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Abstract. Two new definitions of almost periodic patterns are discussed with
applications to quasicrystals. This note complements Quasicrystals, almost

periodic patterns, mean periodic functions and irregular sampling, African
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1. Introduction

Are quasicrystals almost periodic patterns ? This issue was already addressed
in [2]. Here, as it was the case in [2], quasicrystals are defined as regular model sets.

Almost periodic patterns will be defined by a property which is entirely different
from the one used in [2]. As in [2] a discrete point set Λ ⊂ Rn is an almost periodic
pattern if and only if the corresponding sum of Dirac masses µ =

∑
λ∈Λ δλ is

an almost periodic measure. But our new definitions of almost periodic measures
(Definition 6, Section 2, and Definition 10, Section 6) differ from the one used in
[2] and are based on Hermann Weyl’s seminal work which is summarized in this
introduction.

A continuous function f defined on Rn is almost periodic in the sense of Bohr
if it is the limit for the L∞ norm of a sequence Pj =

∑
ω∈Fj

c(j, ω) exp(iω · x) of

generalized trigonometric polynomials. Hermann Weyl replaced the L∞ norm by
a suitable Lp norm, p ∈ [1,∞), to define new spaces of almost periodic functions.
In what follows B(x,R) ⊂ Rn is the ball of radius R centered at x and |B(x,R)| =
cnR

n denotes its volume.

Definition 1. The Weyl norm ‖f‖w,p, p ∈ [1,∞), of a function f ∈ Lploc(Rn)
is defined by

(1.1) ‖f‖w,p = lim sup
R→∞

[
sup
x∈Rn

( 1

|B(x,R)|

∫
B(x,R)

|f(y)|p dy
)1/p]

whenever the right hand side of (1.1) is finite.

The space Wp of almost periodic functions in the sense of H. Weyl is defined as
follows.
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Definition 2. If p ∈ [1,∞) a function f ∈ Lploc(Rn) belongs to Wp if it is the
limit for the norm ‖ · ‖w,p of a sequence of generalized trigonometric polynomials.

Besicovitch used a less demanding norm defined as

(1.2) ‖f‖b,p = lim sup
R→∞

( 1

|B(0, R)|

∫
B(0,R)

|f(y)|p dy
)1/p

Definition 3. A function f ∈ Lploc(Rn) is almost periodic in the sense of Besi-
covitch if it is the limit for the norm ‖·‖b,p of a sequence of generalized trigonometric
polynomials. We then write f ∈ Bp.

The Besicovitch space Bp is larger than the Weyl space Wp. For example we
have

Proposition 1. If 1 ≤ p <∞ the function f(x) of the real variable x defined
by

(1.3) f(x) =

∞∑
1

1

n
sin(2−nx)

belongs to Bp but not to Wp.

One easily checks that f is well defined and belongs to C∞. Let us prove that f
belongs to Besicovitch space Bp. For simplifying the discussion let us assume p = 2.

Let us consider RN (x) = f(x)−
∑N

1
1
m sin(2−mx) and

(1.4) εN = lim sup
R→∞

R−1

∫ R

0

|RN (x)|2 dx

We shall prove that εN tends to 0 as N tends to infinity. Let us define an

integer M by R ∈ [2π.2M , 2π.2M+1] and split [0, 2π.2M+1] into [0, 2π.2N ]
⋃M
N+1 Jm

where Jm = [2π.2m, 2π.2m+1]. It can be assumed that M ≥ N in what follows.
We obviously have RN (x) =

∑∞
N+1

1
m sin(2−mx) which together with | sinx| ≤ |x|

implies

(1.5) |RN (x)| ≤ 2−N
|x|
N

It yields
∫ 2π.2N

0
|RN (x)|2 dx ≤ N−24N but this bound does not matter since it

will be erased by the factor R−1 as R tends to infinity in (1.4). Let ηN (m) =∫ 2π.2m+1

2π.2m |RN (x)|2 dx. We then have

(1.6)

∫ R

2π.2N

|RN (x)|2 dx ≤ ηN (N) + · · ·+ ηN (M)

If x ∈ Jm we decompose RN (x) =
∑∞
N+1

1
j sin(2−jx) into RN (x) =

∑m
N+1(·) +

Rm(x). When N + 1 ≤ j ≤ m the sine functions sin(2−jx) are orthogonal on the
interval Jm. We also have by (1.5) |Rm(x)| ≤ C 1

m if x ∈ Jm which finally leads to

ηN (m) ' 2mm−1. We have proved that
∑M
N+1 ηN (m) ' 2M (N + 1)−1 which yields

εN ' (N + 1)−1 as announced.

For proving the second statement in Proposition 1 we observe that all the
derivatives of f are almost periodic functions in the sense of Bohr. Let us argue by
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contradiction and assume that f belongs to Wp. Then ‖f ? φ‖∞ ≤ C when φ is a

compactly supported test function. If
∫
φ = 1 then ‖f − f ? φ‖∞ ≤ ‖ ddxf‖∞ ≤ C.

Finally f ∈ Wp ⇒ f ∈ L∞. To disprove this conclusion one computes f( 2π
7 · 2

q) for

a large integer q. Taking in account that sin( 2π
7 ) + sin( 4π

7 ) + sin( 8π
7 ) > 0 one easily

obtains f( 2π
7 · 2

q) ≥ c log q for a positive constant c.

A subset M ⊂ Rn is relatively dense if there exists a positive R such that each
ball B(x,R) with radius R (whatever be its center x) contains at least a point x in
M. This definition was introduced by Besicovitch. If f ∈ Wp for every ε > 0 the
set M(ε) of τ ∈ Rn such that ‖f(·+ τ)− f(·)‖w,p ≤ ε is relatively dense. However
this property does not characterize the space Wp and the Heaviside function is a
counter example.

2. Almost periodic measures

Following Laurent Schwartz a Borel measure µ on Rn is almost periodic if and
only if for every compactly supported continuous function g the convolution product
µ?g is an almost periodic function. Everything depends now on the definition of an
almost periodic function which is adopted. If we consider the standard definition
given by Bohr, the corresponding definition of almost periodic measures is too
demanding and does not cover the case of quasicrystals. Generalized almost periodic
functions where introduced in [2] to address this issue. A real valued function f is a
generalized almost periodic function if for every positive ε there exist two standard
almost periodic functions uε and vε such that uε ≤ f ≤ vε and ‖vε − uε‖w,1 ≤ ε
and almost periodic measures are defined accordingly. In the last section of this
note the space of generalized almost periodic functions will be replaced by the Weyl
space W1 and almost periodic measures will be defined by µ ? g ∈ W1 for every
compactly supported continuous function g. The Weyl space is larger than the space
of generalized almost periodic functions. A completely distinct definition of almost
periodic measures is given now (Definition 5). This definition does not use any
smoothing and is motivated by Robert Moody’s seminal work [3].

Definition 4. The Weyl norm of a Borel measure µ on Rn is defined by

(2.1) ‖µ‖w = lim sup
R→∞

sup
x∈Rn

|B(x,R)|−1|µ|(B(x,R))

whenever the right hand side of (2.1) is finite.

If µ = f dx where f is locally integrable then ‖µ‖w = ‖f‖w,1.
For τ ∈ Rn we denote by µτ the measure µ translated by τ. Almost periodic

measures are defined as follows.

Definition 5. A Borel measure µ is almost periodic in the sense of Weyl if
for every positive ε there exists a relatively dense set M(ε) ⊂ Rn such that

(2.2) τ ∈M(ε)⇒ ‖µτ − µ‖w ≤ ε

This definition of almost periodic measures differs from the one given in [2].
Here is a simple example. The Dirac comb σ on Z is almost periodic and the same
holds for the Dirac comb σ′ on

√
2Z. Let µ = σ + σ′. Then µ cannot be almost

periodic in the sense given by Definition 5 since ‖µτ−µ‖w ≥ 2 if τ 6= 0. However µ is
an almost periodic measure in the strongest sense. For every compactly supported
continuous function g the convolution product µ ? g is a standard almost periodic
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function (µ ? g being the sum of two periodic functions). It now seems that our
Definition 5 is stronger than the standard one or the one given in [2]. It is not the

case and here is a counter example. If λk = k2 +
√

2k, k ∈ Z, then the measure
σ =

∑+∞
−∞ δλk

is not a generalized almost periodic measure in the sense given in
[2] (see Proposition 2.27 in [2]). However σ trivially satisfies the requirement of
Definition 5 since ‖σ‖w = ‖στ‖w = 0.

Let us study another one dimensional example.

Proposition 2. Let rk, k ∈ Z, be a sequence of real numbers tending to 0.
Then the perturbed Dirac comb σ =

∑
k∈Z δk+rk is an almost periodic measure if

and only if the upper density of the set E = {k; rk 6= 0} is 0.

Let us prove Proposition 2. If τ /∈ Z then k+ rk 6= j+ rj + τ for |k| ≥ k0 which
implies ‖στ − σ‖w ≥ 2. Then ‖στ − σ‖w ≤ 1 implies τ ∈ Z. Finally the conclusion
follows immediately from Definition 5.

Definition 6. A Borel measure µ is uniformly almost periodic if for every
positive ε there exists a relatively dense set M(ε) and a positive number R(ε) such
that

(2.3) τ ∈M(ε), x ∈ Rn, R ≥ R(ε)⇒ |B(x,R)|−1

∫
B(x,R)

d |µτ − µ| ≤ ε

The sum σ =
∑∞
k=1 δk is the right half of the Dirac comb. It is an example of

an almost periodic measure which is not uniformly almost periodic. Here M(ε) = Z
and στ − σ = −

∑τ
k=1 δk if τ ≥ 1. When τ ≤ −1 we have στ − σ =

∑0
k=τ+1 δk.

Therefore

(2.4) ‖στ − σ‖w = 0 (∀τ ∈ Z)

Therefore σ is almost periodic in the sense of Weyl. It is not uniformly almost
periodic. Indeed (2.3) implies R ≥ |τ |/ε. Uniformity with respect to τ makes the
difference between (2.2) and (2.3).

3. Almost periodic patterns

A subset Λ of Rn is a Delone set if there exist two radii R2 > R1 > 0 such that

(a) each ball with radius R1, whatever be its location, shall contain at most
one point in Λ

(b) each ball with radius R2, whatever be its location, shall contain at least
one point in Λ.

Almost periodic patterns are defined as follows.

Definition 7. A Delone set Λ is an almost periodic pattern if the sum of Dirac
masses µ =

∑
λ∈Λ δλ is a uniformly almost periodic measure (in the sense given by

Definition 6).

Definition 8. If Λ is a discrete set, R > 0, and if

(3.1) D+
R(Λ) = sup

x∈Rn

|B(x,R)|−1#[(B(x,R)) ∩ Λ]
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The uniform upper density of Λ is defined by

(3.2) D+(Λ) = lim sup
R→∞

D+
R(Λ)

We then have

Lemma 1. Let Λ be a Delone set and let µ be the sum of Dirac masses µ =∑
λ∈Λ δλ. Then ‖µ‖w = D+(Λ).

The symmetric difference between A,B ⊂ Rn is denoted by A4B. An equiv-
alent definition of an almost periodic pattern is given by the following lemma.

Lemma 2. A Delone set Λ is an almost periodic pattern if and only if for every
positive ε there exists a R(ε) > 0 and a relatively dense set M(ε) such that

(3.3) R ≥ R(ε), τ ∈M(ε)⇒ D+
R [(Λ + τ)4 Λ] ≤ ε

This implies the weaker property

(3.4) D+[(Λ + τ)4 Λ] ≤ ε
Robert Moody introduced an even weaker property in [3] where the uniform

upper density is replaced by

(3.5) d(Λ) = lim sup
R→∞

|B(0, R)|−1#[(B(0, R)) ∩ Λ]

and (3.4) by

(3.6) d[(Λ + τ)4 Λ] ≤ ε
Here is an example of a set of integers which is almost periodic if the definition

given by Robert Moody is used but is not an almost periodic pattern. Let E ⊂ Z
be the union of the intervals [2j , 2j + j], j ≥ 1, and let Λ = Z \ E. For every τ we
have d[(Λ + τ)4 Λ] = 0. However Λ is not an almost periodic pattern. We argue
by contradiction and assume that for every ε > 0 there exists a relatively dense set
M(ε) of almost periods of Λ. Therefore for every j there exists a τ ∈M(ε) such that
|τ − j| ≤ C(ε). Then [2j , 2j + j] is disjoint from [2j , 2j + j] + τ up to an interval of
length less than 2C(ε). It implies D+[(Λ + τ)4Λ] ≥ 1− 2C(ε)/j and the expected
contradiction will be reached when 1− 2C(ε)/j > ε.

4. Regular model sets are almost periodic patterns

A regular model set Λ is defined by the cut and projection method. Let us
assume that Γ ⊂ Rn+m is a lattice. Then p1 : Rn+m 7→ Rn is defined by p1(x, y) = x
when x ∈ Rn, y ∈ Rm, and similarly p2(x, y) = y. We are assuming that p1 : Γ 7→
Rn is injective and that p2 : Γ 7→ Rm has a dense range. Let W ⊂ Rm be a Riemann
integrable compact set.

Definition 9. With these notations the regular model set Λ is defined by

(4.1) Λ = {λ = p1(γ); γ ∈ Γ, p2(γ) ∈W}

We know that Λ has a uniform density given by dens Λ = D+(Λ) = c|W | where
c = c(Γ) and |W | is the Lebesgue measure of W. Keeping in mind Definitions 6 and
7 we have
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Theorem 1. Regular model sets are almost periodic patterns.

In other terms for every positive ε there exists a Delone set M(ε) such that
(3.3) holds for every τ ∈ M(ε) and for every R ≥ R(ε). Most of the points in the
model set Λ also belong to τ + Λ (this set of “good points” in Λ depends on τ).

The proof is not difficult. Let N(η) the model set defined by

(4.2) N(η) = {x = p1(γ); γ ∈ Γ, |p2(γ)| ≤ η}
Then we shall prove that N(η) is the M(ε) we are looking for if η is small enough.
More precisely we have

Lemma 3. There exists a regular model set Q(ε) such that D+(Q(ε)) ≤ ε and

(4.3) τ ∈ N(η)⇒ (Λ + τ)4 Λ ⊂ Q(ε)

Lemma 3 obviously implies Theorem 1.

Let us treat the set Λ + τ \ Λ when τ ∈ N(η). The treatment of Λ \ Λ + τ
will be similar. If x ∈ Λ + τ we have x = p1(γ) + p1(γ0) = p1(γ + γ0) where
γ, γ0 ∈ Γ, p2(γ) ∈W and |p2(γ0| ≤ η. If x /∈ Λ we have p2(γ + γ0) /∈W. It implies
that p2(γ + γ0) ∈ Wη where Wη ⊂ W is defined as the set of points y /∈ W such
that the distance from y to the boundary of W does not exceed η. We have proved
the following

(4.4) Λ + τ \ Λ ⊂ Qη = {λ = p1(y); y ∈ Γ, p2(y) ∈Wη}
Let us stress that the model set Qη does not depend on τ. We now observe that
|Wη| tends to 0 as η tends to 0. The uniform density of the model set Qη defined by
the window Wη does not exceed ε if η is small enough and we then set Q(ε) = Qη.
As it was said the treatment of Λ \ Λ + τ is similar, Wη being replaced by the set
W η of points y ∈W such that the distance from y to the boundary of W does not
exceed η. This ends the proof.

Is the converse implication true ? Let us assume that a Delone set Λ is an
almost periodic pattern. Is Λ−Λ a Delone set ? Here is a one dimensional counter
example.

Lemma 4. Let Λ = ∪∞0 Λj where Λj = 2j + rj + 2j+1Z. If rj ∈ (0, 1/3] then Λ
is an almost periodic pattern. If rj ∈ (0, 1/3] tends to 0 as j tends to infinity then
Λ− Λ cannot be a Delone set.

Let us observe that 2j + 2j+1Z = 2jZ \ 2j+1Z which implies that Λ is a Delone
set. Moreover Λ is an almost periodic pattern since Λ0 ∪ . . . ∪ Λj−1 is 2j-periodic
and the uniform upper density of Λj ∪ . . . is 2−j . Let us directly check that Λ− Λ
is not a Delone set. We have 2j ∈ 2Z = Λ0 − Λ0. Moreover 2j + rj + 2k ∈ Λj if
k ≥ j + 1. Finally rk + 2k ∈ Λk which implies 2j + rj − rk ∈ Λ − Λ. But 2j also
belongs to Λ−Λ. Therefore Λ−Λ cannot be a Delone set since rj − rk, k ≥ j + 1,
tends to 0 as j tends to infinity. Let us observe that Λ is also an almost periodic
pattern if the definition given in [2] is adopted.

5. Large patches of model sets

Let B(x,R) ⊂ Rn be the ball centered at x with radius R. Patches of Λ are
defined as P(x,R) = Λ∩B(x,R), x ∈ Rn, R > 0. Finally #E denotes the number
of elements of E. Then we have
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Theorem 2. Let Λ be an almost periodic pattern. For every positive ε there
exists a positive number R(ε) such that the following property holds:

∀x, ∀y ∈ Rn there exists a translation τ ∈ Rn, τ = τ(x, y, ε), such that:

(5.1) ∀R ≥ R(ε), #[P(x,R)4 (P(y,R)− τ)] ≤ εRn

This property was discovered by the first author. We do not know if (5.1)
characterizes almost periodic patterns. The proof of Theorem 2 gives more. Indeed
there exists a relatively dense Delone set M(ε) such that one can impose τ =
τ(x, y, ε) ∈ M(ε) in (5.1). This improved statement is then a characterization of
almost periodic patterns.

Property (5.1) is obvious if |x− y| ≤ R0 and R ≥ R0(Cnε)
−1. Then (5.1) holds

with τ = 0. Indeed we then have |B(y,R)4 B(x,R)| ≤ Cn|x − y|Rn−1 ≤ εRn. It
yields (5.1) since Λ is a Delone set. It is the trivial case. Property (5.1) is only
relevant if the distance between x and y is extremely large.

Theorem 2 in its full generality follows easily from the trivial case and from
Lemma 2. We obviously have

(5.2) B(y,R) ∩ [(Λ + τ)4 Λ] = P(y,R)4 (P(y − τ,R) + τ)

Therefore Λ is an almost periodic pattern if and only if there exists a relatively
dense Delone set M(ε) such that

(5.3) y ∈ Rn, R ≥ R(ε), τ ∈M(ε)⇒ #[P(y,R)4 (P(y − τ,R) + τ)]

|B(y,R)|
≤ ε

This is a restatement of Lemma 2 and it settles the case of the two patches P(y,R)
and P(y − τ,R). To compare P(y,R) to P(x,R) it suffices to observe that there
exists a τ ∈ M(ε) such that |y − x − τ | ≤ C(ε). We are finally led to compare
P(x,R) to P(y − τ,R) which is the trivial case.

6. Returning to Weyl spaces

The definition of an almost periodic measure is now modified.

Definition 10. A Borel measure µ is almost periodic if for for every compactly
supported continuous function g the convolution product µ ? g belongs to the Weyl
space W1.

The definition of an almost periodic pattern is modified accordingly by de-
manding that the sum of Dirac masses µ =

∑
λ∈Λ δλ be a uniformly almost periodic

measure in the new sense. The set Λ constructed in Lemma 4 is an almost periodic
pattern. Other examples are provided by the following result.

Proposition 3. Regular model sets are almost periodic patterns in the sense
given by Definition 10.

As it was said in the Introduction the space of generalized almost periodic
functions is contained in the larger space W1. Therefore Proposition 3 is implied
by Theorem 3.3 in [2].
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