106 - Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications

On fixe E un espace vectoriel de dimension finie n sur un corps K.

1 Le groupe linéaire

1.1 Définition et premières propriétés

Définition 1. On appelle groupe linéaire de E, et note Gl(E), le groupe des K-automorphismes linéaires de E.

Proposition 1. Soit $f \in L(E)$. Lpsse:

- (i) $f \in Gl(E)$
- (ii) f est inversible à gauche
- (iii) f est inversible à droite
- (iv) f est injectif
- (v) f est surjectif
- (vi) f est de rang n
- (vii) $\det f \neq 0$

Proposition 2. Gl(E) et $Gl_n(K)$ sont (topologiquement dans les cas réel et complexe) isomorphes.

Remarque. Pour tout sous-groupe G de K^* , les matrices de déterminant dans G forment un sous-groupe de K^* .

Exemple. L'ensemble des matrices diagonales/diagonales et à coefficients dans un sous-groupe de K^* /triangulaires/triangulaires et à coefficients diagonaux dans un sous-groupe de K^* est un sous-groupe de $Gl_n(K)$.

Définition 2. On appelle groupe spécial linéaire, noté Sl(E), le noyau de det : $Gl(E) \to K^*$. Il est isomorphe à $Sl_n(K)$.

Proposition 3. Gl(E) est isomorphe à $Sl(E) \rtimes K^*$.

On se ramène à l'étude de Sl(E).

1.2Quelques actions du groupe linéaire

Action à gauche et à droite (même image, même noyau), action par conjugaison (similitude), lien avec les invariants de similitude.

1.3Générateurs et centre

Définition 3. Soit H un hyperplan de E et $f \in Gl(E) \setminus \{Id\}$ tq H soit stable par f et $f_{|H} = Id_H$.

On dit que f est une dilatation d'hyperplan H et de rapport $\lambda \in K^*$ s'il existe une base de E dans laquelle la matrice de f soit ...

On dit que f est une transvection d'hyperplan H et de droite $D \subset H$ s'il existe une base de E dans laquelle la matrice de f soit ... i.e. $f(x) = x + \varphi(x)a$, $H = Ker\varphi$ et $a \in H$.

Proposition 4. Soit τ une transvection d'hyperplan H et de droite D, et $f \in Gl(E)$. Alors $f \tau f^{-1}$ est une transvection d'hyperplan f(H) et de droite f(D).

Réciproquement, deux dilatations sont conjuguées dans Gl(E) ssi elles ont même rapport. Deux transvections sont conjuguées dans Gl(E); si $n \geq 3$ elles sont conjugées dans Sl(E).

Théorème 1. Z(Gl(E)) est l'ensemble des homotéties de rapport $\lambda \in K^*$. Z(Sl(E)) est l'ensemble des homotéties de rapport $\lambda \in \mu_n(K)$.

Théorème 2. Les transvections engendrent Sl(E).

Corollaire 1. Les tranvections et les dilatations engendrent Gl(E).

Application ([FGN2 p. 179]). Pour $n \geq 2$, toute matrice de $Gl_n(K)$ s'écrit comme un produit de matrices de trace nulle.

Remarque. Existence du pivot de Gauss.

Théorème 3. On a $D(Gl_n(K)) = Sl_n(K)$ sauf si n = 2 et $K = \mathbb{F}_2$.

T(H) par Perrin p. 109.

2 Cas des corps finis

Proposition 5. Si
$$K = \mathbf{F}_q$$
, alors: $-|Gl_n(K)| = \prod_{i=0}^{n-1} (q^n - q^i) - |Sl_n(K)| = q^{n-1} \prod_{i=0}^{n-2} (q^n - q^i)$

Proposition 6. L'ensemble des matrices triangulaires supérieures ayant des 1 sur la diagonale est un p-Sylow de $Gl_n(\mathbf{F}_p)$.

Proposition 7. Tout groupe fini de cardnal n s'injecte dans $Gl_n(\mathbf{K})$. Plus précisément, le groupe des matrices de permutation est isomorphe au groupe symétrique.

Application. Existence des p-Sylow.

Application (Frobénius-Zolotarev). Soit p un nombre premier impair et V un \mathbf{F}_p -e.v. de dimension finie. Alors pour tout $u \in Gl(V)$, on peut considérer u comme un élément de $\mathfrak{S}(V)$, si bien qu'on peut lui associer sa signature. On a alors $\varepsilon(u) = \left(\frac{\det(u)}{p}\right)$.

Réciprocité quadra, signature Frobénius?

3 Cas réel ou complexe

3.1 Topologie

Proposition 8. Si $K = \mathbf{R}$ ou \mathbf{C} , $Gl_n(K)$ est un ouvert dense de $M_n(K)$.

Exemple. Dans tout ensemble dense de de \mathbb{R}^n on peut trouver une base. Application. Différentielle déterminant.

Proposition 9. Si $\rho(A) < 1$, alors $I_n - A$ est inversible d'inverse $\sum A^n$.

Proposition 10. Dans Gl_n , le produit et l'inversion sont C^{∞} + différentielles.

Proposition 11. Pour $k = \mathbf{C}$, l'ensemble des matrices diagonalisables est dense dans $M_n(\mathbf{C})$. Pour $k = \mathbf{R}$, l'adhérence ensemble des matrices diagonalisables est égale à l'ensemble des matrices trigonalisables.

Application. $\det \circ \exp = \exp \circ tr$.

Proposition 12. $Gl_n(\mathbf{C})$ est connexe par arcs. $Gl_n(\mathbf{R})$ possède exactement deux composantes connexes par arcs : $Gl_n^+(\mathbf{R})$ et $Gl_n^-(\mathbf{R})$.

3.2 Quelques sous-groupes

Proposition 13. L'ensemble des matrices de $Gl_n(\mathbf{R})$ de déterminant ± 1 à coefficients dans \mathbf{Z} est un sous-groupe de $Gl_n(\mathbf{R})$ noté $Gl_n(\mathbf{Z})$.

Théorème 4 ([FGN2 p. 205]). Il n'y a qu'un nombre fini de sous-groupes finis de $Gl_n(\mathbf{Z})$, leur cardinal est majoré par $|Gl_n(\mathbf{F}_3)| = \prod_{i=0}^{n-1} (3^n - 3^i)$.

Théorème 5. $Sl_2(\mathbf{Z})$ est engendré par S et T.

Théorème 6 (Burnside, FGN2 p.185). Soit G un sous-groupe de $Gl_n(\mathbf{C})$. Alors G est fini ssi il est d'exposant fini.

Proposition 14. Soit G un sous-ensemble compact de $Gl_n(\mathbf{C}) / Gl_n(\mathbf{R})$ stable par multiplication. Alors G est un groupe.

Théorème 7. Sous-groupes compacts de $Gl_n(\mathbf{C}) / Gl_n(\mathbf{R})$.

Proposition 15. Il n'y a pas de petit sous-groupe de Gl_n (cf FGN pour une borne de la norme).

3.3 Exponentielle matricielle

Théorème 8. exp : $M_n(\mathbf{C}) \to Gl_n(\mathbf{C})$ est surjective. Ce n'est pas un morphisme!

Application. $Gl_n(\mathbf{C}) \to Gl_n(\mathbf{C}), A \mapsto A^p$ est surjective pour tout $p \ge 1$.

Théorème 9. $\exp(M_n(\mathbf{R})) = \{M^2 \mid M \in Gl_n(\mathbf{R})\}\$

Proposition 16. Sous-groupes à un paramètre [Laf].

3.4 Groupe orthogonal

On suppose que $K = \mathbf{R}$. On se donne q un fq def pos sur E.

Définition 4. On appelle isométrie de E les éléments $u \in Gl(E)$ tels que $q \circ u = q$. L'ensemble des isométries de E forme un sous-groupe de Gl(E) appelé groupe orthogonal et noté O(q). Le noyau de det : $O(q) \to \mathbf{R}^*$ est appelé groupe spécial orthogonal et noté SO(q).

Proposition 17. O(q) (resp SO(q)) est topologiquement isomorphe à $O_n(\mathbf{R})$ (resp $SO_n(\mathbf{R})$).

Proposition 18. Centres

Théorème 10. O(q) engendré par au plus n réflexions. SO(q) engendré par au plus n retournements.

La dimension 2 et les angles

Patatipatata

Théorème 11. Forme canonique/réduction.

Corollaire 2. Composantes connexes.

Proposition 19 (Décomposition polaire). L'application

$$O_n(\mathbf{R}) \times S_n^{++}(\mathbf{R}) \to Gl_n(\mathbf{R})$$

 $(O, S) \mapsto OS$

est un homéomorphisme.

Application. $O_n(\mathbf{R})$ est un sous-groupe compact maximal de $Gl_n(\mathbf{R})$.

Proposition 20. Dimension 2, application aux angles.

Revoir les petits cas $n=2, K=\mathbf{F}_2...$

Commutant, stabilisateur, matrices diagonales?