238 - Méthodes de calcul approché d'intégrales et d'une solution d'une équation différentielle

1 Intégration numérique

1.1 Principe

Soit $f: [\alpha, \beta] \to \mathbf{R}$ une fonction continue. On cherche à approcher la valeur de $\int_{\alpha}^{\beta} f(x)dx$. On choisit une subdivision $\alpha = \alpha_0 < \alpha_1 < \cdots < \alpha_k = \beta$ de $[\alpha, \beta]$; la formule de Chasles donne $\int_{\alpha}^{\beta} f(x)dx = \sum_{i=1}^{k} \int_{\alpha_{i-1}}^{\alpha_i} f(x)dx$; on est donc ramenés au calcul approché de l'intégrale de f sur de petits intervalles $[\alpha_{i-1}, \alpha_i]$, sur lesquels on utilise des méthodes de quadrature élémentaire.

Méthode des quadratures élémentaires

On approche $\int_{\alpha_{i-1}}^{\alpha_i} f(x) dx$ par $(\alpha_i - \alpha_{i-1}) \sum_{j=0}^{l_i} \omega_{i,j} f(\xi_{i,j})$, où $l_i \in \mathbf{N}^*, \xi_{i,j} \in$ $[\alpha_{i-1}, \alpha_i]$ et $\sum_{i=0}^{l_i} \omega_{i,j} = 1$.

Remarque. $-\sum_{j=0}^{l_i} \omega_{i,j} f(\xi_{i,j})$ est une « valeur moyenne » de f sur $[\alpha_{i-1}, \alpha_i]$. - Toute la difficulté est de bien choisir les $\xi_{i,j}$ est les $\omega_{i,j}$.

- Finalement, on a $\int_{\alpha}^{\beta} f(x)dx \simeq \sum_{i=1}^{k} (\alpha_i - \alpha_{i-1}) \sum_{j=0}^{l_i} \omega_{i,j} f(\xi_{i,j})$.

Définition 1. On dit qu'une méthode de quadrature élémentaire est d'ordre N si la formule approchée est exacte pour tous les polynômes de degré inférieur ou égal à N et inexacte pour au moins un polynôme de degré N+1.

Remarque. Puisque $\sum_{j=0}^{l_i} \omega_{i,j} = 1$, les méthodes sont toutes d'ordre au moins 0.

1.2Premiers exemples

Cas $l_i = 0$ pour tout i1.2.1

Pour tout i on choisit $\xi_i \in [\alpha_{i-1}, \alpha_i]$ et donc $\int_{\alpha}^{\beta} f(x) dx \simeq \sum_{i=1}^{k} (\alpha_i - \alpha_{i-1}) f(\xi_i)$: on approche l'intégrale par une somme de Riemann. Les choix les plus courants sont :

- $\xi_i = \alpha_{i-1}$: méthode des rectangles à gauche; $\int_{\alpha}^{\beta} f(x) dx \simeq \sum_{i=1}^{k} (\alpha_i \alpha_i)^{-1} dx$ $\alpha_{i-1})f(\alpha_{i-1})$. Cette méthode est d'ordre 0. **Dessin!**
- $-\xi_i = \alpha_i$: méthode des rectangles à droite.

 $-\xi_i=\frac{\alpha_i+\alpha_{i-1}}{2}$: méthode du point-milieu; cette méthode est d'ordre 1. Dessin!

1.2.2 Interpolation linéaire

On prend $l_i = 1$ pour tout i, $\xi_{i,0} = \alpha_{i_1}$, $\xi_{i,1} = \alpha_i$, et $\omega_{i,j} = 1/2$. C'est la méthode des trapèzes; elle est d'ordre 1. Dessin!

1.2.3 Méthode de Newton-Cotes

Dans la méthode de Newton-Cotes de rang l, on choisit $l_i = l$ pour tout i, et les points $\xi_{i,j}$ régulièrement espacés dans $[\alpha_{i-1}, \alpha_i]$. On approche ensuite f sur chaque $[\alpha_{i-1}, \alpha_i]$ par son polynôme interpolateur de Lagrange aux points $\xi_{i,j}$. On obtient $\int_{\alpha}^{\beta} f(x)dx \simeq \sum_{i=1}^{k} (\alpha_i - \alpha_{i-1}) \sum_{j=0}^{l} \omega_j f(\xi_{i,j})$, avec $\omega_j = \frac{1}{2} \int_{-1}^{1} \prod_{i \neq j} \frac{x - x_j}{x_i - x_i} dx$ et $x_j = -1 + 2\frac{j}{l}$.

Exemple.

- -l=1: méthode des trapèzes; $\omega_0=\omega_1=1/2$.
- -l=2: méthode de Simpson; $\omega_0=\omega_2=1/6,\ \omega_1=2/3.$
- -l=4: méthode de Boole-Villarceau; $\omega_0=\omega_4=7/90,~\omega_1=\omega_3=16/45,~\omega_2=2/15.$

Proposition 1. Si l est pair, alors l'ordre de la méthode de Newton-Cotes est l+1. Si l est impair l'ordre est l.

Remarque. Pour $l \geq 8$, il apparaît des ω_i négatifs, si bien que la méthode devient sensible aux erreurs d'arrondi.

Phénomène de Runge [Dem]

1.2.4 Méthode de Gauss

Soit ω une fonction de poids sur]a,b[. On étudie les méthodes d'intégration du type $\int_{\alpha}^{\beta} f(x)\omega(x)dx \simeq \sum_{j=0}^{l} \lambda_{j}f(x_{j})$.

Théorème 1. Il existe un choix et un seul des points x_j et des coefficients λ_j tel que la méthode soit d'ordre 2l+1. Les points x_j sont dans $]\alpha,\beta[$ et sont les racines du l+1-ème polynôme orthogonal pour le poids ω .

Exemple.

- $-\omega \equiv 1$ sur]-1,1[: méthode de Gauss-Legendre.
- $-\omega(x) = 1/\sqrt{1-x^2}$ sur]-1,1[: méthode de Gauss-Tchebychev.

ex pendule simple

Convergence et évaluation de l'erreur

Théorème 2. On considère la méthode où $l_i = l$ et $\omega_{i,j} = \omega_j$. Si $h = \max(\alpha_i - \alpha_{i-1})$, et notant $T_k(f) = \sum_{i=1}^k (\alpha_i - \alpha_{i-1}) \sum_{j=0}^l \omega_j f(\xi_{i,j})$, alors $T_k(f) \to_{h\to 0} \int_{\alpha}^{\beta} f(x) dx.$

Définition 2. Pour une méthode du type $\int_{\alpha}^{\beta} f(x)\omega(x)dx \simeq \sum_{j=0}^{l} \lambda_{j}f(\xi_{j}),$ on définit l'erreur due à la méthode par $E(f) = \int_{\alpha}^{\beta} f(x)\omega(x)dx - \sum_{j=0}^{l} \lambda_j f(\xi_j)$

Proposition 2. On considère une méthode de Newton-Cotes d'ordre N. Alors il existe une constante C telle que pour toute fonction $f \in C^{N+1}$, on $a |E(f)| \le h^{N+1} ||f^{(N+1)}||_{\infty} C.$

Remarque. Si la fonction à intégrer n'est pas de régularité suffisante, la méthode d'intégration peut s'avérer très mauvaise.

Exemple. On suppose que $\alpha_i - \alpha_{i-1}$ est constant égal à h.

- Méthode du point milieu, $E(f) \leq \frac{h^2}{24} ||f''||_{\infty} (\beta \alpha)$.
 Méthode des trapèzes, $E(f) \leq \frac{h^2}{22} ||f''||_{\infty} (\beta \alpha)$.
 Méthode de Simpson, $E(f) \leq \frac{h^4}{2880} ||f^{(4)}||_{\infty} (\beta \alpha)$.

Théorème 3. pour la méthode de Gauss d'ordre N=2l+1, si f est de classe C^{2l+2} sur $\alpha,\beta]$, alors il existe $\xi\in]\alpha,\beta[$ tq $E(f)=\frac{f^{(2l+2)}(\xi)}{(2l+2)!}\int_{\alpha}^{\beta}\pi_{l+1}(x)^2\omega(x)dx$, où π_l est le l-ie polynôme orthogonal associé au poids ω .

1.4 Méthode de Romberg

Pour caser le développement sur les nombres de Bernoulli.

2 Solutions approchées d'équations différentielles

L'objectif est de résoudre numériquement le problème de Cauchy y' = f(t, y), y(0) = y_0 , où $f:[t_0+T]\times \mathbf{R}\to \mathbf{R}$. Pour une subdivision $t_0< t_1<\cdots< t_N=t_0+T$, on cherche à déterminer les valeurs approchées successives y_0, \ldots, y_N des valeurs de la solution exacte en les points de la subdivision. On note par la suite $h_i = t_{i+1} - t_i$.

Définition 3. On appelle méthode à un pas une méthode de résolution numérique du problème de Cauchy pouvant s'écrire $y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n)$, avec Φ continue.

2.1Méthode d'Euler

L'idée est d'écrire $y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t,y(t)) dt$ pour une solution exacte y, et on approche cela en posant $y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(t_n, y_n) dt =$ $y_n + h_n f(t_n, y_n)$. Dessin!

2.2 Convergence

Définition 4.

- L'erreur de consistance de la méthode à un pas associée à Φ relative à une solution exacte y est $e_n = y(t_{n+1}) y(t_n) h_n\Phi(t_n, y(t_n), h_n)$. C'est l'erreur commise par la méthode en un pas.
- L'erreur globale de la méthode est $\theta_n = \max_{0 \le j \le n} |y(t_j) y_j|$.

Exemple. On suppose f de classe C^1 . Posant $f^{[1]} = \frac{\partial f}{\partial t} + f \frac{\partial f}{\partial y}$, on a pour la méthode d'Euler $e_n = \frac{h_n^2}{2} f^{[1]}(t_n, y_n) + o(h_n^2)$.

Définition 5.

- On dit que la méthode est *consistante* si pour toute solution exacte y, la somme des erreurs de consistance relatives à y, $\sum |e_n|$, tend vers 0 quand $\max h_n$ tend vers 0.
- On dit que la méthode est stable s'il existe une constante S > 0 appelée constante de stablilité telle que pour toutes suites (y_n) et (\tilde{y}_n) définies par $y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n)$ et $\tilde{y}_{n+1} = \tilde{y}_n + h_n \Phi(t_n, \tilde{y}_n, h_n) + \varepsilon_n$ pour $0 \le n \le N$, on ait max $|y_n \tilde{y}_n| \le S(|y_0 \tilde{y}_0| + \sum |\varepsilon_n|)$.
- On dit que la méthode est convergente si pour toute solution exacte y vérifiant $y(t_0) = y_0$, la suite définie par $y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n)$ et $y(t_0) = y_0$ vérifie $\max_n |y(t_n) y_n| \to_{\max h_i \to 0} 0$.

Proposition 3. Une méthode stable et consistante est convergente.

Théorème 4 (Ascoli-Peano-Arzela). Si f est continue, alors il existe une suite de subdivisions dont le pas tend vers 0 telle que les solutions approchées par la méthode d'Euler convergent vers une solution exacte.

Théorème 5. La méthode à un pas définie par Φ est :

- consistante ssi $\forall (t,y) \in [t_0, t_0 + T] \times \mathbf{R}, \ \Phi(t,y,0) = f(t,y).$
- stable si Φ est lipsch. en y de constante Λ . On peut alors prendre $S = e^{\Lambda T}$ comme constante de consistance.

Application. Si f est lipschitzienne en y (hypothèse du théorème de cauchy-Lipschitz), alors la méthode d'Euler est convergente.

Exemple. On considère (E) y' = rx, $r \in \mathbf{R}$. On veut approcher les solutions de (E) avec un pas 1/n. On a alors $y_k = (1 + r/n)^k y_0$. En prenant k = n, on retrouve la formule $(1 + r/n)^n \to_{n \to \infty} e^r$.

2.3 Méthode du point-milieu [Dem p. 209]

Présentation de la méthode, dessin, théorème : d'ordre 3.