125 - Sous-espaces stables d'un endomorphisme d'un espace vectoriel en dimension finie.

Notations : K corps commutatif, E K-ev de dimension finie $n \in \mathbb{N}^*$, $u \in L(E)$.

1 Ensemble des sous-espaces stables d'un endomorphisme

1.1 Généralités

Définition 1. Sous-espace stable, endomorphisme induit, $S_u(E)$ l'ensemble des sous-espaces stables de u.

Proposition 1. $\pi_{u_F} \mid \pi_u$.

Proposition 2. Soit $F = Vect(e_1, ..., e_p)$. F est u-stable ssi dans toute base $B = (e_1, ..., e_p, ..., e_n)$ la matrice de u est triangulaire par blocs : ... On a alors $A = mat_{B_1}(u_F)$.

Application. $\chi_{u_F} \mid \chi_u$.

Proposition 3. Décomposition en sous-espaces – base adaptée et représentation matricielle.

Remarque. $S_u(E)$ est stable par somme et intersection. Cela permet de définir le plus petit sous-espace u-stable vérifiant une propriété.

Proposition 4. Si u et v commutent, Im v, $Ker v \in S_u(E)$.

Exemple. Les sous-espaces caractéristiques de u sont u-stables.

Théorème 1 (lemme des noyaux). Soit $P = P_1 \dots P_k \in k[X]$ tel que les P_i soient premiers entre eux. Alors $\ker(P(u)) = \bigoplus_{i=1}^k \ker(P_i(u))$. De plus, les projecteurs associés à cette décompostion sont des polynômes en u.

Application. E est la somme directe des sous-espaces caractéristiques.

1.2 Dualité

Définition 2. Transposée, orthogonal, dimensions, bidual et double orthogonal...

Proposition 5. $F \in S_u(E) \iff F^{\perp} \in S_{t_u}(E^*)$.

Application. Tout hyperplan u-stable de $E \sum A_i x_i$ est associé à une droite propre pour ${}^t u$ dirigée par ${}^t (a_1 \ldots a_n)$.

Application. Si n est impair et $K = \mathbf{R}$, alors u possède un hyperplan stable.

Lemme 1. Soit $x \in E$ tel que $\pi_u = \pi_{u,x}$. Alors il existe un supplémentaire G de $\langle x \rangle_u$ stable par u.

2 Étude d'exemples, applications à la réduction

2.1 Endomorphismes diagonalisables

Théorème 2. Lpsse:

- (i) u est diagonalisable,
- (ii) $E = \bigoplus_{\lambda \in Sp_k(u)} E_{\lambda}$,
- (iii) π_u est scindé à racines simples dans k,
- (iv) il existe un polynôme annulateur de u simplement scindé,
- (v) si de plus $K = \mathbf{C}$, tout sous-espace stable de u admet un supplémentaire stable.

Corollaire 1. Si u est diag et $F \in S_u(E)$, alors u_F est diag.

Proposition 6. Si u est diag, alors u et v commutent ssi tous les $E_{\lambda,u}$ sont v-stables.

Proposition 7. Si u est diag, alors $S_u(E) = \{\bigoplus_{\lambda \in Sp(u)} H_\lambda \mid H_\lambda \text{ sev de } E_{\lambda,u} \}$.

Proposition 8. Réduction simultanée.

Application (FGN2 p. 160). Soit A diag. de vp $(\lambda_1, \ldots, \lambda_r)$ de multiplicités n_1, \ldots, n_r . Alors $\dim K(A) = r$ et $\dim C(A) = n_1^2 + \cdots + n_r^2$. Ainsi C(A) = K(A) ssi r = n.

2.2 Endomorphismes nilpotents

Définition 3. Une famille $(E_i)_{0 \le i \le l}$ de sev de E est appelée un drapeau si on a $\{0\} = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$.

Proposition 9. Soit $u \in L(E)$ un endomorphisme nilpotent d'indice p. Posons pour tout $0 \le i \le p$ $E_i = \ker u^i$. Alors la famille (E_i) est un drapeau.

Théorème 3. u est trigonalisable ssi π_u est scindé, i.e. si χ_u est scindé, ssi il existe un drapeau $F_1 \subset \cdots \subset F_n$ u-stable tel que $\forall i, \dim F_i = i$.

Théorème 4 (Dunford). Soit $u \in L(E)$ tel que π_u soit scindé sur k. Alors il existe un unique $d \in L(E)$ diagonalisable et un unique $n \in L(E)$ nilpotent tels que u = d + n, et que d et n commutent.

Application. Rayon spectral.

Application. L'image de $M_n(\mathbf{C})$ par exp est $Gl_n(\mathbf{C})$. Si $k = \mathbf{C}$, exp u est diag, ssi u l'est. Image réciproque de I_n .

Application ([FGN2 p. 186]). Petits sous-gpes Gl_n .

Définition 4. Pour $p \in \mathbb{N}^*$ et $\lambda \in k$, on appelle bloc de Jordan de taille p et de paramètre λ la matrice $p \times p$:

$$J_{p,\lambda} = \begin{pmatrix} \lambda & & & \\ 1 & \cdot & & \\ & \cdot & \cdot & \\ & & 1 & \lambda \end{pmatrix}$$

Théorème 5 (Jordanisation). Soit $u \in L(E)$ tq π_u soit scindé. Alors il existe une matrice de u formée de blocs daigonaux de Jordan, uniques à l'ordre des blocs près.

Application. Toute matrice est semblable à sa transposée.

2.3 Endomorphismes cycliques

Définition 5. Sous-espace cyclique, endomorphisme cyclique.

Proposition 10. dimension, base, calcul, représentation matricielle

Définition 6. Matrice compagnon.

Proposition 11. F est u-cyclique ssi $\pi_{u_F} = \chi_{u_F}$.

Proposition 12. $\pi_{u_{\langle x \rangle_u}} = \pi_{u,x}$.

Proposition 13. Il existe $x \in E$ to $\pi_u = \pi_{u,x}$. Avec les noyaux

Application. Cayley-Hamilton.

Théorème 6 (décomposition de Frobénius). Il existe un unique $\ell \in \mathbf{N}$ et une unique famille de polynômes Q_1, \ldots, Q_ℓ soumise à $Q_\ell \mid Q_{\ell-1} \mid \cdots \mid Q_1$

telle que $\begin{pmatrix} \mathcal{C}(Q_1) \\ & \ddots \\ & & \mathcal{C}(Q_\ell) \end{pmatrix}$ soit une matrice de u. Les polynômes Q_i sont

appelés les invariants de similitude de un

Preuve dualité

Exemple. Si $u = \lambda Id$, alors $\ell = n$ et $Q_1 = \cdots = Q_\ell = X - \lambda$.

 $\textbf{Corollaire 2.} \ \ \textit{Deux endomorphismes sont semblables ssi ils ont mêmes invariants de similitude.}$

Application. Soit K: k une extension de corps. Alors deux matrices de $M_n(k)$ sont semblables dans $M_n(k)$ soit elles le sont dans $M_n(K)$.

Application. Si u est cyclique alors $S_u(E)$ est fini. Si K est infini, le réciproque est vraie.

Proposition 14. C(A) = K(A) ssi A est cyclique.

2.4 Endomorphismes semi-simples

Cf leçon écrite [FGN2, Gou, Vinx]. Dunford généralisé [Vinx p. 160].

2.5 Endomorphismes normaux

Idem [Gou].