239 - Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.

On se donne $f: E \times X \to \mathbf{C}$, E espace mesuré, X espace métrique tx $\forall x$, f(.,x) intégrable sur E. Sa somme sera notée F(x).

1 Régularité des intégrales à paramètres

Théorème 1 (Fondamental, [Gou p. 123]). Dérivation de $x \mapsto \int_a^x f(t)dt$.

Application ([FGN3 p. 202]). Inégalité de Kolmogorov.

Théorème 2 (Convergence dominée).

Théorème 3 (Continuité).

Exemple. $x \mapsto \int_0^{\pi} \cos\left(\frac{tx}{1+t^2}\right)$ est continue sur **R**.

Exemple. Nécessité domination : tente vers 0.

Théorème 4 (Dérivabilité).

Exemple. TF de la gaussienne.

Exemple ([Gou p. 164]). $\int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt = \arctan x$

Exemple. Indice d'un chemin [Rud p. 247]

Application. Intégrale de Fresnel.

Morera

Théorème 5 (Holomorphie sous le signe somme).

Application. Holomorphie de $\Gamma.$ Prolongement analytique. Prolongement de ζ [Ama].

Théorème 6 (Résidus).

Application. Pac Man.

2 Comportement asymptotique

Exemple ([Gou p. 156]). Soit $f: \mathbf{R}_+ \to \mathbf{R}_+$ positive de carré intégrable. Alors $\int_0^x f(t)dt = o(\sqrt{x})$.

Théorème 7 (Intégration des relations de comparaison).

Exemple. Nécessité d'être à valeurs dans \mathbf{R}_{+} , contre ex $\sin x/x$.

Application. $ln(x) = o(x^a) \ \forall a > 0.$

Exemple ([Gou p. 169]). Li(x).

Théorème 8 (Méthode de Laplace, [Rou, Cand]).

Application. Formule de Stirling.

Proposition 1. Méthode de la phase stationnaire?

3 Produit de convolution, transformée de Fourier

3.1 Convolution

Définition 1 ([Hirsch-Lacombe]). Fonctions convoluables.

Théorème 9 (Inégalité de Young).

Exemple. Convolution de 2 gaussiennes.

Théorème 10 (fondamantal du traitement du signal). Soit $T: L^2 \to C_b$ un opérateur linéaire continu invariant par translation. Alors il existe $g \in L^2$ tq T = .*g.

Proposition 2. Dérivation $L^1/C^k \cap L^\infty$ et $L^\infty/C^k \cap L^1$ (L^1_{loc} ?).

Définition 2. Identité approchée.

Théorème 11. Convergences :

 L^{∞} : convergence ponctuelle partout où f est continue

 C_b : convergence uniforme

 L^p : convergence dans L^p .

Application. Densité de C_c^{∞} dans L^p .

Attention : la densité de C_c ne s'obtient pas comme ça.

Application. Weierstrass par convolution.

Application. Noyaux de Dirichlet et de Féjer.

Théorème 12 (Riesz-Fréchet-Kolmogorov).

Application. Application Brézis.

3.2 Transformée de Fourier

Définition 3. TF.

Proposition 3. TOC ($Rudin + d\acute{e}rivation$).

Proposition 4. Comportement vis à vis de la convolution.

Théorème 13 (Riemann-Lebesgue).

Par densité!

Exemple. TF de la Gaussienne, de $\chi_{[-1,1]}$, de $e^{-ax}\chi_{\mathbf{R}^+}$, de $\frac{x^k}{k!}e^{-ax}\chi_{\mathbf{R}^+}$...

Proposition 5. Formule de Fresnel.

Proposition 6. Calcul via l'analyse complexe (Cartan p. 102).

Théorème 14 (Inversion de Fourier).

Application. TF de $1/(a+2i\pi\xi)^{k+1}$.

Théorème 15 (Parseval).

Théorème 16 (Plancherel).

Prolongement fonction unif continue (car linéaire continue) Banach.

Exemple. TF du sinus cardinal, de $\frac{1}{a\pm 2i\pi x}$.

4 Résolution d'équations différentielles

4.1 EDO linéaires

Proposition 7. Variation de la constante.

Proposition 8. Forme générale de la solution de l'équation homogène/complète y' = a.y + b(t) avec l'exponentielle [Pom p. 321].

4.2 Équation de transport et équation des ondes

Di Menza p. 42 et 56.

Euler MacLaurin?