137 - Barycentres dans un espace affine réel de dimension finie ; convexité. Applications.

On note \mathcal{E} et \mathcal{F} deux espaces affines de dimensions finies n et m sur le corps K, ainsi que E et F leurs directions.

1 Barycentres

1.1 Définitions, généralités

Définition 1. Soit $A_1, \ldots, A_k \in E$ et $\lambda_1, \ldots, \lambda_k \in K$ tq $\sum \lambda_1 \neq 0$. Lpsse :

(i)
$$\sum \lambda_i \overrightarrow{GA_i} = \overrightarrow{0}$$

(ii)
$$\forall M \in \mathcal{E}, \ \sum \lambda_i \overrightarrow{MG} = \sum \lambda \overrightarrow{MA_i}$$

De plus, un tel point G satisfaisant ces propriétés existe et est unique. Il est appelé le barycentre des points pondérés (A_i, λ_i) et noté $Bar((A_i, \lambda_i), 1 \le i \le k)$.

Exemple. $Bar((e^{2ik\pi/n}, 1), 0 \le k < n) = 0.$

Proposition 1. $\forall \mu \neq 0$, $Bar((A_i, \lambda_i)) = Bar((A_i, \mu \lambda_i))$.

Proposition 2 (Associativité). Soit $(A_{i,j})_{1 \leq j \leq k_i, 1 \leq i \leq k}$ une famille de points et $(\lambda_{i,j})_{1 \leq j \leq k_i, 1 \leq i \leq k}$ une famille de scalaires tq $\forall i, \sum_{j=1}^{k_i} \lambda_{i,j} \neq 0$. Posons poour tout i $G_i = Bar((A_{i,j}, \lambda_{i,j}), 1 \leq j \leq k_j)$ et $G = Bar((A_{i,j}, \lambda_{i,j}), 1 \leq j \leq k_j)$. Alors $G = Bar((G_i, \sum_{j=1}^{k_i} \lambda_{i,j}), 1 \leq i \leq k)$.

Application. L'isobarycentre des sommets d'un triangle non aplati est situé aux 2/3 de chaque médiane.

Théorème 1. Soit $f: \mathcal{E} \to \mathcal{F}$. Alors f est affine ssi elle conserve les barycentres.

Remarque. C'est équivalent de demander à préserver les barycentres de 3 points, et si $car(K) = \neq 2$, de demender à préserver les barycentres de 2 points.

1.2 Barycentres, sous-espaces affines et repères

Définition 2. Soit $X \subset \mathcal{E}$, $X \neq \emptyset$. Le sous-espace affine engengré par X, noté $\langle X \rangle$, est l'intersection des sous-espaces affines contenant X.

Proposition 3. $\langle X \rangle$ est l'ensemble des barycentres de points de X.

Définition 3. Soit $(A_1, \ldots, A_k) \in \mathcal{E}^k$. On dit que la famille (A_1, \ldots, A_k) est affinement libre si pour tout poit M dans l'espace affine engendré par les A_i , $\exists ! (\lambda_1, \ldots, \lambda_k) \in K^k : M = Bar((A_i, \lambda_i))$ et $\sum \lambda_i = 1$. Dans le cas contraire, on dit que la famille est affinement liée. On dit que c'est un repère affine si elle est libre et engendre l'espace. Les scalaires $(\lambda_1, \ldots, \lambda_k) \in K^k$ tels que $M = Bar((A_i, \lambda_i))$ sont appelés les coordonnées barycentriques de $M \in \mathcal{E}$ dans le repère $\{A_i\}$.

Exemple. Dans un triangle non aplati, le centre de gravité a pour coordonnées barycentriques 1/3, 1/3, 1/3 dans le repère formé des 3 sommets.

Proposition 4. Problème d'extrémum dans un triangle.

Théorème 2. $(A_0, \ldots, A_k) \in \mathcal{E}^k$ est libre (resp. engendre \mathcal{E}) ssi $(\overrightarrow{A_0A_1}, \ldots, \overrightarrow{A_0A_k})$ est libre (resp. engendre \mathcal{E}). En particulier le cardinal d'un repère affine est toujours éqal à n+1.

Corollaire 1. Soit $(A_0, ..., A_n)$ un repère affine de \mathcal{E} et $B_0, ..., B_m$ des points de \mathcal{F} . Il existe une unique application affine $f: \mathcal{E} \to \mathcal{F}$ tq $f(A_i) = B_i \forall i$. De plus f est un isom ssi $(B_0, ..., B_m)$ est un repère de \mathcal{F} .

Application (Combes p.119). Soit $A_1A_2A_3$ un triangle non aplati du plan euclidien réel et $(\lambda_1, \lambda_2, \lambda_3)$ un triplet de réels de somme non nulle. pour $\sigma \in \mathfrak{S}_3$, on pose $G_{\sigma} = Bar((A_i, \lambda_{\sigma_i}))$. Les 6 points G_{σ} pour $\sigma \in \mathfrak{S}_3$ sont alors situés sur une ellipse dont le centre est le centre de gravité de $A_1A_2A_3$.

Proposition 5. Soit (A_0, \ldots, A_n) un repère de \mathcal{E} et H l'hyperplan affine de K^{n+1} d'équation $\sum x_i = 1$. Alors l'application $\mathcal{E} \to H$, $A = Bar((A_i, \lambda_i)) \mapsto (\lambda_0, \ldots, \lambda_n)$ est un isomorphisme. On peut donc, via le choix d'un repère, plonger tout espace affine de dimension finie dans K^{n+1} , et même l'identifier à K^n .

Proposition 6. Soit $(P_0, \ldots, P_n) \in \mathcal{E}^n$. Ils sont affinement liés ssi le det de leurs coordonnées barycentriques est nul.

Application. On munit le plan euclidien réel d'un repère affine $(A_0A_1A_2)$. Si $A = Bar((A_i, \lambda_i))$ et $B = Bar((A_i, \beta_i))$, avec $B \neq A$, alors $M = Bar((A_i, x_i))$ est sur la droite (AB) ssi $\begin{vmatrix} x_0 & \alpha_0 & \beta_0 \\ x_1 & \alpha_1 & \beta_1 \\ x_2 & \alpha_2 & \beta_2 \end{vmatrix} = 0$.

revoir toussa / th de Menelaüs?

2 Barycentres et convexité

On suppose désormais $K = \mathbf{R}$.

2.1 Définitions et premières propriétés

Définition 4. Un ensemble $C \subset \mathcal{E}$ est dit *convexe* s'il est stable par barycentres à coefficients positifs.

Seulement 2 points : $car \neq 2$?

Proposition 7. Une intersection de convexes est convexe.

Application. Sous-groupes compacts de $Gl_n(\mathbf{R})$.

Définition 5. Soit $X \subset \mathcal{E}$, $X \neq \emptyset$. On appelle enveloppe convexe de X, et note co(X), le plus petit (pour l'inclusion) convexe contenant X. C'est aussi l'intersection de tous les convexes contenant X.

Proposition 8. co(X) est l'ensemble des barycentres à coefficients positifs de points de X.

Proposition 9. Soit $f: E \to \mathbf{R}$. f est convexe ssi $epi(f) = \{(x, t) \in E \times \mathbf{R} \mid f(x) \leq t\}$ est convexe.

Corollaire 2. L'enveloppe supérieure de fonctions convexes est convexe.

Théorème 3 (Carathéodory). Soit $X \subset \mathcal{E}$ et C = co(X). Alors C est l'ensemble des barycentres à coefficients positifs d'au plus n+1 points de X.

Corollaire 3. L'enveloppe convexe d'un compact est compacte.

Remarque. C'est faux en dimension infinie.

Proposition 10. Soit $X \subset \mathcal{E}$, $X \neq \emptyset$ et $A \notin X$. Soit D = d(A, X).

- Si X est fermé, alors d est atteinte
- Si X est convexe, alors d est atteinte en au plus un point.

Théorème 4 (Motzkin). Si $X \subset \mathcal{E}$, $X \neq \emptyset$ est $tq \ \forall A \in \mathcal{E}$, $\exists ! p(A) \in X : d(A, p(A)) = d(A, X)$, alors X est fermé et convexe.

Proposition 11. Sous-espace affine engendré, dimension [Tauvel].

2.2 Points extrémaux

Définition 6. Soit $C \subset E$ un connexe, et $A \in C$. On dit que A est un point extrémal de C lorsque $A = Bar((B_1, \lambda_1), (B_2\lambda_2))$, avec $B_1, B_2 \in C$ implique que $B_1 = B - 2$.

Proposition 12. A est extrémal ssi $C \setminus \{A\}$ est convexe.

Théorème 5 (Krein-Millman). Soit C un convexe compact non vide. Alors K est enveloppe convexe de ses points extrémaux.

Proposition 13. Soit C un convexe et $f: \mathcal{E} \to \mathcal{E}$ une application affine tq f(C) = C. Alors f préserve les points extrémaux de C.

2.3 Optimisation et points fixes

Théorème 6. Fonction convexe sur un convexe et optimisation.

Application. Sous-groupes compacts de Gl_n .

Théorème 7 (Kakutani, [FGN]).

Théorème 8 (Brouwer). Soit K un compact convexe de \mathbb{R}^n . Alors toute fonction continue $f: K \to K$ admet au moins un point fixe.

Application. Soit ABC un triangle plein du plan. Supposons que $ABC = F_a \cup F_b \cup F_c$, avec F_a, F_b, F_c trois ouverts contenant resp. les côtés [A, B], [B, C] et [C, A]. Alors ils ont au moins un point en commun.

2.4 Hahn-Banach et applications

Définition 7. Jauge d'un convexe ouvert.

Proposition 14. Jauge, Cf Brézis.

Remarque. Si le convexe est symétrique, alors la jauge est une norme.

Théorème 9 (Hahn-Banach géométrique, ouvert-convexe).

Théorème 10 (Hahn-Banach géométrique, fermé-compact [Vinx]). Soit H un Hilbert réel. Si A et B sont deux convexes non vides disjoints de H, avec A fermé et B compact, alors il existe une forme linéaire $f \in H^*$ telle que $\sup_{a \in A} f(a) < \inf_{b \in B} f(b)$.

Application. Tout convexe fermé d'un Hilbert est égal à l'intersection des demi-espaces qui le contiennent.