Wj(A(u)) and g(u)=g(u, · ) ¥ G. (Note that this
formula is the basic reason why the ‘‘straightening’’ procedure makes the
Atiyah–Bott formula (26) non-trivial in this situation.) In particular we
have Tr(f1 Nf2)=Tr(f21 Nf22). Observe this two-form is zero outside of the
disks Di, since ġj is zero there and each Ȧj has type (1, 0). It follows that
the integral splits up into integrals over the closed disks:

F
P

1
Tr(f1 Nf2)=C

m

i=1
F
D̄i

Tr(f21 Nf22). (34)

We break each term in this sum into two pieces, using the definition (33) of
f22: Tr(f21 Nf22)=Tr(f21 N Ȧ2)+Tr(f21 NdA(u0)(g(u0)

−1ġ2)). Therefore by com-
paring with the expression (32), the theorem now follows immediately
from:
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Claim.

(1) 1
(2p`−1 )

>D̄i
Tr(f21 N Ȧ2)=O iA(u0), [ iX1, iX2]P−O iṘ2, iX2 1P,

(2) 1
(2p`−1 )

>D̄i
Tr(f21 NdA(u0)(g(u0)

−1ġ2))=O iṘ1, iX22P.

The basic tool we will use to evaluate these integrals is:

Lemma 6.3 (Modified C. Cauchy Integral Theorem). Let k be a non-
negative integer, a ¥ C a complex number and Da a disk in C containing the
point a. Suppose f ¥ C.(D̄a) and (“f

“z̄ )/(z−a)k ¥ C.(D̄a). Then (“f
“z̄) dzNdz̄/

(z−a)k+1 is absolutely integrable over D̄a and

(2pi)
k!
“
kf
“zk (a)=G

“D̄a

f(z) dz
(z−a)k+1+F

D̄a

“f
“z̄

dzNdz̄
(z−a)k+1 ,

where the line integral is taken in an anti-clockwise direction.

Proof. The k=0 case is the usual C. Cauchy integral theorem; see
[23, p. 2]. Differentiating with respect to a then gives the above result: we
may reorder the integration and differentiation due to the absolute
integrability. L

Part (1) of the claim arises as follows. Since Ȧ2 is a matrix of mero-
morphic one-forms we have Tr(f21 N Ȧ2)=Tr(f2 (0, 1)1 N Ȧ2), and from (33):

f2 (0, 1)1 =“̄(g(u0)−1 ġ1)=
“(g(u0)−1 ġ1)

“z̄
dz̄.

Also Ȧ2 has a pole of order at most ki at ai and so we can define a smooth
function on D̄i, f ¥ C.(D̄i), by the prescription fdz=(z−ai)ki ·Tr(g(u0)−1

ġ1Ȧ2) on D̄i. By taking the exterior derivative of both sides of this and
dividing through by (z−ai)ki we deduce

Tr(f21 N Ȧ2)=−
“f
“z̄

dzNdz̄
(z−ai)ki

on D̄i,

where the minus sign occurs since we have reversed the order of dz and dz̄.
Observe that the Taylor expansion of fdz at ai has no terms containing z̄i.
Thus “f/“z̄ has zero Taylor expansion at ai and in particular using the
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division lemma we see f satisfies the conditions in Lemma 6.3. Also f is
zero on the boundary “D̄i since ġ1 is zero there. Therefore Cauchy’s
integral theorem gives

1

(2p`−1 )
F
D̄i

Tr(f21 N Ȧ2)=−
1
k!
“
kf
“zk (ai) with k=ki −1. (35)

This value is just −Resi(fdz/(z−ai)ki)=−Resi(Tr(g(u0)−1 ġ1Ȧ2)), where
‘‘residue’’ just means taking the coefficient of dz/zi in the (C.) Laurent
expansion. This last expression only involves the principal part of Ȧ2 at ai

and the first ki terms of the Taylor expansion of g(u0)−1 ġ1. By definition
these first ki terms are given by iX1. Also, by construction, the principal
part of A at ai is the same as the principal part of g(u)−1 ( iA0+
( iL− iL0) dz/zi) g(u). It follows directly that

PPi(Ȧ2)=PPiW2(A(u))=[ iA(u0), iX2]+ ig0(u0)−1 · iṘ2 · ig0(u0).

Statement (1) of the claim is now immediate, upon substituting this and
iX1 into the expression −Resi(Tr(g(u0)−1ġ1Ȧ2)) for the integral (35).
Now for part (2) of the claim. First observe that dA(u0)f

2
1=0 as a matrix

of two-forms on P1. This is equivalent to da(u0)f1=0 (since f21=g(u0)−1

f1 g(u0) and a(u)=g(u)[A(u)]), which follows immediately by differen-
tiating the equation d(a(u))=a(u)Na(u) for the flatness of a along W1.
Therefore, by Leibniz Tr(f21 NdA(u0)(g(u0)

−1 ġ2))=−d Tr(f21 g(u0)−1 ġ2).
Now, the Laurent expansion of f1 at ai is just iṘ1, so that f1= ik1+ iṘ1 on
D̄i for some matrix of non-singular one-forms ik1. Thus the integrand in
(2) is

−d Tr(g(u0)−1 · ik1 · ġ2)−d Tr(g(u0)−1 · iṘ1 · ġ2).

The first term integrates to zero over the disk by Stokes’ theorem (the
boundary term is zero as ġ2 vanishes on “D̄i). Now from the definition
iṘ1= iL̇1(dz/(z−ai)) we find that the second term is “f

“z̄ dzNdz̄/(z−ai)
where f :=Tr(g(u0)−1 iL̇1 ġ2). This smooth function f vanishes on “D̄i and
so part (2) of the claim follows using Cauchy’s integral theorem since
f(ai)=O iR1, iX22P. This completes the proof of Theorem 6.1. L

7. ISOMONODROMIC DEFORMATIONS AND
SYMPLECTIC FIBRATIONS

Now we will consider smoothly varying the data A that was previously
held fixed (consisting of the pole positions and the choices of generic
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connection germs d− iA0 at the poles)—all that is now fixed throughout is
the rank n of the bundles, the number m of distinct poles and the multi-
plicities k1, ..., km of the poles. This leads naturally to the notion of ‘‘iso-
monodromic deformations’’ of meromorphic connections. Our aim is to
explain, and then prove, the following:

Theorem 7.1. The Jimbo–Miwa–Ueno isomonodromic deformation equa-
tions are equivalent to a flat symplectic Ehresmann connection on a symplectic
fibre bundle, having themoduli spacesM2 g(A) as fibre.

The Betti Approach to Isomonodromy

A choice of data A determines all the spaces M2 g(A), M2 (A),Mg(A) and
M(A). Note however that the extended spaces M2 g(A) and M2 (A) only
depend on the principal part of each diagonal matrix d( iQ) of mero-
morphic one-forms, where iA0=d( iQ)+ iL0 dzi/zi. (cf. Remark 3.3.) Thus if
a ¥ P1 it is useful to define the set Xk(a) of ‘‘order k irregular types at a’’,
to be the set of such principal parts. Upon choosing a local coordinate z
vanishing at a we have an isomorphism

Xk(a) 5 (Cn0diagonals)×(Cn)k−2 (36)

obtained by taking the coefficients of dz/z j of the Laurent expansion in z
of A0, for j=k, k−1, ..., 2. (If k=1 define Xk(a) :=(point).)
For the rest of this section we will change notation slightly, and let A

denote data (a1, a2, ..., am, 1A0, ..., mA0) where iA0 ¥Xki (ai) and the ai are
pairwise distinct points of P1. Thus such A determines the extended spaces
M2 g(A) and M2 (A) (although we need to further specify exponents of
formal monodromy iL0 to define Mg(A) and M(A)).
There are three manifolds of deformation parameters we will consider:

Definition 7.1.

• The basic manifold of deformation parameters X is simply the set of
such A.

• The extended manifold of deformation parameters X2 is the set of such
A together with the choice of a ki-jet of a coordinate zi at each ai.

• If z is a fixed coordinate identifying P1 with C 2., the Jimbo–Miwa–
Ueno manifold of deformation parameters XJMU is the set of all such A
having a1=..

It is easy to see these are complex manifolds, with dim(X)=
dim(XJMU)+1=dim(X2 )−; ki=m−mn+n; ki. There is an obvious
embedding XJMU +X and a projection X2 “X forgetting the jets of local
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coordinates. Moreover using the chosen coordinate z there is an embedding
XJMU +X2 obtained by using the jets of the coordinates zi :=z−ai for
i=2, ..., m and z1 :=1/z. XJMU can be described very explicitly: via (36)
these coordinates identify it with

(Cm−10diagonals)×(Cn0diagonals)m−l×(Cn) l+C (ki −2),

where l=#{i | ki=1} is the number of simple poles. However our aim here
is more to understand the intrinsic geometry of isomonodromic deforma-
tions, than seek explicitness, and so we will mainly use X and X2 .
Now we move on to the construction of bundles over these parameter

spaces.

Definition 7.2. The bundle of extended moduli spaces M2 g is the set of
isomorphism classes of data (V, N, g, a) consisting of a generic mero-
morphic connection N (with compatible framings g) on a trivial rank n
holomorphic vector bundle V over a fixed copy of P1 such that N has m
poles which are labelled a1, ..., am and the order of the pole at ai is ki.

It is clear from the discussion in Section 2 that a generic compatibly
framed connection determines an irregular type at each pole and it follows
that there is a natural projection M2 g “X onto the manifold X of defor-
mation parameters, taking the pole positions and the irregular types. The
fibre of this projection over a point A ¥X is the extended moduli space
M2 g(A). The results of Section 2 now yield the following, which will
amount to half of Theorem 7.1:

Proposition 7.1. The bundle M2 g of extended moduli spaces is a
complex manifold and the projection above expresses it as a locally trivial
symplectic fibre bundle over X. In particular M2 g has an intrinsic complex
Poisson structure, its foliation by symplectic leaves is fibrating and the space
of leaves is X.

Proof. The only non-trivial part left is to see that M2 g is locally trivial
as a bundle of symplectic manifolds. The decoupling lemma from Section 2
is useful here. Choose m disjoint open disks Di … P1 and choose a coordi-
nate z on P1 which is non-singular on all the Di’s. Restrict to the open
subset XŒ of X having ai ¥ Di for each i. Let zi :=z−ai. Now, from
Proposition 2.7, over XŒ any fibre M2 g(A) can be identified (using the
coordinates zi) with a symplectic submanifold of O2 1 × · · · ×O2m (e.g. as the
subset of m−1

G (0) which has 1g0=1). In turn, using Lemma 2.14, M2 g(A) is
identified (if all ki \ 2) with the symplectic manifold

(TgG)m−1× 1OB × · · · × mOB ,
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where iOB is the Bki -coadjoint orbit through the element of bg
ki determined

by iA0 (on expanding iA0 with respect to zi and replacing zi by z). Thus the
dependence of M2 g(A) on A is clear: as A varies, the orbit iOB moves
around in bg

ki . The key fact now is that Bki is a nilpotent Lie group:
coadjoint orbits of nilpotent Lie groups are diffeomorphic to vector spaces
and admit global Darboux coordinates. Indeed M. Vergne [72] shows how
to find dim( iOB) functions on bg

ki which restrict to global Darboux coordi-
nates on any iOB that arises as iA0 varies ( iOB is always a generic orbit).
Such coordinates immediately give a symplectic trivialisation of M2 g over
XŒ. (If ki=1 for some i then O2 i is a fixed symplectic submanifold of TgG;
there is no iOB factor to worry about.) L

Similarly there is a fibre bundle M2 over X whose fibres are the extended
monodromy manifolds M2 (A). The key feature of the bundle M2 is that it
has a canonical complete flat Ehresmann connection on it—in other words
there is a canonical isomorphism between nearby fibres. In essence this
connection arises by ‘‘keeping the monodromy data constant’’ so we will
call it the isomonodromy connection. There is a subtlety however because it
is the Stokes matrices which are held constant locally, rather than the
Stokes factors: For example any anti-Stokes direction with multiplicity
greater than one can break up into distinct anti-Stokes directions under
arbitrarily small deformations of the data A, and the dimensions of the
groups of Stokes factors jump accordingly (so the notion of keeping the
Stokes factors constant makes no sense directly, in general). A precise
description of the isomonodromy connection is as follows.
Suppose A ¥X is a choice of pole positions (a1, ..., am) and irregular

types. Choose disjoint open discs Di … P1 with ai ¥ P1, together with a
coordinate on each disc (so directions at ai can be drawn as lines on Di). If
we choose a set of tentacles T (see Definition 3.9) then there is, from
Proposition 3.8, an isomorphism j2T: M2 (A)Q C21 × · · · ×C2m//G to the
explicit monodromy manifold (which is completely independent of A). The
point is that, by continuity, there is a small open neighbourhood UA of A in
X such that if AŒ moves around in UA, then none of the anti-Stokes direc-
tions at a −i cross over the base-point pi ¥ Di chosen as part of the tentacles.
Thus using the maps j2T (with T fixed and AŒ varying) we get a local tri-
vialisation of M2 over UA. Repeating this process gives an open cover of X
with a choice of trivialisation of M2 over each patch. This describes the
bundle M2 explicitly with clutching functions of the form j2T1

p j2 −1
T2
. Now

the fact that these clutching functions are constant with respect to the
parameters A ¥X means that we have a well defined flat connection on M2
(the local horizontal sections of which have constant explicit monodromy
data (C, S, LŒ) ¥ C21 × · · · ×C2m//G). This is the isomonodromy connection.
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Now we want to define the relative version of the extended monodromy
map. However recall from Proposition 3.10, that this requires a choices of
coordinate jets. Thus we first pull both bundles M2 g and M2 back to the
extended manifold X2 of deformation parameters along the projection
X2 “X. (These bundles over X2 will also be denoted M2 g and M2 but this
should not lead to confusion.) Then, using the jets of coordinates encoded
in X2 , the fibrewise monodromy maps fit together to define a holomorphic
bundle map, ñ :M2 g QM2 between the bundles over X2 . (As before this is
holomorphic since the canonical solutions depend holomorphically on
parameters.)

Definition 7.3. The isomonodromy connection on M2 g is the pull-back
of the isomonodromy connection on M2 along ñ.

See Fig. 1. The point is that ñ is a highly nonlinear map with respect to
the explicit descriptions of the bundles M2 g and M2 ; whilst being trivial on
M2 , the isomonodromy connection defines interesting nonlinear differential
equations on M2 g, such as the Painlevé or Schlesinger equations (indicated
by a wavy line in the figure).
Equivalently one may view ñ as a kind of nonlinear Fourier–Laplace

transform (the ‘‘monodromy transform’’), converting hard nonlinear equa-
tions on the left-hand side into trivial equations on the right. The image of
ñ is a subset of the degree zero component M2 0 and as before, for dimen-
sional reasons (since it is injective and holomorphic) ñ is biholomorphic
onto its image. Moreover Miwa [55] has proved that the inverse
ñ −1: M2 0 QM2 g is meromorphic, so that local horizontal sections of the
isomonodromy connection on M2 g will develop at worst poles when
extended around X2 : this is the Painlevé property of the equations. In par-
ticular this implies the image of ñ is the complement of a divisor in M2 0.

FIG. 1. Isomonodromic Deformations.
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Note that the isomonodromy connections are equivariant under the
PSL2(C) action on the bundlesM2 g, M2 , induced from automorphisms of P1.
To be precise, the isomonodromy equations of Jimbo, Miwa and Ueno

are the equations for horizontal sections of the restriction of the iso-
monodromy connection on M2 g to XJMU +X2 , as we will explain in the
appendix. The key idea required to actually write down equations for such
horizontal sections is the following recharacterisation of the isomonodromy
connection, which will also be very useful in the proof of Theorem 7.1.

Remark 7.1. Observe that in the order two pole case ki=2, the Bki
coadjoint orbit iOB in Proposition 7.1 is just a point. Thus if there are no
poles of order three or more, the bundle M2 g has a canonical symplectic
trivialisation (which is not directly related to the isomonodromy connec-
tion) and so the isomonodromy equations will be naturally identified with
time-dependent flows on a fixed symplectic manifold. In general however,
choices are needed in the use of Vergne’s theorem in Proposition 7.1, so we
do not know a natural way to make such an identification. In particular,
one must find/choose such a symplectic trivialisation before the notion of
time-dependent Hamiltonians for isomonodromy even makes sense. This is
a question we hope to return to in the future. (One suspects such a triviali-
sation arises naturally by requiring Hamiltonians to come from the
logarithmic derivative of the Jimbo–Miwa–Ueno y function.)

De Rham Approach to Isomonodromy

Suppose p : YQX is some fibration over X, with manifolds Yt as fibres.
Replacing each Yt by its cohomology H •(Yt, C) yields a vector bundle
H •

Rel(Y, C)QX. This vector bundle has a natural flat connection on it: the
Gauss–Manin connection. One way to see this is from the homotopy
invariance of cohomology: if D …X is an open ball then Y|D is homotopy
equivalent to any fibre Yt … Y|D so there is a canonical isomorphism
H •(Yt, C) 5H •(Ys, C) for any s, t ¥ D. Alternatively there is a de Rham
approach as follows. Given a closed differential form ht on a fibre Yt,
choose any closed form h on Y|D extending ht, and let hs be the restriction
of h to Ys. The cohomology class of h in H •(Y|D, C) is uniquely determined
by the cohomology class of ht or of hs: this process defines the iso-
morphism H •(Yt, C) 5H •(Ys, C) over D.
At least for H1, this generalises to non-Abelian cohomology, replacing C

by G=GLn(C). Topologically H1(Yt, G)=Hom(p1(Yt), G)/G is the set of
conjugacy classes of fundamental group representations. These fit together
into a (non-linear) fibre bundle H1

Rel(Y, G)QX, which again clearly has a
natural flat (Ehresmann) connection on it, due to the homotopy invariance
of the fundamental group: the Gauss–Manin connection in non-Abelian
cohomology. Simpson [64] refers to this as the Betti approach and studies
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the corresponding de Rham version. In the non-Abelian case, one-forms
are replaced by connections on vector bundles, closedness is replaced by
flatness, and the notion of differing by an exact form is replaced by gauge
equivalence. Thus the de Rham version of H1(Yt, G) is the set of iso-
morphism classes of flat connections on rank n vector bundles over Yt, and
the isomorphism H1(Yt, G) 5H1(Ys, G) arises by extending a flat con-
nection over a fibre Yt to a flat connection over the family Y|D and then
restricting to Ys.
The main realisation now is that one can very usefully view the isomo-

nodromy connection described above as the analogue in the meromorphic
case of this non-Abelian Gauss–Manin connection. This emphasises the
basic geometrical nature of isomonodromy and suggests many generalisa-
tions (we are, after all, working over P1 with G=GLn(C)). Note however,
the necessity of having explicit descriptions of the moduli spaces in order to
have explicit equations: the distinction between M2 g(A) and M2(A) is
important.
Thus, in the de Rham approach, horizontal sections of the isomo-

nodromy connection on M2 g over some ball D …X2 are related to flat
meromorphic connections on vector bundles over P1×D. This alternative
approach was one of the main results of [40] (although not expressed in
these terms). More precisely, in the extended case, the following holds:

Theorem 7.2 (see [40]). Let D …X2 be an open ball. Then there is a
canonical one to one correspondence between horizontal sections of the iso-
monodromy connection on M2 g over D and isomorphism classes of triples
(V, N, g) consisting of flat meromorphic connections N on vector bundles V
over P1×D with good compatible framings g, such that for any t ¥ D the
restriction of (V, N, g) to the projective line P1×{t} represents an element in
the fibre M2 g

t .

Sketch. See the appendix for more details, and in particular for the
definition of ‘‘good’’ compatible framings. To go from such triples
(V, N, g) to sections of M2 g over D, simply restrict to the P1 fibres. Lemma
A.2 shows why the flatness of N implies the isomonodromicity of this
family of connections over P1. Conversely, suppose we have a horizontal
section of the isomonodromy connection on M2 g over D, or equivalently a
compatibly framed isomonodromic family Nt of meromorphic connections
over P1, parameterised by t ¥ D. Then for each fixed t we have a canonical
basis of horizontal solutions of Nt on each sector at each pole on P1×{t}.
The key idea is that as t varies, these bases (where defined) vary holo-
morphically with t and N is defined by declaring all of these bases to be
horizontal sections of it. The isomonodromicity of the original family
implies this N is well-defined and flat. Moreover one can deduce that N is
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meromorphic and, by summing its principal parts, write down an algebraic
expression for N in terms of the original horizontal section. This leads
directly to the explicit deformation equations. L

The non-extended version can easily be deduced from the above result,
by forgetting the framings, and is closer in spirit to the non-singular (Gauss–
Manin) case. First choose an m-tuple L of diagonal n×n matrices. Then
define bundles Mg(L) and M(L) over the space X of deformation param-
eters, by restricting the bundles M2 g QX and M2 QX to the subsets which
have exponents of formal monodromy L and quotienting by the action of
Tm 5 (Cg)nm. The isomonodromy connection on M2 descends to induce a
canonical isomorphism between nearby fibres of M(L)QX, and in turn
we obtain a well-defined notion of local horizontal sections of the isomo-
nodromy connection on Mg(L)QX. Immediately we obtain the following
(see Malgrange [45, 46] for some global statements along these lines):

Corollary 7.2. Horizontal sections of the isomonodromy connection on
Mg(L) over D …X correspond canonically to isomorphism classes of pairs
(V, N) consisting of flat meromorphic connections N on vector bundles V over
P1×D, such that for any t ¥ D the restriction of (V, N) to the projective line
P1×{t} represents an element in the fibre Mg(L)t.

Isomonodromic Deformations Are Symplectic

Now we will establish the second part of Theorem 7.1, thereby revealing
the symplectic nature of the full family of Jimbo–Miwa–Ueno isomo-
nodromic deformation equations:

Theorem 7.3. The isomonodromy connection on the bundle M2 g QX2 of
extended moduli spaces, is a symplectic connection. In other words, the local
analytic diffeomorphisms induced by the isomonodromy connection between
the fibres of M2 g are symplectic diffeomorphisms.

Proof. We will show that arbitrary, small, isomonodromic deforma-
tions induce symplectomorphisms. Let u0 be any point of M2 g and let x0 be
the image of u0 in X2 . Let c be any holomorphic map from the open unit
disk D … C into X2 such that c(0)=x0. For t ¥D, let M2 g

t denote the
(symplectic) extended moduli space which is the fibre of M2 g over c(t). The
standard vector field “/“t on D gives a vector field on c(D) …X2 which we
lift to a vector field V on M2 g|c(D), transverse to the fibres M2 g

t , using the
isomonodromy connection. This lifted vector field may be integrated
throughout a neighbourhood of u0 in M2 g|c(D). Concretely, this means that
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there is a contractible neighbourhood U of u0 in M2 g
0 , a neighbourhood

D …D of 0 in C and a holomorphic map F: U×DQM2 g|c(D) such that for
all u ¥ U and t ¥ D:

F(u, t) ¥M2 g
t , F(u, 0)=u ¥M2 g

0 and
“F
“t

(u, t)=VF(u, t).

In particular for each t ¥ D we have a symplectic form wt :=(F|t)g (wM2
g
t
)

on U, where wM2
g
t
is the symplectic form defined on the extended moduli

space M2 g
t in Section 2 and F|t=F(· , t) : UQM2 g

t . Now, given any two
tangent vectors W1, W2 to U at u0, it is sufficient for us to show that the
function wt(W1, W2) of t is constant in some neighbourhood of 0 ¥ D.
First, as in Proposition 6.1 it is easy to construct a local universal family

over the image of F in M2 g. Pulling back along F yields a family of mero-
morphic connections on the trivial bundle over P1 parameterised by U×D.
For each fixed u ¥ U we get an isomonodromic family parameterised by D,
that is, a ‘‘vertical’’ meromorphic connection on the trivial bundle over
D×P1 (where P1 is the vertical direction), such that each connection on P1

has the ‘‘same’’ monodromy data. The result of Jimbo, Miwa and Ueno
(Theorem 7.2 above) then tells us how to extend this vertical connection to
a full flat connection over D×P1. From the algebraic formula (A.4) for this
extension it is clear that this process behaves well as we vary u ¥ U: for each
u ¥ U we obtain a flat meromorphic connection, which we will denote Nu,
on the trivial bundle over D×P1, that depends holomorphically on u. The
poles of Nu will be denoted by a1(t), ..., am(t) and the polar divisor in
D×P1 of Nu by D2=; kiDi (these are all independent of u ¥ U). Shrinking
D if necessary, choose disjoint open discs Di in P1 such that ai(t) ¥ Di for
all t ¥ D. For each i let zi: Di ×DQ C be a function which, for each fixed
t ¥ D is a coordinate on Di, vanishing at ai(t) and having the ki-jet at ai(t)
as specified by the point of the base X2 below c(t).
The next step is to push everything over to the C. picture where the

symplectic forms are expressed simply as integrals. To do this we choose a
smooth bundle automorphism: g ¥ GLn(C.(U×D×P1)) which ‘‘straigh-
tens’’ the whole family of connections Nu at the same time, as in Section 6.
The map F into M2 g specifies a family of good compatible framings
ig0: U×Di Q GLn(C) of Nu along Di for each i and all u ¥ U. Use the coor-
dinate zi to define uniquely a family iA0 :=dP

1( iQ) of diagonal matrices of
meromorphic one-forms on Di, parameterised by U×D. (Recall only the
principal part of iQ is specified by X2 : declare the other terms are zero in its
Laurent expansion with respect to zi.) As in Proposition 6.1 the framings
extend uniquely to formal isomorphisms ig1 ¥ GLn(CQziR é O(U×Di))
to (uniquely determined) diagonal connections dP

1 −dP
1( iQ)− iL(u) dP

1zi/zi.
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By definition, that the framings are good, means ig1 satisfies a stronger
condition: it transforms the Laurent expansion of Nu along Di into a
standard full connection associated to the normal forms for each u,

ig1[Li(Nu)]=d−d( iQ(t))− iL(u)
d(zi)
zi

, (37)

where d denotes the exterior derivative on the product D×P1, rather than
just P1. The automorphism g is now constructed using Borel’s theorem, as
in Proposition 6.1 to have Taylor expansion at ai(t) equal to ig1 for all t ¥ D
and for all u ¥ U.
Thus we can use g to straighten the whole family Nu at the same time.

Define two families of C. singular connections. First a family N2u :=g[Nu]
on D×P1 parameterised by U, and second da=dP

1 −a :=N2u |P1 on P1

parameterised by U×D. By construction the C. Laurent expansion of N2u
at ai is given by (37). It follows, for all u ¥ U and t ¥ D, that da is an
element of the extended space A2fl(At) …A2(At) of flat singular connections
associated to At :={ iA0}.
Now differentiate N2u and da with respect to u along both W1 and W2 at

u=u0. Define these derivatives to be Yj :=Wj(N2u) and kj :=Wj(da)=
Yj |P1 respectively, for j=1, 2. Each Yj is a matrix of singular one-forms on
D×P1 and each kj is a matrix of singular one-forms on P1 parameterised
by D. Clearly Tr(k1 Nk2)=Tr(Y1 NY2)|P1. Also since the Laurent expan-
sion of N2u is given by (37) at each ai we can deduce what the Laurent
expansions of Y1 and Y2 are: Li(Yj)=Wj( iL(u)) dD×P

1(zi)/zi for j=1, 2
and i=1, ..., m. It follows that Tr(Y1 NY2) is a nonsingular two-form on
D×P1 since Li(Y1 NY2)=Li(Y1)NLi(Y2)=0 for each i.
Now observe that for each u ¥ U the flatness of Nu implies the flatness of

N2u. By differentiating the equation N2u p N2u=0 with respect to u along W1

and W2 we find N2u0Y1=0 and N2u0Y2=0. In particular, by Leibniz, the
two-form Tr(Y1 NY2) on D×P1 is closed.
Thus if we do the fibre integral over P1 we obtain a zero-form on D (i.e.

a function of t):

F
P

1
Tr(Y1 NY2)=F

P
1
Tr(k1 Nk2).

This is a closed 0-form (i.e. a constant function) since integration over the
fibre commutes with exterior differentiation. See for example Bott and Tu
[16] Proposition 6.14.1 (it is important here that Tr(Y1 NY2) is nonsin-
gular).
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Finally we appeal to Theorem 6.1 to see that for all t ¥ D

1
2pi

F
P

1
Tr(k1 Nk2)=wt(W1, W2)

and so the symplectic form is indeed independent of t. L

Closing Remarks

One upshot of Theorem 7.1 is that the symplectic structure on each
monodromy manifold is independent of the choice of deformation param-
eters; the isomonodromy connection on M2 is symplectic. This is the
generalisation of the ‘‘symplectic nature of the fundamental group’’. As in
the non-singular case, one then wonders if there is an intrinsic finite-
dimensional/algebraic approach to this symplectic structure (generalising
the cup product in group cohomology). This should be possible by com-
bining the C. approach here with the ideas of Alekseev, Malkin and
Meinrenken [3].
Alternatively (or perhaps equivalently) a direct connection between

Stokes matrices and Poisson Lie groups was observed in [14], which we
will briefly sketch here since it is quite intriguing. Consider the case of
connections on P1 with just two poles, of orders one and two respectively.
The choice of an irregular type at the order two pole determines the moduli
space M2 g(A) and the monodromy manifold M2 (A). If we forget the
framing at the order one pole, we obtain M2 g(A)/T which is isomorphic as
a Poisson manifold to (a covering of a dense open subset of) gg. Also
M2 (A)/T is isomorphic to a covering of a dense open subset of U+×U− × t.
The monodromy map extends to a map n : gg Q U+×U− × t, taking the
Stokes matrices and the exponent of formal monodromy at 0 of the con-
nection d−(Udz/z2+Vdz/z), where V ¥ g 5 gg and U is a fixed diagonal
matrix with distinct eigenvalues. The basic observation now is that
U+×U− × t may be identified with the simply connected Poisson Lie group
Gg dual to GLn(C). We then claim that, under such identification,
n : gg Q Gg is a Poisson map, where gg and Gg both have their standard
Poisson structures.3 In particular, taking V to be skew-symmetric, this

3 This has now been proved, cf. P. P. Boalch, math.DG/0011062.

claim yields a new approach to the Poisson bracket on Dubrovin’s local
moduli space of semisimple Frobenius manifolds.

APPENDIX

We will give more details regarding Theorem 7.2, relating flat connec-
tions to horizontal sections of the isomonodromy connection. This differs
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from [40] in that the coordinate dependence is isolated here. At the end we
will write down the deformation equations.
First some generalities on the local structure of meromorphic connec-

tions in higher dimensions. The local model is of a meromorphic connec-
tion N=d−A2 on the trivial rank n vector bundle over a product D×D of
the unit disc D … C and some contractible space of parameters D. We
suppose, for each t ¥ D that the restriction Nt :=N|D×{t} to the correspond-
ing disc has only one pole (of order k) at some point a(t) ¥D and is for-
mally equivalent to a generic diagonal connection dD −A0(t) depending
holomorphically on t. Assume the divisor D0 :={(a(t), t)} …D×D is
smooth. Let z0: D×DQ C be any holomorphic function vanishing on D0

which restricts to a coordinate on D×{t} for each t ¥ D (only the k-jet of
the Taylor expansion of z0 along D0 will be significant below). Write
A0=dDQ+L0(t) dDz0/z0, as usual and define the ‘‘standard full connec-
tion’’ to be d−A2 0 where A2 0 :=dQ+L0(t) d(z0)/z0 and d denotes the full
exterior derivative on D×D.
If we choose a compatible framing g0 of N along D0 then, as in Proposi-

tion 6.1, there is a unique family of formal isomorphisms g1 ¥ GLn

(CQz0R é O(D0)) satisfying g1|D0=g0 and g1t[Nt]=dD −A0 for each fixed t
(after possibly permuting the entries of A0). The basic structural result is
then:

Lemma A.1 (see [46]). If N is flat then L0 is constant and there is a
diagonal matrix valued holomorphic function F ¥ Endn(O(D0)) (which is
unique upto the addition of a constant diagonal matrix) such that

g1[N]D×D=d−(A2 0+pg(dD0F)),

where p: D×DQ D0 is the projection along the D direction.

Proof. Let dD0 −B be the D0 component of the Laurent expansion of
g1[N]D×D so that g1[N]D×D=dD×D−(A0+B). This is flat because N is. The
(D-D0) part of the equation for this flatness is:

dDB+dD0A
0=A0NB+BNA0. (A.1)

Since A0 is diagonal this equation splits into two independent pieces, the
diagonal part and the off-diagonal part. First we deduce that the off-
diagonal part Bod of B is zero: Suppose Bod ] 0 and let M/zr

0 be its leading
term, M ¥ Endod

n (W1
hol(D0)). Equation (A.1) implies dDBod=A0NBod+

BodNA0. Counting the pole orders we deduce Bod=0 unless k=1. If k=1,
say A0=A0

1dz0/z0, then considering coefficients of dz0/z
r+1
0 we see

(−r) M=[A0
1, M] which implies M=0 (and therefore Bod=0) since A0 is
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generic; the difference between any two eigenvalues of A0
1 is never the

integer −r. Thus B is diagonal, and so (A.1) now reads dDB+dD0A
0=0.

This implies dD0L
0(t)=0 since dDB will have no residue term, and so A2 0 is

flat. Thus dDB=−dD0A2
0=dDA2 0. Hence B=A2 0

D0
+f(t) for some diagonal

matrix of one-forms f ¥ Endn(W
1
hol(D0)) where A2

0
D0

is the D0 component of
A2 0. Finally the (D0-D0) part of the equation for the flatness of d−A0−B
implies dD0B=0. It follows that dD0 (f(t))=0 and so, since D0 is contrac-
tible, f=dD0F for some diagonal F ¥ Endn(O(D0)) L

This leads us to make the following:

Definition A.1. If N is flat then a compatible framing g0 of N along D0

is good if g1[N]D×D=d−A2 0 where g1 is the formal series associated to g0.

Thus an arbitrary compatible framing g0 can be made good by replacing
it by e−Fg0 where F is from Lemma A.1. It is worth saying the same thing
slightly differently. In the convention we are using, the columns of the
inverse g−1

0 of the compatible framing are a basis of sections of V|D0 , where
V is the bundle that N is on. Thus, since good compatible framings are
determined upto a constant, there is a flat holomorphic connection N0 on
V|D0 whose horizontal sections are the columns of g−1

0 for any good com-
patible framing g0. A direct definition is:

Definition A.2. If g0 is any compatible framing of N along D0 then the
induced connection along D0 is N0=(N+g1−1 ·A2 0 · g1)|D0 , where g1 is the
formal series associated to g0.

It is easy to check this definition is independent of the choice of compa-
tible framing and, if g0 is good, then the columns of g−1

0 are horizontal.
Moreover this definition makes sense for non-flat N, but then N0 may not
be flat. One may also check that N0 only depends on N and the choice of
k-jets of coordinates z0. (Also in the logarithmic case k=1, N0 coincides
with the usual (canonical) notion of induced connection N|D0 , provided z0
satisfies (dz0/z0)|D0=0.) Thus one can alternatively define good framings
to be the compatible framings g0 such that the columns of g−1

0 are horizon-
tal for N0. The reason for restricting how the framings vary along D0 is the
following:

Lemma A.2 (see [40] Theorem 3.3). Let N be a full flat connection as
above and let g0 be a good compatible framing with corresponding formal
series g1. Fix any point t0 ¥ D, choose a labelling of the sectors between the
anti-Stokes directions at a(t0) ¥D×{t0}, and choose log(z0) branches on
D×{t0}. Let DŒ be a neighbourhood of t0 ¥ D such that the last sector at a(t0)
deforms into a unique sector at a(t) for all t ¥ DŒ (the last sector at a(t)).
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Then the canonical fundamental solution F0 :=S0(g1−1) zL
0

0 eQ of N|Vert on
the last sector at a(t) ¥D×{t} varies holomorphically with t ¥ DŒ and
F0(z, t) is a local fundamental solution of the original full connection N.
(Similarly on the other sectors: just relabel.)

Proof. Write N=d−A2 and let W be the D component of A2 so that
A2=A+W. The aim is to show that dDF0=WF0. From the definition of g1
we have A+W=g1−1[A2 0]D×D and this has D component W=g1−1 ·A2 0

D · g1−
g1−1dDg1.Now the key observation is that the equation dDA=−dDW+ANW+
WNA (from the flatness of N) implies that the matrix of one-forms
dDF0 −WF0 satisfies the equation dD(dDF0 −WF0)=A(dDF0 −WF0) (also
using the fact that dDF0=AF0). Then if we define a matrix
K :=F−1

0 (dDF0 −WF0) of one-forms it follows that dDK=0 so that K is
constant in the D direction. Then using the fact that the asymptotic
expansion of F0 in the last sector at a(t) is g1−1zL

0

0 eQ, it follows that K has
zero asymptotic expansion there. (This uses the fact that the asymptotic
expansions are uniform in t to see that dD commutes with the operation of
taking the asymptotic expansion.) It follows immediately that K=0
because K is constant in the D direction, and so dDF0=WF0. L

This is the main result needed to prove Theorem 7.2 as sketched. All that
remains is to write down the deformation equations of Jimbo, Miwa and
Ueno. Restrict the parameter space to XJMU +X2 . The bundle M2 g over
XJMU can be decribed explicitly: using Proposition 2.1 (and removing the G
action by fixing 1g0=1) it is identified as a subbundle of the trivial bundle
over XJMU with fibre

(GLn(C)×gg
k1 )× · · · ×(GLn(C)×gg

km ).

When described in this way the bundle M2 g QXJMU is identified as the
‘‘manifold of singularity data’’ of [40]. Now suppose we have a horizontal
section of the isomonodromy connection on M2 g over some ball D+XJMU.
From Section 2 this determines a family of meromorphic connections
dP

1 −A on the trivial bundle over P1 and compatible framings ig0 (the
principal parts of A lie in the gg

ki ’s using the coordinate choices). As above
we also get (algebraically) formal isomorphisms ig1, connection germs
dP

1 − iA0 and ‘‘full’’ connection germs dP
1×D− iA2 0 , where d is the full

exterior derivative on P1×D. (The holomorphic terms in the expansion of
iA0 with respect to zi are defined to be zero.)
From the sketch of the proof of Theorem 7.2, dP

1 −A is the vertical
component of a full connection N=d−A2 , where A2=(dF) F−1 for any
local canonical fundamental solution F(z, t) := iSj( ig1−1) z

i
L
i e

iQ on (say) the
jth sector at the ith pole. These local definitions agree as the family dP

1 −A
is isomonodromic. Let W denote the D component of A2 , so A2=A+W.
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From the definition we know the asymptotics of F(z, t) (uniformly) on the
jth (super)sector at the ith pole and so we can deduce the asymptotics of W:

Æi(W)=( ig1−1 · iA2 0
D ·

ig1)− ig1−1 · dD( ig1). (A.2)

A priori this only holds on some sector at the ith pole, but choosing a dif-
ferent F, we get the same expansion on every sector. It follows that W is
meromorphic, with Laurent expansion (A.2). First, it follows immediately
from this expression that the compatible framing ig0 is a good compatible
framing of N. Secondly it is clear that the ith principal part of W is the
principal part of ig1−1 · iA2 0

D ·
ig1 and so is determined algebraically. Also we

need a formula for the induced connections Ni on the polar divisors of N.
Upon pulling Ni down to the base D, from Definition A.2, one finds that Ni

becomes dD−Gi where

Gi= ig−1
0 (dDai) i g1+Constzi (

ig1−1 · iA2 0
D ·

ig1)−Constzi (W) (A.3)

with ig1= ig0+ ig1 · zi+O(z2
i ) and where Constzi takes the constant term in

the Laurent expansion with respect to zi. Since we are working in the tri-
vialisation determined by the first framing (1g0=1), we have G1=0 and so
the expression (A.3) determines the constant term in the expansion of W at
a1=.. Thus W is completely determined by this constant and the principal
parts:

W=Constz1 (
1g1−1 · 1A2 0

D ·
1g1)+C

m

i=1
PPzi (

ig1−1 · iA2 0
D ·

ig1). (A.4)

Now the flatness of the full connection N over D×P1 implies two equa-
tions. Firstly dDW=WNW, which says that W is a family of flat connections
on D depending rationally on the ‘‘spectral parameter’’ z; a situation that
often arises in soliton theory. Secondly

dDA=−dP
1W+ANW+WNA. (A.5)

Also the ‘‘goodness’’ of the compatible framings ig0 implies that

dD( ig0)=−( ig0) Gi. (A.6)

Note that the formulae (A.3) and (A.4) for W and Gi make sense for an
arbitrary section of the bundle M2 g so that the equations (A.5) and (A.6)
amount to a coupled system of nonlinear algebraic differential equations
for horizontal sections s=(g, 1A, ..., mA) of the isomonodromy connection
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on M2 g over XJMU: They are the Jimbo–Miwa–Ueno isomonodromic
deformation equations [40].
A number of examples are given in [38, 40] and in particular the cases

of the Schlesinger equations and the six Painlevé equations are explained.
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