113 - Groupe des nombres complexes de module 1. Sous-groupes des racines de l'unité. Applications.

1 Généralités sur le groupe des nombres complexes de module 1

Notation 1. On note \mathcal{U} l'ensemble des nombres complexes de module 1.

Proposition 1. (\mathcal{U}, \times) est un sous-groupe de \mathbb{C}^* .

1.1 L'exponentielle complexe [Rud]

Définition 1. La fonction exponentielle est définie pour tout nombre complexe z par $\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.

Proposition 2. L'exponentielle est un morphisme de $(\mathbf{C}, +)$ vers (\mathbf{C}^*, \times) .

Définition 2. Pour $t \in \mathbf{R}$, on définit le cosinus et le sinus, notés cos et sin comme étant resp. la partie réelle et la partie imaginaire de l'exponentielle e^{it} .

Définition 3. On définit π comme étant le double du plus petit réel positif t tel que $\cos t = 0$. On a alors $e^{i\pi} + 1 = 0$.

Théorème 1. L'exponentielle est une surjection de $(\mathbf{C}, +)$ vers (\mathbf{C}^*, \times) . Elle réalise un morphisme de groupes de $(\mathbf{R}, +)$ vers (\mathcal{U}, \times) , surjectif et de noyau $2\pi \mathbf{Z}$. En particulier \mathcal{U} est isomorphe à $\mathbf{R}/2\pi \mathbf{Z}$.

Ainsi, tout nombre complexe non nul z s'écrit de manière unique sous la forme $z = re^{i\theta}$, avec $r \in \mathbf{R}_+^*$ et $\theta \in \mathbf{R}/2\pi\mathbf{Z}$. r est le module de z et θ son argument.

1.2 Trigonométrie

Proposition 3. Formule de De Moivre : $\forall t \in \mathbf{R}, n \in \mathbf{N}, (\cos t + i \sin t)^n = \cos(nt) + i \sin(nt)$.

Formules d'Euler: $\forall t \in \mathbf{R}, \cos t = \frac{e^{it} + e^{-it}}{2}, \sin t = \frac{e^{it} - e^{-it}}{2i}.$

Application. – Linéarisation de $\sin^n t$ et de $\cos^n t$ (en vue par exemple d'une intégration).

- Calcul des sommes $\sum_{n=0}^{N} \sin(nx)$ (en vue du théorème de Féjer par exemple).

1.3 Sous-groupes de \mathcal{U}

Proposition 4. Les sous-groupes fermés de \mathcal{U} sont \mathcal{U} et les $\mathcal{U}_n = \{z \in \mathcal{U} \mid z^n = 1\}$ pour $n \in \mathbb{N}$.

Proposition 5. Les sous-groupes de $\mathcal U$ sont soit finis, soit denses.

Exemple. – Pour p premier, on appelle p-ième groupe de Prüfer $O_p = \bigcup_{\alpha \in \mathbb{N}} \mathcal{U}_{p^{\alpha}}$. Les seuls sous-groupes de O_p sont les $\mathcal{U}_{p^{\alpha}}$ et lui-même ; O_p est indécomposable [FGN].

– Le sous-groupe de \mathcal{U} constitué des éléments d'ordre fini est égal à $\bigcup_{n\in\mathbb{N}}\mathcal{U}_n$. Il est isomorphe à \mathbb{Q}/\mathbb{Z} .

2 Groupe des racines n-ièmes de l'unité

${f 2.1}$ Étude du groupe ${\cal U}_n$

Proposition 6. \mathcal{U}_n est un groupe cyclique d'ordre n, ainsi il est isomorphe à $\mathbf{Z}/n\mathbf{Z}$. Réciproquement, tout sous-groupe fini de \mathbf{C} est un des groupes \mathcal{U}_n .

Définition 4. On appelle racine n-ième primitive de l'unité tout générateur de \mathcal{U}_n . On note μ_n^* l'ensemble des racines n-ièmes primitives.

Exemple. $\mu_3^* = \{j, j^2\}, \ \mu_4^* = \{i, -i\}.$

Exemple. Calcul du centre de Sl(E), isomorphe à \mathcal{U}_n .

Proposition 7. On a $\mu_n^* = \{e^{2ik\pi/n} \mid 1 \le k \le n, k \land n = 1\}$ et $\mathcal{U}_n = \sqcup_{d|n} \mu_d^*$. Ainsi il y a $\varphi(n)$ éléments dans μ_n^* . Soit $\xi \in \mu_n^*$. Alors les éléments de μ_n^* sont les ξ^k , avec $1 \le k \le n$ et $k \land n = 1$.

Application. On a $n = \sum_{d|n} \varphi(d)$.

2.2 Cyclotomie

Définition 5. Le *n*-ième polynôme cyclotomique est $\Phi_n = \prod_{\xi \in \mu_n^*} (X - \xi)$.

Exemple. $\Phi_1 = X - 1$, $\Phi_2 = X + 1$, $\Phi_3 = X^2 + X + 1$...

Proposition 8. Φ_n est unitaire et de degré $\varphi(n)$.

Proposition 9. $X^n - 1 = \prod_{d|n} \Phi_d$

Proposition 10. $\Phi_n \in \mathbf{Z}[X]$.

Application (Theoreme de Wedderburn). Tout corps fini est commutatif.

Dirichlet faible?

Théorème 2. Φ_n est irréductible sur \mathbf{Q} .

Corollaire 1. Si $\xi \in \mu_n^*$, alors son polynôme minimal sur \mathbf{Q} est Φ_n . En particulier $[Q(\xi):\mathbf{Q}] = \varphi(n)$.

Théorème 3 (Kronecker). FGN.

Proposition 11 ([Demazure]). Réduction dans \mathbf{F}_q , application à la construction de corps.

3 Applications

3.1 Groupe diédral

Cf Josette.

3.2 Angles

Soit E le plan euclidien.

Proposition 12. Étant donnés deux vecteurs unitaires de E, il existe une unique rotation qui envoie l'un sur l'autre. Cela définit la relation d'équivalence (u, v)R(u', v') ssi il existe une rotation r tq r(u) = u' et r(v) = v'.

Définition 6. La classe d'équivalence de (u, v) est appelée angle orienté de u et de v. On note \mathcal{A} l'ensemble des angles orientés.

Proposition 13. Soit $\varphi : A \to SO(E)$, $(u, v) \mapsto r$ telle que r soit la rotation envoyant u sur v. φ est bien définie et est une bijection. On en déduit une structure de groupe sur A en posant $(u, v) + (u', v') = \varphi^{-1}(\varphi(u, v) \circ \varphi(u', v'))$, ce qui fait de φ un morphisme de groupes.

Proposition 14 (Relation de Chasles). (u, v) + (v, w) = (u, w).

Remarque. On a défini les angles orientés sans orienter E.

On choisit désormais une orientation de E.

Proposition 15. La matrice d'une rotation de E est la même dans toutes les bases orthonormées directes.

Définition 7. On associe alors à tout angle (u, v) l'unique $\theta \in \mathbf{R}/2\pi\mathbf{Z}$ tel que $\varphi(u, v)$ soit représenté par la matrice $\begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. θ est appelé la mesure de l'angle (u, v).

Proposition 16. $SO(E) \approx \mathbf{R}/2\pi\mathbf{Z}$, i.e. $SO_2(\mathbf{R}) \approx \mathcal{U}$.

3.3 Constructibilité

Gauss et Gauss-Wantzel (Carrega).

3.4 Caractères

Soit G un groupe fini.

Définition 8. On appelle *caractère* de G tout morphisme de G dans \mathbb{C}^* . L'ensemble des caractères de G forme un groupe abélien pour la multiplication dans \mathbb{C} , noté \widehat{G} .

Exemple. Si $G = \mathfrak{S}_n$, alors la signature est un caractère sur G. Si $G = \mathbf{Z}/n\mathbf{Z}$, alors $k \mapsto e^{2ik\pi/n}$ est un caractère sur G.

Remarque. Tout caractère $\chi: G \to \mathbf{C}$ se factorise en un morphisme $G/D(G) \to \mathbf{C}$. Ainsi supposera désormais le groupe G abélien.

Proposition 17. Si |G| = n, alors les éléments de \widehat{G} sont à valeurs dans \mathcal{U}_n .

Proposition 18. $\widehat{\mathbf{Z}/n\mathbf{Z}} \to \mathcal{U}_n$, $\chi \mapsto \chi 1$ est un isomorphisme. Ainsi tout groupe cyclique est isomorphe à son dual.

Proposition 19. Si H est un groupe abélien fini, alors $\widehat{G \times H} \equiv \widehat{G} \times \widehat{H}$.

Lemme 1. Soit H un sous-groupe de G. Alors tout caractère de H se prolonge en un caractère de G (suite exacte cf Serre).

Théorème 4. Soit G un groupe abélien fini. Alors il existe une unique suite d'entiers $a_1, \ldots a_k$, soumis à $a_1 | \ldots | a_k$, et $a_1 > 1$, tels que $G \approx \mathbf{Z}/a_1\mathbf{Z} \times \cdots \times \mathbf{Z}/a_k\mathbf{Z}$.

Corollaire 2. Tout groupe abélien fini est isomorphe à son dual.

3.5 Loi de réciprocité quadratique

Définition 9. Soit p un nombre premier impair. Le *symble de Legendre* de n modulo p, noté $\left(\frac{n}{p}\right)$, est défini par :

$$\left(\frac{n}{p}\right) = \begin{cases} 0 \text{ si } a \equiv 0 \ [p] \\ 1 \text{ si } a \text{ est un carr\'e non nul modulo } p \\ -1 \text{ si } a \text{ n'est pas un carr\'e modulo } p \end{cases}$$

Proposition 20. Le nombre de carrés dans \mathbf{F}_p est (p+1)/2.

Proposition 21.
$$\forall a \in \mathbf{Z}, \ \left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \ [p]$$
 $\left(\frac{-1}{N}\right) = (-1)^{(p-1)/2} \ et \left(\frac{2}{N}\right) = (-1)^{(p^2-1)/8}$

Application (Dirichlet faible). Cf Perrin!

Théorème 5 (Loi de réciprocité quadratique). Soient p, q des nombres premiers impairs distincts. Alors on a :

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Cf Hindry p. 26

Exemple (Hindry p.10). Soit p un nombre premier s'écrivant $p=x^2-6y^2$, avec $x,y\in \mathbf{Z}$. Alors p ne divise pas y, car sinon p diviserait aussi x et donc p^2 diviserait p. Donc $6\equiv (xy^{-1})^2$ [p], donc $\left(\frac{6}{p}\right)=1$ i.e. $(-1)^{(p^2-1)/8}(-1)^{(p-1)/2}\left(\frac{p}{3}\right)=1$, on en déduit des congruences de p modulo 24.