146 - Résultant. Applications.

1 Introduction par l'élimination (titre à revoir, [RDO])

PGCD, Sylvester et dét, avec des exemples.

2 Définition et propriétés

On suppose A intègre commutatif.

2.1 Résultant de deux polynômes

Définition 1. Soient $P, Q \in A[X]$ de degrés resp. p et q, P = ..., Q = On pose $\varphi : A_{q-1}[X] \times A_{p-1}[X] \to A_{p+q-1}[X], U, V \mapsto UP + VQ$. La matrice représentative M de φ est la matrice de Sylvester de P et Q, de la forme (blabla), et son déterminant est appelé le résultant de P et Q, noté $R_X(P,Q)$.

Remarque. $Res_X(P,Q) \in \mathbf{Z}[a_0,\ldots,a_p,b_0,\ldots,b_q]$ Le plus souvent, A est un corps ou un anneau de polynômes.

2.2 Résultant d'ordre (p,q) [RDO]

Définition, polynôme homogène en les X et Y, exemples RDO.

2.3 Règles de calculs et propriétés générales

Proposition 1. Premières règles. Saux Picart p. 143.

Proposition 2. Calcul par division euclidienne. Saux Picart p. 143.

Remarque. Algo d'Euclide.

Proposition 3. $R(P,Q) = \prod (\alpha_i - \beta_j)...$ Par l'algo d'Euclide. Risler Boyer p. 109

Théorème 1. $R = 0 \iff sans \ facteur \ commun \iff premiers \ entre \ eux \iff pgcd=0 \iff pas \ de \ racine \ commune \ (dans \ le \ cas \ d'un \ corps). Plus précisément (Gozard) <math>rg(S) = p + q - d^{\circ}(P \wedge Q)$.

Théorème 2. Si A factoriel, R(P, Q = UP + VQ) (démo inutilement dure, hypothèses nulles?).

Corollaire 1. Dirichlet faible (Gozard).

Proposition 4. Élimination. $(x_1, ..., x_n)$ racine de P et $Q \iff (x_1, ..., x_{n-1})$ racine de $R_{X_n}(P,Q)$.

3 Discriminant

A = k

Définition, exemples, propriétés [Gozard], séparabilité.

4 Applications

4.1 Éléménts algébriques

x+y, xy algébriques et un exemple.

4.2 Systèmes polynomiaux

Saux Picart.

Avec des équations implicites?

4.3 Loi de réciprocité quadratique

Hindry.

4.4 Séparation de racines

Risler Boyer?

Références

Risler Boyer

RDO1

Saux Picart

 Gozard

Modren Computer Algebra