206 - Théorèmes de point fixe. Exemples et applications

1 Mise en bouche

Définition 1. Soit une fonction $f: E \to F$. $a \in E$ est appelé un point fixe de f si f(a) = a.

Proposition 1. Soit I un segment de \mathbf{R} . Toute fonction continue $f: I \to I$ admet un point fixe. Toute fonction continue $f: I \to \mathbf{R}$ telle que $I \subset f(I)$ admet un point fixe.

Application. Fonction tente?

Application (Sarkovskii[F-G1]). Soit $f:[0,1] \to [0,1]$ une application continue ayant un point périodique de période 3. Alors il existe des points périodiques de toutes les périodes entières.

2 Théorème du point fixe de Picard

Définition 2. Soient (X, d) et (Y, δ) deux espaces métriques. $f: X \to Y$ est dite *contractante* s'il existe une constante $k \in]0,1[$ telle que $\forall (x,y) \in X^2, \delta(f(x), f(y)) \leq kd(x,y)$, i.e. telle que f soit k-lipschitzienne.

Exemple. Soit U un ouvert connexe de \mathbf{R}^n et f une fonction différentiable sur U telle que $||df(x)|| \le k < 1 \ \forall x \in U$. Alors f est contractante sur U.

Théorème 1 (Picard). Soit (X, d) un espace métrique complet et $f: X \to X$ une application contractante. Alors f possède un unique point fixe a et pour tout $x_0 \in X$, la suite $f^n(x_0)$ converge vers a; la vitesse de convergence vérifie alors $d(a, f^n(x_0)) \leq \frac{k^n}{1-k} d(x_1, x_0)$.

Exemple. — $f: \mathbf{R}_+ \to \mathbf{R}_+$; $x \mapsto \sqrt{1+x}$ possède un unique point fixe sur $[1, +\infty[$ (en l'occurence $\frac{1+\sqrt{5}}{2}$).

- $f:]0,1] \rightarrow]0,1]$; $x \mapsto \frac{x}{2}$ ne possède pas de point fixe :]0,1] n'est pas un Banach.
- $f: \mathbf{R} \to \mathbf{R}$; $x \mapsto \sqrt{1+x^2}$ ne possède pas de point fixe : elle n'est pas contractante (même si $\forall x \neq y, |f(x) f(y)| < |x y|$).
- $f:[0,1] \to \mathbf{R}$; $x \mapsto x/2 + 1$ ne possède pas de point fixe : on n'a pas $f([0,1]) \subset [0,1]$.

Variations sur le théorème de Picard

Proposition 2. Une application continue $f: K \to K$, avec K compact métrisable telle que pour tout couple de points distincts (x, y) de K, d(f(x), f(y)) < d(x, y), admet un unique point fixe a. De plus, pour tout $x_0 \in K$ la suite $(f^n(x_0))_n$ converge vers a.

Exemple. La fonction $f = [-\pi, \pi] \to [-1, 1]$; $x \mapsto \sin x$ possède un unique point fixe (en l'occurence 0).

Théorème 2. Soit (X, d) un espace métrique complet et $f: X \to X$ une application ultimement contractante (i.e. dont l'un des itérés est contractant). Alors f possède un unique point fixe et pour tout $x_0 \in X$, la suite $f^n(x_0)$ converge vers a.

Cauchy-Lipsch.

Théorème 3. Soit (X, d) un espace métrique complet et L un espace topologique. Soit $f: L \times E \to E$ continue telle que $\forall \lambda \in L$, $f(\lambda, .)$ est contractante de rapport k (indépendant de λ). Pour tout λ on note a_{λ} le point fixe de $f(\lambda, .)$, alors l'application $\lambda \to a_{\lambda}$ est continue.

Application. La continuité des solutions des EDO par rapport aux paramètres, fonctions implicites...

3 Applications du théorème de Picard

3.1 Suites récurrentes au voisinage d'un point fixe... [Rou]

On suppose que f est une fonction C^1 de I dans I possédant un point fixe l. $\underline{1}^{\text{er}} \operatorname{cas} : |f'(l)| < 1$.

Alors $|f'(x)| \le k < 1$ sur un voisinage $J \subset I$ de l; pour tout $u_0 \in J$ la suite (u_n) définie par u_0 et $u_{n+1} = f(u_n)$ converge vers l. Le point fixe est dit attractif.

Si $f'(l) \neq 0$, alors pour tout $u_0 \in J \setminus \{l\}$, $|u_{n+1} - l| \underset{+\infty}{\sim} |f'(l)||u_n - l|$. Si f est C^2 , f'(l) = 0 et $f''(l) \neq 0$ (point critique non dégénéré), alors pour tout $u_0 \in J \setminus \{l\}$, $|u_{n+1} - l| \underset{+\infty}{\sim} \frac{|f''(l)|}{2} |u_n - l|^2$; c'est dans ce second cas que la convergence est la plus rapide.

 $2^{\text{nd}} \cos : |f'(l)| > 1.$

Alors $|f'(x)| \ge k > 1$ sur un voisinage $J \subset I$ de l; pour tout $u_0 \in J$ la suite $f^n(u_0)$ ne converge pas vers l. Le point fixe est dit *répulsif*. Pour approcher un tel point fixe, on considère la fonction f^{-1} , qui est bien définie sur J. Si |f'(l)| = 1, on peut si c'est possible regarder le signe de la première

dérivée n-ième non nulle de f en l, avec $n \geq 2$. Celui-ci permettra d'étudier la position relative de la courbe par rapport à la première bissectrice, et donc d'avoir un critère de convergence locale. Néamoins la convergence sera d'autant plus lente que n sera grand.

Exemple (FGN). Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 > 0$ et $u_{n+1} = th(u_n)$. Asymptotiquement, $u_n \sim \sqrt{\frac{3}{2n}}$: la convergence est très lente.

3.2 Approximations et méthode de Newton

Soit $f \in C^2([a, b], \mathbf{R})$, telle que f' > 0 sur [a, b] et que f(a) < 0 < f(b). Le but de la méthode de Newton est de résoudre l'équation f(c) = 0 (un tel c existe et est unique). Cela revient à chercher un point fixe de $F: x \mapsto x - \frac{f(x)}{f'(x)}$.

Proposition 3. Il existe un voisinage $J \subset [a,b]$ de c tel que F soit contractante sur J. Alors $\forall x_0 \in J$, $F^n(x_0) \to c$ et $\exists K > 0$ tel que $|F^{n+1}(x_0) - c| \le K|x_n - c|^2$

Exemple. Approximation de la racine carrée : $f: \mathbf{R}^+ \to \mathbf{R}^+$, $x \mapsto x^2 - y$ admet un unique zéro \sqrt{y} que l'on peut approcher par la méthode de Newton.

3.3 Calcul différentiel

Théorème 4 (Inversion locale). Soit U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}^n$ une application C^k . Soit $a \in U$ tel que df(a) soit inversible. Alors il existe V voisinage de a et W voisinage de f(a) tels que f soit un C^k -difféomorphisme de V dans W.

Théorème 5 (Hadamard,[Z-Q]). Soit $f: \mathbf{R}^n \to \mathbf{R}^n$ de classe C^1 telle que $\forall x \in \mathbf{R}^n$, df(x) soit inversible. De plus si $||f(x)|| \xrightarrow{||x|| \to +\infty} +\infty$, alors f est un C^1 -difféomorphisme de \mathbf{R}^n dans \mathbf{R}^n .

Théorème 6 (Fonctions implicites). Soient U un ouvert de $\mathbf{R}^n \times \mathbf{R}^m$, $(a,b) \in U$ et $f \in C^1(U,\mathbf{R}^m)$. On suppose que f(a,b) = 0 et que la matrice jacobienne $d_y f(a,b)$ est inversible. Alors il existe un voisinage V de a, un voisinage W de b et une unique application $\varphi \in C^1(V,W)$ tels que : $\forall (x,y) \in V \times W, \ f(x,y) = 0 \iff y = \varphi(x)$. + différentielle!

Exemple. Le folium de Descartes : l'ensemble des $(x, y) \in \mathbb{R}^2$ vérifiant $x^3 + y^3 - 3xy = 0$ admet un paramétrage local en tout point différent de l'origine.

3.4 Équations différentielles et intégrales

Théorème 7 (Cauchy-Lipschitz). Cf RDO 4 pour un énoncé toptop. Exemple. L'équation du pendule :

$$\begin{cases} y'' = -\sin y \\ y(0) = a \\ y'(0) = b \end{cases}$$

admet une unique sulution, définie sur R tout entier.

Proposition 4. Solution de l'équation intégrale [Rou p. 184].

Exemple. Celui du Rouvière...

4 Autres théorèmes de points fixes

Théorème 8. Soit E un ensemble non vide ordonné dans lequel toute partie non vide possède une borne inférieure et une borne supérieure. Alors toute fonction croissante $f: E \to E$ possède un point fixe.

Application. Toute fonction croissante de I dans I admet un point fixe [FGN1 p.228].

Théorème 9. point fixe et sous-groupes compacts, Alessandri p. 141.

Application. Sous-groupes comapets de Gl_n .

Théorème 10 (Kakutani [FGN 3 p. 109]). Soit E un evn, K un compact convexe de E et $T_i: K \to K$ une famille quelconque d'applications affines continues qui commutent deux à deux. Alors il existe un point fixe commun à tous les T_i .

Théorème 11 (Brouwer). Soit K un compact convexe de \mathbb{R}^n . Alors toute fonction continue $f: K \to K$ admet au moins un point fixe.

Application. Champ rentrant dans une sphère.

Application. Borsuk Ulam [GT].

Ce théorème possède une généralisation en dimension infinie :

Théorème 12 (Schauder, [G-T]). Soit E un R-espace vectoriel normé et C un fermé borné convexe de E. Si f est une fonction continue de C dans C telle que f(C) soit relativement compacte, alors f admet au moins un point fixe.

Corollaire 1 (Leray-Schauder).

Corollaire 2. Peano-Arzela.

Développements

- Fonctions implicites
- Brouwer (Rouvière dim. 2, Lafontaine, Hatcher) +206 et autres selon méthode de démo.
- Schauder
- Sarkovskii