223 - Convergence des suites numériques. Exemples et applications

 $\mathbf{K} = \mathbf{R}$ ou \mathbf{C}

1 Définition, opérations sur les limites

1.1 Définition et premières propriétés

Définition 1. Tend vers l, converge, diverge, tend vers $\pm \infty$.

Remarque. $\overline{\mathbf{R}}$.

Proposition 1. Unicité limite dans $\overline{\mathbf{R}}$.

Exemple. $(n^{\alpha})_n$, suite stationnaire, suite géométrique.

Proposition 2.

- $-u_n, u_{2n}$
- Image par une application continue, exemple $u_n \to l \implies |u_n| \to |\ell|$
- Convergente dans **C** ⇒ bornée

Exemple. $((-1)^n)_n$ est bornée non convergente. $n((-1)^n)_n$ est non bornée mais ne tend pas vers $\pm \infty$.

1.2 Propriétés d'ordre des limites dans R

Proposition 3. Soit $u_n \to \ell$

- $Si \ \ell > a$, alors aper $u_n \ge a$.
- $Si \ apcr \ u_n \geq a, \ alors \ \ell \geq a.$

Proposition 4. Si $u_n \to \ell$ et $v_n \to \ell'$ dans $\overline{\mathbf{R}}$, tq $u_n \le v_n$ aper, alors $\ell \le \ell'$.

Théorème 1 (des gendarmes).

Proposition 5 (Suites sous-additives). FGN 1.

Application. Rayon spectral.

1.3 Théorèmes opératoires classiques

Proposition 6. Théorèmes opératoires, dans $\overline{\mathbf{R}}$ et dans $\overline{\mathbf{C}}$: linéarité, produit quotient.

2 Divers critères de convergence

2.1 Limite et suites monotone

Tout est dans le titre.

Application. La série $\sum 1/n^2$ converge.

Définition 2. Suites adjacentes.

Proposition 7. Convergence des suites adjacentes.

Corollaire 1. Segments emboîtés.

Proposition 8. Approximation décimale.

Application. CSSA.

2.2 Suites de Cauchy

Définition 3. Suite de Cauchy.

Proposition 9.

- Convergente est de Cauchy.
- De Cauchy bornée.
- De Cauchy et une valeur d'adhérence convergente.

Théorème 2 (Construction de \mathbf{R}). Comme complété de \mathbf{Q} . En particulier \mathbf{R} est complet.

Corollaire 2. C est complet.

Théorème 3. Picard.

Application. Exemple de résolution d'une équation polynomiale de gros degré.

2.3 Compacité

Théorème 4 (Bolzano-Weierstrass).

Segments emboîtés

Proposition 10. Convergent ssi 1 seule val d'adh.

Exemple. Soit (u_n) bornée telle que $u_{n+1} - u_n - u_n^2 \to 0$. Alors (u_n) tend vers 0 [FGN p. 110].

Soit une suite $(u_n) \in \mathbf{K}^{\mathbf{N}}$ bornée. Si $(u_n + \frac{u_{2n}}{2})_n$ converge, alors il en est de même pour (u_n) .

2.4 Utilisation de séries

Remarque. On a $u_N - u_0 = \sum_{k=1}^{N} (u_k - u_{k-1})$.

Proposition 11. Si $\sum u_n \ cv$, alors $u_n \to 0$.

Théorème 5 (De Cesàro). Cf Pommelet.

Théorème 6. Taubérien fort.

2.5 Utilisation de relations de comparaison

Proposition 12. Relations de comparaison.

Exemple. $\left(1 + \frac{1}{n}\right)^n \to e$.

Proposition 13. Règle de D'Alembert.

Proposition 14 (Règle de Raabe-Duhamel).

Application. Formule de Wallis, formule de Stirling.

3 Applications

3.1 Méthode de Newton [Rou p.152]

Soit $f \in C^2([a,b], \mathbf{R})$, telle que f' > 0 sur [a,b] et que f(a) < 0 < f(b). Le but de la méthode de Newton est de résoudre l'équation f(c) = 0 (un tel c existe et est unique). Cela revient à chercher un point fixe de $F: x \mapsto x - \frac{f(x)}{f'(x)}$; l'avantage de cette fonction F est que sa dérivée en le point fixe est nulle : la convergence est alors au moins quadratique.

Proposition 15. Il existe un voisinage $J \subset [a,b]$ de c tel que F soit contractante sur J. Alors $\forall x_0 \in J$, $F^n(x_0) \to c$ et $\exists K > 0$ tel que $|F^{n+1}(x_0) - c| \le K|x_n - c|^2$

Exemple. Approximation de la racine carrée : $f: \mathbf{R}_+ \to \mathbf{R}_+$, $x \mapsto x^2 - y$ admet un unique zéro $a = \sqrt{y}$ que l'on peut approcher par la méthode de Newton. Prenant $x_0 \geq a$, on a une majoration de l'erreur : $0 \leq x_n - a \leq 2a\left(\frac{x_0-a}{2a}\right)^{2^n}$.

3.2 Intégration

Théorème 7. Somme de Riemann pour fonction CM.

Application. $u_n = \frac{1}{n} \sum_{k=1}^n \frac{n^2}{n^2 + k^2} = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + (k/n)^2} \rightarrow \int_0^1 \frac{dt}{1 + t^2} = \left[Arctan \, t \right]_0^1 = \frac{\pi}{4}$.

Méthode des rectangles...

Références

Gourdon

FGN

Rouvière

Demailly

Pommelet

J. Combes