226 - Comportement d'une suite réelle ou vectorielle définie par une itération $u_{n+1} = f(u_n)$. Exemples

1 Généralités, convergence et exemples classiques

On fixe un ensemble E, un sous-ensemble X de E et une fonction $f: X \to E$ telle que $f(X) \subset X$.

1.1 Points fixes

Proposition 1. On suppose que E est un espace topologique et que f est continue, et prend une suite (u_n) vérifiant pour tout n $u_{n+1} = f(u_n)$. Si la suite (u_n) converge vers une limite $l \in X$, alors f(l) = l.

Théorème 1 (Picard). Soit (X,d) un espace métrique complet et $f: X \to X$ une application contractante. Alors f possède un unique point fixe l et pour tout $x_0 \in X$, la suite (u_n) definie par $u_0 = x_0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ converge vers l; la vitesse de convergence vérifie alors $d(l, u_n) \leq \frac{k^n}{1-k} d(u_1, u_0)$.

Application. Cauchy-Lipschitz.

Proposition 2. Une application continue $f: K \to K$, avec K compact métrisable telle que pour tout couple de points distincts (x, y) de K, d(f(x), f(y)) < d(x, y), admet un unique point fixe a. De plus, pour tout $x_0 \in K$ la suite $(f^n(x_0))_n$ converge vers a.

Exemple. La fonction $f = [-\pi, \pi] \to [-1, 1]$; $x \mapsto \sin x$ possède un unique point fixe (en l'occurence 0).

Théorème 2. Soit (X, d) un espace métrique complet et L un espace topologique. Soit $f: L \times E \to E$ continue telle que $\forall \lambda \in L$, $f(\lambda, .)$ est contractante de rapport k (indépendant de λ). Pour tout λ on note a_{λ} le point fixe de $f(\lambda, .)$, alors l'application $\lambda \to a_{\lambda}$ est continue.

Application. Continuité des solutions des EDO par rapport aux paramètres, inversion locale, fonctions implicites.

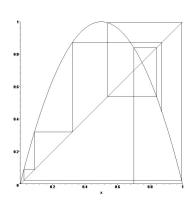
1.2 Cas réel

Soit I un segment de \mathbf{R} , $f: I \to \mathbf{R}$ telle que $f(I) \subset I$ et une suite $(u_n) \in I^{\mathbf{N}}$ vérifiant $u_{n+1} = f(u_n)$ pour tout $n \in \mathbf{N}$.

Proposition 3. Si f est croissante, alors (u_n) est monotone

Exemple. La suite définie par $u_0 \in \mathbf{R}_+^*$ et $u_{n+1} = \ln(1+u_n)$ est croissante et ne converge pas vers une limite finie, donc elle tend vers $+\infty$.

Proposition 4. Si f(x) - x garde un signe constant, alors (u_n) est monotone.



Proposition 5. Si f est décroissante, alors les suite (u_{2n}) et (u_{2n+1}) sont monotones et de sens de variation différents.

Exemple. Pour $f:[0,1] \to [0,1]$, $x \mapsto \sqrt{1-x}$, pour toute donnée initiale $u_0 \in [0,1]$, la suite (u_n) converge vers $(-1+\sqrt{5})/2$. Pour $u_0 \in \{0,1\}$, la suite est 2-périodique.

Spécificités du cas réel : un ordre compatible avec la structure de ${\bf R}$

Proposition 6 ([FGN1 p. 86]). Si $f: [0,1] \rightarrow [0,1]$ est continue et $f(u_n) = u_{n+1}$, alors (u_n) converge ssi $u_{n+1} - u_n \rightarrow 0$.

Exemples classiques [Gou]

- 1. Suites arithmético-géométriques. Ce sont les suites $(u_n)_{n\in\mathbb{N}}$ définies par la donnée de $u_0 \in \mathbb{R}$ et la relation de récurrence $u_{n+1} = \lambda u_n + a$, avec $\lambda \in \mathbb{R} \setminus \{-1\}$ et $a \in \mathbb{R}$. On se ramène alors au cas des suites géométriques en posant $v_n = u_n + \frac{a}{\lambda 1}$, ce qui donne la relation $v_{n+1} = \lambda v_n$.
- 2. Suites homographiques [Gou p 195]. Ce sont les suites $(u_n)_{n\in\mathbb{N}}$ définies par la donnée de $u_0 \in \mathbb{R}$ et la relation de récurrence $u_{n+1} = f(u_n)$, avec $f(x) = \frac{ax+b}{cx+d}$, avec $a, b, c, d \in \mathbb{R}$ $(c \neq 0)$ et $u_0 \in \mathbb{R}$ tel que la suite soit définie sur \mathbb{N} . Une manière plus élégante de définir cette suite est de la définir comme allant du projectif réel de dimension 1 dans lui-même. On pose alors $f(\infty) = a/c$ et $f(-d/c) = \infty$. On résout alors dans \mathbb{C} l'équation du 2^{nd} ordre h(x) = x.
 - Si elle admet deux solutions distinctes α et β , alors $\forall n \in \mathbb{N}$,

$$\frac{u_n - \alpha}{u_n - \beta} = k^n \frac{u_0 - \alpha}{u_0 - \beta} \quad \text{avec} \quad k = \frac{a - \alpha c}{a - \beta c}$$

2

- Si elle admet une racine double α , alors $\forall n \in \mathbf{N}$,

$$\frac{1}{u_n - \alpha} = \frac{1}{u_0 - \alpha} + kn \quad \text{avec} \quad k = \frac{c}{a - \alpha c}$$

Au voisinage d'un point fixe... [Rou]

On suppose que f est une fonction C^1 possédant un point fixe l. $\underline{1}^{\text{er}} \operatorname{cas} : |f'(l)| < 1$.

Alors $|f'(x)| \le k < 1$ sur un voisinage $J \subset I$ de l; pour tout $u_0 \in J$ la suite (u_n) définie par u_0 et $u_{n+1} = f(u_n)$ converge vers l. Le point fixe est dit attractif.

Si $f'(l) \neq 0$, alors pour tout $u_0 \in J \setminus \{l\}$, $|u_{n+1} - l| \underset{+\infty}{\sim} |f'(l)||u_n - l|$. Si f est C^2 , f'(l) = 0 et $f''(l) \neq 0$ (point critique non dégénéré), alors pour tout $u_0 \in J \setminus \{l\}$, $|u_{n+1} - l| \underset{+\infty}{\sim} \frac{|f''(l)|}{2} |u_n - l|^2$; c'est dans ce second cas que la convergence est la plus rapide.

 $2^{\text{nd}} \cos : |f'(l)| > 1.$

Alors $|f'(x)| \ge k > 1$ sur un voisinage $J \subset I$ de l; pour tout $u_0 \in J$ la suite $f^n(u_0)$ ne converge pas vers l. Le point fixe est dit *répulsif*. Pour approcher un tel point fixe, on considère la fonction f^{-1} , qui est bien définie sur J.

Si |f'(l)| = 1, on peut si c'est possible regarder le signe de la première dérivée n-ième non nulle de f en l, avec $n \geq 2$. Celui-ci permettra d'étudier la position relative de la courbe par rapport à la première bissectrice, et donc d'avoir un critère de convergence locale. Néamoins la convergence sera d'autant plus lente que n sera grand.

Exemple. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0>0$ et $u_{n+1}=th(u_n)$. Asymptotiquement, $u_n\sim\sqrt{\frac{3}{2n}}$: la convergence est très lente.

1.3 Cas vectoriel

Soit X un fermé de \mathbf{R}^d , $f: X \to \mathbf{R}$ telle que $f(X) \subset X$ et une suite $(u_n) \in X^{\mathbf{N}}$ vérifiant $u_{n+1} = f(u_n)$ pour tout $n \in \mathbf{N}$. L'étude de toute suite récurrente $(u_n) \in (\mathbf{R}^d)^{\mathbf{N}}$ d'ordre p, vérifiant $u_{n+p} = \mathbf{R}^d$

L'étude de toute suite récurrente $(u_n) \in (\mathbf{R}^d)^{\mathbf{N}}$ d'ordre p, vérifiant $u_{n+p} = f(u_n, u_{n+1}, \dots, u_{n+p-1})$ pour $f: X \subset (\mathbf{R}^d)^p \to \mathbf{R}^d$ se ramène à celle d'un suite récurrente d'ordre 1 en posant la suite $(U_n) \in ((\mathbf{R}^d)^p)^{\mathbf{N}}$ et la fonction $F: (\mathbf{R}^d)^p \to (\mathbf{R}^d)^p$ définies par :

$$U_n = \begin{pmatrix} u_n \\ u_{n+1} \\ \vdots \\ u_{n+p-1} \end{pmatrix} \quad \text{et} \quad F \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{p-1} \\ x_p \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_p \\ f(x_1, x_2, \dots, x_p) \end{pmatrix}$$

On a alors $U_{n+1} = F(U_n)$ pour tout n.

Un cas particulier est celui des suites linéaires récurrentes d'ordre n, définies par $u_{n+p} = a_1 u_{n+p-1} + a_2 u_{n+p-2} + \cdots + a_p u_n$. On pose alors l'équation caractéristique associée $x^p = a_1 x^{p-1} + \cdots + a_p$. Si on note r_1, \ldots, r_q ses racines, et $\alpha_1, \ldots, \alpha_q$ leurs multiplicités, l'ensemble des suites (u_n) solutions de l'équation de récurrence sera l'ensemble des suites de la forme $u_n = P_1(n)r_1^n + \cdots + P_q(n)r_q^n$, avec pour tout i P_i un polynôme de degré strictement inférieur à α_i .

2 Applications à l'analyse numérique

2.1 Méthode de Newton [Rou p.152]

Soit $f \in C^2([a, b], \mathbf{R})$, telle que f' > 0 sur [a, b] et que f(a) < 0 < f(b). Le but de la méthode de Newton est de résoudre l'équation f(c) = 0 (un tel c existe et est unique). Cela revient à chercher un point fixe de $F: x \mapsto x - \frac{f(x)}{f'(x)}$; l'avantage de cette fonction F est que sa dérivée en le point fixe est nulle : la convergence est alors au moins quadratique.

Proposition 7. Il existe un voisinage $J \subset [a,b]$ de c tel que F soit contractante sur J. Alors $\forall x_0 \in J$, $F^n(x_0) \to c$ et $\exists K > 0$ tel que $|F^{n+1}(x_0) - c| \le K|x_n - c|^2$

Exemple. Approximation de la racine carrée : $f: \mathbf{R}_+ \to \mathbf{R}_+$, $x \mapsto x^2 - y$ admet un unique zéro $a = \sqrt{y}$ que l'on peut approcher par la méthode de Newton. Prenant $x_0 \ge a$, on a une majoration de l'erreur : $0 \le x_n - a \le 2a\left(\frac{x_0-a}{2a}\right)^{2^n}$.

2.2 Méthode d'Euler [Dem p.123]

Soit à approcher une solution de l'équation différentielle (E) y' = f(t, y), avec $f: U \to \mathbf{R}^m$ une application continue, où $U = [t_0, t_0 + T] \times V$ est un ouvert de $\mathbf{R} \times \mathbf{R}^m$.

On se donne alors une subdivision $t_0 < t_1 < \cdots < t_N = t_0 + T$. Partant d'une donnée initiale y_0 , on calcule pour tout $1 \le n \le N$ la suite définie par $y_{n+1} = y_n + (t_{n+1} - t_n)f(t_n, y_n)$, ce qui correspond pour tout n à une approximation linéaire de la solution de (E) passant par le point (t_n, y_n) . On définit alors la fonction y comme étant la fonction affine par morceaux passant par ces points.

Proposition 8. Soit (y_p) une suite de telles approximations de solutions de (E), telles que $\sup\{\|y_p'(t)-f(t,y_p(t))\| \mid t \in [t_0,t_0+T] \setminus \{t_1\dots t_{N-1}\}\} \to_{p\to\infty} 0$. Si y_p converge uniformément sur $[t_0,t_0+T]$ vers une fonction y, alors y est une solution de (E).

Exemple. On considère (E) y' = rx, $r \in \mathbf{R}$. On veut approcher les solutions de (E) avec un pas 1/n. On a alors $y_k = (1 + r/n)^k y_0$. En prenant k = n, on retrouve la formule $(1 + r/n)^n \to_{n \to \infty} e^r$.

En appliquant le théorème d'Ascoli à une suite d'approximations dont le pas tend vers 0, on peut obtenir un résultat d'existence de solutions aux équations différentielles :

Théorème 3 (Ascoli-Peano-Arzela). Choisissons $(t_0, y_0) \in U$ une condition initiale et des réels $r_0 > 0$, T > 0 tels que $C \doteq [t_0 - T, t_0 + T] \times B(y_0, r_0) \subset U$ et que $T \sup_{(t,y)\in C} ||f(t,y)|| < r_0$. Alors il existe une solution de (E) (pas forcément unique) avec condition initiale (t_0, y_0) définie sur $[t_0 - T, t_0 + T]$.

3 Étude qualitative et chaos

L'exemple de l'application tente

On considère l'application

$$f: [0,1] \to [0,1] \\ x \mapsto \begin{cases} 2x & \text{si } x \le 1/2 \\ -2x + 2 & \text{si } x > 1/2 \end{cases}$$

On considère donc la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=x\in[0,1]$ et $u_{n+1}=f(u_n)$ pour tout n. On décompose x en base $2:x=\sum_{k=1}^{\infty}x_k/2^k$. On montre alors que la dynamique de f est chaotique, c'est à dire que l'ensemble des $x\in[0,1]$ engendrant une suite périodique est dense, qu'il existe une orbite dense et que $\forall \varepsilon>0, \ \forall x\in[0,1], \ \exists x'\in[0,1]: |x-x'|\leq\varepsilon: \ \forall p\in\mathbb{N} \ \exists n\geq p: |f^n(x)-f^n(x')|\geq 1/2$ (c'est la sensibilité aux conditions initailes).

Théorème 4 (Sarkovskii[F-G1]). Soit $f : [0,1] \rightarrow [0,1]$ une application continue ayant un point périodique de période 3. Alors il existe des points périodiques de toutes les périodes entières.

On se fixe désormais une mesure μ sur \mathbf{R}^n et un sous-ensemble borélien X de \mathbf{R}^n de mesure 1.

Définition 1. Soit T une application mesurable de X dans X. On dit que T préserve la mesure si pour tout mesurable A de X, $\mu(T^{-1}A) = \mu(A)$. On dit que T est ergodique si pour tout sous-ensemble mesurable A de X vérifiant $T^{-1}A = A$, $\mu(A) \in \{0,1\}$.

Théorème 5 (Poincaré, [C-L1, p.180]). Soit $T: X \to X$ une application préservant la mesure et B un sous-ensemble de X, mesurable et de mesure non nulle. Alors pour presque tout point $x \in B$, il existe $k \in \mathbb{N}^*$ tel que $T^k x \in B$.

Exemple. Si on reprend l'application tente, alors pour presque tout point $x \in [0, 1]$, l'orbite de x passera une infinité de fois au voisinage de x (mais ce n'est pas vrai pour tous les points, par exemple 1).

Théorème 6 (Birkhoff, [C-L1, p177]). Soit $f \in L^1(X)$, et T préseravnt la mesure. Alors la moyenne $1/n \sum_{k=0}^{n-1} f(T^n x)$ converge presque partout vers une limite F(x) appartenant à $L^1(X)$ vérifiant $\int_X F = \int_X f$. Si de plus T est ergodique, alors F est constante.

Exemple. – Soit b un entier supérieur ou égal à 2. Un nombre $x \in [0, 1[$ est dit normal si les chiffres de son écriture en base b apparaissent tous avec la même fréquence. Alors presque tout $x \in [0, 1[$ est normal.

– La fréquence de l'occurence d'un chiffre k parmi les premiers chiffres des puissances de deux successives est égale à $\log_{10}(1+1/k)$.

Références et développements

[Rou] Rouvière

[Dem] Demailly

[C-L1] Chambert-Loir, Analyse 1

[F-Gi] Francinou-Gianella, Analyse i

[F-G1'] Francinou-Gianella, Algèbre 1

[Gou] Gourdon, Analyse

[G-T] Gonnord-Tosel, Topologie et analyse fonctionnelle

- Méthode de Newton (Rou) +206, 218?, 223, 224, 232
- Méthode d'Euler (Dem) +221, 223, 224, 238b
- Fonction tente (F-G1) +206
- Critère de Kitaï (G-T) +205
- Applications arithmétiques : nombres normaux et premiers chiffres des puissances de 2 (F-G1') +202, 246
- Théorème de Sarkovskii (F-G1) +204, 206